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SUMMARY 

This thesis addresses the problem of the numerical 

simulation of the shear band or 'plugging' mode of failure in 

metallic solids. Particular reference is made to the normal 

impact between blunt projectiles and circular plates of thin to 

intermediate thickness. 

The thesis presents a two dimensional axisymmetric and plane 

strain finite element computer program related to the Lagrangian 

reference frame. A four node element with one point quadrature 

and associated stabilisation is utilised, and is shown to be 

superior to standard isoparametric implementations when applied 

within an explicit time integration scheme. Finite deformation 

capabilities are included, together with material nonlinearity in 

the form of a von Mises elastic-plastic model. The algorithms 

used in this work are dictated to a large degree by the emphasis 

which is placed upon efficiency, although this is not at the 

expense of accuracy. Numerical stability in the presence of 

severe stress gradients is achieved through the use of an 

artificial viscosity scheme. 

The impact conditions along the contacting interface are 

governed by the use of a penalty-based slideline technique which 

permits arbitrarily large relative deformations of the contact 

surfaces. 

With the foregoing numerical basis, the penalty-based 

slideline technique has been extended in this work to facilitate 

the discrete modelling of the fracture process present during 

plugging. 

The computational model has been embedded within the LUSAS 

finite element system which provides extensive pre and post 

processing facilities. 

A detailed discussion of the problems involved in the 

solution of high velocity impact calculations is given, together 
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with an assessment of the effects of several material related 

parameters on the solution. 

several numerical comparisons with experimental evidence are 

also performed to indicate the effectiveness of the method. 

Finally, relevant conclusions have been made and suggestions 

for further study are provided. 

J 

- Y3 - 



CONTENTS 

NOTATION 

LIST OF FIGURES 

LIST OF TABLES 

1 GENERAL INTRODUCTION 

1.1 OVERVIEW 

1.2 DEFINITIONS 

1.3 SHEAR BAND PHENOMENA 

1.4 THE NUMERICAL MODEL 

1.5 THESIS OBJECTIVES 

1.6 THESIS ARRANGEMENT, 

1.7 REFERENCES 

TABLES 

FIGURES 

2 THE FINITE ELEMENT SOLUTION PROCEDURE 

2.1 INTRODUCTION 

2.2 TIME INTEGRATION SCHEME 

2.2.1 The central difference method 

2.2.2 Time step calculation 

2.2.3 Discussion of time integration scheme 

selection 

2.3 SPATIAL DISCRETISATION 

2.3.1 The linear isoparametric element 

2.3.2 The spatial integration scheme 

2.3.3 The mass matrix 

2.3.4 Evaluation of element internal forces 

2.4 GEOMETRIC NONLINEARITY 

2.4.1 Deformation Gradient 

2.4.2 Stress evaluation 

2.5 MATERIAL NONLINEARITY 

Page 

x9 

x13 

x21 

1.1 

1.1 

1.7 

1.8 

1.13 

1.16 

1.17 

1.18 

1.21 

1.22 

2.1 

2.1 

2.1 

2.2 

2.5 

2.10 

2.13 

2.13 

2.14 

2.16 

2.18 

2.20 

2.24 

2.26 

2.27 

- x4 - 



2.6 HOURGLASS CONTROL 2.30 

2.6.1 Definition of hourglass modes 2.31 

2.6.2 Diagonal drifting 2.32 

2.6.3 Hourglass damping 2.33 

2.7 CONTROL OF NUMERICAL OSCILLATIONS 2.34 

2.7.1 The bulk viscosity method 2.37 

2.8 DISCUSSION 2.38 

2.9 CONCLUSIONS 2.42 

2.10 REFERENCES 2.43 

TABLES 2.48 

3 THE SLIDELINE TECHNIQUE 3.1 

3.1 INTRODUCTION 3.1 

3.2 SLIDELINE TERMINOLOGY 3.1 

3.3 EVOLUTION OF CURRENT SLIDELINE METHODS 3.2 

3.3.1 Nodal constraint method 3.5 

3.3.2 Velocity constraint method 3.6 

3.3.3 Penalty-based method 3.7 

3.3.4 Distributed parameter method 3.8 

3.3.5 Lagrangian multiplier method 3.8 

3.3.6 Selection of slideline procedure 3.9 

3.4 THE PENALTY-BASED SLIDELINE METHOD 3.11 

3.4.1 Definition of contact surfaces 3.12 

3.4.2 Slave search 3.12 

3.4.3 Zonal contact detection 3.13 

3.4.4 Segment definition 3.14 

3.4.5 Normal penetration evaluation 3.16 

3.4.6 Contact location point 3.17 

3.4.7 Tangential penetration evaluation 3.17 

3.4.8 Computation of interface stiffness 3.18 

3.4.9 Application of constraints 3.19 

3.5 NUMERICAL IMPLEMENTATION 3.20 

3.6 ASPECTS OF SLIDELINE USAGE 3.22 

3.7 CONCLUSIONS 3.24 

3.8 REFERENCES 3.25 

- 85 - 



TABLES 3.29 

FIGURES 3.33 

4 VALIDATION OF THE SLIDELINE TECHNIQUE 4.1 

4.1 INTRODUCTION 4.1 

4.2 ELASTIC BAR IMPACT AGAINST A RIGID WALL 4.2 

4.2.1 Finite element idealisation 4.2 

4.2.2 Theoretical considerations 4.2 

4.2.3 Results and discussion 4.3 

4.3 LONGTITUDINAL IMPACT OF TWO ELASTIC BARS 4.5 

4.3.1 Finite element idealisation 4.6 

4.3.2 Results and discussion 4.6 

4.4 PLASTIC BAR IMPACT AGAINST A RIGID WALL 4.8 

4.4.1 Finite element idealisation 4.8 

4.4.2 Results and discussion 4.9 

4.5 ELASTIC SPHERE IMPACT AGAINST A RIGID WALL 4.11 

4.5.1 Finite element idealisation 4.11 

4.5.2 Theoretical considerations 4.12 

4.5.3 Results and discussion 4.13 

4.6 LONGTITUDINAL IMPACT OF TWO ELASTIC SPHERES 4.14 

4.6.1 Finite element idealisation 4.14 

4.6.2 Theoretical considerations 4.14 

4.6.3 Results and discussion 4.16 

4.7 IMPULSIVE LOADING OF AN ELASTIC-PLASTIC BEAM 4.17 

4.7.1 Finite element idealisation 4.17 

4.7.2 Results and discussion 4.18 

4.8 CYLINDRICAL PROJECTILE IMPACT ON A THIN PLATE 4.18 

4.8.1 Finite element idealisation 4.18 

4.8.2 Theoretical considerations 4.19 

4.8.3 Results and discussion 4.20 

4.9 CONCLUSIONS 4.21 

4.10 REFERENCES 4.26 

TABLES 4.27 

FIGURES 4.28 

-x6- 



5 THE FRACTURE SLIDELINE TECHNIQUE 5.1 

5.1 INTRODUCTION 5.1 

5.2 FAILURE CRITERIA 5.4 

5.2.1 Nodal fracture initiation- 5.7 

5.2.2 Failure propagation 5.8 

5.2.3 Direction of fracture propagation 5.8 

5.3 SLIDELINE ADJUNCTION 5.9 

5.3.1 Nodal fracture initiation 5.9 

5.3.2 Failure propagation 5.11 

5.3.3 Distal face fracture 5.12 

5.3.4 Discussion of slideline adjunction 5.12 

5.4 THE DATABASE STRUCTURE 5.12 

5.4.1 Fracture slideline database structure 5.13 

5.4.2 The element connectivity table 5.14 

5.4.3 System array modification 5.17 

5.5 CONCLUSIONS 5.17 

5.6 REFERENCES 5.19 

TABLES 5.21 

FIGURES 5.26 

6 VALIDATION OF THE FRACTURE SLIDELINE TECHNIQUE 6.1 

6.1 INTRODUCTION 6.1 

6.2 PROJECTILE IMPACT ON A THIN PLATE 6.2 

6.2.1 Results and discussion 6.3 

6.3 PROJECTILE IMPACT ON AN INTERMEDIATE PLATE 6.8 

6.3.1 Results and discussion 6.8 

6.4 CONCLUSIONS 6.13 

6.5 REFERENCES 6.15 

TABLES 6.17 

FIGURES 6.24 

7 GENERAL CONCLUSIONS 7.1 

x7 



NOTATION 

Vector 

n Union 

( )T Transpose of a vector or matrix 

( )'1 Inverse of a vector or matrix 

( )n Evaluated at timestep (t=n) 

d( ) Differentiation of given variable 

(') Rate 

(") Referred to unrotated configuration 

(J) Nodal point reference 

E( ) Summation 

()i Differentiation with respect to current variables 

( )ý Differentiation with respect to original variables 

ai Acceleration vector 

a, b Local element coordinate axes 

Ae Element area 

A, h Material rate parameters 

bl, b2 Region occupied by two bodies in their deformed 

configuration 

Bi Bulk modulus for element i 

Bid Strain displacement matrix 

Bl, B2 Region occupied by two bodies in their undeformed 

configuration 

c Current dilational material wave speed in elastic 

material 

Ci Diagonal damping matrix 

C Relative position vector between current and local 

node 

Cijkl Elastic constitutive matrix 

di Nodal displacement vector in global axes 

dS Current length of a line segment 

dSe Increment of surface area 

dSo Original length of a line segment 

dt Time step increment 
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dtcr critical time step 

dVe Increment of volume 

Da Maximum distance between two adjacent contact nodes 

Dij Velocity strain tensor 

De ff Effective plastic strain 

eij Almansi strain tensor 

E Youngs modulus 

Ep Plastic hardening modulus 

Et Tangent modulus 

Eij Green-Lagrange strain tensor 

fi Element load vector 

fni Normal interface force on contact node i 

fti Tangential interface force on contact node i 

fri'fzi Hourglass resistance forces 

Fi Internal force vector 

Fij Deformation gradient matrix 
Fij Deformation gradient rate matrix 

g Hourglass coefficient 

gij Any element function 

go Value of gij at element centroid 

G Shear modulus 

Gi Diagonal viscous force matrix 

hr, hz Hourglass velocity 

Hi Hourglass resistance vector 

Jij Jacobian matrix 

ki Interface stiffness coefficient for local segment i 

K Bulk modulus 

Kcr Time step growth restraint constant 

Ki Nodal interface stiffness of adjacent node i 

Kr Time step reduction factor 

1 Length of local contact segment 

L Length of element in direction of wave propagation 

Lc Shortest signal path across an element 

Ld Length of longest element diagonal 

Mii Diagonal mass matrix 

Mij Consistent mass matrix 
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ne Number of elements in structure 

n Unit segment normal vector for current node 

nij Unit normal vector to segment ij 

Na Number of adjacent nodes 

Nij Rectangular interpolation matrix 

N Number of nodes on an element 

Pi( )A global function 

Po Value of function pi( ) at centroid of element 

p Hydrostatic pressure 

Pi External load vector 

q Artificial bulk viscosity pressure 

Q Constant to account for bulk viscosity effect in 

critical time step computation 

Qh Hourglass constant 

Dimensionless Dimensionless constants 

ro Current radius of element centroid (axisymmetry only) 

ri, zi Element nodal coordinates 

rz Contact zone radius 

Rij Rotation matrix 

sij Deviatoric stress tensor 

Se Element surface area 

Si Segment definition code 

t Time 

ti Thickness of local contact segment 

T Natural period of oscillation of a system 

Ti Surface traction vector 

Tol Contact segment extension parameter 

ui Particular displacements 

Uij Right stretch tensor 

vi Velocity vector 

Vol Initial velocity of projectile 

Ve Volume of element 

-Vij Left stretch tensor 

Vo Original volume 

w Current density 

wo Original density 

xi, Current particle coordinates (xi, yi) 
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Xi Unit segment tangent vector for current node 

xij Unit tangent segment vector to segment ij 

Xa Material particle coordinates (Xi, Yi) 

Xi Coordinates for contact node i 

Xc Contact location point coordinates 

Xn Normal penetration distance for current node 

ar Radial overlap constant 

«, n Axisynametric internal force terms 

«l, a2 Dimensionless history contact location point 

parameters 

nl, Dimensionless Dimensionless current contact location point 

parameters 

ri Hourglass deformation vector 

rmax Maximum eigenvalue 

6iß Kronecker delta 

6b1,6b2 Boundaries of regions B1 and B2 

diti Tangential interface force increment on contact node i 

6Xti Tangential displacement increment for node i 

Eid Total strain tensor 

9 Coefficient of friction 

Qi Cauchy stress vector 

ai Augmented Cauchy stress vector 

Cauchy stress tensor 

Qy Yield stress 

Q® Cauchy hoop stress term 

Trz Cauchy shear stress term 

Oi Element shape functions 

n Region of Euclidean space 

Interface stiffness scale factor 

e Angle between two adjacent segments 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 OVERVIEW 

The mechanics of penetration and perforation of solids has 

long been of interest in military applications. Now, however, as 

civilian technology grows more sophisticated, increasingly 

exacting demands are being made on the behaviour of materials 

under very short duration loading. It is thus becoming mandatory 

that a rigorous understanding of impact behaviour be attained for 

the safe and cost effective design of structures involving such 

conditions. 

Any item capable of being launched can become a projectile 

and may produce serious damage if allowed to come into contact 

with a suitable target. Military projectiles are probably the 

most familiar, but they actually form only a very small subset of 

possible missiles. For example, during the demolition of 

buildings made of prestressed concrete, small fragments may be 

formed as a result of rapid unloading. In hard concrete or steel, 

these may acquire speeds in the region of 100 ms-1 and can be 

lethal. Telephone poles, cars, and assorted tornado debris, as 

well as aircraft, equally have the potential for exacting 

structural damage. 

Typical examples of current interest in which this type 

of projectile plays a significant role in the impact process 

include; 

(i) The integrity of nuclear reactor pressure vessels with 

respect to internally created projectiles. 

(ii) Crashworthiness of vehicles and the protection of their 

occupants or cargo. 
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(iii) Transportation safety of hazardous materials. 

(iv) Protection of spacecraft from meteoroid impact. 

Similarly, the multiple impact by ice, water and sand 

particles upon high speed aircraft and re-entry 

vehicles also constitutes a continual hazard. 

(v) Explosive forming and welding of metals. 

(vi) The vulnerability of military vehicles, aircraft and 

structures to impact and explosive loading. 

(vii) The containment of components from failed industrial 

machinery such as turbine blades and pipes. 

The response experienced during the impact between such 

targets and projectiles is influenced by variables such as 

material properties, impact velocity, target support position, 

projectile shape and the relative dimensions of both target and 

projectile. The impact velocity is, in many ways, the most 

fundamental because it overrides almost any other consideration, 

and is commonly used as a rudimentary method for classifying the 

impact process. This leads to the commonly held grouping of 

impact phenomena into three distinct impact regimes, and these 

are; 

Low velocity impact (<250ms-1), which is identified by the 

presence of local indentations or penetrations which are strongly 

coupled to the overall deformation of the structure. The gross 

response is dominated by the low frequency components of the 

modal spectrum to give loading and response times in the 

millisecond time domain. Pressures are generated within the 

impacting bodies of the order of the material elastic modulus. 

Elastic collisions are also included in this regime. 

High velocity impact (0.25-12kms-1), which is typically 

governed by the behaviour of the material within a small zone. 

The material response is characterised by a high frequency 

content and the loading and response times are now of the order 
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of microseconds. As the velocity increases within this range, 

pressures are generated which exceed the elastic moduli of the 

colliding materials by several orders of magnitude, particularly 

in the early stages of the impact process. During this initial 

transitory period the rate of energy deposition in the impact 

zone is sufficiently high that a change of state may occur. 

Furthermore, the deviatoric (shear) deformation typically becomes 

insignificant with respect to the volumetric behaviour and the 

material behaves essentially like a fluid. Material shear 

strength is still, however, of considerable influence at later 

times. 

Hypervelocity impact (>12kms-1). Within this regime 

hydrodynamic pressure dominates the behaviour of the solids 

throughout the impact process. The equations of motion, together 

with a high pressure equation of state, are the principal 

descriptors of material behaviour. 

A summary of the material response to different impact 

velocities is given in Table 1.1, but it should be noted that the 

impact velocity ranges given are reference points only. The 

actual transitions are extraordinarily flexible in practice and 

are dependent on the numerous additional parameters mentioned 

previously. 

The failure of a target is no less complicated and is due to 

the interaction of a variety of failure mechanisms. Low velocity 

impact tends to be the simplest and is characterised by 

unacceptable levels of plastic deformation, while the most 

frequent types in the high velocity domain consist of fracture 

resulting from the initial compression wave, fracture in the 

radial direction, spalling, scabbing, plugging, front or rear 

petaling, fragmentation in the case of brittle targets and 

ductile hole enlargement. These failure modes are depicted in 

Figure 1.1. Towards the limit of the high velocity regime 

hydrodynamic erosion of both target and projectile may also 
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occur. Increasing initial velocities beyond this point to the 

tremendous rates of energy transfer associated with hypervelocity 

impact typically produces explosive vaporisation in the contact 

zone. 

It is well understood that the rate of loading has a 

significant effect on the response of many metals and is an 

additional complexity in the consideration of the impact process. 

The modulus of elasticity and Poissons ratio appear to be quite 

insensitive to changes in strain rate and are only moderately 

affected by temperature variations. The elastic range of many 

metals is, however, extended considerably with increase in strain 

rate over that corresponding to static loading. Also, the dynamic 

plastic stress-strain relation is generally in excess of the 

static curve. This feature is particularly pronounced in the case 

of materials with a definite yield point. Strain rate and 

temperature may also play an important role in determining the 

type of fracture in a given impact configuration. 

A thorough understanding of the perforation process has, 

thus, been impeded by the involved manner in which these 

configurational and material parameters interact. It is not 

surprising, therefore, that the bulk of-research in this area has 

been experimentally based and, at present, "there is no unified 

theory available which covers the various types of phenomena 

which can occur under differing conditions. Thorough reviews of 

the fundamentals of solid collisions and typical associated 

phenomena have previously been prepared by Goldsmith (1960), 

(1963), Backman and Goldsmith (1978), Zukas (1982) and Kimsey 

(1983). 

The limited nature of understanding in this whole subject 

area has led many experimentalists to study the impact problem 

using simple physical geometries, such as circular plates, 

cylinders with various shaped ends or slender bars. The intention 

being that the results from these tests would develop a 

fundamental understanding to enable the prediction of the 

structural behaviour of prototype designs. In recent years the 
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use of numerical methods to augment such experimental work has 

greatly increased and is partly due to the following statement 

from a specialist committee set up to assess the state of the 

art of material response to ultra-high loading rates,, NMAB 

(1980) ; 

"... rough computations using simple material models with 

published or even estimated material properties, may be used 

in conjunction with exploratory test firings to scope an 

initial design. Comparisons of test data with the 

predictions may reveal discrepancies which suggest 

refinements in the computations of material models, and the 

need for some dynamic material property measurements. Once 

reasonable agreement has been achieved, another round of 

computations may then be performed to refine the design. 

Test firings of this design might use more detailed 

diagnostic instrumentation. This sequence is iterated, 

including successively more detail in material models, 

material property studies and ordnance test firings, until a 

satisfactory design is achieved. In this procedure, 

unnecessarily detailed computations, material property 

studies ortest firings are minimised; only the details 

necessary to achieve a satisfactory design are included. " 

It has become clear that the continued application of 

numerical techniques to penetration mechanics problems in this 

suggested manner has greatly enhanced the understanding of the 

penetration and perforation process. Moreover, any erroneous 

numerical predictions may be detected within the confines of this 

dual environment and increasingly sophisticated numerical 

techniques are thus developed. In the course of this combined 

method of investigation, the inadequacies of the current 

numerical methods and particularly the finite element method, to 

model such behaviour is now apparent. 

In view of the above it is the objective of this thesis to 

develop a computational model for the numerical simulation of 
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failure in metallic plates of thin to moderate thickness impacted 

by flat ended projectiles, with particular reference to the 

plugging mode of failure. It is intended that the research will 

overcome certain inadequacies of existing numerical techniques 

and to use the improved techniques to develop a method of 

solution which will enable the aforementioned NMAB proposal to be 

performed with a greater degree of accuracy, flexibility and 

reliability. 

The opinion of the author is that fracture surfaces 

developed during an impact failure situation may be modelled by 

application of an existing numerical contact interface technique. 

The choice of the plugging mode of failure to investigate this 

supposition has been motivated by the qualities that this 

particular mechanism exhibits. The qualities are summarised 

as follows; 

(i) This mechanism is one of the few essentially two 

dimensional failure modes. 

(ii) The crack progression is regular and readily lends 

itself to the attention of contact interface methods. 

(iii) A characteristic of the majority of perforation 

applications is that shear modes of failure such as 

occur in the plugging process are far more common than 

tensile modes. 

The remainder of this chapter will provide an overview of 

the plugging failure mode. The intention is not to give complete 

coverage but rather establish the main characteristics to be of 

use in succeeding chapters. The proposed numerical model and a 

fuller description of the objectives of this work will also be 

presented. A statement of the thesis layout will complete the 

chapter. 
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1.2 DEFINITIONS 

The following definitions will be adopted in this thesis, 

Backman and Goldsmith (1978); 

Projectile 

Any object that is considered to initiate an impact. No 

functional constraints will be imposed. 

Target 

The smallest functionally and/or structurally independent 

object whose performance is to be impaired by the 

projectile. 

Impact 

The entry of the projectile into any region of the target, 

which may be considered as three distinct structural 

environments. 

(i) Contact 

The projectile is deflected, being neither stopped by, 

nor perforating through, the target. 

(ii) Penetration 

The projectile remains embedded in the target after 

complete dissipation of system kinetic energy. 

(iii) Perforation 

The complete traversal of the target thickness by the 

projectile. 

Ballistic limit 

The average of two striking velocities; the highest velocity 

giving penetration and the lowest velocity giving 

perforation.. 

Target classification 

It is convenient to classify targets by thickness; 
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(i) Thin plate 

The stress and deformation gradients are uniform 

throughout the thickness. 

(ii) Intermediate plate 

The distal surface exerts a considerable influence on 

the deformation process during the projectile motion. 

(iii) Thick plate 

The distal boundary is only influenced by the impact 

process after substantial travel into the target. 

Furthermore, problems governed by the equations of motion 

may be broadly categorised into either wave propagation or 

inertial domains, Belytschko (1983); 

Wave Propagation response 

Excitation of a large number of natural frequencies of the 

system is seen to be the dominating response mechanism in which 

the behaviour and accurate representation of the subsequent 

wavefront is of engineering importance. 

Inertial Response 

Inertial problems are dominated by low frequency response. 

and are often referred to as a structural dynamics problem. The 

rise time and duration of the load relative to the time required 

for a wave to traverse the structure may be used as a preliminary 

criterion for classifying the problem. If the rise time and 

duration of the load exceed several times the traversal time of 

the wave across the body of interest, the problem is usually of 

the inertial type. 

1.3 SHEAR BAND PHENOMENA 

Consider the interaction between a projectile and a target 

plate. Immediately after initial contact, strong compressive 

stress waves propagate into both bodies. A relief wave is 
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simultaneously created at the laterally free surface of the 

projectile and propagates inward, crossing at the centreline and 

producing a region of high tensile stress. The initiation of 

radial flow in the projectile is a result of this stress field. 

The initial transient is very brief and soon followed by a 

stable, plastic flow field which steadily propagates throughout 

the target. 

The balance between the initial transient and subsequent 

plastic flow magnitudes have a major influence on the particular 

failure process which subsequently occurs, Ravid and Bodner 

(1983). The plugging mode of failure, which is also known as 

shear banding, occurs when the transient magnitude is smaller 

than that required to initiate spall. If the impact velocity were 

sufficiently high, then for the same geometry, spall would be 

experienced in preference to the plugging mode, Mescall (1977). 

Plugging is more generally observed during the impact 

process between a cylindrical flat ended projectile and a hard 

metallic target plate. Conditions may be met at almost any time 

during the impact process, but for projectiles whose diameter is 

of the order of the target thickness, these are satisfied very 

soon after impact, Sedgwick et al (1978). The bluntness of the 

projectile and the hardness of the target tend to minimise the 

radial flow so that the underlying target material is constrained 

to move ahead of the projectile producing a narrow band of very 

high shear strain, Awerbuch and Bodner (1974b), Woodward (1984). 

Experimental evidence clearly suggests that this band originates 

from the frontal face and propagates along a cylindrical surface 

whose diameter is roughly equal to that of the projectile. 

Failure occurs on this surface at some critical value of the 

shear strain and, at velocities over the ballistic limit, a 

cylindrical 'plug' is ejected, Mescall (1977). Final separation 

can also include ductile fracture at the distal surface. 

The plugging phenomena has been modelled as a three phase 

process, Awerbuch and Bodner (1974a), Awerbuch and Bodner 
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(1974b), Woodward (1984). More recently, however, this model has 

been updated to include a more detailed five phase 

interpretation, Liss et al (1983), Goldsmith (1985). To elucidate 

the foregoing discussion the latter description will be 

summarised here. 

Indentation 

Initial acceleration of the plug material occurs during 

which axial compression and some limited radial flow are 

observed. The effect of shear strain in this phase is limited. 

Plug formation 

The plug material continues to be accelerated and shear band 

formation occurs due to the relative motion between the target 

plate and the plug material. The onset of the maximum resistive 

shear force along the shear band boundary indicates the 

termination of this stage. 

Plug separation 

Separation of the plug is followed by fracture along the 

shear band boundary. It is important to note here that fracture 

is an independent process from the formation of shear bands, 

although it is true to say that the two are closely associated 

since cracking is very often observed to form and grow 

preferentially near or within the shear band region. Observations 

tend to indicate that the distal surface of the plate rapidly 

acquires the terminal velocity of the projectile once it is set 

in motion. The implication is that within this phase the distance 

moved by the plug is very small and, moreover, complete plug 

disengagement occurs, Mescall (1977). 

Plug slipping 

The newly formed plug and projectile are then free to 

perforate the target if the impact velocity is sufficiently high. 

Large shear forces are observed between the plug and target 

during this phase. 
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Post perforation deformation. 

This may be observed if the plug has been completely 

separated before acquiring projectile velocity. A plastic stress 

wave, originating at the projectile-plug interface and causing 

the plug to accelerate now traverses the thickness of the plug. 

Deformation occurs as a result of the now laterally free plug 

responding to this wave. 

Frictional effects between the projectile and target are 

generally observed to be small as a result of an adiabatic heat 

generation process at their interface. This process generates a 

thin layer of fluid which acts as a lubricant to the ensuing 

motion. Although the influence of friction increases as the 

projectile velocity decreases, experimental evidence has shown 

that the energy lost in this manner amounts to a maximum of 3% of 

the initial projectile energy, Krafft (1955). More recent 

research has produced results in substantial agreement with this 

finding except in the region of the ballistic limit where it has 

been suggested that frictional losses are of considerable 

importance. The assumption has been supported empirically by 

observing the entrapment of projectiles subsequent to plug 

ejection at post ballistic limit velocities together with the 

deposits of target material on projectiles which have perforated 

the target, Woodward and Morton (1976). 

Shear effects are significant, however, along the interface 

between the plug and the target material as interference occurs 

between these two regions subsequent to initial shear failure, 

Awerbuch and Bodner (1974b), Wingrove (1972). Test results 

indicate the presence of a continuous shear force between the 

plug and plate, which is characterised by an initial 

instantaneous peak subsequently decaying rapidly but at a 

decreasing rate. The maximum interface force becomes larger with 

increasing impact velocity. A small secondary increase of the 

shear force after the initial drop is also detected and is 

attributed to the need for rapid initial acceleration of the 

target around the crater vicinity. Figure 1.2 is representative 
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of typical experimental results, Liss and Goldsmith (1984). There 

is evidence to suggest that this force is viscous in nature, 

Awerbuch and Bodner (1974b). 

The plug thickness is approximately equal to the plate 

thickness at the ballistic limit and tends to decrease with 

increasing impact speed. In general, the plug and plate diameters 

are not cylindrical. The distal diameter of the plug is less than 

the frontal diameter while the distal diameter of the plate is 

greater than the frontal diameter (see Figure 1.1d). Results have 

shown that frontal face plug diameters differ only slightly from 

those of the associated steel projectiles. 

A typical radial strain history of an aluminium plate 

impacted by a blunt rigid projectile at less than the ballistic 

velocity is shown in Figure 1.3, Liss and Goldsmith (1984). The 

region directly beneath the projectile clearly experiences a high 

compressive strain. At radii greater than three times the 

projectile radius the presence of asymmetric bending strains may 

be seen. A transition zone exists between the two. 

In conclusion, therefore, a typical plugging type response 

experiences large deformations at the point of impact with the 

inclusion of material failure as an added complication. The 

strong coupling between these localised effects-and the smoother 

nature of the overall structural behaviour is indicative of a 

transitional stage between wave propagation and inertial 

responses. It is clear that the presence of material failure 

emphasises the wave propagation effects of the response on the 

final solution, since the underlying plate impact problem is 

essentially of a structural dynamics type. 

The loading and response times are typically in the sub- 

millisecond regime and imply the presence of steep stress and 

velocity gradients in the structure. These are not of sufficient 

magnitude, however, to cause the creation of shock fronts. It is 

the combination of these highly localised effects, which yield 

the finite deformation and rotation fields commonly experienced 
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and which themselves propagate material failure due to an 

unacceptable level of plastic strain along planes of maximum 

shear stress. For the sake of clarity in future discussions the 

plugging failure mechanism and the associated environment to 

produce such impact behaviour will be termed a high velocity 

phenomenon. 

1.4 THE NUMERICAL MODEL 

The finite element computer codes currently available for 

impact studies use one of two methods to describe particle 

motion; Lagrangian or Eulerian. Each method has a certain 

advantages for various problem classes. 

Lagrangian codes follow the motion of fixed elements of 

mass, the computational grid is fixed in the material and 

distorts with it. Their primary advantage is in their ability to 

accurately track material boundaries and interfaces, furthermore, 

they are ideally suited for constitutive models which use time 

history variables. Because the Lagrangian grid distorts with 

material flow, deformations may become severe during an impact 

process and require the mesh to be rezoned. 

Eulerian codes have computational grids fixed in space, 

through which material passes. They are ideally suited for large 

distortions in the sense that the finite element grid is now 

independent from material flow. These calculations may be carried 

out either by including the convective derivatives implicitly in 

the discretisation scheme or by performing a two step operation, 

the first phase is a Lagrangian calculation whilst the second (or 

'transport') phase amounts to a rezoning of this distorted. 

Lagrangian grid back to the undistorted Eulerian grid. Of the two 

methods, this latter procedure, termed a Lagrangian-Eulerian 

link, is the most effective within the high velocity regime at 

present and is used when severe mesh distortions in a-Lagrangian 

solution give rise to unacceptably large values of truncation 
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errors. Even the most sophisticated rezone routines, however, 

have been disappointing for the two dimensional case, while none 

exist for their three dimensional counterparts, Backman and 

Goldsmith (1978). Moreover, difficulties arise in the rezoning 

procedure during the averaging of internal state variables 

representing material memory, since a given new mesh may cover 

several old meshes, each of which having experienced a somewhat 

different history. The problems involved in the convective 

operation necessary with the Eulerian codes is actually a major 

limitation in high velocity impact analyses which require both an 

accurate determination of material history as well as a detailed 

description of nonlinear boundary conditions. 

It is, therefore, generally desirable to formulate high 

velocity impact computer codes within the Lagrangian frame if 

they have the capability to adequately represent the various 

physical phenomena which occur. Furthermore, their efficiency is 

increased'over the Eulerian method by virtue of the reduced mesh 

description required, Johnson and Stryk (1986). 

The very large deformations present in impact situations has 

historically made the Eulerian grid the only choice because of 

limitations in Lagrangian methods for this class of problem. 

Current research to present a Lagrangian algorithm capable of 

simulating the severe distortion experienced during a typical 

plugging failure in a routine manner has, therefore, several 

motivations and these are; 

(i) Elimination of the time consuming transport phase of 

the Eulerian method. 

(ii) The diffusive factor inherent in the Eulerian method is 

a critical limitation in the accurate physical 

modelling of advanced failure. 

(iii) The extension of the Lagrangian frame to this class of 

problem will enable the use of identical constitutive 

models and thus yield increased numerical consistency 

in computational results. 
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(iv) Several rezoning operations may be required before a 

successfully rezoned grid is obtained. Moreover, the 

final result is very dependent on the experience of the 

operator performing the rezoning. 

It is only recently, however, that interest has been shown 

in the flexibility of contact interface methods and their ability 

to extend the functionality of the Lagrangian codes into severely 

distorted domains. 

The commencement of this recent work appears to have been 

instigated by the development of an eroding interface algorithm. 

This approach allows elements which have developed a specified 

strain to erode off the interacting solids. The elements 

essentially disappear except for the retention of-the nodal mass, 

while the contact interfaces are updated as necessary. The 

initial work was implemented in the EPIC-3 code, but had limited 

usefulness since the eroded area had to be determined a priori, 

Johnson (1982). More general algorithms were subsequently 

developed in two dimensions whereby both projectile and target 

elements were permitted to be eroded while the interfaces were 

updated in an automatic manner, Stecher and Johnson (1984). The 

three dimensional version of these general routines has now been 

developed using both hexahedral elements, Belytschko and Lin 

(1987) and tetrahedral elements, Johnson and Stryk (1986). 

The application of contact interface methods to plugging 

situations is currently extremely limited and is presented in an 

investigatory manner by Ringers (1983), who developed a technique 

based on the velocity constraint method as implemented in the 

EPIC codes, Johnson (1977). Later research has shown its 

applicability to adiabatic shear situations, Ringers (1985). The 

former report by Ringers is the only published paper known to the 

author in relation to this subject, however, no quantitative 

comparisons with existing experimental data were given. 

The velocity constraint method used to model the fracture 
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surface in the code above has inherent weaknesses which will be 

discussed further in Chapter Three. Furthermore, the formulation 

of the EPIC code with its sole use of the linear triangular 

element has also been shown to have a number of deficiencies, 

Hallquist et al (1977), and these are; 

(i) The triangular elements behave very poorly under 

conditions of large deformation, plastic flow in two 

dimensions. These elements have been observed to be 

excessively stiff, almost to the point of locking. 

(ii) The use of an equivalent strain measure which is path 

independent may create unrealistic plastic material 

response since it is free to either increase or 

decrease throughout the solution. 

(iii) The explicit time integration scheme used possesses 

negative damping. This causes the solution error in 

small deformation elastic problems to grow regardless 

of the step size; consequently its application to 

nonlinear problems seems unwise. 

1.5 THESIS OBJECTIVES 

The objectives of this work are seen to cover three 

principal areas; 

(i) The development of a modified slideline method to 

enable the computation of ductile shear failure and 

which overcomes certain current numerical inadequacies 

which will be outlined in subsequent chapters. 

(ii) The extension of an explicit numerical solution scheme 

using the Lagrangian frame of reference to the large 

deformation domain without recourse to any time 

consuming convective phases. 
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(iii) Both the qualitative and quantitative correlation of 

numerical results with existing experimentally obtained 

data. 

This new tool will hopefully facilitate the advance of a 

complete solution to this formidable problem and increase 

confidence in the ability of this type of analysis to predict the 

physical behaviour in the region of the highly strained fracture 

surfaces. The principal contribution of this work will arise from 

the emphasis placed upon the simulation of crack propagation 

using the concept of Fracture Slidelines. Only planar and 

axisymmetric problems will be considered. 

1.6 THESIS ARRANGEMENT 

Chapter 2 discusses the finite element considerations necessary 

to model the special requirements involved in impact situations. 

Chapter 3 introduces the concept of the slideline technique and 

discusses the theoretical and practical limitations inherent 

within this formulation of the contact problem. 

Chapter 4 presents several comparisons between theory and 

experiment to validate the applicability of the slideline 

technique to this particular class of transient problem. 

Chapter 5 describes the proposed Fracture Slideline numerical 

model for the plugging process. 

Chapter 6 presents selected examples to demonstrate the 

capabilities of the proposed model. 

Chapter 7 presents conclusions and discusses the achievements and 

restrictions of the model. Further areas for study are suggested. 

- 1.17 - 



1.7 REFERENCES 

Awerbuch, J. and Bodner, S. R. (1974a). 'Analysis of the Mechanics 

of Perforation of Projectiles in Metallic Plates', Int. J. Solids 

Structures, Volume 10, pp 671-684. 

Awerbuch, J. and Bodner, S. R. (1974b). 'Experimental 

Investigation of Normal Perforation of Projectiles in Metallic 

Plates', Int. J. Solids Structures, Volume 10, pp 685-699. 

Backman, M. E. and Goldsmith, W. (1978). 'The Mechanics of 

Penetration of Projectiles into Targets', Int. J. Engng. Sci., 

Volume 16, pp 1-99. 

Belytschko, T. (1983). 'An Overview of Semidiscretisation and 

Time Integration Procedures', Computational Methods for Transient 

Analysis, Volume 1, Belytschko and Hughes (Editors), North- 

Holland Press. 

Belytschko, T. and Lin, J. I. (1987)., 'A Three-Dimensional Impact- 

Penetration Algorithm with Erosion', Comput. struct., Volume 25, 

Number 1, pp 95-104. 

Goldsmith, W. (1960). Impact - The Theory and Physical Behaviour 

of Colliding Solids, Edward Arnold, London. 

Goldsmith, W. (1963). 'Impact : The Collision of Solids', Appl. 

Mech. Rev., Volume 16, Number 11, pp 855-866. 

Goldsmith, W. (1985). 'Initiation of Perforation in Thin Plates 

by Projectiles', Metal Forming and Impact Mechanics, Reid 

(Editor), Pergamon Press. 

Hallquist, J. O. and Werne, R. W. and Wilkins, M. L. (1977). 'High 

Velocity Impact in Three Dimensions', Discussion in J. Appl. 

Mech., Trans. ASME, pp 793-795. 

Johnson, G. R. (1977). 'High Velocity Impact Calculations in Three 

Dimensions', J. Appl. Mech., ASME, Volume 99, Number 1, pp 95- 

100. 

- 1.18 - 



Johnson, G. R. (1982). 'Status of the EPIC Codes, Material 

Characterisation and New Computing Concepts at Honeywell', 

Proceedings of Computational Aspects of Penetration Mechanics 

(Lecture Notes in Engineering; 3), Maryland, USA, Chandra and 

Flaherty (Editors). 

Johnson, G. R. and Stryk, R. A. (1986). 'Eroding Interface and 

Improved Tetrahedral Element Algorithms for High-Velocity Impact 

Computations in Three Dimensions', Proc. of the Hypervelocity 

Impact Symposium, Texas. 

Kimsey, K. (1983). 'Calculation of Penetration', Proceedings of 

the Workshop on the Theoretical Foundation for Large Scale 

Computations of Nonlinear Material Behaviour', Evanston, pp 165- 

181, Nemat-Nasser (Editor), Martinus Nijhoff Publishers. 

Krafft, J. M. (1955). 'Surface Friction in Ballistic Penetration', 

J. Appl. Phys., Volume 26, pp 1248-1253. 

Liss, J. et al. (1983). 'A Phenomenological Penetration Model of 

Plates', Int. J. Impact Engng., Volume 1, Number 4, pp 321-341. 

Liss, J. and Goldsmith, W. (1984). 'Plate Perforation Phenomena 

due to Normal Impact by Blunt Cylinders', Int. J. Impact Engng., 

Volume 2, Number 1, pp 37-64. 

Mescall, J. F. (1977). 'Computer Simulation of Penetration', Proc. 

14th Annual Meeting of the Society for Engineering Science, 

Bethlehem PA, pp 81-93. 

NMAB. (1980). 'Materials Response to Ultra-High Loading Rates', 

Report of the Committee on Materials Response to Ultra-High 

Loading Rates, National Materials Advisory Board, Report Number 

NMAB-356. 

Ravid, M. and Bodner, R. (1983). 'Dynamic Perforation of 

Viscoplastic Plates by Rigid Projectiles', Int. J. Engng. Sci., 

Volume 21, Number 6, pp 577-591. 

- 1.19 - 



Ringers, B. E. (1983). 'New Sliding Surface Techniques enable the 

Simulation of Target Plugging Failure', Ballistic Research 

Laboratory, Aberdeen Proving Ground, Maryland, Report ARBRL-TR- 

02541. 

Ringers, B. E. (1985). 'Modeling Adiabatic Shear', Ballistic 

Research Laboratory, Aberdeen Proving Ground, Maryland, Report 

BRL-TR-2662. 

Sedgwick, R. T. et al. (1978). 'Numerical Investigations in 

Penetration Mechanics', Int. J. Engng. Sci., Volume 16, pp 859- 

869. 

Stecher, F. P. and Johnson, G. R. (1984). 'Lagrangian Computations 

for Projectile Penetration into Thick Plates', Computers in 

Engineering, Volume 2, ASME, pp 292-299. 

Wingrove, A. L. (1972). 'The Forces for Projectile Penetration of 

Aluminium', J. Phys. D: Appl. Phys., Volume 5, pp 1294-1303. 

Woodward, R. L. and Morton, M. E. (1976). 'Penetration of Targets 

by Flat-Ended Projectiles', Int. J. Mech. Sci., Volume 18, pp 

119-127. 

Woodward, R. L. (1984). 'The Interrelation of Failure Modes 

Observed in the Penetration of Metallic Targets', Int. J. Impact 

Engng., Volume 2, Number 2, pp 121-129. 

Zukas, J. A. (1981). 'Three-Dimensional Impact Simulations: 

Resources and Results', Computer Analysis of Large Scale 

Structures, AMD-49, Washington D. C. 

Zukas, J. A. (1982). Impact Dynamics, Wiley Interscience, New 

York. 

- 1.20 - 



Table 1.1 

Impact Response Classification 

Impact Velocity I Material Response 

0-50 ms-1 

50-500 ms-1 

0.5-4 kms-1 

4-12 kms-1 

>12 kms-1 

Primarily e1a tic with limited 
local plasticity 

Primarily plastic 

Viscous material strength is still 
s gnificant 

Press re approaches or ex eeds the 
elasti modulus and mat rla s behave 

as fluics in which density is an 
increasingly important variable 

Explosive impact with vaporisation 
of the colliding solids 
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Impacted by a Blunt Projectile 
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CHAPTER 2 

THE FINITE ELEMENT SOLUTION PROCEDURE 

2.1 INTRODUCTION 

In this chapter, the finite element basis for the solution 

of high velocity impact problems will be reviewed. The intention 

is not to give a complete coverage of all the aspects of such a 

vast subject but rather to establish only those ideas which will 

be pertinent to the developments of later chapters. A full 

description of the broader aspects of the finite element method 

may be obtained from a number of sources such as Bathe (1982) and 

Cook (1974). 

In the equations that follow the tensor indicial notation 

will be used unless otherwise stated, in which the repetition of 

an index will represent summation. 

The equations of motion in finite element form are a 

suitable starting point in the development of such a 

computational procedure, and are given at time t=n as; 

Mlj ai = Pi - Fi + Hi (2. i) 

in which ai is the acceleration vector and Mij is the mass 

matrix, defined over an element volume dVe as; 

Mid =J NTH Nib w dVe (2.2) 

Ve 

and where w is the current density. Pi accounts for the element 

external force and may be defined as; 

Pi =J NT Ti dSe (2.3) 

Se 

in which Ti is the surface traction vector over the element 

surface Se. Similarly, the element internal force over the 
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element volume dVe is given as 

Fn 
f 

BTj cri dVe (2.4) 
J 

Ve 

where ai is the Cauchy stress vector referred to the current 

configuration. The computation of these terms, together with the 

rectangular interpolation matrix Ni., the strain displacement 

matrix Bid and Hi, the hourglass resistance force vector, will be 

discussed more fully under the six headings of; spatial 

discretisation, temporal discretisation, geometric 

nonlinearity, material nonlinearity, hourglass control and the 

control of numerical oscillations. 

Although the choice in one area affects the possibilities in 

another, their separate consideration will nonetheless be 

beneficial. 

2.2 TEMPORAL INTEGRATION 

The central difference time integration operator will be 

used in this work. The following section will discuss some 

theoretical aspects of the method and proceed to review the 

factors relevant in the choice of such an algorithm. 

2.2.1 The central difference method 

In the following, assume that the displacement, velocity, 

and acceleration components for each nodal point at time t=n, 

denoted by di, v1 and ai, respectively, are known. Let dtn be the 

time increment between tnand to+l. In addition, midstep values 

for velocities are defined at 

to+1/2 = 1/2 ( to + to+1) (2.5) 
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by 

Vi+1/2 - Vi( to+1/2 (2.6) 

Finite difference expressions are used to approximate the 

velocities and acceleration 

vi+i/2 =( di +l 
- di ) /dtn 

and 

ay _( vi+1/2 _ vi-1/2 )/dtn-1/2 

where 

dtn-1/2 = 1/2 ( dtn + dtn-1) 

(2.7) 

(2.8) 

(2.9) 

by combining equations (2.7) and (2.8), and assuming the time 

step is constant, the acceleration may be written 

ai = (di+l- 2di + di-1)/(dtn)2 (2.10) 

The substitution of equation (2.10) into equation (2.1)-with the 

right hand side forces of the latter being termed collectively as 

fi gives ` 

do+l _ fn (dtn)2 + 2di - di-1 

Mlj 

(a. ii) 

Since the external and internal forces which determine fi 

depend only on the loads and stresses at time step tn, all of the 

terms on the right hand side are historical in that they are 

known at time step tn. Therefore, new displacements can be 

determined directly without solving any equations provided that 

Mij is diagonal. The term di+i is thus based on the equilibrium 

conditions at time tn, and for this reason the integration scheme 

is described as an explicit procedure. The motion is advanced in 
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time by updating the acceleration using equation (2.1), which is 

rearranged to give 

ai = fi 

n Mii 

(2.12) 

in which fi is termed the effective load vector and Mii is the 

effective diagonal stiffness matrix which will be discussed in 

section 2.3.3. Substituting the new acceleration in equation 

(2.8) gives the updated velocity at the midpoint as 

yi+1/2 = yi-1/2 + ai dtn-1/2 (2.13) 

which is distinctly preferable in this type of problem where a 

rate constitutive relation requiring the midpoint velocity 

gradient governs the response. Finally, the total displacements 

are computed through equation (2.7) 

di+l = di + yi+1/2 dtn (2.14) 

The error in the expansions of equations (2.7) and (2.8) 

is of order (dtn)2, Belytschko and Mullen (1977a). The central 

difference operator has been shown to overestimate the 

frequencies of the system, but this error will be seen later to 

have a beneficial effect on the nature of the total error in the 

integration scheme, Kreig and Key (1973). 

A backwards difference form must be used for the velocity 

term to maintain the explicitness of the equations when a linear 

viscosity is desired in equation (2.7), while a diagonal damping 

matrix is essential to preserve the computational efficiency. 

The viscous force, Belytschko (1977a), Key (1974) is given 

by 

Gi = Ci( 0- 0-1)/dtn-1 (2.15) 
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where the components of the diagonal damping matrix are given by 

Ci. For this form of viscous damping force, equation (2.11) 

becomes 

di+l_ (Mii) -1 (dtn) 21 fi - Gi 
1+ 

2d1 n- d1n-1 (2.16) 

In the present work a much advocated alternative to this 

procedure will be used which is included directly in the 

constitutive relationship (Section 2.9). It should be noted here 

that the central difference operator with the explicit form of 

damping as described is non-dissipative. 

2.2.2 Time step calculation 

The central difference method, as with all such explicit 

techniques, is only conditionally stable, which limits the time 

step dt to an upper bound of dtcr, called the critical time step. 

When dt is larger than the critical time step, high frequency 

modes in the numerical solution become exponential in time rather 

than harmonic solutions of the original equations. 

The critical time step for the central difference method is 

given by Bathe (1982) as 

dtcr <2 

(rmax'l/2 

(2.17) 

where rmax is the maximum eigenvalue of the system. The estimate 

of the critical time step does not require the solution of the 

eigenvalue problem of the complete system in practice. The 

highest system eigenvalue must always be less than the highest 

eigenvalue of the individual elements Owen and Hinton (1980), so 

that the bound on the highest eigenvalue can be simply obtained 

by consideration of an individual element. The maximum eigenvalue 

for the linear displacement element with lumped mass is given by 
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2c2 
rmax 

L 

(2.18) 

where L is a characteristic length of the element in the 

direction of wave propagation and the current dilational material 

sound speed in an elastic medium is given by 

c= {( K+ 4G/3 )/w)1/2 (2.19) 

where G is the shear modulus, K is the bulk modulus and w the 

current density. The critical time step then becomes 

dtcr < 
c 

this equation represents the 

corresponds to the traversal 

element. In essence the crit, 

difference technique ensures 

the highest frequency of the 

steps since 

(2.20) 

Courant stability criterion and 

time of the elastic wave across an 

ical time step of the central 

that the period T corresponding to 

mesh will be integrated over r time 

T= dtcr (2.21) 

The inclusion of material and geometric nonlinearity into 

the solution process, however, gives variations in the stiffness 

of the elements which may be significant as time progresses, 

Bathe (1982). The effect of geometric nonlinearity on the 

stability of the central difference method for a bar element 

sustaining an initial longtitudinal stress a has been shown to 

yield an equation of the form 

(dtcr) 2<2 (2.22) 

rmax +2Q) 

w L2 
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If the maximum eigenvalue is written as 

rmax =4Q, E (2.23) 

w L2 

where E represents a total strain measure, then the destabilizing 

effect of geometric nonlinearity may be seen not to be severe 

unless the stress a is of the order of the instantaneous material 

modulus a'.. In the range of initial velocities considered in 

this work, the stresses occurring during solution are frequently 

two orders of magnitude smaller. The geometric nonlinearity is, 

therefore, not recognised as a , source of instability in the 

computation of the critical time step, Belytschko et al (1975b). 

Because of the destabilizing effects of round-off errors and 

other reasons that are poorly understood, such as the effects of 

rapidly varying material properties, the time step obtained by 

equation (2.20) for nonlinear problems must often be reduced if 

stability is to be maintained, although due regard to numerical 

efficiency should be made in this reduction, Belytschko and 

Mullen (1977a). For this reason the computation of dtcr*, is a 

vital factor in the efficiency of the numerical algorithm. 

Furthermore, by operating as close to the stability limit as 

possible the accuracy of the central difference method has been 

shown to be maximised, Key (1978), although this is only 

significant for refined element meshes, Bathe (1982). " 

The time step evaluation equation used in this work is based 

on an extension of the linear result of equation (2.20), since 

there is considerable evidence that the extension of linear 

results to a nonlinear regime are valid provided the current 

highest frequency or wave speed is used in the equations, 

Belytschko (1976). Therefore at each time increment, a critical 

time step is computed for all elements, Hallquist (1983a) as 
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dtcr = 
Kr Lc 

(2.24) 

Q+ (Q2 + c2) 
1/2 

where 

Q= Q2 c+ Ql Lc (Dkk+ (2.25) 

and 

Lc =d2 Ae 
(2.26) 

rd 

in which A. is the current element area, c is the dilational 

material sound speed, and Q1 and Q2 are dimensionless constants 

which default to 1.5 and 0.06 respectively. Dkk is the trace of 

the velocity strain tensor and will be discussed further in 

Section 2.6 

L6 is defined as the shortest signal path across an element 

and represents the characteristic length for the element. Ld is 

the length of the largest element diagonal. The use of a 

characteristic length other than that of the shortest element 

dimension in the direction of wave propagation arises out of the 

requirement for maximum efficiency in the algorithm. This 

refinement has been used by Wilkins (1980) but the added expense 

both in terms of computer storage and cost is not deemed 

necessary for most problems, Hallquist (1983b). The measure used 

here provides a conservative estimate and also accounts for 

elements sustaining severe distortions or whose aspect ratios are 

large. 

The effect of the factor, Kr, is used in this work to 

accomplish the time step reduction mentioned earlier and has a 

typical value of 2/3. 

The term Q is included to account for the effects of the 

artificial bulk viscosity used to eliminate spurious numerical 

oscillations occurring during the solution (Section 2.9). The 
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addition of an artificial viscosity in the solution increases the 

hydrostatic pressure of elements in'the region of the numerical 

oscillation, consequently the material sound speed is increased 

and the critical time step thereby reduced. Note that the 

equation reduces to the Courant condition in the absence of the Q 

term. 

It has been suggested. by Belytschko and Mullen, (1977a), 

that the use of a variable time step introduces artificial 

damping in the central difference operator. When the time step is 

decreasing the corresponding damping coefficient is positive, 

whereas, an increasing time step corresponds to a negative 

damping coefficient which leads to instability. The use of an 

explicit viscosity scheme to limit this type of numerical 

instability and by limiting the actual rate of increase of dtcr 

has consistently yielded numerical solutions with no significant 

manifestation of the typical unbounded response, Goudreau et al 

(1983), Wilkins (1969). In order to limit the rate of increase of 

dtcr the value actually used'is given by Bertholf and Benzley, 

(1968) as 

dtnr = min (dtýr, Kir dtn; l ) (2.27) 
c 

where Kcr is a user specified constant and is taken to be 1.1. A 

further technique used is to average two successive time steps so 

that some semblance of centering is maintained, Haliquist et al 

(1977). 

The computation of an explicit value for the critical time 

step in this way has been shown to provide a very good estimate. 

In particular, a nonlinear problem would certainly require more 

effort to recompute the exact eigenvalue at each time step than 

could possibly be saved by the corresponding slight increase in 

the critical time increment. Practical experience, however, has 

shown that a re-estimate of the critical time step at every point 

in this manner and the use of a time step kept slightly less than 

the critical value serves to keep the calculation stable, 
Belytschko (1983). 
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It should be noted that the time step limitation makes 

extreme mesh refinement in one particular area highly 

undesirable. Additionally, it is known that a significant 

proportion of the energy flux is reflected from the boundary 

between finite elements of different sizes in highly non-uniform 

meshes. This detracts further from the desirability of element 

size variation. However, the economic limitations imposed on the 

numerical analyst often enforces the use of such a mesh. A number 

of studies have now been performed and it is concluded that 

spurious reflection is only significant for wavelengths less than 

ten times the size of the largest elements and, furthermore, may 

be minimised by ensuring that adjacent element sizes differ by 

less than 10%, Bazant (1978). 

2.2.3 Discussion of time integration scheme selection 

The balance between the prevalent modal response of the 

physical system and the computational cost of the numerical 

algorithm is a major factor in the selection of an appropriate 

time integration scheme. In this section, the problem dependent 

nature and the implications of this balance are discussed and the 

principal reasons for the choice of integration scheme used in 

this work brought out. 

The explicit nature of the chosen integration scheme implies 

that the effective stiffness matrix of the complete system need 

never be assembled and the solution essentially performed on an 

element level. This results in an algorithm which is 

computationally very compact, efficient and requires relatively 

little high speed storage, thus enabling systems of very large 

order to be solved efficiently. 

The decrease in numerical operations that is associated with 

mass lumping is a benefit that is seldom overlooked in explicit 

schemes and which, moreover, may be further enhanced by 

its utilisation in conjunction with the central difference 

operator. This combination results in solutions for which the 
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respective spectral errors are compensatory, so that mass lumping 

is preferable both from the viewpoint of computational efficiency 

and accuracy, Belytschko (1978). 

The conditional stability ofA`explicit schemes can, however, 

impose catastrophic demands on computer time, although this is 

unavoidable if the excited frequencies of the system are to be 

integrated adequately. For this reason the explicit integration 

method is generally most applicable to wave propagation problems. 

Of the explicit schemes currently available, however, the central 

difference technique is seen to permit the largest critical time 

step, Kreig (1973). 

For implicit schemes a solution to the nonlinear equilibrium 

equations is sought at t=n+1 which requires an iterative process 

involving expensive matrix manipulation. These manipulations 

render the implicit schemes considerably more expensive per time 

step than their explicit counterparts, Key (1978). Moreover, the 

algorithm resulting from the use of an implicit scheme requires a 

large amount of memory during the solution process which limits 

the size of the system equations that may be solved before disk 

input/output is required. 

The algorithm resulting from the use of an implicit scheme 

is generally numerically stable with respect to the time step 

size and, consequently, the time step may be two or three orders 

of magnitude greater than that permitted explicitly. This 

advantage is degraded, however, when severe nonlinearities are 

present in a problem. For example, the introduction of step 

functions, which characterise phenomena such, as"impact, can cause 

a sawtooth type of response in implicit methods. Similar 

difficulties are found when analysing the early-time response of 

elastic-plastic structures subjected to severe loads. In these 

situations, an accurate simulation of the response generally 

requires a time step of the order of the stability limit, so 

little advantage is gained, Belytschko (1983). Furthermore, the 

local truncation error of most implicit schemes is of the same 

order as that of the explicit methods i. e. (dt)2. While this is 
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insignificant for explicit schemes, it is a matter of concern for 

implicit methods, Zukas et al (1982). 

In conclusion, therefore, the implicit methods available at 

present are seen to be expensive for this class of impact problem 

in which the accuracy demands imposed on the numerical algorithms 

require time steps in the region of the Courant limit. The 

central difference scheme is the simplest form of explicit time 

integration method available and has been chosen for use in this 

work. 

2.3 SPATIAL DISCRETISATION 

Various attempts have been made to utilise the obvious 

advantages of quadratic elements in the discretisation of high 

velocity impact problems. The codes produced are, however, 

intractable due either to their relative complexity or the 

assumptions necessary to bring the matrix evaluations to a 

competitive level, Hallquist (1983a). The implementation of such 

elements appears to be impractical for a number of reasons; 

(i) The numerical noise resulting from the ad hoc way mass 

is lumped to generate a diagonal mass matrix. 

(ii) The large number of elements required to adequately 

represent the severe displacement gradients often 

present in wave propagation problems would make their 

high cost limiting. 

(iii) The use of shape functions of higher order than the 

linear form creates difficulties at the contact 

interface in the form of aliasing. 

(iv) It has been shown that higher order continuum elements 

require a time step reduced from that of linear elements 

because of the greater mass associated with the interior 

nodes, Belytschko and Mullen (1977a). 

Experience gained by current research workers has shown the 
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standard application of the linear isoparametric quadrilateral 

with one point integration to be far superior in the fast 

dynamics regime, Hallquist (1983), Bathe (1982), and will be used 

in this work. The linear triangular element has been used to good 

effect by Johnson (1976) in many applications and will also be 

included here. Its limitation for modelling regions in which 

large plastic flow occurs, however, has already been noted in 

Chapter one, consequently the later validation examples will 

predominantly use the quadrilateral element, particularly in the 

regions experiencing the greatest deformation. 

The linear isoparametric element has a number of numerical 

advantages which have promoted its use and will be discussed in 

the following sections. Firstly, however, the spatial parameters 

defining the element will be given in terms of the Lagrangian 

reference frame. 

2.3.1 The linear isoparametric element 

Lagrangian finite element codes assign a mesh on a reference 

configuration and track particles through time. That is, the 

current configuration is expressed as a function of the reference 

configuration and time (a referential coordinate description). In 

terms of the two dimensional axis system xi, 

x1 ý= x( X(a, b), t) _E1 O7(a, b) x4i(t) (2.28) 

ý= 

The element natural coordinates (a, b) are defined such that 

a and b vary from -1 to +1, and xi are the nodal coordinates of 

the jth node in the two global directions. The shape functions Oj 

for the four node quadrilateral, map the curvilinear coordinates 

of a unit square into the cartesian coordinate system of the 

quadrilateral element and are defined as 
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01 = 1/4(1-a)(1-b) 

02 = 1/4 (l+a) (1-b) 

03 = 1/4 (1+a) (1+b) 

04 = 1/4 (1-a) (l+b) 

(2.29) 

The shape functions have characteristic values of unity at 

the particular node to which it is related and zero at all other 

nodes. Their summation at any point within an element is also 

unity. The displacements uj at any point within an element are 

defined similarly 

4 
ui _, E1 oj(a, b) dl(t) (2.30) 

where the di are the displacements at the jth element nodal point 

in the two global directions. The rectangular interpolation 

matrix, Nij, is defined for the four node quadrilateral in the 

normal manner as; 

F hfl 0 02 0 03 0 04 0 
Nij 

0 01 0 v12 0 03 0 04 
(2.31) 

giving the strain displacement matrix Bij for the plane strain 

formulation as 

01, 
x 

0 02, 
x 

0 03, 
x 

0 04, 
x 

0 

Bid =0 01, 
y 

0 02, 
Y 

0 03, 
Y 

0 04ty (2.32) 

Ol, 
y 

01, 
x 

02, 
y 

02, 
x 

03, 
y 

03, 
x 

04, 
y 

04, 
x 

where the comma denotes differentiation with respect to the 

given variable. 

2.3.2 The spatial integration scheme 

One point integration is used to evaluate the element 

matrices in equations (2.2) to (2.4). For example, if gij is some 

function defined over an element volume, then, for the 

quadrilateral element 
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gib dVe = 4go det(Jij) (2.33) 

Ve 

where the element volume V. is approximated by 

Ve = 4det(Jij) (2.34) 

in which Jij is the usual jacobian matrix and is"computed at the 

local centroid of the element (a=b=0). The value of the function 

gij evaluated at (0,0) is go. This evaluation of the element 

volume is only adequate for small displacements and is entirely 

unsuitable for the very large deformations encountered in high 

velocity impact. The element volume may be evaluated exactly by 

considering the quadrilateral as a combination of two triangles. 

The area Ae of each triangle in terms of the nodal coordinates 

(xi, yi) is computed from Zienkiewicz (1977) as 

1 Xi Yj 

Ae = 1/2 1 xj yj 

1 xk yk 

(2.35) 

the corresponding volumes in the axisymmetric case may be 

obtained exactly by the product of the individual triangular 

element areas and the radius of the corresponding element 

centroid. Thus for the two dimensional axisymmetric element 

Ve = 2iT ro Ae (2.36) 

and for plane strain 

Ve = Ae (2.37) 

where ro is'the current radius of the element centroid. The total 

volume of the quadrilateral element is then the sum of the two 

individual components. Therefore, 
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J gib dVe = go Ve 

Ve 

(2.38) 

which is numerically exact and independent of the degree of 

displacement experienced by the element. 

Spatial integration with one point quadrature has a number 

of consequences which are of particular value to explicit 

analyses. One such benefit is in the use of finite difference 

expressions to compute the partial differential terms of the 

element matrices. 

It has been shown that, for the two dimensional linear 

element with one point quadrature, finite difference 

approximations to the first partial derivatives yield exactly the 

same result as the traditional finite element method. The former, 

however, have the added advantage of significantly increased 

numerical efficiency, Goudreau and Hallquist (1982). The usual 

method of generating finite difference expressions for spatial 

gradients uses a Taylor series expansion to give the derivatives 

as 

0i, 
x = 1/2 

[Eýc1)_oj(3))y24 
- (oi(2)-oi(4)JY13]/Ae (2.39) 

and 

oily 1/2 
[[ýc2)_ý(4)]x13 

- [oi(1)-oi(3))X24 /Ae (2.40) 

where oi(j). is the function of evaluated at node J. It is clear 

that the computation of the first partial derivatives in this 

manner eliminates the requirement to evaluate the Jacobian matrix 

or perform any shape function manipulation, and thus represents a 

significant saving in processing time. 

2.3.3 The mass matrix 
r 

The consistent mass matrix defined by equation (2.2) is non- 
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diagonal, symmetric and in most regular meshes is usually banded. 

Its inversion, however, usually presents a formidable task and 

although its inverse maintains the same banded characteristics, 

it is no longer sparse. For these reasons the inertial properties 

of the mesh are often approximated by a diagonal matrix, known as 

a lumped mass matrix. 

Consistent mass matrices tend to yield more accurate 

frequencies than their diagonal` counterparts, although this 

advantage is reduced whenever the wavelength of the highest mode 

of interest spans five or more elements, White et al'(1979). 

Their frequency error, moreover, usually represents an 

overestimate of the component frequencies in a given loading 

function, while the nature of-the diagonal form is typically an 

underestimate, Belytschko (1976). 

Most lumped masses for higher order isoparametric elements 

or structural elements are obtained by heuristic means since no 

consistent ways for lumping mass matrices are currently apparent, 

Belytschko (1978). Several alternative procedures have been 

proposed to perform this diagonalisation, Donea and Laval (1979). 

The most successful of these procedures when applied to the lower 

order elements, however, is the simple row summation technique, 

Zienkiewicz (1977), Belytschko (1983) ' 

M11 =, 
N 
E1 Mi. 

ýý 
(2.41) 

where N is the number of nodes of the element. This results in 

Mii = 
j=E1( 

NTj Nj )w dVe (2.42) 

which leads to the following simple formulae for one point 

integration 

Mii °R Ve (2.43) 

Two requirements must be satisfied by the resultant mass 
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matrix in order to produce stable accurate solutions, Donea and 

Laval (1979); 

(i) The mass lumping should preserve the total mass of the 

element and 

(ii) The nodal masses must be consistent with the nodal 

loads so that, for example, a plane wave injected into 

a slab remains plane during propagation. 

It is readily seen that, for the case of the four noded 

isoparametric element using a one point integration rule, these 

two conditions are satisfied. Moreover experience gained has only 

served to substantiate this method, Key (1974), Goudreau and 

Hallquist (1982), Wilkins (1969). 

2.3.4 Evaluation of element internal forces 

Using the finite difference expressions of section 2.3.2, 

the strain displacement matrix of (2.32) is given as 

Y24 0 Y31 0 Y42 0 Y13 0 

Bid = 1/2 Ae 0 X42 0 X13 0 X24 0 X31 (2.44) 

X42 Y24 X13 Y31 X24 Y42 X31 Y13 

where 

xis = xi - xj 

(2.45) 

yi7 YY 

Thus, the B matrix is computed directly from the current 

coordinates without recourse to a generalised shape function 

manipulation. Furthermore, the existence of a symmetric property 

in this matrix when evaluated at the element local axes (a=b=0) 

should be noted, in which 
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B11 = -B15 B22 = -B26 

(2.46) 

B13 = -B17 B24 = -B28 

and leads to a further non-trivial reduction in the number of 

terms to be computed within each time step. The element force 

vector, evaluated over the current element area is given as 

FX = -FX = 1/2 lax? Y24 + TXy x42] + 

FX = -FX = 1/2 lax Y31 + Txy X13] + 
(2.47) 

Fy = -Fy = 1/2 [ay y42'+ TXy X24] +a 

Fy = -Fy = 1/2 [vy Y13 + Txy X311 +a 

where Fj is the element internal force on node i in global 

direction j, and TXy is the element shear stress. The direct 

total stress terms are augmented by the bulk viscosity term q to 

reduce numerical oscillations in the mesh (Section 2.9) thus 

ax 
-=. 

ax +q (2.48) 

and 

Qy' = Qy +q (2.49) 

and an explicit treatment of the axisymmetry terms gives 

1/4 (ar - v®) V. (2.50) 

and 

«= 1/4 (Txy) Ve 
(2.51) 

Where Qr and a. are the radial and hoop stress terms 

respectively. The elimination of the need to compile a global 

stiffness matrix in this manner is important in explicit analyses 
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where fine spatial discretisation is the norm. The computations 

for these problem types must be performed in memory to eliminate 

costly input/output to disk, so that the smaller memory 

requirement for a given problem enables a greater resolution in 

the solution, Belytschko et al (1976). 

The subsequent reduction in the total number of time steps 

required to complete the solution permits the use of the more 

costly yet more accurate higher order elements. Significant 

reductions in the cycle time are expected, however, when a 

suitable method for controlling the hourglass modes in this 

domain is developed, since the benefits of one point integration 

may then be accrued. 

The principal disadvantages to the one point integration of 

this element are the zero-energy deformation modes generated. 

This particular type of deformation (otherwise called 

hourglassing) arises when a pattern of the nodal degrees of 

freedom produces a strain field that is zero at the integration 

point. For instance, bending about either axis produces no strain 

at the integration point (a=b=o) while constant strain states are 

resisted adequately, Cook (1974). 

Numerical problems exist in the control of these modes, not 

due to any inability to perform this control, but in formulating 

a method that is compatible with the extremely efficient code 

essential for high velocity problems. 

2.4 GEOMETRIC NONLINEARITY 

Problems in which finite rigid body rotation and 

displacement occur are called large deformation problems, for 

which a geometrical nonlinear capability is required in the 

solution scheme. The application of a linear strain measure to 

such problem types yields erroneous results because of its 

failure to disregard rigid body rotations. This means that a 

nonzero strain will be predicted when a solid is rotated as a 
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rigid body, with the result that the material behaviour will 

depend upon the choice of spatial coordinate system, a behaviour 

which is evidently unrealistic. Stated otherwise, linear strain 

is not seen to satisfy the constitutive equation requirement of 

frame invariance (or material objectivity). 

It should be noted that by changing the orientation of a 

strained solid through rigid body rotation, the description of 

the state of strain in the solid is modified but remains 

equivalent. A solid described by a strain measure which is not 

invariant will, therefore, have upon finite rigid body rotation, 

a modified strain but no equivalency relative to the unrotated 

configuration. 

The three most frequently used strain measures in the 

nonlinear regime are the Green-Lagrange strain tensor, 

Eid = 1/2 
[XiIJ 

+ xjjI + Xk, I xk, J, 
(2.52) 

the Almansi strain tensor, 

ei j 1/2 
[xj, 

j + xj, i - xk, i xk, j] (2.53) 

and the velocity strain (perhaps more usually termed the rate of 

deformation), 

Dij = 1/2 
lkili 

+ Xj 
, 

il (2.54) 

which is the symmetric part of the decomposed velocity gradient 

referred to the current configuration. Lower case suffices refer 

to the current configuration, whilst upper case suffices refer to 

a previous strain state which remains constant for the entire 

solution or for a particular increment of loading. The tensors, 

Eid and eil measure the deformation by change in the lengths of 

line segments. This can be seen by considering their definitions 
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(dS)2-(dSo)2 
2 Eij = 

(dSo)2 

and 

(dS) 2-(dS0) 2 

2 eij = 

(dS)2 

A 

(2.55) 

(2.56) 

where dS and dSo are the current and original lengths of a line 

segment. The velocity strain measures the rate of change of the 

current length (squared) of a line segment, thus 

2 D" =1ddC 

(dS)2] 

1j 
(dS) 2 

(2.57) 

Both Eij and eil contain information about the original 

shape. The former is strictly frame invariant and while this is 

true for the latter, care is required in defining the reference 

configuration. 

Did, however, only contains information about the rate of 

deformation in the current configuration and-does not exhibit 

frame invariance, Malvern (1969). For this reason it is necessary 

to distinguish between the displacements due to stretching and 

those due to rigid body rotation to eliminate the effects of 

rigid body rotation and thus enable the use of Dij in finite 

strain solutions. An exact technique valid for finite rotations 

is available without unreasonable cost and will be discussed in 

section 2.4.2. 

Each of these strain measures may thus be used to model 

finite strain situations with arbitrarily large rotations. 

The appropriate choice of deformation measure depends 

largely on the relative numerical convenience of implementation, 

although the class of material to be treated and, to alesser 

extent, the type of time integration scheme also needs to be 

considered. 

- 2.22 - 



Consideration of these factors in the context of the class 

of impact problem discussed in this work has led to the measure 

of velocity strain being implemented for several reasons, 

(i) For materials where the stress is a function of the 

or4ginal shape, such as rubber, the Green-Lagrange or 

Almansi strains are preferred. If the original state of 

the material can be characterised by a few state 

variables and the response depends principally on the 

current state of stress, a Cauchy stress/velocity 

strain formulation seems most suitable, Belytschko 

(1983). Such a condition is met, in elastic-plastic 

materials with isotropic hardening in which the stress 

rate depends on the current stress, the current strain 

rate and the scalar yield stress. This is particularly 

true in the high velocity regime in which plasticity 

dominates the overall response, Belytschko (1975). 

(ii) The., eventual algorithm must not be computationally 

expensive, having a minimal number, of logical steps. 

The velocity strain measure is based on the current 

deformed configuration and its relationship with the 

displacement rates is linear in contrast to the Green- 

Lagrange or the Almansi measures where the nonlinear 

relationship adds to the complexity of the numerical 

algorithm, Belytschko (1978). 

(iii) The hypoelastic material behaviour considered in this 

work utilises velocity strain as the fundamental 

deformation measure. The use of this kinematic 

descriptor would, therefore, be both consistent and 

eliminate unnecessary strain rate transformation. 

(iv) The measure is valid for arbitrarily large deformations 

and rotations as required by the physical modelling 

constraints. 
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There are, however, potential disadvantages in the use of 

this particular strain measure. With the total strain defined 

thus 

t 
Eij =J Dij dt (2.58) 

to 

the integration in time for a material point does not generally 

yield a well defined path-independent tensor, so that information 

about phenomena such as total stretching may not be available in 

an algorithm which employs velocity strain only. A transformation 

of the velocity strain rate to either the Green-Lagrange or 

Almansi rates at each solution step is one technique, albeit 

expensive, to overcome this problem and would enable subsequent 

integration to yield a correct measure of the total deformation. 

A more common method in high velocity impact codes is to obtain 

the total strains at the required times during subsequent post 

processing from purely geometrical considerations. 

The procedure to be used in the present work, however, 

exploits the small time increments present in explicit type 

analyses (typically less than 10-7 seconds), for which the 

assumption of a constant strain rate per cycle is not 

unreasonable. -Equation 
(2.58) may now be used to evaluate the 

incremental strain experienced over each time step and in this 

way a total strain measure may be accumulated in a 

straightforward manner. 

2.4.1 Deformation gradient 

Once the velocities have been updated to (n+l/2) and the 

new deformed configuration at (n+l) is found, the strains and 

stresses may be advanced similarly to (n+l/2) and (n+l) 

respectively. The deformation gradient is calculated anew at each 

time step for use in the computation of the stress rotation 

matrix. This matrix is defined, subsequent to the spatial 

coordinate update as 
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Fn-ti = Xn+l i7 1ý7 
(2.59) 

the midpoint deformation gradient rate is'calculated in a similar 

manner as 

"n+l/2 
= 

"n+1/2 Fi7 X1, ] (2.60) 

In the presence of finite displacement gradients, the 

symmetric and skew parts of the displacement gradient matrix 

(xi, j) no longer provide an additive decomposition of the 

displacement gradient into the sum of a pure strain and a pure 

rotation. A multiplicative decomposition of the deformation 

gradient into the product of two tensors, one of which represents 

a rigid body rotation, while the other is a symmetric, positive 

definite tensor is, however, always possible. If Rid denotes the 

orthogonal rotation tensor, then there exists two tensors Uij and 

Vii which satisfy 

Fi j= Ri j Uij = Vi j Rid (2.61) 

where Uij is the right stretch tensor and Vii is the left stretch 

tensor. The decomposition of Fij in this manner is frequently 

called polar decomposition. The evaluation of element stresses 

requires the use of a rotation matrix at times (n), (n+l/2), and 

(n+l), consequently the deformation gradient is also required at 

these times. Integration of the deformation gradient rate is 

performed thus 

Fij'/2 = F1t1 - 1/2 [Fij1/2 dtn ] (2.62) 

and 

Fij = Fib - Fill 2 dtn (2.63) 
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The application of the polar decomposition theorem using the 

deformation gradient matrices at these three states will obtain 

the respective rotation matrices. 

The-use of an integrated deformation gradient, as opposed to 

a direct recalculation at each integration point, makes it a part 

of the time integration scheme. The form used is compatible with 

the explicit time stepping method. 

2.4.2 Stress evaluation 

A stress measure is termed conjugate to the strain measure 

if their scalar product produces work. The corresponding 

conjugate stress to the velocity strain is the Cauchy stress 

measure and is used in this work. 

Stresses for materials which exhibit elastic-plastic 

behaviour are more usually modelled by a hypoelastic constitutive 

relationship which is integrated incrementally in time thus 

Qiý 
1= 

aid + Qij dtn (2.64) 

where 
Qij is the material time derivative of the Cauchy stress. 

Unfortunately this material rate is not vanishing under rigid 

body motion and as such does not satisfy the constitutive 

equation requirement of frame invariance. A method to overcome 

this problem which is currently gaining wide acceptance uses the 

stress rate attributed to Green and Naghdi, Johnson and Bammann 

(1982), and is based on a rotated Cauchy stress, whereby the 

constitutive variables are related to the unrotated position. 

The essence of this stress rate formulation may be stated as 

follows. The rotated Cauchy stress, 
vii, 

evaluated at time (n) is 

(2.65) vii _ (Ri j) 
Tj (Rij ) 

and represents a transformation 4 the unrotated configuration 
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of the true Cauchy stress obtained during the previous time step. 

Before evaluation of the constitutive relations the rotated 

velocity strain is calculated similarly at (n+l/2) as 

Dij1/2 
= (Riý1/2)T Dij112 Rij112 (2.66) 

where Rij is the orthogonal rotation matrix from the last 

section. The rotated Cauchy stress at (n+l) is then evaluated 

from the elastic constitutive relationship as 

j1 =j+ Cijkl fn+1/2 dtn+1/2 (2.67) 

where Cijkl is the 

present the stress 

surface by the rad 

true Cauchy stress 

configuration thus 

elastic constitutive matrix. If plasticity is 

increment Qij 
will be constrained to the yield 

ial return technique (Section 2.8). The final 

is obtained by returning to the rotated 

Ql 
j l= Rii Q1 j1 (R1ý 1) T (2.68) 

Implementation of the constitutive relations in the way 

described here can obtain nearly exact solutions in the presence 

of arbitrarily large rotations, Halleux and Casadei (1984). 

2.5 MATERIAL NONLINEARITY 

The details of the finite strain plasticity implementation 

will be presented. The underlying theory is time independent, 

non-thermal, with isotropic hardening and a von Mises yield 

surface together with an associated flow rule. The procedure is 

commonly termed radial return and has been found to produce both 

accurate and efficient solutions, Kreig and Key (1976). This is 

particularly true when the elastic stress increments exceed the 

yield stress by significant amounts, Nagtegaal (1982). 

The algorithm uses the updated Cauchy stress aij with rigid 
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body rotations removed as previously described. In this procedure 

the stress increment is calculated elastically in deviatoric 

stress space to give the elastically predicted total stress in 

the current time step as 

Qij = crnij + d(sij) + pn+l aid (2.69) 

where d(s? j) are the deviatoric elastic predictor stresses, pn+l 

is the current hydrostatic pressure and dij is the usual 

Kronecker delta. The deviatoric stresses in the current 

configuration are then calculated and if the yield function is 

satisfied then no further effort is required. If, however, the 

yield function is violated, an increment in plastic strain is 

calculated and the elastic predictive stress is subsequently 

decreased proportionally to satisfy the yield criterion, whilst 

simultaneously updating both the stress and yield surface size. 

The associated flow rule for the case of plasticity is given as 

d(Epj) = 21 sill (2.70) 

where d(Epj) are the plastic strain increments, * is the plastic 

multiplier, and sill are the deviatoric stresses calculated at 

time n+l. The yield function is defined as 

n= sij sib - 2/3 (ý+1) 2=0 (2.71) 

where the current radius of the yield surface 0. +1 is given by 

}1 
= Qy + Ep d(Eeff) (2.72) 

in which 0. is the initial uniaxial yield stress and d(Eeff) is 

the von Mises effective plastic strain, defined as 

d(Eeff) - [2/3 d(Epj) d(Epj)]1/2 (2.73) 

The constant EP is the plastic hardening modulus where 
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Et E 
EP = 

E- Et 

(2.74) 

and Et is the tangent modulus. Equation (2.72) relates the 

effective stress to the effective plastic strain, under the 

assumption of the existence of a universal plastic stress-strain 

curve, Malvern (1969). The deviatoric stress at time n+1 may be 

calculated from 

sijl = sib - 2G d(E? j) 
(2.75) 

where the superscript e denotes values at the end of the elastic 

prediction and G is the material shear modulus. By substitution 

of the flow rule into (2.75) we obtain 

1 
s1ý1= 

si 
j 

(2.76) 

(1+4Gf) 

which gives 

17Y 
1 

(2/3 s? j si)1/2 (2.77) 

(1+4Gf) 

From the flow rule we have 

d(Eeff) = 2f (2/3 slýl slýl)1/2 (2.78) 

and hence, using the yield function, obtain the plastic 

multiplier as 

3d (Eeff) 

(2.79) 

4 Qn+1 Y 

Substituting from (2.77) and (2.79) into (2.72), the effective 

plastic strain may now be evaluated as 
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(3/2 sij sij)1/2 - 
+1 

(2.80) d(Eeff) - 
(3G + Ep) 

and by substitution of (2.80) into (2.75) and using (2.77) and 

(2.78), the stress deviators are scaled back in the form 

sill = sib _ 
[3G d(EPeff)] 

STJ (2.81) 

(3/2 sib sly )1/2 

The stress component ratios are assumed constant here due to the 

associated flow rule i. e. radial loading and unloading of the 

stresses. 

2.6 HOURGLASS CONTROL 

The principal disadvantage to the one point integration of 

the linear quadrilateral isoparametric element is the generation 

of zero-energy deformation modes and has been discussed in 

section 2.3.4. 

In an attempt to avoid treating the spurious hourglass 

deformation modes associated with this particular element, 

developers have tried several alternative methods including the 

use of triangular elements, Johnson (1976), integrating the 

linear elements with full quadrature, Key et al (1978), and more 

recently by the use of higher order elements, again with full 

quadrature, Hallquist (1983a). The disadvantages associated with 

these techniques have been the subject of previous discussions, 

from which their suitability for use in this work was seen to be 

questionable. These alternatives are thus eliminated as potential 

f 
solutions. 

It is believed that unstable hourglass modes tend to form 

over a time duration that is typically much shorter than the time 

duration of the structural response and are frequently associated 
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with an oscillatory type behaviour. Hourglass modes that are a 

stable kinematic component of the global deformation modes, 

however, occur over a much longer time frame and obviously must 

be admissible. Hence, the true hourglass modes are resisted with 

a viscosity capable of preventing the formation of anomalous 

modes but having a negligible effect on these stable global 

modes. Furthermore, the kinematic discretisation of high 

frequency phenomena requires fairly fine mesh refinement and, 

hence, the non-rectangular component of the element shape is 

rather small. Together, these assumptions reduce the incentive to 

pay a high price to integrate exactly, Goudreau'and Hallquist 

(1982). 

The computational savings achieved using one point 

integration are maintained with the hourglass control procedure 

adopted here. 

2.6.1 Definition of hourglass modes 

Strain rate calculations in two dimensional planar geometry 

can be written as 

4 
Dxx =E mi, 

X 
Xi (2.82) 

i=1 

Dl 
1, =E 0i, y 

yi (2.83) 
i=1 

Dxy = 1/2 
i=lol, y 

Xi + 0i, 
x yi) (2.84) 

where"xi and 
yi 

are the nodal velocities. The nodal displacement 

pattern or hourglass vector ri for the linear quadrilateral is a 

result of recognising that the hourglass modes must not 

contribute to the rigid body modes to give 

4 

iEl 
ri =o (2.85) 
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and that the symmetry conditions in the strain-displacement 

matrix (equation 2.46) yield the necessary zero strain rates when 

multiplied by this vector 

0i,, x ri =o (2.86) 

and is, therefore given by 

ri =(1 -1 1 -1 )T (2.87) 

Note that there are actually four identical hourglass modes 

for this element, but may all be obtained through the one 

hourglass vector applied in the two coordinate directions. 

2.6.2 Diagonal drifting 

Detection of the hourglass mode for the linear quadrilateral 

is performed using a concept usually termed diagonal drifting. 

For instance, if the two diagonals of an element are treated as 

vectors, then hourglassing will be occurring whenever these two 

vectors drift relative to one another and yet retain the same 

direction and magnitude. Note that the area of a quadrilateral 

computed from half the vector cross product of the diagonals, 

will remain unchanged for an hourglassing configuration. It is 

also interesting that the time step is not diminished by simple 

diagonal drifting, since neither the area nor the longest 

diagonal length change and so the shortest signal path across 

an element remains unchanged. 

The rate of diagonal drifting may be defined by the velocity 

at which the midpoints of the element are separating or 

v1+v3 - v2 +v4 

2 

where vi denotes the velocity of node i. 

contribute to the strains in the element, 

2 

(2.88) 

This velocity does not 

hence the deformation 

- 2.32 - 



pattern associated with this velocity field will be the object of 

minimisation. At the element level, therefore, any velocity field 

for which the quantities 

Cj ri and 
yi ri (2.89) 

are nonzero leads to the assumption that the element is 

hourglassing. 

2.6.3 Hourglass damping 

The controlling technique is based upon the the hourglass 

velocity, Hancock (1973) and is defined in terms of the diagonal 

drifting velocity in the two coordinate directions as 

hx = 1/4 cj ri and by = 1/4 yi ri (2.90) 

it should be noted that the hourglass modes are independent of 

the shape of the element. The corresponding viscous hourglass 

resisting forces are computed from; 

fxi = -g hX ri and fyi = -g by ri 

in which 

g=Qhwc. JAe (2.92)_ 

Qh is a constant which is usually set to a value between 0.05 and 

0.15, Hallquist (1983b). Several remarks may be useful in 

conclusion. 

(i) Alternative techniques are currently available, their 

application resulting in varying degrees of 

effectiveness depending upon the problem type. In all 

such methods, however, the accuracy is obtained by 

sacrificing the numerical operation count, whilst the 

formulation as given is seen to be over four times 

'k 

(2.91) 
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faster than the most efficient of these, Goudreau and 

Hallquist (1982). 

(ii) Energy losses due to this formulation are inevitable 

but it appears that the effects are minimal, Hallquist 

(1983b). 

(iii) The procedure preserves the momentum of the velocity 

field at all points. 

(iv) Simple bending of a column of elements is not resisted 

by this procedure. Although the hourglass velocity in 

each element would not be zero, the hourglass velocity 

at the centre of bending is zero. This is an important 

feature in plate impact situations where a large amount 

of bending is present. 

2.7 CONTROL OF NUMERICAL OSCILLATIONS 

Spurious numerical oscillations are often the result of 

applying explicit temporal integration to the spatially 

discretised momentum equations, particularly within the high 

velocity impact domain. This "noise" has the capacity to dominate 

the true solution in such a way as to virtually destroy it. 

Accurate results are obtained only if the superimposed 

oscillations are of considerably higher frequency than the 

principal features of the wave response sought. Their presence is 

a result of several possible factors, the discussion of these 

phenomena, however, is necessarily brief for this aspect of the 

problem is not well understood in the nonlinear domain, 

Belytschko (1975). The aim is to present a summary of current 

practice and to point out some pitfalls. Some of the pertinent 

aspects have already been mentioned but will be reviewed again 

for completeness. 

shock wave phenomena 

A characteristic of high velocity impact situations is the 
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presence of shock waves (weak or otherwise), and arise as a 

consequence of the material sound speed increasing with pressure. 

A pressure wave can gradually steepen until it propagates as a 

discontinuity in the solution, thus leading to jumps in pressure, 

density, particle velocity and energy across the shock front. 

Difficulties are encountered in numerical solutions when these 

shocks fronts are present not only because of the discontinuity 

but also as a result of the associated trailing numerical 

oscillations, Hallquist (1983b). 

Dispersion 

All discrete parameter dynamic models exhibit dispersion, 

that is a phase velocity-frequency dependence, which may not be 

present in the physical structure. Alternatively, the wave 

frequencies excited by a transient loading situation such as 

impact, do not propagate with equal velocities. Both the temporal 

and spatial discretisation involved in the finite element method 

introduce a pattern of dispersion. 

For the linear element proposed with diagonal mass 

approximation, the dispersion associated with the spatial 

discretisation has the tendency to reduce the phase velocity of 

the high frequency disturbances (negative dispersion), while 

lower frequency modes remain largely unaffected at the continuum 

wave speed. The effect of the central difference time integration 

scheme, however, is seen to increase the phase velocity of the 

high frequency modes (positive dispersion). This dispersive 

nature changes the shape of the propagating wave forms; negative 

dispersion results in a predominance of high frequency 

oscillations in the trailing portion of the disturbance, whilst 

negative dispersion yields leading edge perturbations, Shreyer 

(1983). These oscillations are at frequencies nearly equal to the 

cutoff frequency of the mesh, Shipley et al (1967). The variance 

in the computed waveform may thus have significant effect upon 

the accuracy of the computed response. 

The additive effects of. these two opposing dispersion 

patterns is seen to be beneficial, since the judicial combination 
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of the central difference operator and the lumped mass produces a 

total dispersive property that is much reduced from their 

individual contributions. As a result, this form of numerical 

instability is usually small, Key (1978). 

Aliasing 

Whilst mesh refinement in regions of interest has few 

drawbacks in static problems involving only elastic behaviour, 

the situation is not as simple in transient dynamic problems. The 

finite elements behave like low pass filters having definite 

passing bands and cutoff frequencies. The different cutoff 

frequencies depend on the type of propagating waves and the 

direction of propagation with respect to the mesh. Outside the 

passing band waves cannot propagate and the amplitudes of the 

waves are quickly attenuated spatially, Belytschko and Mullen 

(1977b). 

For example, the numerical solution to a step type loading 

pulse will approximate the discontinuity with a finite slope as a 

consequence of the reduced number of frequency components, 

Kuhlemeyer and Lysmer (1973). Subsequent oscillations occur with 

a decreasing amplitude as the frequency attenuation occurs. 

Variations in the time step 

The use of a varying time step is mandatory in high velocity 

impact problems so as to maintain the highest numerical 

efficiency. That this introduces an artificial damping into the 

central difference operator, has been mentioned previously 

(Section 2.2.2), particularly the numerical instability 

associated with an increasing time step. Since the instability 

arises from the appearance of negative damping, an obvious remedy 

would be to apply an artificial term of sufficient magnitude to 

balance this effect. 

2.7.1 The bulk viscosity method 

Spurious oscillations may be reduced and even eliminated by 
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the bulk viscosity method, Belytschko and Mullen (1977a). 

Originally designed for use in shock wave applications, the shock 

discontinuity and the subsequent numerical oscillations are 

eliminated by spreading the shock front over a small number of 

elements. 

In applying this method, the pressure in compressing 

elements is augmented by an artificial viscous term q before the 

evaluation of the element internal force. The q term is 

negligible at all places except those immediately in the shock 

locale ensuring that the solution remains relatively unperturbed. 

It is generally believed that this type of formulation 

satisfies all shock conditions based on the countless numerical 

experiments performed over the years, in which excellent 

agreement has been obtained with either exact solution or 

experiment, Noh (1976). Examples of such codes include DYNA2D - 

Hallquist (1984), EPIC-2 - Johnson (1976), HONDO II - Key et al 

(1978), TOODY II - Bertholf and Benzley (1968), and work 

performed by Belytschko and Mullen (1977). 

The exact form of artificial viscosity is somewhat arbitrary 

but all current code developments are based in some way on the 

viscosity originally proposed by von Neumann and Richtmyer 

(1950). In this work the q term is defined by 

q=w Lc D[ Ql Lc D+ Q2 C, (2.93) 

where Q1 and Q2 are dimensionless constants which default to 1.5 

and 0.06 respectively. 

The quadratic term in strain rate is chosen to be very small 

except in regions of very large gradients and is consequently of 

little effect in the range of velocities considered in this 

report. The linear term, however, is included to control the 

small spurious oscillations following both the shock waves in 

which the gradients are insufficient to make the quadratic term 

effective and those resulting from the phenomena described 
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previously. Care should be taken with the linear term since there 

is a danger of distorting the solution, Bertholf and Benzley 

(1968). 

In converging element geometries the centred strain rate 

term JD j is negative and the q term is then nonzero. This 

occurs even though no shocks are generated and results in a non 

physical generation of q. In view of the abundance of good 

correlation with this method, however, it is generally agreed 

that the effect is negligible. 

2.8 DISCUSSION 

A finite element program has been assembled to solve high 

velocity impact problems, specifically to provide a fundamental 

basis for investigation of the shear plug phenomenon. In the 

development of this program, a number of points worthy of 

discussion have been established. 

The nature of the explicit time integration scheme involves 

literally millions of constitutive calculations. It is this 

requirement which has provided the motivation to ensure that the 

routines incorporated are as efficient as possible. The accuracy 

requirements have not been sacrificed in this work, merely a 

recognition that a general purpose finite element system is no 

match for those programs designed with computational speed as a 

high priority and with a limited range of objectives. Indeed, the 

solution of fast dynamics problems using programs with an element 

cycle time greater than 0.2 seconds (processing) becomes 

unobtainable even for comparatively coarse meshes. 

Consider a mesh of 100 elements which is used to model a 

physical solid undergoing both geometric and material 

nonlinearity. A timing table, Table 2.1, has been obtained for 

both the traditional finite element approach and the present 

work, as implemented on a Vax 11/750 (without a floating point 

accelerator). This table enables some general statements to be 
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made regarding speed requirements and the optimum distribution of 

processing time. 

Only the solution process is considered and has been 

divided into into four discrete sections. Ignoring all data 

input and output, a definition of each section is as 

follows; 

(i) The disk transfers consist of all manipulations to read 

and write element records to disk during the post 

solution processing. 

(ii) The element loop timings account for all other element 

based operations except those due to the database. This 

is a measure of the time to compute the internal force 

vector and all such component terms for each element. 

(iii) The slideline operations are included for completeness 

only and will be discussed further in Chapter Three. 

(iv) Under miscellaneous comprises the various 

initialisation and termination operations required 

outside the element loop, including overheads in 

descending to the element level from the top level 

subroutines and any further database manipulations 

involved with respect to general problem data. Also 

included here is the time spent in the top level system 

logic. 

The timings from Table 2.1(a) represent a six-fold increase 

in execution time over those given in 2.1(b), the element cycle 

times are 0.67 and 0.11 sec/cycle respectively. The latter timing 

has enabled most truly transient problems to be solved. 

Table 2.1(b) shows the predominance of the processing effort 

concentrated in the element loop, in which the central cost item 

is the construction and use of the strain displacement matrix for 

the internal force computation. It is the recognition of the 

symmetry within this matrix which accounts for much of the 

decrease in processing time in this loop. 
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Further reductions of the operation count in the element 

loop are available by virtue of the focus upon only one element 

type; Firstly, there is a significant decrease in the amount of 

code, facilitated by the use of specific finite difference 

formulae and, secondly, the subsequent elimination of many 

subroutine call overheads. 

With respect to the database timings, the tremendous savings 

possible over the more traditional finite element numerical 

architecture may be dually stated in the following; 

(i) The use of any form of database other than those which 

eliminate the time spent in expensive disk transfers 

and manipulate data in core, represent a significant 

limitation of the traditional architecture. This 

consideration alone can eliminate all but the 

specialist codes in many problems. Moreover, the advent 

of increasingly faster machines is only recently 

allowing even the specialist codes to solve the larger 

3-D problems. 

(ii) The adoption of one element type and the restriction to 

fast dynamics problems, enables the number of variables 

associated with each element to be considerably 

reduced. Since the time spent in extracting element 

data from a database varies with the number of 

variables, a significant saving in time is also 

accomplished here. 

The implementation of both an in-core database manager and a 

reduced element variables set promotes a saving in the database 

timings by a factor of five. Additional savings are also 

experienced with the latter in the main entry and exit to the 

element constitutive routines by virtue of the reduced subroutine 

call overhead. The reduction in time is significant and is 

equivalent to an element cycle time (including database 

operations) in the modified code. 
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The final mesh cycle times are clearly independent from the 

miscellaneous timings shown. However, the unmodified 

miscellaneous. timing represents 10% of the total time for the 

modified code and is a useful saving. savings are accomplished 

here in the reduction of the amount of problem data extracted 

each time step from the database and in the subsequent reduced 

subroutine overheads. The restriction to a particular problem 

class eliminates any top level control logic and the whole 

process maybe essentially performed within a small suite of 

routines. 

The ideal situation is to have a distribution in which 

practically all the effort occurs within the element routines. 

All time spent in disk transfer is an expensive waste. The 

timings currently obtained do not fulfil this and are not optimum 

in this respect. They do, however, represent a mesh cycle time 

which is adequate for the work herein. Further savings may be 

expected with the implementation of a more effective database 

structure which will result in a mesh cycle time of 0.06 or 

better for this particular machine. 

It is clear that the architecture of a finite element 

program based upon an explicit integration scheme differs 

markedly from those employing both static and implicit dynamic 

schemes. Although many analysts have used the traditional finite 

element approach, computing the nodal forces by multiplication of 

the tangential stiffness matrix with the incremental 

displacements, that approach is computationally inefficient, 

Belytschko et al (1975). Furthermore, the nature of the explicit 

scheme permits the segregation of different sections of the 

program to ease later modification. The constitutive equations 

are such an example. Since the stress rotation is performed 

independently from these equations, additional models may be 

added, or modifications made, to existing routines relatively 

simply. This is of vital importance at this current stage in the 

development of high velocity impact codes, where no definitive 
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material models have yet been forthcoming, Herrmann (1975). 

2.9 CONCLUSION 

This chapter has presented a finite element basis to the 

solution of high velocity impact problems. The discussion was 

presented under the main headings of; temporal 

discretisation, spatial discretisation, material 

nonlinearity, geometric nonlinearity, hourglass control and 

the control of numerical oscillations. 

The formulation has been developed with due regard to the 

achievement of a numerically efficient code, although accuracy 

considerations have not been compromised. The result is a program 

which will model the large deformation, inelastic, dynamic 

response of materials subjected to impact loading and, moreover, 

facilitates solutions with a minimised number of operations. 

The algorithms developed within each of the six sections for 

use in this work will be restated here as follows; 

(i) Central difference time stepping scheme with automatic 

time step computation 

(ii) Linear isoparametric elements integrated with one point 

quadrature 

(iii) Radial return isotropic plasticity model using von Mises 

yield criteria 

(iv) Finite strain calculations using the velocity strain 

measure 

(v) Element stabilisation based on a diagonal drifting 

concept 

(vi) Numerical stability achieved through the Von Neumann 

artificial viscosity scheme 

Finally, a flowchart of the explicit impact solution scheme 
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is given in Table 2.2. The contact interface force computation is 

included for completeness and will be discussed in Chapter Three. 
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TABLE 2.1 

(a) TIMING CHART FOR FAST DYNAMICS PROGRAM 

Program Time for 100 % of Total 
Block Elements (1/100S) Time 

1 900 48 

2 800 42 

3 160 9 

4 15 1 

Total 1875 100 

(b) TIMING CHART FOR TRADITIONAL DYNAMICS PROGRAM 

Program Time for 100 % of Total 
Block Elements (1/100S) Time 

1 4500 35 

2 7200 55 

3 1170 9 

4 175 1 

Total 13045 100 

Key to Program Blocks 

1- Disk Transfers. 
2 S ldel eeope 

i 3- rat ons ln 1. 
. 4- Miscellaneous. 

Program 
Block 

Time for 100 
Elements (1/100S) 

% of Total 
Time 

1 900 48 

2 800 42 

3 160 9 

4 15 1 

Total 1875 100 

Program 
Block 

Time for 100 
Elements (1/100S) 

% of Total 
Time 

1 4500 35 

2 7200 55 

3 1170 9 

4 175 1 

Total 13045 100 

- 2.48 - 



TABLE 2.2 

Solution Strategy for High Velocity Impact 

Initialisation 

" Data Input 

" Compute mass and initial load vectors 

" Compute initial critical time step, t= dtcr 

Element Loop 

1 Loop e=1 to number of elements, ne 

- Update element coordinates 

" Compute midpoint velocity strains 

" Compute hourglass resistance forces, fh+l 

- Update stress, an+l 

" Update time step increment for next step, dtcr 

" Compute artificial bulk viscosity pressure, qn+l 

" Augment an+l to account for numerical oscillations 

" Compute internal force, fi+l 

" Compute external force, fe+l 

" Compute reaction forces 

" Assemble global residual, fn+l= fn+l_ fn+l+ fn+l 
reih 

- If last element, go to 2 

Solution Procedure 

2- Update t=t+ dtcr 

" Compute contact interface force, fc+i 

fn+l " Update residual vector, fr+1= fn+l+ 
rC 

- Compute global acceleration, an+l_ fr+lM-1 

- Compute velocity, vn+l/2 = vn-1/2 + an+l dtc+l/2 

- Compute displacement increments, do+1= do + vn+l/2 dtcr 

- Go to 1 if t< total solution time 

" Otherwise, stop 
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CHAPTER 3 

THE BLIDELINE TECHNIQUE 

3.1 INTRODUCTION 

The numerical method by which the contact process is 

modelled will be presented in this chapter. A brief review of the 

contact methods currently available is followed by a detailed 

description of the technique chosen for use in this work. The 

limitations of the chosen technique and a guide to its correct 

usage are also included. 

Vector notation conveniently describes the geometric nature 

of this algorithm and will be used throughout this chapter. 

3.2 SLIDELINE TERMINOLOGY 

Consider the time dependent motion of two bodies occupying 

regions B1 and B2 in their undeformed configuration, Figure 3.1. 

In this state, assume that the intersection 

B1 n B2 =0 (3.1) 

is satisfied. This is the impenetrability condition for 

contact. Define 6Bl and 6B2 as the boundaries of B1 and B2, 

respectively, and at some time later let these bodies occupy 

regions bl and b2 bounded by bbl and 6b2. Since the deformed 

configurations are not permitted to penetrate, 

( bl - ab1 )n b2 =0 (3.2) 

must also be satisfied. Whenever the intersection (bbl n 6b2) is 

nonzero, contact conditions are indicated and constraints imposed 

to prevent penetration. 
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In this work the surfaces 5bl and 6b2 of the discretised 

bodies bl and b2 become the master and slave surfaces 

respectively. This is an arbitrary choice when a symmetric 

treatment is employed, although the correct relative orientation 

is important in unsymmetric treatments. 

Nodal points that define bbl are called master nodes and 

nodes that define 6b2 are called slave nodes. Likewise, a 

master/slave segment is any line joining two adjacent 

master/slave nodes, Figure 3.2. It is clear that contact segments 

thus correspond to external faces of the underlying element. 

By way of explanation and in anticipation of the future 

discussion of slideline methods, the difference between an 

unsymmetric and a symmetric treatment should be noted. The former 

takes each potential contact node on the slave surface and 

imposes constraints on all those found to satisfy the penetration 

criterion. The symmetric treatment, however, consists of a 

further operation in which each potential contact node on the 

master surface is examined and the necessary constraints applied 

similarly. 

3.3 EVOLUTION OF CURRENT SLIDELINE TECHNIQUES 

Exact solutions to the static contact problem have been 

available for many years after the work performed by Hertz, 

Lubkin (1962). Due to the complexity of the problem, however, 

only relatively simple applications were attempted. In later 

years, the finite element method has proven to be a powerful tool 

for the numerical analysis of this class of problem. 

The techniques employed to obtain solutions to the static 

contact problem include the use of a relative displacement vector 

to correspond to the clearance between the two bodies, Wilson and 

Parsons (1970). The two bodies are treated as one, but require 

the prior knowledge of the prescribed interference fit. Asano 

(1981) developed this further to solve for the final relative 
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displacement using an iterative method and thus eliminated any a 

priori knowledge. 

Specially adapted constitutive laws were also developed to 

incorporate the contact discontinuities, Fredriksson (1976), 

Voyiadjis and Buckner (1983). This facilitated the simulation of 

elasto-plastic material models with hardening and friction, but 

iterative techniques were again required to solve for the 

nonlinear surface effects. 

The use of various different iterative techniques applied to 

the finite element procedure has met with a good deal of success. 

Solutions are obtained by successive iteration subsequent to an 

assumed continuity condition at the contact interface, Mahmoud et 

al (1982). Rahman and Rowlands (1984), Osmont (1985), Ohte 

(1973), Tsuta and Yamaji (1973), Chan and Tuba (1971), 

Frankavilla and Zienkiewicz (1975), Sachdeva and Ramakrishnan 

(1981), Gaertner (1975). 

The use of a contact element has been investigated in which 

various element formulations were applied to model the contact 

phenomena, Okamoto and Nakazawa (1979), Stadter and Wiss (1978), 

Yagawa and Hirayama (1984), Schafer (1975), Mazurkiewicz and 

Ostachowicz (1983), while the boundary displacement constraints 

have also been imposed via the Lagrange multiplier technique to 

good effect, Petersson (1977), Bathe and Chaudhary (1985). 

These finite element contact formulations are not applicable 

to the high velocity impact problem because they lack one or more 

of the following capabilities; 

(i) The facility to control the spurious mesh instabilities 

excited along the interface which are typically 

experienced in such dynamic processes. 

(ii) Numerical efficiency within an explicit time 

integration environment. 
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(iii) Arbitrarily large relative deformations between 

adjacent sliding surfaces. 

(iv) Collisions involving two or more deformable solids. 

(v) Initial contact boundaries defined in terms of element 

regions rather than actual nodal contact locations. 

(vi) Applicability to problems involving finite deformations 

and rotations. 

Most of the significant developments in the treatment of 

high velocity contact by numerical methods have appeared in 

connection with the study of impact, explosive forming, and the 

general area of hydrodynamics. The concept of slidelines, that is 

material surfaces that can slide relative to one another, has its 

origin in these sources. 

The usage of slidelines in more conventional structural 

analysis has been much more limited, principally because reliable 

algorithms have not been implemented in widely used finite 

element programs. Five algorithms have been used in the 

literature: 

(i) Nodal constraint 

(ii) Velocity constraint 

(iii) Penalty-based 

(iv) Distributed parameter 

(v) Lagrange multiplier 

The sliding interface procedures described above are of two 

types, that is kinematic or force; 

Kinematic procedures alter nodal point velocities using 

impact relations when contact has occurred, and effectively 

introduce impulses of zero time duration to reflect contact 

behaviour. The smooth and accurate solution to impact problems is 

strongly dependent upon the description of these impact and 
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release conditions and, in some cases, can be unattainable. 

Force procedures utilise nodal point restoring forces, and 

introduce an impulse of short but finite duration (tens of time 

steps) when the interaction occurs. This treatment requires the 

initial intervention by the analyst to provide a reasonable 

spring constant that will minimise unacceptable penetrations yet 

will not be so large as to prevent convergence, Guerra and 

Browning (1983). 

3.3.1 Nodal constraint technique 

The nodal constraint method, which uses the impact and 

release conditions of Hughes et al (1976), has been implemented 

in DYNA2D, Hallquist (1976), and DYNA3D, Hallquist (1977). 

Constraints are imposed kinematically into the global 

equations by a transformation of the nodal displacement 

components of the slave nodes along the contact interface. This 

transformation has the effect of eliminating the normal degree of 

freedom of the slave nodes, and distributing its normal force 

component to adjacent master nodes. To preserve the efficiency of 

the explicit scheme, the mass is lumped to the extent that only 

the global degrees of freedom of each master node are coupled. 

This has the effect of creating 'a non-diagonal mass matrix with 

the associated numerical inefficiency. The impact and release 

conditions are imposed to ensure momentum conservation. 

Problems arise with this method when master surface 

discretisation is finer than that for the slave surface as a 

result of the unsymmetrical treatment used in this procedure. 

Here, certain master nodes can penetrate through the slave 

surface without resistance and create a kink, Figure 3.3. Such 

kinks are relatively common with this formulation, especially 

when interface pressures are high, and serve to excite the 

hourglass mode of deformation, Hallquist (1983b). The nodal 

constraint method is most helpful in permitting sudden 

transitions in mesh refinement rather than the more usual gradual 
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transition zone. 

The use of a semi-diagonal mass matrix and the requirement 

of a time step scaleback renders the implementation to be quite 

involved. The scaleback is necessary to ensure that a maximum of 

one potential contact node achieves contact conditions in each 

time step. 

3.3.2 Velocity constraint technique 

The momentum conservation process at the contact interface 

is again performed kinematically via the nodal velocities, and 

has been used with some degree of success by Johnson (1977) in 

the EPIC-2 and EPIC-3 codes. The momentum change caused by 

placing the penetrating slave node on the master surface is 

calculated and subsequently transferred to the adjacent master 

nodes. 

The technique suffers from the mesh kinking described 

previously due to the unsymmetrical treatment of the slideline, 

although this is not as deleterious in Johnson's formulation 

since hourglass modes of deformation are not excited by the 

linear triangular element used in his work. It would appear, 

however, that unpublished work has now included this facility 

into the computations, Ringers (1983). Translational momentum is 

conserved exactly. The omission of a time step scaleback 

introduces errors into the centre of gravity positions when the 

slave node is moved to the master surface, since there is now no 

corresponding movement of the master nodes, which receive only an 

instantaneous velocity change. This centroidal error initiates 

further small errors in the rotational momentum. 

The method is based upon the Newmark-Beta time integration 

scheme and the usual automatic time step computations are 

performed. It has been noticed that the technique becomes 

unstable if the time step is increased much beyond 30% of the 

Courant condition. Of itself, this presents no serious 

difficulty, however the additional computational cost may be 

quite considerable. 
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The technique works well for very simple contact laws such 

as frictionless in shear and normally rigid. A more complex 

approach is required, however, if more realistic laws are to be 

contemplated, Principia Mechanica (1984). 

3.3.3 Penalty-based technique 

The penalty-based method is used in the explicit finite 

element programs, Hondo II, Key et al (1978), DYNA2D, Hallquist 

(1984), DYNA3D, Hallquist (1983a) and the finite difference 

programs PR2D/PR3D, Principia Mechanica (1984). The method has 

also been used to good effect in the implicit codes; NIKE2D, 

Hallquist (1979), NIKE3D, Hallquist (1981), and in work carried 

out by Brockman (1982). 

The method consists, of placing normal interface springs 

between all. penetrating nodes and the contact surface. The 

implicit and explicit treatments are similar with the exception 

of the assembly of the spring stiffness components into the 

global stiffness matrix for implicit solutions. HONDO II requires 

the user to choose a restoring force modulus for each side of the 

interface, whereas, the NIKE and DYNA codes compute a unique 

modulus for each slave and master segment, based on the thickness 

and bulk modulus of the element in which it resides. Pre-empting 

user control over this critical parameter greatly increases the 

success of the method, Hallquist (1983b). 

The penalty-based method approach has been found to excite 

little, if any, mesh instability in contrast to the nodal and 

velocity constraint methods. This lack of noise is a result of 

the symmetrical treatment employed. An additional benefit of the 

technique is that the time step is not affected. Momentum is 

exactly conserved without the necessity of impact and release 

conditions and, furthermore, no special treatment of intersecting 

interfaces is required; thus greatly simplifying the 

implementation. 

The interface stiffness is chosen to be less than the 
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stiffness of the interface elements normal. to the interface. When 

interface pressures become large, as in explosive-structure 

interaction, unacceptable penetration has been found to occur. 

However, this situation is encountered within a different problem 

regime and is seldom attained in the class of high velocity 

impact considered here. 

The technique is sufficiently flexible to permit the 

relatively straightforward implementation into implicit codes to 

obtain the additional benefits mentioned previously. Furthermore, 

computer hardware is reaching a level whereby the implicit codes 

are becoming increasingly competitive with respect to their 

explicit counterparts. The future of the penalty-based method is 

therefore assured. 

3.3.4 Distributed parameter technique 

This method is optional in DYNA2D, Hallquist (1984), and a 

specialisation of it may be found in DYNA3D, Hallquist (1983a). 

The technique is seldom utilised in structural calculations, 

since its usefulness is in the treatment of interfaces where the 

gaseous products of a high explosive act on a solid material. 

The general procedure is as follows. One-half of the slave 

element mass of each element in contact is distributed to the 

covered master area. Also, the internal stress in each element 

determines a pressure distribution for the master surface area 

that received the mass. After completing this distribution of 

mass and pressure, the acceleration of the master surface is 

updated. Kinematic constraints are then imposed on slave node 

accelerations and velocities to ensure their movement along the 

master surface. The treatment is thus symmetric in nature 

although only one pass is actually performed. 

3.3.5 Lagrange multiplier technique 

This method has been implemented by Hughes et al (1976) and 

more recently by Chaudhary and Bathe (1986). The Lagrangian 
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multiplier method permits relationships between nodal degrees of 

freedom in addition to the basic stiffness equations. This method 

is numerically the most exact since these additional equations 

are inserted to ensure that the slave nodes are constrained to 

remain on the master surface exactly. The addition of extra 

variables in this way, however, requires the use of a more 

complicated equation solver. 

The method is not symmetric since a slave node cannot 

contact two master surfaces at the same time. Because of this 

lack of symmetry the Lagrangian multiplier method does not 

necessarily preserve a smooth force distribution across the 

interface. The lack of a smooth force field excites the hourglass 

modes in many of the high velocity impact problems that have been 

solved, Hallquist et al (1984). 

A further restriction is the applicability to implicit time 

integration schemes only. The problems inherent with implicit 

methods when referred to the high velocity regime have already 

been discussed in Section 2.2.3. 

3.3.6 Selection of slideline technique 

The lack of flexibility of the Lagrange multiplier method to 

be cast in an explicit form, the ineffectiveness of the 

distributed parameter method in structural problems and the lack 

of symmetry of the nodal constraint method have limited the 

majority of high velocity impact calculations to the use of 

either the penalty-based or the velocity constraint algorithms. 

The penalty-based procedure has been chosen to simulate the 

impact process in this work for several reasons; 

(i) An objective of this work is to extend the penalty- 

based method to include fracture slideline 

capabilities. For reasons to be given in Chapter Five, 

the penalty-based method represents a more efficient 

and flexible alternative than that of the velocity 

constraint method. 
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(ii) The velocity constraint method appears to limit the 

critical time step to 30% of the Courant value to 

maintain stability at the interface, Hallquist (1987). 

The associated increase in solution time may therefore 

be a limiting factor. 

(iii) The velocity constraint method is kinematic in nature 

and, in a similar way to the nodal constraint method, 

is expected to excite considerable mesh hourglassing 

when used in conjunction with a single point 

integration rule and the isoparametric four node 

quadrilateral. 

(iv) The omission of any impact and release logic in the 

penalty-based method represents a simpler 

implementation than that of the velocity constraint 

method. 

(v) The greater flexibility of the penalty-based method in 

dealing with tangential interface motion is important, 

especially in the treatment of the plugging process. 

To avoid ambiguity in the following discussion of the 

symmetric treatment, the following terms will be defined (see 

Figure 3.4) 

Current nods : The potential contact node currently 

undergoing examination to determine its contact condition. It is 

clear that the current node will have been defined as a slave 

node in unsymmetrical treatments but may be a slave or a master 

node in symmetrical treatments. 

Adjacent node : Any potential contact node which occurs on 

the opposite surface to the current node. For example, the slave 

surface nodes are the-adjacent nodes with respect to the master 

surface. 
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Node pair : The two nodes, one on each contact surface, 

which are closest to one another.. For each current node, then, 

there will be one associated node termed the local node. Note 

that for symmetric treatments the node pair association is not 

necessarily reversible and, therefore, must be computed for each 

contact surface. 

Local segment : This is the contact segment associated with 

the local node and upon which the current node has, or is likely 

to, come into contact. 

3.4 THE PENALTY-BASED SLIDELINE TECHNIQUE 

The essential elements of the penalty-based method presented 

here are as follows. First, surface regions which represent 

potential areas of contact are defined. At each time step, each 

possible combination of surface nodes are screened using a simple 

conservative test to eliminate those pairs which are obviously 

not in contact. For remaining pairs, a more precise determination 

of the relative positions is then made. Finally, when a contact 

condition is detected, constraints are imposed in the equations 

of motion for the two bodies to restrict interpenetration of the 

contact surfaces and to determine the relative tangential motion 

according to the prescribed shear law. Each of these steps will 

be discussed in more detail below. 

It has already been stated that the symmetric treatment 

involves a two pass process and eliminates the distinction 

between the slave and master surface terminology. Only those 

points necessary to define one complete pass will be discussed 

here, with the understanding that a second, identical, pass is 

also necessary. 

All slideline calculations are performed within one suite of 

routines so that the simplicity of the overall computational 

strategy is maintained. These routines are called immediately 

prior to the central difference equations, thereby affecting the 

computation of the accelerations and the subsequent displacement 
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increments for the next time step. The position of this suite in 

the solution scheme may be seen in Table 2.1. 

3.4.1 Definition of contact surfaces 

The first step in the contact analysis is the designation of 

those surfaces between which contact might occur during the 

solution process. Their orderly definition is performed by the 

analyst using element node numbers in the region of the possible 

contact zone. Although the symmetric treatment is oblivious to 

the distinction between master and slave surfaces, the node 

arrangement is important in determining local contact segment 

axes. 

Figure 3.7 defines the unit normal and tangential vectors 

(n, x) representing a typical local axis system. User input is 

governed to ensure the occurrence of this system by dictating 

that the numbering of the nodes on the defined surfaces be 

sequenced such that a traversal of each surface in the direction 

of the node numbering retains the adjacent surface to the left. 

It should be noted that this sequence definition 

incorporates a slave node reversal. For example, consider the 

contact node sequence of Figure 3.2, where it is clear that the 

upper surface sequence is in opposition to that of the lower 

surface. This is simply to permit the use of the same algorithms 

in symmetric treatments rather than including a further suite of 

subroutines to deal with the reversed surface definition. The 

task is performed automatically at the data input stages. Chapter 

Five will discuss this further with respect to the fracture 

slideline technique. 

3.4.2 Slave search 

The use of slidelines for situations in which very large 

relative deformations of the sliding surfaces are present 

requires the continuous tracking of each current node in space 

relative to the associated local node and segment. The slave 
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search commences this process by extracting the nearest local 

node for each current node. 

A benefit of the explicit time integration scheme is the 

small displacements which occur within a time increment. This 

practically ensures that the rate at which the local node changes 

is small. Current methods of implementing this slave search 

require that all adjacent nodes are searched for each current 

node, even if no change has occurred. This may consume a 

significant proportion of the time spent in the contact routines. 

In recognition of this fact, the local nodes computed during 

the previous time step are used as a basis for a trial value in 

the current increment. A simple comparative procedure, Table 3.1, 

is used to detect any local node shifting in which both the local 

node and the minimum distance are updated as necessary. The use 

of this iterative scheme significantly reduces the time spent in 

the slave search algorithm, the new local node typically being 

located by consideration of three master nodes only. 

3.4.3 Zonal contact detection 

The cost of processing each surface node of a sliding 

interface is equivalent to half an element cycle. Typically, 20% 

of the total number'of nodes of impact problems may be used in 

defining the slidelines, which is equivalent to a 10% increase in 

solution time. In most high velocity applications, the computer 

time is measured in terms of hours to tens of hours and this 

increase then becomes a serious consideration. 

The examination of all the current nodes for contact at, each 

time step is unnecessary, however, since only a small proportion 

will be active at any one time. For this reason an approximate 

screening procedure is used to eliminate those current nodes 

which clearly need no detailed consideration. When this procedure 

fails, a more accurate determination of the position of the 

current node is undertaken. In this way the efficiency of the 

overall algorithm is maintained. 
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A radial 'contact zone' is defined around each local node 

which is described in Figure 3.6. Contact is only possible if the 

current node is located within this zone. The contact zone radius 

rZ is a measure of the maximum distance Da between any two 

neighbouring adjacent nodes and is continuously updated 

throughout the solution. Thus 

rZ = ar Da (3.3) 

where the constant «r controls the degree of radial overlap 

between neighbouring contact zones and ensures that no current 

node may avoid detection by passing through their mutual tangent. 

Generally 

ar> 0.5 (3.4) 

and a value of «, = 9/5 has given good performance. 

3.4.4 Segment definition 

For all current nodes passing the zonal contact detection 

test, tracking is continued by defining the local segment. This 

process obtains the segment direction cosines used in the refined 

contact detection test. 

Consider a current node (i), on body b2, and assume that a 

slave search on bl, has located the local. node (k). Figure 3.7 

-depicts a portion of the two bodies, including adjacent nodes (j) 

and (1). The unit tangent vector and unit normal vector are xjk 

and njk respectively for local segment jk, and similarly for 

segment kl. The relative position vector between the current and 

local node is C. If the inequality 

( xkl)>0 (3.5a) 

is satisfied, the accompanying unit normal vector would be 
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n= nkl (3.5b) 

and the local segment defined as (Figure 3.8), 

S= Si (3.5c) 

while the unit tangent vector is 

x= xkl (3.5d) 

the vectors x and n represent the local coordinate system 

for the segment. Similarly, if the inequality 

(c xjk) < (3.6a) 

is satisfied, the accompanying unit normal vector would be 

n= njk (3.6b) 

and the local segment defined as 

S= S2 (3.6c) 

with 

x= xjk (3.6d) 

The inequalities of equations (3.5a) and (3.6a) may be 

inconclusive as the mesh deforms, for example a current node may 

lie in the region between segments S1 and S2. This zone will be 

termed S3, Figure 3.8. 'If e is the angle between the two segments 

then an extended segment is used such that 

Tol = rZ sine/i (3.7) 

where Tol is the extension to each contact segment, Figure 3.9. 
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In practice this has been found to be a rather liberal test and 

the actual value used is 

Tol = 1/3 rZ sin-// (3.8) 

An important feature of this particular segment test is its 

ability to function for angles of 900 and greater, an arrangement 

which typically occurs in high velocity impact and especially 

with the addition of fracture. The inequalities to detect this 

region become 

( xjk )> (-Tol) 

and 

C xk1 )< Tol 

The unit normal vector in this case will be 

n= 1/2 ( njk + nk1 

and the segment 

S=S3 

with 

X=0 

3.4.5 Normal penetration evaluation 
6 

(3.9a) 

(3.9b) 

(3.9c) 

(3.9d) 

(3.9e) 

The normal penetration distance Xn of the current node 

through the local segment S is evaluated in local coordinates by 

Xn =(Cn) (3.10) 

if ( Xn <0), then penetration is assumed. 
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3.4.6 Contact location point 

The identification of a contact location point Xc, defined 

as the point on the local segment which is nearest to the current 

node, is necessary for the evaluation of relative tangential 

sliding. 

Consider a current configuration for which the local node k 

and the segment definition node 1, have node coordinates, Xk 

and X1, respectively, Figure 3.10. A parametric representation 

of the local segment S, for which the, axis set (x, n) has been 

already computed, is given using the variables rl and n2 such 

that the contact location point is evaluated as 

XC. °n1Xk+n2 Xl 

where 

(3.11) 

nl + n2 1 (3.12) 

and 

(C x) 

n1 = 
(3.13) 

Xk Xl 

Xc is only computed for interface laws involving shear 

forces, for frictionless conditions it is ignored. The 

dimensionless parameters (^1, n2) are stored upon evaluation as 

history variables («1, a2) for use in the following time step. 

3.4.7 Tangential penetration evaluation 

The tangential penetration distance is evaluated in the 

local segment axis system using an incremental process based upon 

the current configuration. For each current node, the new contact 

location point is defined to be Xn. The tangential displacement 
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increment 6Xti evaluated at time (n) is given by 

gn - Xn-ll (3.14) 6x ti=ý 
-C -C 

where Xn-1 is the contact location point from the last time step. 

It is evaluated in the current configuration using the history 

variables («l, «2) so as to minimise the storage requirements for 

each current node and to eliminate any rigid body motion. The 

computation of this value will be not be unduly affected by any 

segment extensions because of the very small displacement 

increments. 

3.4.8 Computation of interface stiffness 

The efficiency of the penalty-based method rests in the 

elimination of the usual expensive tangent stiffness evaluation. 

A contact length-weighted bulk modulus has been found robust and 

considerable success has been achieved with its use, particularly 

where significant plastic deformation of the surfaces occurs, 

Guerra and Browning (1983). 

The stiffness coefficient ki for the segment S containing 

element i is given in terms of the bulk modulus Bi the length of 

the contact segment 1 and the thickness of the element ti as 

ki =* Bi 1 
(3.15) 

ti 

where I is a scale factor for the interface stiffness, generally 

0.05 <f41.0 (3.16) 

Computation of the stiffness coefficient is performed once 

only at the commencement of the solution to eliminate any 

hysteretic energy losses on subsequent unloading. A simple 

averaging of adjacent segment values then provides a smooth nodal 
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interface stiffness. The effects of the smoothing are significant 

only for non-uniform mesh configurations or where variations in 

material properties occur in the vicinity of the contact region. 

The nodal stiffness values Ki of each adjacent contact node i 

are thus 

Ki = 1/2 ( ki + ki+1 )(i=1, Na) (3.17) 

where Na are the number of adjacent nodes. 

3.4.9 Application of constraints 

When the current node has penetrated the local segment, 

interaction forces are imposed upon both the current node 

and the two adjacent nodes defining the local segment. These 

forces must satisfy the following conditions to ensure 

conservation of translational and rotational momenta 

fni = fnk + fnl (3.18) 

and 

n1 fn1 + "2 fnk =0 (3.19) 

The forces are computed in the local axes of the segment and are 

shown in Figure 3.11. The force on the current node i due to 

normal penetration is computed as 

fni = Ki Xni (3.20) 

- The assumption of a frictionless interface condition is 

often unrealistic. Any number of laws may be devised to define 

the frictional forces as functions of the interface pressure or 

the relative sliding velocity of the surfaces. In this work a 

velocity independent formulation based on the Coulomb friction 

coefficient µ is used. The tangential force increment diti acting 

on the current node is defined as 
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afti = Ki 6X (3.21) 

The sign is chosen such that the frictional force resists 

relative motion between the current node and the local segment. 

The total tangential force is 

fti = ftil+ diti (3.22) 

while application of Coulombs law ensures that 

fti <µ fni (3.23) 
n 

During solution, a current node may experience several 

impact and release cycles, and it is necessary, therefore, to 

initialise the total tangential force for each current node on 

ocurrence of release. 

Finally, the total interface forces corresponding to each 

current node are transformed into the global coordinate system 

and represent added force-deflection relations to the discrete 

system. The effects of these will be mentioned later. 

3.5 NUMERICAL IMPLEMENTATION 

A flowchart indicating the principal features of the 

penalty-based slideline technique is given in Table 3.2. 

The efficiency and flexibility of any slideline algorithm is 

dependent upon the database methodology and its ability to track 

the location of each current node with respect to the local node 

and segment. The database has been designed with the application 

of the fracture slideline method in mind and will be discussed 

further in this context in Chapter Five. 

Ideally, the data structure should support both master-slave 
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and symmetric algorithms, permit large relative tangential motion 

between the contacting bodies and also intermittent contact 

situations. A single surface collapsing on itself should also be 

allowed, together with a facility for any number of additional 

slidelines to be included easily throughout the solution. The 

method used is based upon a surface interaction table. 

Consider the axisymmetric plate impact situation of Figure 

3.12. Surfaces 1 and 2 are defined in terms of an orderly 

arrangement of the contact nodes, Section 3.4.1, and constitute 

slideline 1. The surface interaction table: is defined for this 

configuration in Table 3.3. 

The use of such a table enables the interaction of any two 

surfaces. It includes the capability to support a mixture of 

symmetric and unsymmetric sliding surfaces simultaneously, 

although this is beyond the scope of the present work. The only 

limit imposed on the number of slidelines permitted is the 

computer storage available. - 

The surface interaction table acts primarily as a pointer to 

three other contact tables; the integer and real contact data, 

ICONTD and ECONTD respectively, and the updated contact node 

coordinates, XYZCNT. In computional terms these tables represent 

three dimensional arrays (i, j, k) in which each history variable 

i associated with node j on surface k are stored. Data for each 

surface may be stored in any position k since all information 

concerning the location of each local surface is stored in the 

surface interaction table. 

Table 3.4 gives the history variables required for the three 

contact arrays - 11 

Distinction should be made between the four pointers defined 

in Table 3.4(b). The current node pointer (location 3) defines 

the position of the local node in the contact data arrays. The 

three remaining pointers are simply to minimise the searches 

through the element and global system arrays in both the contact 

node coordinate update and the application of interface 
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constraints. 

The slideline method developed herein incorporates a three 

level procedure. The top level selects the next appropriate 

slideline to be manipulated. At this point, the type of 

processing required may be determined for each slideline from 

additional handler data stored in the interaction table. For 

instance, this data may determine whether a symmetric treatment 

is neccessary or provide facility for differing frictional or 

scaling coefficients. The second level extracts from the 

interaction table the location of the two surfaces comprising the 

current slideline, while the main processing loop proceeds to 

examine the contact nodes on each surface in turn. 

3.6 ASPECTS OF SLIDELINE USAGE 

Several general guidelines should be adhered to in the use 

of slidelines to avoid numerical problems and these are; 

(i) As far as possible, the mesh in the region of contact 

should be uniform so as to ensure both a meaningful zonal contact 

detection search and also that there be minimal discontinuities 

in the nodal stiffness values. 

(ii) To eliminate slideline end effects in the segment 

definition stage (i. e. current nodes 'creeping' around the end of 

the local surface and escaping detection), a liberal definition 

of the adjacent nodes on each slideline surface should be used. 

The zonal contact detection routine will automatically ensure 

that only those current nodes required are activated, and 

efficiency will be maintained. 

(iii) Assume that the contact region determines the critical 

time step value dtcr then an estimate of the total initial 

displacement increment dX for an initial velocity vo, is 

dX = vo rZ 
(3.24) 

a ý. 
C 
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where c is the sound velocity in the medium. To ensure the 

correct treatment of each current node, the displacement 

increment should be maintained as 

aX < rZ (3.25) 

or 

Vc 
<1 (3.26) 

arc 

therefore, any initial velocities which do not satisfy the above 

inequality require a suitable modification in a. Note that the 

upper limit remains unaltered-as 

a,, < 0.56 (3.27) 

(iv) The success of this method depends upon the choice of 

the scale factor f. If the interface force generated is not 

sufficiently large, the current node may penetrate into the 

element to such a depth that the program can no longer resolve 

the geometric relationships correctly. Conversely, too large a 

value will cause 'chattering' in the interface region. 

Furthermore, since the increased stiffness associated with the 

additional slideline forces is not accounted for in the stability 

calculations, the solution process may experience instability 

with exceptionally large values of scale factor. A solution to 

this problem is to scale back the time step size in the stability 

calculations. 

(v) The nodal stiffness value Ki is a linear function of, the 

element aspect ratio. The initial estimate of the scale factor 

may be affected by this relationship if the elements in the 

contact zone have aspect ratios significantly different from 

unity. A reduction in this factor will be required to account for 
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the increased element stiffness, values associated with large 

aspects. An increase would also be in order for the reduced 

stiffness values accompanying the smaller aspects. 

(vi) To some extent the iterative process necessary to obtain 

the proper scale factor does minimise the advantages gained by 

the fast execution speed. For most problems, however,. the maximum 

interface force is attained early in the solution and by 

implementing careful checks the calculations may be halted on 

detection of an incorrect value. The effects of variations in the 

scale factor will be considered in the following chapter. 

3.8 CONCLUSIONS 

This chapter has presented the theoretical aspects of the 

slideline technique as applied within a finite element context. 

The methods currently available were discussed, from which the 

penalty-based formulation was established as having the most 

suitable qualities with respect to this current work. In 

particular, the flexibility of this formulation in dealing with 

the tangential sliding motion, together with its robust nature 

was found most desirable. 

The lack of efficiency and robustness of slideline 

techniques in the past has been a major reason for their limited 

implementation within the more widely used finite element 

programs. The zonal contact detection scheme and the automatic 

determination of slideline surface extensions as described in 

sections 3.4.3 and 3.4.4 respectively represent a new method to 

overcome these particular limitations. Furthermore, the slave 

search (section 3.4.2) exploits the small displacement increments 

experienced in explicit time integration schemes and has also 

made reductions in the time spent extracting active contact nodes 

for processing within each time step. 

The database structure for handling slideline information 

was also considered in some detail. An efficient implementation 

was described, which permits a continuous increase in the number 
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of slidelines throughout a solution, together with the capability 

of supporting several differing slideline schemes simultaneously. 
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Table 3 .1 

Modified slave search procedure 

Initialisation phase 

(a) All ad]jacent nodes ale searched for each 
current node to obtain the local node. 

General Procedure 

(a) Extract local node, nl, from previous time step. 

(b) Set trial value, nt a nl 

(c) Calculate distance between current node and 
node nt-i (= D1). 

(d) calculate distance between current node and 
node nt (= D2). 

(e) calculate distance between current node and 
node nt+l (= D3). 

(f) Compare D1, D2 and D3. 

If D1 < (D2, D3) update nl = nt-i 

If D2 < (D1, D3) update nl = nt 

If D3 < (D1, D2) update nl = nt+l 

Figure 3.5 depicts the distances Dl, D2 and D3 
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TABLE 3.2 

Penalty-based Slideline Flowchart 

1 initialisation 

(a) Recover contact variables and arrays 

(b) Update contact node coordinates 

(c) Compute nodal interface stiffness values 

(d) Compute initial value of contact zone radius 

2 Contact detection phase 

(a) Extract current and local surfaces 

(b) Extract current node on surface 

(c) Slave search 

(d) Zonal contact detection 

(e) Segment definition 

(f) Normal penetration detection 

(g) Tangential penetration detection 

3 Force application phase 

(a) Application of constraints 

(b) Assembly of interface force into global force vector 

(c) Repeat steps 2(b)-3(b) for each current node on surface 

(d) Repeat steps 2(a)-3(b) for each current surface 

Note :* denotes points at which a current node may 

fail contact detection tests. At such points the 

current node is automatically rejected 

- 3.30 - 



Table 3.3 

Surface int raction table fo typical 
plate impact configuration 

Slideline Master Surface Slave Surface 

1 1 2 
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Table 3.4 

Contact Data Array for Slideline 
technique 

(a) Real Data : ECONTD 

Location Data description 

1 Nodal stiffness value 

2 Total tangential force 

3-4 Contact location point Coordinates 

5-6 Current interface force (for output only) 

(b) Integer Data : ICONTD 

Location Data description 

1 Current node number 

2 Local node pointer 

3 Current node pointer in element arrays 

4-5 Current node pointer to global arrays 

6 Previous local node pointer 

(c) Coordinate Data : XYZCNT 

Location 

1-2 

Data description 

Updated contact node coordinates 

- 3.32 - 



bbl 

cIIEEIiii:: 
SB1 

B1 

Sb2 

b2 

B2 

8B2 

Figure 3.1 

Reference and deformed configuration of two solids 

Definition sequence 
Slave segment 

b2 

b2 
I 

re. 
- Slave -7- III 

node 

.I bl II1\ 

Definition sequence 
Master 

on b1 

Figure 3.2 

Contact parameter 
definition 

~Master 

node 

segment 

- 3.33 - 



-. 

c- 

________ 
_______________ 

E 

_______________ 

( 

_______________ 

I 

_______________ 

I 

_______________ 

Ii' 

Figure 3.3 

Mesh kinking with unsymmetrical slideline methods 

Current node II 

II 
I (" 

Adjacent 

II 

Local node 

Local segment 

Figure 3.4 

Contact zone parameter definition 

------ 

- 3.34 - 



ýTI 

Figure 3.5 

Slave search distance relationship 

Current 

b2' 
node 

rz 

\ 
"` 

Contact 
zone 

bl 

Figure 3.6 

Zonal contact detection test configuration 
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CHAPTER 4 

VALIDATION OF THE SLIDELINE TECHNIQUE 

4.1 INTRODUCTION 

The application of a fast dynamics program as described 

requires experience to produce a stable solution without an 

excessive amount of computer time. The current literature has 

concentrated on the more complex commercial problems and very 

little information is available concerning the effects of the 

various user defined parameters on the final solution. In view of 

this, a number of objectives will be pursued in the following 

chapter and these are; 

(i) The effect of the interface scale factor upon the final 

solution will be qualitatively evaluated. 

(ii) The magnitude of the coefficients to control the 

hourglassing and spurious oscillatory modes are dependent 

upon the individual response of each problem and are 

briefly examined to. give some indication of their 

respective effects. 

(iii) The quantitative comparison of the proposed impact 

solution scheme with experimental or theoretical results 

for increasingly complex problems will verify its 

validity. 

Seven examples will be considered to demonstrate the 

effectiveness and generality of the method. The complexity of the 

impact problem leads to the use of experimental results as a 

basis of comparison with regard to the three elastic-plastic 

examples, whilst the remaining four elastic problems use well 

known analytical solutions. 
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4.2 ELASTIC BAR IMPACT AGAINST A RIGID WALL 

The impact of a linear elastic bar travelling at constant 

velocity and impinging longtitudinally upon a rigid wall will be 

considered. This problem is a source of considerable insight into 

the effectiveness of the slideline computations to resolve the 

impact and release phenomena by virtue of the constant contact 

area maintained throughout the solution. The simplicity of both 

the analytical and numerical solutions readily permits the 

effects of the bulk viscosity and scale factor to be assessed. 

4.2.1 Finite element idealisation 

The plane strain finite element discretisation of a bar of 

length L and depth t, travelling at a constant velocity vö, is 

shown in Figure 4.1, together with the relevant dimensions. The 

bar is modelled with boundary restraints in the lateral 

direction only. The impact velocity and material properties used 

are as follows; 

E= 100.0 

w=0.01 

µ=0.30 

vo = 10.0 

used. 
The default value, 0.1, for the hourglass coefficient was 

4.2.2 Theoretical considerations 

The longtitudinal impact of a bar in this way has been 

analysed by means of the one-dimensional wave equation, which 

postulates a uniform stress distribution across the rod and is 

achieved here with a ratio of L/t > 50. The contact point is 

instantaneously brought to rest by the impact from which a step 

wave of stress a is produced and propagates through the bar with 

a velocity c. The magnitude of this wave is given by Goldsmith 
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(1960) as 

v=wC vo = -11.60 

where the negative sign indicates a compressive stress. The 

dilational wave speed c in an elastic material is given by 

1/2 

c= 
(1-µ) E= 

116.02 

(1+1. L) (1-2µ)w 

The wave will be reflected at the free end with an equal 

amplitude but with opposite phase. The effect of this reflected 

wave will eventually reduce the stress at the contact point to 

zero at time tc, where 

2L 
tc ==0.172 

C 

at which time separation will occur. Figure 4.2 graphically 

illustrates the progression of a typical wave through a bar. 

4.2.3 Results and discussion 

Figures 4.3 to 4.5 show the variation of total kinetic 

energy loss, maximum developed interface force and contact 

duration time with scale factor 1, respectively. These results 

have been obtained using both null and default values of the bulk 

viscosity coefficients, Q, and 92. 

Considering the latter results, it is clear that for all f, 

the contact duration and maximum interface force are both 

overestimated. The contact duration time approaches the 

theoretical value with increasing 1, having an error of 1% at 

1=3.0, whilst the interface force remains essentially constant at 

2% above the theoretical value. The interface force behaviour is 
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largely unaffected because of the elimination of the 

geometrically nonlinear effects within the contact region. 

The tests performed using null values for the bulk viscosity 

coefficients have been included with the above curves, which 

clearly show the expected destabilising effects. The particularly 

pronounced instability in the maximum nodal interface force 

curve of Figure 4.4 is due to its direct dependence upon the 

element internal force and, consequently, the artificial 

pressure. The element derived interface force is observed to 

behave in a similar oscillatory manner in response to this nodal 

behaviour. In contrast, the contact duration time is not 

significantly affected, by virtue of the prior passage of the 

oscillatory internal force through the integration process 

associated with the time stepping scheme. 

The kinetic energy loss for the default curve, Figure 4.3, 

indicates a steady rise to a maximum loss of around 5%, whilst 

the null value curve shows the expected reduction. A stable 

solution is. only possible now, however, within a greatly reduced 

range of scale factor, f=0.4 to 0.5. 

Figures 4.6 to 4.13 depict the same variables but with 

respect to time. The reduction in time step and the increase in 

kinetic energy loss with increasing f are evident from Figure 

4.6, while the further decrease associated with zero values of 

artificial viscosity is clear from Figure 4.7. 

The velocity-time and interface force-time curves of Figures 

4.8,4.10 and 4.12, respectively, indicate a steepening response 

curve together with an associated magnification of numerical 

oscillations as the scale factor is increased. The velocity-time 

curve demonstrates the effect of a wave reflection from the free 

end at rebound time, for which there is a slight perturbation of 

the curve, more noticeably for f=0.5, occurring as a secondary 

tensile reflected wave reduces the velocity of the nodes in the 

impact region immediately after rebound. The significant 

reduction in the magnitude of this reflection for increasing f is 
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noticeable, and would suggest that the release conditions are 

more exactly met for higher values of scale factor. 

The effect of the elimination of artificial viscosity is 

shown in Figure 4.9 where the characteristic instability is 

present in the form of oscillations about the original values. 

The interface force may be computed from integration of both 

the element stresses over their tributary areas or extracted from 

the slideline routines themselves. Their results are in good 

agreement but those computed from the interface algorithms appear 

to give a more rapid response to time varying situations. Again, 

the destabilising effects of a reduced artificial viscosity are 

indicated in Figures 4.11 and 4.13. 

In all"of the time varying graphs a comparison with the 

theoretical values shows the dispersive effects and the low pass 

characteristics of the mesh upon the solution. Increasing the 

scale factor is seen to decrease this effect, albeit at the 

expense of a certain amount of numerical overshoot, indeed, as 

would mesh refinement. 

It is clear that a stable solution with an adequate degree 

of accuracy is obtained for all values of scale factor between 

0.5 and 3.0. By using large values, the solution approaches that 

of the given theoretical results, however, this is at a sacrifice 

to the numerical stability of the results as well as the 

conservation of energy. The achievement of this balance is at the 

root of all-such analyses performed using this particular 

technique. The dominating effect of the strain rate in this 

respect will be noted further in the final discussion. 

The 50 element numerical model required 200 time steps to reach 

0.225 seconds. 

4.3 LONGTITUDINAL IMPACT OF TWO ELASTIC BARS 

The impact of two linear elastic bars travelling at equal 

and opposite, constant initial velocities and impinging upon each 
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other longtitudinally will be considered. The presentation takes 

advantage of the simple treatment of the contact region of the 

previous example but will be extended to include the 

geometrically nonlinear effects of impact between two independent 

and flexible bodies. 

4.3.1 Finite element idealisation 

The 100 element plane strain finite element discretization 

of the two bars, travelling with velocity vo, is shown in Figure 

4.14, together with the relevant geometry. Each bar is modelled 

with lateral boundary restraints. The impact velocity and 

material properties for both bars are as follows; 

E= 100.0 

w= 0.01 

µ= 0.30 

vo = ±10.0 

Both the geometry and the material properties of each bar 

are identical to those used in the previous section, to enable 

further comparison. The theoretical considerations are as given 

in Section 4.2.2. Once again, default values for the hourglass 

viscosity coefficient were used. 

In the following discussion reference will be made to only 

one of the impacting bars unless otherwise stated, namely that of 

the initially positively proceeding bar, since their results are 

identical. 

4.3.2 Results and discussion 

Figures 4.15,4.16 and 4.17 show 

the scale factor on the total kinetic 

interface force and contact duration. 

similar trend to that of the previous 

further aspect, however, may be seen 

solution for values greater than 2.0. 

the effect of variations in 

energy loss, maximum 

It may be observed that a 

example is indicated. A 

in the instability of the 

This is due to the 
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occurrence of chatter at the contact interface, and is portrayed 

most clearly in Figure 4.16 which depicts the variation of the 

maximum interface forces. The subsequent, violent, changes in 

nodal velocities within the contact region account for the 

unstable effects in both kinetic energy and the contact duration 

time. 

The chattering occurs at the interface where the contacting 

surfaces are repeatedly coming into contact, receiving too great 

a restraining force and subsequently rebounding from each other, 

only to be driven back to one another by the accumulated residual 

force at these times. The effects of chattering may be seen 

further in Figures 4.19,4.20 and 4.21. 

The reduced range of scale factors permissible with this 

, problem in comparison to the previous example is attributed to 

the two differing types of-boundary condition. Because of the 

force formulation implemented here it is not possible to bring 

the contact nodes immediately to rest without recourse to an 

unreasonably reduced time step throughout the solution. With the 

rigid wall example the initial contact force will be proportional 

to the initial depth of penetration (vo dt), while the current 

example has an initial depth of penetration of (2vo dt), yielding 

twice the initial contact force of the previous example. This 

large initial force accounts for the fast rise time of the force 

and velocity for §=0.5. However, as f increases, the rise time 

reaches a point at which such a severe change occurs in the 

velocity and contact force that an oscillatory response ensues 

from which recovery is never attained. As mentioned before, the 

situation may be remedied by manually determining a reduced time 

step, but is not a significant problem since the instability may 

be detected shortly after the occurrence of impact and the 

solution restarted with a decreased value of scale factor. 

Alternatively the artificial coefficients q, and Q2 may be 

augmented to handle the oscillations directly. Furthermore, the 

greater magnitude of the kinetic energy loss for each I is also 

attributed to the differing boundary conditions. 
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The dispersion of the finite element solution may be seen 

once again in Figures 4.20 and 4.21 in the form of a finite 

interface force rise time or similarly in Figure 4.19 in terms of 

the velocity at the interface element. 

Accurate solutions to this problem may thus be obtained with 

f ranging between 0.4 and 1.5, with an optimum value being 

approximately 1.25. 

Again, the model required 200 time steps for a complete solution. 

4.4 PLASTIC BAR IMPACT AGAINST A RIGID WALL 

When a cylindrical projectile strikes perpendicular to a 

rigid boundary, a high stress occurs at the projectile impact 

end. If the stress exceeds the elastic limit of the material, a 

plastic front moves back into the projectile, while the still 

elastic portion of the projectile flows into the plastic front, 

fails by plastic flow, and shortens as material flows radially 

out. This elastic portion can support stresses no greater than 

the elastic limit. These stresses, which move between the plastic 

front and the free end, decelerate the projectile. Thus the rate 

of retardation is due to the material strength. The greater the 

strength, the faster the deceleration for a given impact 

velocity. 

A series of experiments were performed to confirm these and 

other theoretical observations, Wilkins (1973). Only the 

experimental final lengths of the bars'were reported. 

4.4.1 Finite element idealisation 

The 115 element axisymmetric finite element discretisation 

of a steel bar of initial length 23.47 mm and diameter 7.62 mm, 

travelling at a constant velocity of 175 ms-1, is shown in Figure 

4.22. Frictionless boundary conditions are used along the contact 

interface. The material properties refer to 1090 steel in the 

annealed condition and are given as follows; 
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E= 211 Gpa 

w= 7840 Kg M-3 

9=0.30 

ao = 1.2 Gpa 

Et =1 Mpa 

The default value, 0.1, for the hourglass coefficient was 

used. 

4.4.2 Results and discussion 

It is stated in the cited paper that the final cylinder 

length is very sensitive to the yield strength, and would suggest 

that the test is a good indicator of the elastoplastic capability 

as well as demonstrating the effectiveness of the slideline 

algorithms at higher impact velocities. This problem may be seen 

as a further extension to the complexity of the bar impact 

example of Section 4.2, through the inclusion of a velocity 

dependent contact area. The problem requirements here are 

particularly stringent, demanding both material and geometric 

nonlinear capabilities together with those nonlinearities 

pertaining to the contact region. 

The response was again solved with a range of scale factors, 

but the variation in the computed final lengths, Figure 4.23, was 

found to be negligible. The final length for`the configuration, 

considered herein being 21.55 mm. The computational error in this 

result amounts to an overestimate of the final length by 0.7% and 

represents a very reasonable result in the light of the rather 

coarse mesh used in this analysis. In this example, the dominant 

deformation response is that of plastic flow which permits a 

lower spatial resolution since the propagation of such waves is 

generally an order of magnitude slower than the corresponding 

elastic wave front. 

Figure 4.24 depicts the more discernible variations in, the 

contact duration time. Although'no experimental results are 
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available for this parameter, it would appear that a similar 

response to that of the previous examples is experienced, in 

spite of the highly nonlinear behaviour now included in the 

solution within the contact region. 

A further result was obtained using identical bar geometry 

and material properties but for an initial velocity of 252 ms-1, 

and in conjunction with a scale factor of 0.1. A numerical final 

length of 19.89 mm was obtained in comparison with the 

experimental final length of 19.76 mm, and represents a similar 

computational overestimate of 0.7%. The two results obtained here 

are compared with the series of experimental results in Figure 

4.25 and show a good agreement in the limited range covered. 

The effects of the decrease in element dimensions in the 

impact region is an important factor in the selection of a proper 

time integration scheme, since the automatic time step 

computations are essentially based upon the smallest of these 

dimensions. Figures 4.26 and 4.27 depict the final deformation 

patterns for the initial velocities of 175 and 252 ms-1 

respectively and demonstrate admirably the considerable 

deformation experienced by the elements during the solution. A 

graph of the accumulated time step for each solution is shown in 

Figure 4.28 which clearly depicts the tremendous increase in 

computational effort experienced, particularly note that the 

reduction in time step occurs at a very early time. The ratio of 

the initial time steps to those at the moment of rebound are 

given in Table 4.1. 

The impact response means that the number of time steps 

required to solve a problem of this type are significantly 

increased, for the latter example a threefold increase in 

computational steps is necessary (from 400 to the actual value of 

1100). The use of an implicit scheme independent of the effects 

of changes in element dimension would be a tempting alternative 

in this problem, particularly for the higher initial impact 

velocities. A similar problem has been encountered by Stronge 

(1981) in his investigation of the deformation of soft 
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projectiles against steel plates. 

The high degree of material plasticity is indicated in the 

effective plastic strain contours given in Figure 4.29 for the 

highest initial velocity solution. 

4.5 ELASTIC SPHERE IMPACT AGAINST A RIGID WALL 

Hertz incorporated a theory of local indentations in a 

solution scheme which is able to yield analytical solutions for 

the case of a elastic spheres impacting both, other spheres or 

plane rigid walls, Lubkin (1962). This scheme has met with a 

considerable degree of success when used within the inherent 

assumptions. Moreover, even outside of these limits, the solution 

scheme has given accurate predictions for most of the 

experimentally available parameters. 

This problem is of interest here because it is one of the 

few three dimensional impact problems for which there exist 

analytical information. Despite the fact that the body is 

governed by both linear elasticity theory and small 

deformation/rotation considerations, this is a bona fide 

nonlinear problem in which the contact area is a function of the 

current velocity. 

4.5.1 Finite element idealisation 

Figure 4.30 shows the sphere of radius 5, having an initial 

velocity of. 3.0 together with the rigid wall in the initial 

configuration. The impact velocity and material properties of the 

sphere are as follows; 

E= 1000.0 

w=0.01 

11 = 0.30 

vo = 3.0 
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The hourglass viscosity was set to the default value of 0.1. 

4.5.2 Theoretical considerations 

Consider a sphere of radius R and mass M, having an initial 

velocity of'vo, colliding with a rigid wall. We have, Goldsmith 

(1960) ; 

P=na3/2 

where P is the interface compression force, n is'a constant and « 

is the compression of the sphere. If 

1- µ2 
k==0.00029 

nE 

and 

4 R1/2 
n== 3276.29 

31rk 

then «m, the maximum compression experienced by the sphere is 

15ir Mkv2 
12/5 

am =ý=0.200 

16 IR 

which gives the maximum compressive force as 

Pm =n a3 
2= 293.93 

Finally, the contact duration time is given as 
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kM 2/5 

tc = 4.530 = 0.1964 

.f 
(R VO). 

4.5.3 Results and discussion 

The solutions were carried out for variations in I from 0.1 

to 3.0 to evaluate the effects within a two dimensional 

axisymmetric problem. The contact duration time variation of 

Figure 4.31 demonstrates a similar response to that of examples 

4.2 and 4.3 in that convergence to a stiffer type of behaviour 

is quickly achieved. In contrast to the rigid wall solution of 

example 4.2, however, the exact response is achieved for *=0.85. 

The magnitude of the two derived contact forces, shown in 

Figure 4.32, initially demonstrates a rapid increase which 

gradually reduces to a constant value. This is in contrast to the 

wholly constant response obtained in the elastic bar impact, 

principally due to the inclusion of nonlinearity into the 

solution process through a time varying contact area. 

The error for both the maximum contact force and the contact 

duration time is of the order of 5% at *=3.0 and represents a 

good response evaluation. 

The kinetic energy loss variation given in Figure 4.33 

demonstrates losses an order of magnitude less than that for the 

elastic bar examples. The variation has a similar trend to that 

of the previous elastic bar examples in which the loss increases 

with scale factor. The perturbations are due to the vibratory 

effects of the sphere subsequent to rebound, making an accurate 

determination of the final kinetic energy difficult. 

The variation of kinetic energy with time shown in Figure 

4.34 indicates a smooth response together with the expected small 

final loss. The minimum value of total kinetic energy is reached 

at half the contact duration time and is therefore attained 

sooner with increasing 1. Note that the values given in Figures 
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4.33 and 4.34 are with respect to a radian segment. 

As before, the element derived contact forces lag behind 

those developed from the contact algorithms in their response, 

Figures 4.35 and 4.36. 

The small deformation effects in this problem do not affect 

the time step computation markedly. A total of 1700 time steps 

were required to solve the 84 element model. 

4.6 LONGTITUDINAL IMPACT OF TWO ELASTIC SPHERES 

The problem of the impact of two elastic spheres travelling 

at constant, equal and opposite velocities will be considered 

next. As in the elastic bar impact examples, the capability of 

the slideline routines to handle impact between two independent 

bodies and the comparison with the rigid wall solution is of 

interest here. Similarly, this is a truly nonlinear problem in 

which the contact area is a function of the current velocity. 

4.6.1 Finite element idealisation 

Figure 4.37 shows the spheres of radius 5, having initial 

velocities of t3.0 in the initial configuration, while Figure 

4.38 depicts a portion of the 144 element discretisation in the 

contact region. The material properties of the spheres are as 

follows; 

E= 1000.0 

w=0.01 

P=0.30 

The hourglass viscosity was set to the default value of 0.1. 

4.6.2 Theoretical considerations 

Consider two spheres of radius R and of mass M colliding, 

both having initial velocities of vo. We have 
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P=n a3/2 

where P is the interface compression force, n is a constant and a 

is the relative compression of the two spheres. If 

1- µ2 
k==0.00029 

nE 

then 

2R 1/2 

n== 1156.993 

9 tr2k2 

and am, the maximum relative compression of the two spheres is 

Um _5 (2vo) 2 
2/5 

= 0.4010 

4n nl 

where 

ni =2=0.3820 

which gives the maximum compressive force as 

Pm a_ n «m/2 = 293.93 

Finally, the contact duration time is given as 

1.47 a 
tc =m=0.1964 

v0 

4 
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4.6.3 Results and discussion 

The variation of kinetic loss with * is shown in Figure 

4.39 and indicates the typical response expected, that is, 

increasing energy loss with scale factor. The loss appears to 

reach a limit of approximately 0.9% at 1=3.0. There is no 

increase in loss over the rigid wall calculations, as seen in the 

elastic bar examples. 

The contact duration and maximum interface force variations, 

Figures 4.40 and 4.41, again indicate the typical convergent 

response as * is increased together with the stiffer response 

associated with the contact of two flexible solids. The optimum 

value here is *=0.5 to yield accurate contact duration times and 

maximum interface force values. Note the absence of chattering in 

this problem and the large range of values of I for which 

adequate solutions may be obtained. Notice also the negligible 

difference in the two numerical interface force curves. 

The minimum value of * to achieve a solution without the 

bodies passing through one another was of the order of 0.1, 

whilst example 4.2 gave a value of 0.5. This threshold magnitude 

of scale factor is important in the determination of § for a 

given problem. For example, both the initial velocity and 

critical time step of the former example were smaller than that 

of the latter and as a consequence, the displacement increments 

were initially significantly greater, requiring the use of a 

augmented L. 

Figure 4.42 shows the typical kinetic energy response in the 

time domain with the associated shift towards the origin as f is 

increased. Due to the limited variation in maximum interface 

force the curves of Figures 4.43 and 4.44 are practically 

identical. 

Finally, an equal number of time steps were required to that 

of the previous problem (1700). 
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4.7 IMPULSIVE LOADING OF AN ELASTIC-PLASTIC BEAM 

This example involves the prediction of the response of a 

doubly built-in beam subject to an initial explosive load at its 

midspan. This is an experiment which is commonly performed to 

study structural response at high strain rates. The problem 

exhibits considerable geometric nonlinearity, because the doubly 

built-in configuration causes the initial bending response to 

become dominated by membrane effects as soon as displacements of 

the order of the beam thickness occur. In the actual experiment 

the motion is initiated by a constant impulse per unit length of 

the beam caused by detonating a uniform sheet of explosive, so 

that a constant initial velocity is imparted to that part of the 

beam to which the explosive is bonded. Thus a certain kinetic 

energy is provided initially, and this must be matched in the 

discrete finite element model. This example essentially 

represents a test of the explicit formulation without the 

inclusion of contact interface conditionsr The problem has 

experimental results available for the midspan transient 

displacement and also incorporates material nonlinearity, Wu and 

Witmer (1971). 

4.7.1 Finite element idealisation 

Figure 4.45 shows the beam of length., 254 mm and depth 

3.175 mm, impulsively loaded with a velocity of 127 ms-1 over a 

centre segment of 50.8 mm. The width of the beam is 30.48 mm and 

so the analysis is essentially one of plane strain. The beam is 

fully fixed at both its extremities. The material properties of 

the beam refer to 6061-T6 aluminium and are as follows; 

E= 71.7E9 Nm -2 

w= 2770 Kgm 3 (assumed) 

µ=0.3 

vo = 295E6 Nm -2 

Et = 543E6 NM -2 

- 4.17 - 



4.7.2 Results and discussion 

The transient displacement results obtained from the current 

finite element model are given in Figure 4.46, together with the 

experimental values. The predictions follow the general trend of 

the experimental results, in the sense that the peak 

displacement value and the time at which it occurs are reasonably 

well matched, but the analysis does not predict the detailed 

response particularly closely. This is not uncommon in cases like 

this, and many explanations may be offered, ranging from poor 

modelling of boundary conditions (the fully restrained end 

condition is difficult to achieve experimentally, but is critical 

to the membrane stiffening that plays a primary role in 

determining the response) to the simplicity of the material and 

geometry models assumed for the analysis, Neilson (1983). In 

spite of the lack of detailed agreement, the results clearly 

provide information that is useful in a design environment. 

A series of deformed plots are given in Figure 4.47 for 

completeness, where the transient wave effects may clearly be 

seen traversing the bar. 

4.8 CYLINDRICAL PROJECTILE IMPACT ON A THIN PLATE 

Following the initial survey calculations, the impact of a 

cylindrical steel, blunt faced, projectile against a square steel 

plate will be considered, in anticipation of the calculations 

contained in the subsequent chapters. Once again, the problem 

will tax the capabilities of the current code capabilities in 

modelling the high degree of nonlinearity present. The results 

used have been taken from a series of recent experiments carried 

out at City University, Hallett (1988). 

4.8.1 Finite element idealisation 

Figure 4.48 shows the undeformed mesh, the 48 elements of 

which are modelling a 5.111 mm thick plate, 600 mm square, 

together with the 40 mm diameter projectile of mass 40.5 Kg 
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travelling at an initial velocity of 6.97 ms-l. Frictionless 

interface conditions are assumed. The material properties for 

both target and projectile are given as 

E= 211E9 NM -2 

w= 7765 Kgm 3 

µ= 0.3 

Qo = 280E6 NM -2 

Et = 690E6 NM -2 

Together with the default values for the artificial 

viscosity and hourglass coefficients. 

The limited availability of computer time restricted the 

projectile modelling to a rather simplified form, in which the' 

length' dimension was decreased to permit the use of fewer 

elements yet maintaining the total mass by a corresponding 

increase of the material density. The assumption is valid in such 

cases where the projectile deformation is negligible and any wave 

propagation effects are insignificant. That this is reasonable 

has been discussed previously by Goldsmith et al (1965). 

4.8.2 Theoretical considerations 

The effect of modelling non-circular plates axisymmetrically 

has been discussed by Neilson (1980) and for very low velocity 

impact problems (vo < 14 ms-1) it is concluded that these effects 

are not significant if a corrected plate diameter is utilised, 

based on a simple equivalent elastic stiffness calculation. 

Furthermore, the plate impact experiments conducted by Hallett 

(1987) only serve to substantiate this observation. 

For elastic plates under central point loadings, the maximum 

deflection 6max is given by an equation of the form 

P 
amaxm2 ua 

2 

D 
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where P is the load, a is the plate dimension and D is the 

flexural rigidity given as 

Eh3 
D= 

12 (1-112 ) 

h being the plate thickness. For clamped circular plates of 

diameter a, a=0.00497, and for square plates side a, a=0.0056. 

For equality of plate stiffness therefore; 

22 
aSas Ds acac Dc 

where subscripts s and c represent parameters with respect to the 

square plate and the circular plate respectively. The equivalent 

diameter to represent a square plate if both plates have the same 

material properties and are equally thick is 

ac = (°`s / (`c) 
1/2 

as 

The actual dimensions of the plate are 600 mm x 600 mm, 

hence, from the above, the diameter of the equivalent circular 

plate will be 636.90 mm. 

4.8.3 Results and discussion 

A comparison between the numerical and experimental central 

displacements of the plate and the deflection of the blunt 

surface of the projectile are given with respect to time in 

Figure 4.49. The correlation in both cases is good. Note the void 

which almost immediately appears between the projectile and plate 

along the axis of symmetry, a feature commonly found in thin 

plate impact experiments (see for example Neilson (1983)). The 

maximum displacement of the target at the centreline was computed 

as 26.87 mm at 5.83 s in comparison with the experimental values 

of 27.6 mm at 5.47 s and represents errors of 3% and 7% 

respectively. A series of deformation plots are given in Figure 
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4.50. 

The effects of transient material response is thus treated 

adequately, albeit within a low velocity regime. The solution 

required 36000 time steps to attain 11 ms and is generally more 

efficiently treated within an implicit solution scheme, and 

demonstrates the limiting nature of the Courant stability limit 

in explicit methods for problem types consisting of thin plates. 

The dominant membrane response of the plate in this example 

permitted the use of few elements through the thickness, but even 

so, the magnitude of the time step was still approximately 

0.33 µs. Therefore, responses for which the transient behaviour 

is required'at times greater than 5 ms generally represent 

prohibitively expensive solutions. For instance, the time for 

each increment in this particular problem is 5.28 s and gives a 

solution time of 26 hours to 5 mS on the Vax 11-750 used in these 

tests, an unrealistic computer usage for the majority of impact 

code users. 

The default value of the hourglass viscosity coefficient 

restrained any excitation to insignificant levels even within the 

immediate contact region, It is clear that the hourglass method 

of control is capable of simulating a membrane dominated response 

with few elements if only the global displacements are required. 

Obviously, the number of elements through the thickness would 

increase the accuracy of any stress results required. 

4.9 CONCLUSIONS 

The penalty-based slideline method has been applied to a 

number of impact problems and comparisons made with existing 

theoretical or analytical solutions. The problems have been 

selectively chosen to incorporate an increasing amount of 

nonlinearity and permit, to some degree, a segregation of the 

numerous facets of this form of solution scheme. The results have 

been in good agreement. 
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Extensive work is currently taking place in several British 

institutions such as; British Nuclear Fuels, Monks (1987); The 

United Kingdom Energy Authority Establishment, Andress (1987) and 

The National Nuclear Corporation, Salih (1987), to validate the 

effectiveness of the explicit impact codes available. The lack of 

available transient data is being a serious handicap to this 

process and is driving these centres to generate the required 

results internally. As a result similar problems are being 

tackled with little helpful communication of results and the 

subsequent slow progress of this subject area. These results, 

although of a rudimentary nature, have not been made available 

before and will hopefully enable a greater understanding, 

particularly in the choice of both material and slideline 

parameters. 

The use of such codes to solve the impact problem is neither 

straightforward nor inexpensive. It is clear that a good 

understanding of the code as well as experience in the choice of 

the various coefficients is of paramount importance. In no way 

can these type of codes be treated as 'black boxes'. In 

conclusion, therefore, a number of points can be made; 

(i) The effects of I on the contact duration time may be 

explained in terms of the strain rate magnitude, for it is 

clear that greater scale factors lead to higher initial 

compressive strain rates in the elements at the point of 

contact. 

The critical time step is modified to account for the 

increase in pressure due to the artificial bulk viscosity 

technique, Equation 2.24. Since the value of this pressure 

is dependent upon the strain rate, an increase in scale 

factor will give a subsequent decrease in the critical 

time step. The energy loss associated with the use of 

artificial viscosity may also be seen to increase with the 

scale factor, but the overall effect on the accuracy of 

the solution is small. 
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(ii) The interface force developed is similarly affected by 

changes in scale factor, particularly for f<1.0, since the 

problem actually converges upon a slightly different 

solution in which there is a certain amount of surface 

overlap. The shape of the curve is due to the nonlinear 

dependency of the penetration distance upon the scale 

factor. 

(iii) The typical variation of contact duration time with scale 

factor is independent of impact velocity for the range of 

f considered here. 

(iv) For rigid wall impact, a scale factor of greater magnitude 

is required than that for the flexible body contact, to 

take account of the reduced penetration distance. The 

essential effect of this type of boundary condition is, 

therefore, to artificially increase the interface 

stiffness. 

(v) Rigid wall impact by the elastic or elastic-plastic 

materials considered here appears to require scale factors 

of the order of unity for convergence to the correct 

solution. This requirement, however, is not so important 

when dealing with problems in which there is limited 

contact nonlinearity. i. e. the contact area is not a 

function of velocity. 

(vi) Flexible body impact has been shown to provide a greater 

initial interface force than rigid wall impact and as such 

requires a slightly reduced scale factor for convergence, 

typically of the order of 0.5. It is noted that the 

permissible range of the scale factor is reduced and that 

chattering of the interface occurs more readily. 
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(vii) The disadvantage of a solution depending upon both the 

correct selection of an appropriate scale factor and the 

iterative procedure often necessary to achieve this is 

understood. Nevertheless, an acceptable accuracy of f5% is 

attainable for most problems using scale factors between 

0.1 and 2.0. The fundamental problems considered here have 

indicated that the most likely form of problem for 

flexible body impact is the generation of an 

insufficiently large interface force such that colliding 

bodies pass through one another. In this event, the 

detection may be very simply achieved and the solution 

halted to prevent any further waste of computer resources, 

in this way the turnaround time may be reduced to a matter 

of minutes. 

(viii) The penetration of the contact nodes within adjacent 

bodies is seen to be very limited from the maximum 

deformation plots given. 

(ix) The inclusion of automatic void opening and closing 

has been shown to have considerable advantages, 

particularly when large relative deformations at the 

interface are present. The solution scheme is able to make 

the required adjustment without recourse to any 

predetermined contact positions and will represent the 

physical behaviour well, according to the degree of mesh 

refinement and the accuracy of the material 

characterisation. 

(x) There is sufficient indication in these examples to show 

that the plastic behaviour of the material requires much 

attention by the analyst, particularly in any late time 

responses required. The addition of failure response in 

the study of plugging failure will be seen to have a 

significant effect on the numerical results, particularly 

in dealing with thin plates. 
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(xi) The energy losses which are expected from the presence of 

artificial viscosity have been shown to be small, and for 

the solutions described above, the loss amounted to no 

more than 5%. In fact a typical value for a truly 

nonlinear contact problem is an order of magnitude smaller 

than this. 

(xii) The choice of artificial viscosity coefficients appears to 

effect the range of scale factors which yield a reasonable 

solution. A lowering of the magnitude of these parameters 

is shown to produce numerical oscillations in the 

solution, which is manifest in interfacial chattering. 

With the appropriate value of scale factor, the default 

magnitudes of these parameters has been found an adequate 

controlling influence. 
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TABLE 4.1 

Comparison of time step magnitudes for the impact of an 

elastic-plastic bar against a rigid wall 

Im ach Initial time time step at max. Ratio of t2 
velocity step (t1) deformation (t2) to ti 

s 

175 0.7949E-7 0.5E-7 0.629 

252 0.7949E-7 0.2E-7 0.252 
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Figure 4.1 

Finite element discretisation for the impact of an elastic 

bar against a rigid wall 
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Progression of a longtitudinal stress wave in an elastic bar 
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Total kinetic energy loss versus scale factor for the 

impact of an elastic bar against a rigid wall 
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Maximum developed interface force versus scale factor for the 

impact of an elastic bar against a rigid wall 
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Contact duration time versus scale factor for the impact 

of an elastic bar against a rigid wall 
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Figure 4.6 

Variation of kinetic energy loss with time for the impact 

of an elastic bar against a rigid wall using default 

values of the artificial viscosity coefficients 

- 4.31 - 



RI.. ++.. «. rr 

1.000 --""- 

0.000 

0.000 

0.700 

0.800 

0.300 

0.000 

0.300 "" $. I II.. 1, s... t "iis+..,. + . i.... i+r 

... 1.1.11... 100 " $l". +. 1 . +.... 1+r 

0.200 

0.100 

e. o 
0.0 0. oa 0.050 0. o» 0. +oo 0. +is 0. +so 0. +ßs 0. soo 0. sa 

___ 

TI-. 

Figure 4.7 

Variation of kinetic energy loss with time for the impact 

of an elastic bar against a rigid wall using null 

values of the artificial viscosity coefficients 
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Figure 4.8 

Variation of interface velocity with time for the impact 

of an elastic bar against a rigid wall using default 

values of the artificial viscosity coefficients 
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Variation of interface velocity with time for the impact 

of an elastic bar against a rigid wall using null 

values of the artificial viscosity coefficients 
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Figure 4.10 

Variation of nodal interface force with time for the impact 

of an elastic bar against a, rigid wall using default 

values of the artificial 'viscosity coefficients 
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Figure 4.11 

Variation of nodal interface force with time for the impact 

of an elastic bar against a rigid wall using null 

values of the artificial viscosity coefficients 
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Figure 4.12 

Variation of element derived interface force with time for the 

impact of an elastic bar against a rigid wall using default 

values of the artificial viscosity coefficients 
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Figure 4.13 

Variation of element derived interface force with time for the 

impact of an elastic bar against a rigid wall using null 

values of the artificial viscosity coefficients 
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Finite element discretisation for the longtitudinal 

impact of two elastic bars 
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Variation of total kinetic energy loss with scale factor 

for the longtitudinal impact of two elastic bars 
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Figure 4.16 

Variation of maximum developed interface force with scale 

factor for the longtitudinal impact of two elastic bars 
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Variation of contact duration time with scale factor for the 

longtitudinal impact of two elastic bars 
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Figure 4.18 

Variation of total kinetic energy loss with time for the 

longtitudinal impact of two elastic bars using 

differing values of scale factor 
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Figure 4.19 

Variation of interface velocity with time for the impact 

of an elastic bar against a rigid wall using differing 

values of scale factor 
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Variation of nodal interface force with time for the 

longtitudinal impact of two elastic bars using 

differing values of scale factor 
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Figure 4.21 

Variation of element derived interface force with time 

for the longtitudinal impact'of two elastic bars 

using differing values of scale factor 

Figure 4.22 

Finite element discretisation for the impact of an 

elastic-plastic bar against a rigid wall 
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Variation of the final length of an elastic-plastic bar 

impacted against a rigid wall with scale factor 
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Figure 4.24 

Variation of contact duration time with scale factor for the 

impact of an elastic-plastic bar against a rigid wall 
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Figure 4.25 

Experimental curve of final cylinder lengths versus impact 

velocity together with the results of present work for an 

elastic-plastic bar against a rigid wall 

Figure 4.26 

Final deformation pattern of an elastic-plastic bar against 

a rigid wall with an impact velocity of 175 ms-1 
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Figure 4.27 

Final deformation pattern of an elastic-plastic bar against 

a rigid wall with an impact velocity of 252 ms-1 
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Figure 4.28 

Variation of accumulated solution time with number of time 

steps for an elastic-plastic bar impact against a rigid wall 
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Figure 4.29 

Terminal effective plastic strain contours of an 

elastic-plastic bar impact against a rigid wall 

". ' for an initial velocity of 252ms-1 

Figure 4.30 

Finite element discretisation for the impact of an 

elastic sphere against a rigid wall 
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Variation of contact duration time with scale factor for the 

impact of an elastic sphere against a rigid wall 

0.. i. tilt.. 
S.. 5.500 1.000 1.300 2.000 2.500 3.001 

E. o 

"o. os 

"o. soo-"ý 

"o. ssd- 
X E1 Mt. ltow bolgtl 

Itt. rlrtr ýt"tt 

Figure 4.32 

Variation of maximum developed interface force with 

scale factor for the impact of an elastic sphere 

against a rigid wall 
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Variation of total kinetic energy loss with scale factor 

for an elastic sphere impact against a rigid wall 
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Figure 4.34 

Variation of total kinetic energy loss with time for an 

elastic sphere impact against a rigid wall using 

differing values of scale factor 
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Figure 4.35 

Variation of element derived interface force with time for 

an elastic sphere impact against a rigid wall using 

differing values of scale factor 

r,.. 
". " 0.025 0.030 4.073 0.100 0.123 0.100 0.073 9.200 0.08 

k E7 

Iwt". $u" 

Figure 4.36 

Variation of nodal interface force with time for the 

impact of an elastic sphere against a rigid wall 

using differing values of scale factor 
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Figure 4.37 

Finite element discretisation for the longtitudinal impact 

of two elastic spheres 

Figure 4.38 

Close up of the mesh for the longtitudinal impact of two 

elastic spheres 
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Variation of total kinetic energy loss with scale factor 

for the longtitudinal impact of two elastic spheres 
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Figure 4.40 

Variation of contact duration time with scale factor for the 
longtitudinal impact of two elastic spheres 
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Figure 4.41 

Variation of maximum developed interface force with 

scale factor for the longtitudinal impact of 

two elastic spheres 
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Figure 4.42 

Variation of total kinetic energy loss with time for the 
longtitudinal impact of two elastic spheres using 

differing values of scale factor 
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Figure 4.43 

Variation of nodal interface force with time for the 

longtitudinal impact of two elastic spheres using 

differing values of scale factor 
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Figure 4.44 

Variation of element derived interface force with time for 

the longtitudinal impact of*two elastic spheres 

using differing values of scale factor 
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Figure 4.45 

Finite element idealisation of an impulsively loaded 

beam fully fixed at its two extremities 
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Figure 4.46 

Variation of midspan displacement with time for an 

impulsively loaded beam 
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Figure 4.47 

Deformation sequence for an impulsively loaded beam 

using the default values of the artificial 

viscosity coefficients 

Figure 4.48 

Finite element idealisation of a square plate 

being struck by a blunt cylindrical projectile 
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Figure 4.49 

Variation of midspan displacement with time for a square 

plate together with that of the adjacent blunt cylindrical 

projectile 

-ýý 
___. r_ _. _------------ 

Figure 4.50 

Deformation sequence for a square plate together with that of 

the adjacent blunt cylindrical projectile using the default 

values of the artificial viscosity coefficients 
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THE FRACTURE SLIDELINE TECHNIQUE 

5.1 INTRODUCTION 

Numerous approaches have been suggested for propagating 

cracks through a finite element mesh. Their classification 

comprises of two principal groups; the smeared crack and the 

discrete crack approach. 

In the smeared crack approach, elements through which a 

crack is to propagate have their stiffness matrices modified 

to'simulate displacement discontinuity along the fracture 

interface. The application of this approach to physical problems 

involving large relative deformation of the fracture surfaces, 

however, represents a crude approximation. 

A more appropriate approach in the presence of large 

fracture deformation fields is that of discrete crackingp which 

is able to simulate the physical, behaviour more closely. Several 

alternative methods has been proposed to implement this approach 

which include a simple nodal release mechanism for crack 

extension along lines of symmetry, Siegele and Schmitt (1983) and 

'double noding' and 'node grafting' methods to process off-axis 

crack propagation, Liaw et al (1984), Ingraffea (1977). These 

techniques have been implemented within implicit time integration 

schemes and combined with high order elements. Section 2.2.3 

explains the limitations encountered with such a combination and, 

in particular, the prohibitive cost in high velocity impact 

calculations. 

The 'double noding' method, or the ability of a code to 

allow a node to split upon satisfaction of a predetermined 

criteria, was the basis for the work performed by Ringers (1983). 

This recent work extended the 'double noding' method to 

facilitate the initiation and propagation of fracture surfaces in 
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an automated manner. The method was implemented within an 

explicit time integration scheme and utilised the velocity 

constraint slideline technique (see Section 3.3.2). * 

A number of deficiencies inherent in both the smeared and 

discrete crack methods have restricted their usefulness in the 

study of high velocity plugging failure modes, and may be 

summarised in the following; 

(i) The very large relative sliding distances of the 

adjacent failure surfaces present during the shear band 

process dictates modelling by a discrete cracking 

process. 

(ii) In the numerical simulation of ballistic impact the 

thickness of shear bands are of the order of microns, 

whilst a typical mesh designed for such use 

incorporates finite element dimensions measured in 

hundreds of microns. The simulation of fracture along 

element boundaries only, as required by the discrete 

crack approach is, therefore, a reasonable assumption 

in the presence of shear band regions two orders of 

magnitude smaller than the element dimensions. 

(iii) The fine mesh discretisation which is characteristic of 

high velocity impact modelling enables the high stress 

concentrations in the vicinity of the, fracture'region 

to be adequately resolved with no special element 

requirements. 

(iv) The limitations imposed on the maximum time step to 

ensure that the crack propagation occurs as soon as the 

solution predicts, renders the use of an implicit time 

integration scheme impractical. 

(v) The limitations of the velocity constraint method used 

in Ringers' work have been described in Sections 1.4 

and 3.3.6 and should be consulted for further 

reference. 
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For these reasons, the penalty-based slideline algorithm as 

discussed in Chapter three, which is itself a 'double noding' 

type method, will be used in this work to extend the capability 

of these discrete methods. The proposed method will henceforth be 

termed the "fracture slideline" method. There are several 

reasons, in addition to points (i) to (v) above, for using this 

algorithm, namely; 

(i) The application of the penalty-based algorithm to. '' 

fracture simulation in the high velocity impact regime 

has not previously been investigated in spite of its 

characteristic stability and robustness. A large amount 

of commercial interest is currently being shown'in the 

application of numerical methods to plate impact 

problems and this extension would represent a 

significant contribution in facilitating the simulation 

of penetration, and perforationý 

(ii) With the exception of Ringers' work, the automatic 

generation of fracture surfaces during a solution is- 

presently only possible in conjunction with-a restart 

facility, whereby the'solution is stopped, the required 

modifications included into the database dump, and the 

computations resumed. The manual intervention by the 

user is thus considerable, requiring a priori knowledge 

of the appropriate times at which such a dump is to be 

performed. The restart facility is most useful in the 

multiple impact between several bodies in succession 

such as the case of multi-layered shell structures 

impacted by a projectile, wherein the interval between 

impact of each successive surface is more readily 

located. The use of this method is obviously not 

possible for the study of plugging without incurring 

serious overheads in computational effort. 
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(iii) The penalty-based slideline technique provides the 

additional facility to model shear force effects along 

the plug/plate interface. 

(iv) To the authors knowledge, no quantitative results exist 

in the application of any slideline method to the shear 

plugging failure mode. 

The principal features of the proposed fracture slideline 

method are as follows. For each time step, a number of pre- 

determined fracture criteria are applied to every node to detect 

for the occurrence of failure. The node at which failure occurs 

is automatically replaced by two nodes. In this manner a segment 

definition node is generated which defines both the new contact 

segment and signifies the present limit of crack growth. This 

segment definition node is appended to the slideline database to 

redefine the fracture surface. Growth of the crack continues as 

this new slideline is extended until fracture of the-distal face 

is detected. The fracture calculations are terminated subsequentý 

to the processing of the distal fracture node. 

The fracture slideline technique consists of three principal 

areas of development; the failure criteria, fracture slideline 

adjunction, and the database structure. Each will be discussed in 

turn. 

The ensuing discussions will use a typical impact 

configuration consisting of a target plate of two layers of 

elements being impacted by a blunt cylinder. A partial view of 

the initial arrangement is shown in Figure 5.1. 

5.2 FAILURE CRITERIA 

The most serious limitation of high velocity impact codes is 

the uncertainty in the material response description with regards 

to-failure. In dynamic failure a range of damage is possible, the 

damage growing as a function of time and applied stress. As 

damage grows, material stiffness decreases so that even incipient 
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damage levels can be important. Simple, empirical failure models 

of varying degrees of complexity exist and have been applied 

successfully in this regime. For the most part, though, failure 

criteria and models are of an ad-hoc nature, lacking the 

micromechanical basis to comprehensively treat problems involving 

brittle, ductile and shear failure. 

There are a number of failure descriptions used in currently 

available codes, and are generally grouped within three 

categories; simple time independent criteria, time dependent 

criteria incorporating damage at a structural level and 

micromechanical fracture criteria. 

Despite the fact that material failure is a time dependent 

process, most production calculations are performed with simple 

time independent criteria based on maxima or minima of field 

variables (such as maximum tensile stress or maximum shear 

strain). Computer simulations of ordnance impacts using an 

incremental elastic-plastic material model have yielded excellent 

results when used-in conjunction with a simplistic description of 

material failure in this way. This approach is popular, not only 

because of the lack of any realistic alternatives but also the 

code efficiency resulting from the compact material 

characterisation. Moreover, recent discussions among material 

model developers have emphasised that the shear band phenomenon 

is essentially a plastic process and as such, path dependent. The 

use of an effectual plastic flow rule shouldl therefore, lead to 

these shear band instabilities without the inclusion of special 

material damage parameters (1983). 

Time dependent initiation criteria represent the next level 

of sophistication and have been successfully--applied to numerous 

fracture problems. one of the earliest is the Tuler and Butcher 

model, Kimsey (1983), in which failure is assumed upon the 

occurrence of a critical value of a damage parameter. The 

principal application of this model has been predominantly in 

spall failure. 

- 5.5 - 



A damage model for fracture has also been recently developed 

by Johnson (1982). It has the capability to take into account the 

effects of strain, strain rate, temperature and dimensionless 

pressure; variables which are readily available in impact codes 

of this type. The model is path dependent and requires only one 

history variable per element, thus making the scheme ideally 

suitable for the high velocity regime. It is being actively 

evaluated at present, Johnson et al (1983), and a series of 

extensive material tests have been undertaken for a number of 

commonly used materials to quantify the five material parameters 

required. 

Micromechanical failure theories, ýhoweverr are seen to be 

the ultimate solution to this problem in which the nucleation of 

fracture surfaces are considered at the atomic level and where 

, crack growth proceeds by experimentally determined rate 

equations. These models are currently in the developmental stages 

and their use is limited to cases in which no macroscopic crack 

is present but where failure occurs through the nucleation, 

growth, and coalescence of millions of. microscopic voids. 

Examples of such a situation include the ductile failure of a 

smooth bar in tension. Unfortunately, such an analysis currently 

requires too complicated a material representation for efficient 

use in this work, Goldsmith (1983). 

It should be noted'that since failure occurs by a variety of 

interrelated mechanisms it can be expected that different forms 

of criteria will be approp riate at different times in the 

solution pr6cess. It is postulated that the combination of a 

comprehensive micromechanical material model able to distinguish 

between the numerous failure modes, together with a solution 

procedure having the fracture slideline capability as described 

in this work would represent asignificant advancement in the 

ability of numerical codes to analyse problems involving failure. 

The failure criteria used in this work are based upon 

investigations performed by Ringers (1983) and which essentially 

represents a time independent model using the Von Mises 
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equivalent strain as the failure measure. Geometric criteria 

accompany this continuum model and express an effective 'natural' 

failure mode in the region of interest. 

The criteria differs in this work from that of Ringers with 

respect to the equivalent strain measure. This measure is path 

independent and as a consequence may either increase or decrease 

and cannot properly be used to indicate material failure. It is 

thought that its use accounts for the incorrect initial fracture 

location on the frontal surface experienced in the investigatory 

test results obtained by Ringers. The effective plastic strain 

measure is used in this work, ensuring both path independence and 

promoting a more stable growth of the fracture surface through 

the material. 

The dominant criterion is thus the effective plastic strain 

and is compared with the user defined failure threshold each time 

step to detect the occurrence of failure. For each element 

exceeding this threshold the magnitude of the element shear 

stress is also checked. This value is required to be greater than 

both the magnitude of the axial and radial deviatoric stresses 

respectively. The requirement of a critical relative value of 

shear stress is to further verify that a shear band formation is 

being treated and not another highly strained part of the body. 

This essentially represents a maximum shear stress criterion and 

is specifically included to treat shear plugging situations. 

If these continuum based tests are satisfied further 

geometric tests are then required, the discussion of which may be 

subdivided into three groups. A description of the failure 

criteria, together with these geometric tests is summarised in 

Table 5.1 

5.2.1 Nodal fracture initiation 

The object of this test is to obtain, from the four nodes 

contained within the failed element, the most likely candidate 

contact node at which to commence cracking. The element node at 

which the greatest internal force is experienced is chosen to 
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signify the mesh location at which initiation of failure is to 

occur. The inclusion of additional forces into the element 

internal force vector to treat the interface conditions makes 

this a reasonable choice. 

Experimental observations show that a shear band is 
, 

initiated from the frontal surface. Therefore, a secondary test 

is performed on each candidate failed node to establish its 

association with the previously defined surface contact nodes. 

Only if the candidate failed node has been defined as a surface 

contact node will the criterion be satisfied. 

5.2.2 Failure propagation 

Fracture is seen to propagate towards the distal surface in 

a continuous manner during experimental testing and is simulated 

here by ensuring that the crack propagates from the last defined 

node on the current failure surface, that is, the segment 

definition node. 

In high velocity impact which is dominated by the plugging 

mode of failure, the amount of shear in the crack region is 

significant and circumstances would often permit a crack to 

actually proceed in opposition to the actual motion of the 

problem (Figure 5.2). The further restriction of the propagating 

crack to proceed with no changes in direction greater than 900 

prevents this occurrence. 

5.2.3 Direction of fracture propagation 

The direction of fracture is determined only for those nodes 

satisfying the nodal fracture propagation criteria, and is 

computed using the strain rate values of the failed element. If 

the magnitude of the radial strain rate is greater than the 

magnitude of the axial strain rate, fracture continues to the 

nearest axial node (Figure 5.3). Otherwise fracture is to the 

nearest radial node. 

The direction of fracture may be determined from the nodal 
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forces, however, results obtained using nodal forces for this 

purpose have shown that the crack frequently propagates in a 

different direction to the thrust of the problem, Ringers (1983). 

The fluctuations in the nodal forces were seen to be the 

principal cause of this discrepancy. In comparison, however, the 

strain rate was found to provide a significantly more stable 

basis in determining the fracture propagation direction. This 

stability is undoubtedly due to dependence of strain rate on the 

kinematic parameters of the individual element rather than the 

averaged nature of the derived nodal internal forces. 

The unrealistic failure*modes in which the direction of a 

crack changes by greater than 900 requires the use of a history 

variable, that is a definition of the unit tangent vector to the 

previous local segment. A simple vector product between both the 

current and previous tangent vectors acts efficiently as a basis 

to eliminate any false fracture directions. 

5.3 SLIDELINE ADJUNCTION 

The dynamic addition of sliding surfaces may be further 

segregated into three sections for simplicity. The procedures for 

nodal crack initiation, nodal crack propagation and distal face 

fracture. 

5.3.1 Nodal fracture initiation 

Consider the schematic diagram of a finite, element mesh in 

the region of the projectile periphery (Figure 5.1), showing a 

assumed initial configuration. Assume that element F has 

satisfied criteria [1a] and [1b], and that node k has satisfied 

criterion [1c]. The satisfaction of criterion [1d] is obviously 

satisfied directly. 

With this arrangement, node k is defined as the location of 

initial fracture, and the method essentially creates a new node 

within the system. The terms used in the ensuing discussion are 
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taken from Ringers report. 

Upon fracture detection, a 'new' node is created and 

assigned the next available node number. The original node 

(henceforth, 'split* node) retains its node number. The relevant 

nodal system arrays are first increased in size and then updated 

with this new information. 

Figure 5.4 depicts the updated mesh formation after 

splitting has occurred, showing the split node and the new node. 

The 'next' node will be discussed in the following section. These 

three nodes are appended to the surface interaction table and the 

corresponding arrays, any subsequent slideline processing will 

then include this new surface. Figure 5.5 shows the modified 

definition of slideline surfaces at this same stage. The portion 

of surface two lying to the right of surface four, although 

defined initially, will be outside the range of the zonal contact 

detection test and is excluded from further discussions. It is 

not deleted from the calculations so that deformable projectiles 

may be considered. 

The question of the definition of the new and split nodes 

is an important point in the success of the method, since an 

incorrect designation of these nodes confuses the slideline 

detection routines. 

Figure 5.6 indicates this problem. The surface gap is 

exaggerated for clarity and the dotted line represents the 

frontal slideline surface of the target. At some stage in the 

solution, subsequent to fracture, the definition of the slideline 

will cause a non-physical boundary condition (nj-nk) to be 

imposed on node o resulting in an intolerably high degree of mesh 

deformation. Furthermore, no displacement restrictions in the 

axial direction will be experienced if the impact momentum is 

sufficient for node o to pass through this boundary since node v 

is not included in the initial surface 1 slideline definition. 

The redefinition of the slideline is one alternative to this 

problem but requires additional computational effort and, indeed, 
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is not necessary if the definition of the new and split nodes is 

performed with care. Figure 5.7 shows the current method,, in 

which the definition of the discontinuity nk-nl on the frontal 

surface ensures that node o will be correctly restrained in the 

axial direction at all times. 

5.3.2 Failure propagation 

Consider the plate impact situation at a later stage in 

which extension of the crack is now required (Figure 5.4). Assume 

that element C has satisfied criteria [2a] and [2b]. The concept 

of allowing the crack to proceed only from the next node is now 

obvious since growth from any other node would create a 

completely new fracture surface, a result only present in 

adiabatic plugging failures. Further, let criterion [2c] be 

satisfied in node g, with the direction of crack propagation 

assuming the same previous axial mode and thus satisfying 

criterion [2d]. 

The new and split nodes arising from the next node g are now 

defined as before, while the direction of fracture yields the 

axial node c as the next node. The necessary modifications to 

include the additional slideline surface variables in both the 

slideline database and the finite element system arrays are made 

and the computations resumed. The configuration is shown in 

Figure 5.8. 

It is the observation that the fracture surface propagates 

at the rate of one element per detected element failure which 

further dictates both the temporal integration scheme and the 

degree of spatial discretisation utilised. The rate of growth of 

a fracture slideline is of paramount importance and would not be 

resolved adequately within an implicit context and, as such, an 

accurate indication of each nodal splitting time would not be 

available. Furthermore, accuracy will be enhanced with finer mesh 

descriptions. 
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5.3.3 Distal face fracture 

Crack propagation may continue through the mesh to a point 

whereby a node lying on the distal surface defines the next node 

and a complete separation of the plug is imminent (Figure 5.8). 

Detection of such a node is accomplished easily with the use of 

the element connectivity table (Section 5.4). In this 

configuration the current crack direction cannot be defined and 

requires that criterion [2d] be ignored. 

The occurrence of distal face cracking terminates the 

failure criteria tests and the solution proceeds normally with no 

further reference to the fracture slideline routines. The 

fracture surface developed to that point is, of course, retained 

in any subsequent processing. 

5.3.4 Discussion of slideline adjunction 

The methodology of fracture slidelines described thus far 

has been limited to the occurrence of only one failure surface 

during each solution. However, the method does not preclude the 

simultaneous growth of several such surfaces. This is rarely 

encountered in practice except for stress fields in which 

adiabatic shear failure is excited, and is a state beyond the 

scope of this work. A major contribution to this flexibility has 

been the development of a suitable database structure with 

specific reference to the slideline technique. 

5.4 THE DATABASE STRUCTURE 

The dynamic location of sliding surfaces in a finite element 

mesh will be discussed from the standpoint of the underlying 

storage and data manipulation facilities. The specific 

requirements for the fracture slideline database and the 

modifications required in the system arrays are separated for 

clarity. 

- 5.12 - 



5.4.1 Fracture slideline database structure 

Discussion of this subject is extended from the basis given 

in Section 3.5. 

Consider the plate impact situation of Figure 5.5. where the 

contact surfaces are denoted. At input, surfaces 1 and 2 are 

defined in terms of an orderly arrangement of the contact nodes 

(Section 3.4.1) and represent the interaction between the blunt 

face of the projectile and the frontal surface of the plate. 

Together, these surfaces constitute slideline 1. Slideline 2 

represents the interaction between the projectile perimeter, 

surface 3, and the circumferential failure surface of the plate, 

surface 4, exposed during the formation and ejection of the plug. 

The nodes defining contact surface 3 are currently defined by the 

user during the input stage but may just as easily be 

accomplished in an automatic fashion. The contact nodes 

corresponding to surface 4 which complete this particular 

slideline are dictated by the solution process and consequently 

will not be known a priori. Finally, slideline 3 represents the 

interaction along the fracture surfaces generated during the 

solution and comprises of surfaces 4 and 5. Both surfaces are 

appended to the existing contact tables in a manner which will be 

discussed later in this Chapter. 

A surface interaction table is used to define those surfaces 

permitted to interact. The procedure by which this table points 

to the required data has been previously discussed in Section 

3.5. 

Figure 5.10 depicts an initial slideline pattern, whose 

database arrangement is shown in Table 5.2. The array names have 

been defined previously and the nodal, data i, j, 
... represents 

that data specifically related to node i, j 
.... as given in Table 

3.4. 

Upon satisfaction of the crack initiation criteria the 

finite element mesh is modified locally as shown in Figure 5.4, 

creating surfaces 4 and 5 and permitting both slidelines 2 and 3 
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to be defined. Table 5.3 describes the slideline database at the 

end of this stage together with the associated data for each 

newly defined contact node. 

The initial creation of slidelines 2 and 3 leaves a common 

contact node which has been termed the segment definition node. 

The presence of this node (node g), serves to indicate that the 

fracture propagation criteria is required, and is itself the 

designated node from which the crack must propagate. Figure 5.8 

shows the final result of an axial crack satisfying this 

criteria, while Table 5.4 represents the corresponding database 

modifications. 

Incipient separation of the plug is the last operation to be 

discussed with respect to database augmentation. It is detected 

when the next node also represents a distal surface node. only 

minor modifications of the fracture slidelines are necessary at 

this point since the definitions of a crack propagation direction 

and the subsequent contact segment node are not meaningful. 

Figure 5.11 indicates the final modified mesh in which node c is 

split and substituted with node x in the usual manner. 

Note that the slideline database size need only be increased 

when a new slideline is defined and the number of contact nodes 

on any one surface exceeds the locations currently available. 

Generally, the number of database manipulations are dominated by 

the former. 

5.4.2 The element connectivity table-. 

The fundamental process by which the fracture slideline 

method is monitored has been given. one further development now 

remains, its motivation originating from the following numerical 

situations, viz; 

on detection of element failure, the adjacent element 

number is used to provide a correct definition of the 

master and slave elements. For instance, if the initial 

configuration of Figure 5.1 is considered and node k of 
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element F has been defined as satisfying the failure 

criteria, then an efficient method of obtaining the 

adjacent element number E is necessary. 

The dynamic creation of slidelines requires that 

certain element arrays be updated, the element node 

number array being one particular example. Consider a 

radial fracture commencing from node g (Figure 5.9), 

from which it is clear that only element array F 

requires the substitution of node w for node g. The 

differing crack growth history depicted in Figure 5.8, 

however, requires that both elements C and F are 

modtfied in this respect. The element arrays requiring 

modification thus alter with the crack direction. The 

determination of these particular element numbers in an 

efficient manner is important. 

A simple check to detect incipient plug separation 

should also be included so that further computations 

within the fracture slideline routines may be halted. 

(iv) The criteria to restrain crack propagation to 

physically realistic directions requires a history 

variable to accurately describe the crack direction 

during the previous node splitting operation. 

Together, these problems represent serious deficiencies with 

respect to the numerical efficiency, typically overcome by a 

global search through the mesh at each occurrence or, 

alternatively, a severely restricted spatial discretisation. This 

work demonstrates the effective use of an element connectivity 

array. 

Consider the partial view of a typical finite element mesh 

as shown in Figure 5.1. Table 5.5 shows the corresponding element 

connectivity array, LCONEC, for element B. 

The general table arrangement is shown in Table 5.5-(1) 

where, for each of the four element nodes i, there are three 

- 5.15 - 



element numbers defined, corresponding to those elements which 

share node i, in the radial, central and axial directions. Note 

that the node pointer is based upon the element node numbering 

sequence, in which the radial direction is that experienced when 

moving from the first defined node to the second. Evidently the 

nodes b-c define the radial direction for element B. 

The procedure to obtain the current adjacent element number 

requires only the current failed node pointer of the failed 

element and-the current crack growth direction. Each of these 

variables have been derived in previous calculations and are 

readily available without extra effort. By way of example 

consider Figure 5.8 and assume node c of element B has satisfied 

the crack propagation criteria with an axial mode of failure., In 

this instance the nodal pointer is 2 and the adjacent element is 

given as C. 

The central node is included in the connectivity array to 

permit the direct determination of all elements containing the 

failed node. The current and previous crack direction variables 

are used to determine the orientation of the required elements 

with respect to the failed node for any crack. 

It may be seen that both the axial and central nodes are set 

as null values for element nodes lying on the distal surface 

(nodal positions 1 and 2). The distal surface node check now 

becomes a simple examination of the adjacent axial element number 

for each failed node, prior to node splitting. 

The negative sign before certain element numbers, together 

with the local element axis system assumed here, indicates the 

disposition of the crack with respect to the adjacent element. A 

negative prefix to an element number indicates that the adjacent 

element is in the negative local direction with respect to the 

current failed element. The association of the new and split 

nodes is thereby facilitated and non-physical boundary conditions 

avoided (see Section 5.3.1). 

The use of theýelement connectivity array has been found to 
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be a most efficient method for storing the necessary mesh 

topological data. In terms of the degree of flexibility, it is a 

rudimentary method by virtue of the sole usage of the four node 

quadrilateral element, although the concept may obviously be 

extended to higher order elements. 

Each element array is compiled on an element level at the 

commencement of each fracture slideline problem and contains 12 

locations. The benefits obtained in terms of speed outweigh the 

small proportion of memory which is consumed. 

5.4.3 System array modification 

The requirement for the dynamic expansion of the global 

nodal arrays is detected by monitoring each occurrence of 

node splitting. For all cases, except incipient cracking on 

the distal face, this represents the only time during the 

solution that a new node is created. 

The new node is assigned the same global coordinates, 

velocities, --and restraint properties as the split node and hence 

will experience no contact boundary conditions during the time 

step in which it is created. Howeverr the internal force and mass 

assigned to the global equations comprising the new and split 

nodes are based upon the number of elements which now share each 

node. The relaxation of the interface stiffness will occur 

automatically during the next time step. It should be noted that 

the new node retains the values of the mass and internal force of 

its underlying element. 

The equation number and element topology arrays are also 

adjusted to substitute the next available values for the 

particular new node. 

5.5 CONCLUSIONS 

A new fracture slideline method to propagate a fracture 

through a finite element mesh has been proposed and the principal 
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facets of the method discussed. The new method utilises the 

penalty-based slideline technique and represents a discrete crack 

approach. A number of additional benefits have been achieved over 

the currently available methods discussed in Section 5.1, and are 

as follows; 

The use of effective plastic strain as the principal 

failure criteria yields anore stable and accurate 

representation of damage than the equivalent strain 

used in Ringers' (1983) work. 

The problem of confusing surface orientation resulting 

from the very large deformations typical of fracture 

propagation analyses has been overcome in Ringers' work 

by the use of interposing surfaces. These surfaces are 

utilised as a comparison against which a series of 

numerically expensive tests are performed. These 

additional computations are not required in the present 

work by virtue of the zonal contact detection test (as 

described Section 3.4.3) which ensuresthat any 

ambiguities in the detection of contact are virtually 

eliminated. 

The proposed slideline database accommodates the 

generation of any number of fracture slidelines during 

the solution of a problem. 

(iv) The implementation of a global element connectivity 

table has enabled the high level of monitoring_ 

necessary in fracture slideline calculations to be 

achieved with insignificant numerical overheads and, 

moreover, has met the objectives as described in 

Section 5.4.2 (i)-(iv). 
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TABLE 5.1 

Shear Plugging Failure Criteria 

Criterion 1: Nodal Fracture Initiation 

[a] he effective plastic strain of the associated element Is 
greater than a specified value 

V 
Eb] The magnitude of the shear stresq of the associated 

elemen is greater than the magnitude of Its radial 
and axial deviator stresses 

[c] The node experiences the highest internal force of the 
element 

[d] The node is a contact node 

Criterion 2o: Nodal Fracture Propagation 

[a] he effective plasticcftrain of the associated element Is 
greater than a spe fied value 

[b] The magnItude of the shear stress of the associated 
element is grqater than the magnitude of its radial 
and axial deviator stresses 

[c] The node corresponds to the segment definition node 

[d] The direction of crack propagation does not change by 
more than 90* 

Criterion 3: Direction of Fracture Propagation 

[a) Axial fractu e occurs when the magnitude of the radial 
stra n rate 

Is 
greater than the magnitude of the axial 

strain rate 

[b] Radial fracture occurs when the magnitude of the axial 
stra n rate is greater than the magnitude of the radial 
strain rate 
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TABLE 5.2 

Slideline Database for Initial Plate 
Impact Arrangement 

I. Surface Interaction Table 

SURFACE POINTER ADJACENT SURFACE POINTER 

ISURFD 1 2 

II. Real Nodal Contact Data 

SURFACE 1 SURFACE 2 

ECONTD i j k 1 o n m 
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TABLE 5.3 

Slideline database subsequent to initial 
cracking 

I. Surface interaction table 

SURFACE POINTER ADJACENT SURFACE POINTER 

1 2 

ISURFD 3 4 

5 4 

II. Real nodal contact data 

SURFACE 1 SURFACE 2 

k 0 n 

ECONTD u r 0 9 v 

k 9 9- v 
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TABLE 5.4 

Slideline Database During Crack 
Propagation 

I. Surface interaction table 

SURFACE POINTER ADJACENT SURFACE POINTER 

1 2 

ISURFD 3 4 

5 4 

II. Real nodal contact data 

SURFACE 1 SURFACE 2 

k 0 
f 

n 

ECONTD u r 0 c w 

k 9 c c 

- 5.24 - 



TABLE 5,5 

Typical Element Connectivity table 

I. General table arrangement 

NODAL POINTER ADJACENT ELEMENT NUMBER 

LCONEC i RADIAL 

I 

CENTRAL AXIAL 

II. Table arrangement for element B 

NODAL POINTER ADJACEN T ELEMENT NUMBER 

1 -A 

2 C D 

LCONEC 

3 C F E 

4 -A D E 
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Updated finite element'mesh subsequent to initial fracture 
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Finite element mesh prior to distal face fracture 
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Finite element mesh subsequent to distal face fracture 
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CHAPTER-6 

VALIDATION OF THE FRACTURE SLIDELINE TECHNIQUE 
- 

6.1 INTRODUCTION 

The objective of this chapter is to demonstrate the 

effectiveness of the proposed fracture slideline technique. 

Numerical results will be obtained for a total of eight plate 

impact problems and comparisons made against their corresponding 

experimental results. 

Although a considerable amount of experimental data has no 

doubt been collated internationally in Government institutions, 

information concerning plate perforation is still extremely 

sparse, particularly for the combination of blunt projectiles and 

circular plates of moderate thickness. A number of experimental 

results have been investigated in this work to determine their 

suitability for numerical comparison purposes. 

Corran et al (1983) presented a series of results at sub- 

ordnance velocities for a variety of projectile nose shapes 

impacting against thin plates (=1-2 mm), to demonstrate the 

dominant response mechanism encountered in differing perforation 

processes. Little information was presented, however, concerning 

plate deformation modes relating specifically to the plugging 

process, particularly transient response information. 

Experimental investigations involving thin plates have been 

carried out to obtain detailed sets of results using conical or 

spherical impact faces. Calder (1971), Goldsmith et al (1965), 

Levy and Goldsmith (1984). Goldsmith and Finnegan (1971). whilst 

a further series of results for oblique impact, has also been 

presented, Awerbuch and Bodner (1977), Rickerby and Macmillan 

(1980) and Backman et al (1977). 

Goldsmith (1985) has also published results relating to the 

perforation of thin plates by various shaped projectiles which 
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included, albeit in a passing manner, a limited number of 

terminal plugging results. A number of other recent papers have 

treated plugging in a similar manner, Goldsmith and Finnegan 

(1986) and Wingrove (1972). Liss and Goldsmith (1984), however, 

have recently produced a very comprehensive set of results for 

circular aluminium plates struck by hard, flat ended, steel 

projectiles, whilst a more dated, but nevertheless equally 

relevant, paper also gives substantial experimental data for both 

steel and aluminium, plates of square face sections, Awerbuch and 

Bodner (1974). It is unfortunate that the test arrangement for 

restraining the plates included restraints along only two of the 

four edges to aid high speed filming of the events, making the 

process fully three dimensional. 

The results of Liss and Goldsmith (1984) will predominantly 

be used in validating the fracture slideline technique. A series 

of solutions have been obtained using four differing impact 

velocities for each of the two chosen plate thicknesses. The 

effects of variations in parameters such as the effective plastic 

strain and scale factor will be brought out in these tests. 

6.2 PROJECTILE IMPACT ON A THIN ALUMINIUM PLATE 

This section investigates the plugging phenomena experienced 

during the impact between a blunt-faced, hard steel, cylindrical 

projectile and a circular 2024-0 aluminium plate. The relevant 

initial problem data is given in Table 6.1 for the four 

experimental tests considered in this section, whilst Figure 6.1 

depicts the finite element model to be used for this 

configuration. In each case the diameter of the projectile is 

12.5 mm, the plate clamp diameter is 119.4 mm, and the plate 

thickness is 3.2 mm. The mesh consists of 141 elements with a 

three-element depth through the thickness. 

The use of a reduced length of projectile combined with an 

increased mass density to maintain the total mass has, been 

mentioned previously in Section 4.8.1, and will again be utilised 
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to model the projectile in this and the following sections. Note 

that the hardened steel material and its small vibrational 

response in comparison with that of the plate permit this 

assumption. 

Initial tests using the default value for the hourglass 

control coefficient revealed a significant amount of hourglassing 

within the contact region, particularly along the elements 

constituting the plug/plate interface. An increase in the 

magnitude of this control factor from 0.1 to 0.3 virtually 

eliminated the effect. The default values for the artificial 

viscosity coefficients were used once again. 

The material properties for both projectile and plate were 

obtained from the cited paper and are given in Table 6.2. 

6.2.1 Results and discussion 

A description of the measurements involved in the 

experimental post impact results of Table 6.3 are given in Figure 

6.2 and represent dimensional accuracy of J0.1 mm. 

Table 6.4 presents the corresponding results from the 

numerical tests performed. 

In each of the tests, the final velocities of both the 

projectile and plug provided the basis for the choice of 

effective plastic strain failure magnitude. A list of effective 

plastic strain criteria is given in Table 6.5. 

A preliminary test of the material characterisation was 

performed for which perforation was not experienced (test (a)), 

to compare the overall deformation field. 

The final deformed thickness of the plate along the central 

axis was computed as 3.0 mm in comparison with the 3.0 mm 

obtained by experiment. The response in terms of the final 

deflection is not so accurate, however, with a computed value now 

of 10.7 mm, and an experimental value of 14.0 mm. A number of 

factors contributed to this overly 'stiff' response, the 
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principal reason, however, was seen to be associated with the 

rather coarse mesh both through the thickness and in the region 

of the plate supports imposed by the computational restraints. 

Figure 6.3 depicts the deflected shape of the plate and 

projectile at the moment of maximum deflection, which clearly 

demonstrates the large bending effects present. 'The reduced 

accuracy of the constant strain element in a bending environment 

has previously been discussed, particularly the increase in 

sensitivity of the final displaced solution with the hourglass 

coefficient as the non-rectangular bending effects are increased 

across an element. once again, the ideal of utilising many, 

practically equi-sided quadrilaterals with at least five elements 

to model the thickness has met with compromise in the face of 

restricted computer resources. The error associated with this 

particular comparison is of the order of 17% which was found to 

increase with impact velocity (see Table 6.6). 

The remaining three test cases each include perforation at 

some point during the solution process. With respect to the final 

velocity magnitudes,, it is clear that a correct momentum transfer 

between both solids has been adequately achieved. The maximum 

deviation occurs for test (b) but continues to represent a 

solution to within 10% of the experimental values. The plug 

thickness and base diameter magnitudes are also computed 

adequately for each of the tests. The plate results, howevert are 

not as closely matched and 
' 
it is thought that these values are 

particularly sensitive to the degree of refinement of the 

discretisation and also the material characterisation employed. 

These latter results would tend to indicate that a higher degree 

of plastic flow occurred numerically than actually did in the 

experiment. 

Table 6.6 summarises the errors experienced in the numerical 

calculations from this test suite with respect to their 

respective experimentally determined values. 

The Von Mises plastic strain criteria required to align the 

numerical results with those of the experiment may be seen to 
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vary for each test case, particularly for test (b). This is a 

consequence of the inadequacies of this discretisation to model 

the bending effects, since it is known that there is a sharp 

increase in plate deflection in the region of the ballistic 

limit. The results at higher velocity, however, are very much 

closer and indicate the ability of the algorithm to be used at 

such post-ballistic velocities. 

To demonstrate the sensitivity of the final solution to a 

variation in this failure criteria three different values were 

used in test (c), and, to this end, the variation of several field 

parameters is shown in Figures 6.4 to 6.6. Convergence to the 

experimental values of the parameters with decreasing plastic 

strain criterion is indicated by the curves for all except the 

plug velocity and the two plate diametersy although the latter do 

converge within the range considered. From this set of solutions, 

therefore, it may be concluded that a reasonable degree of 

insensitivity is experienced such that a solution is readily 

permissible within a range of failure criteria. 

The final deflection is overestimated here, as indeed is the 

exit hole diameter of-the plate. The former would seem to 

indicate further the presence of a greater amount of plastic flow 

in the numerical solution than was actually experienced in the 

experimental tests, and is borne out further in the lack of 

radial elastic recovery at the distal plate surface, together 

with the underestimated magnitude of theIinal plug thickness. 

This is probably also the reason for the underestimate in the 

entry hole diameter in that elastic recovery on the frontal 

surface would tend to increase the hole diameter. 

The usefulness of the fracture slideline technique may 

perhaps be seen best in the context of the transient response of 

the plug/plate system. The following discussions will use test 

(c) as a basis for an investigation of the plugging process 

within the time frame commencing with initial contact and 

terminating at the moment-of distal surface fracture. Table 6.7 

depicts the nodal fracture times for this particular system and 

- 6.5 - 



will be referred to later. 

The variation of kinetic energy with time up to plug 
_ 

ejection shown in Figure 6.7, from which a number of observations 

may be made. Three distinct phases are represented; an initial 

rapid decrease of the kinetic energy associated with the 

compression of the plug is followed by a period of lower 

decrement rate which is typically associated with the formation 

of the shear plug from the material. The latter is terminated 

when the initial elastic wave reaches the plate boundary. 

Thirdly, a further decrease in slope is experienced in the 

proximity of the first crack occurrence which-is maintained to 

the full separation of the plug from the plate. This final period 

actually represents the 'steady state' conditions present as the 

crack propagates through the material and the plug is ejected. 

The expected decrease in the system stiffness is also 

implied by the decrease in the slope of the force history curve. 

The dominant fracture in this respect being for crack initiation 

whilst subsequent fractures have increasingli less effect. The 

computed force-time curve of Figure 6.8 shows the large initial 

force arising from the aforementioned compression of the plug 

material, which is followed by a sharp decrease as'the shear plug 

is formed in the plate material. The ensuing increase in force is 

in agreement with experimental observations, occurring due to the 

need for a large force to rapidly accelerate the plate material 

in the-vicinity of the fracture region, which is confirmed if the 

plate deformation sequence of Figures 6.9 to 6.12 are inspected, 

in which it will be seen that relatively little plate deformation 

occurs until after the first crack has been created. At this 

point the highly localised effects have had sufficient time to 

extend beyond the boundary of the projectile diameter and 

consequently larger displacements are seen as greater sections of 

the plate begin to absorb energy from the projectile. 

The experimental observation that the majority of shear 

strain is experienced outside of the plug region, along the 

fracture surface of the plate, is also observed in these 
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deformation diagrams. Moreover, the tendency, toward a slight 

amount of hourglassing in the column of elements to the right of 

the fracture surface is a further confirmation. A consequence of 

this is observed in the final shape of the, plate fracture 

surface, which does not exhibit the typically smooth nature 

expected from test firings. The degree of mesh refinement is' 

dominant in the elimination of this factor from the numerical 

solution and will be discussed further with respect to the 

intermediate plate thickness. 

I 
The element failure sequence for this problem is shown in 

Figure 6.13 to indicate the flexibility of the method to account 

for the changes in the drive, of the solution. For instance, the 

geometric considerations in this problem used to propagate the 

fracture surface within the plate confirm experimental 

observation that the terminal plate diameter is convergent in 

shape. 

An estimate of the fracture propagation speed may be 

obtained based upon the depth of crack propagation at the moment 

of'fracture as 132,77 and 155 ms-1 respectively. These are not 

unreasonable, albeit at a lower magnitude, when compared to the 

theoretical value of 554 ms-1 (obtained from [Ep/W]1/2). Table 

6.7 shows that the fracture process commenced at 8.10 Ps and 

terminated at 28.95 Ps, indicating correlation with the 

experimentally observed behaviour of the initial compression 

stage occurring over a very short time frame. 

Figure 6.14 to 6.17 shows the progression of fracture with 

time through the plate together with the propagation of the Von 

Mises plastic strain contours. It is clear that this measure is a 

good qualititative gauge of failure in the obvious concentration 

of this field variable in the vi 
' 
cinity of the crack. With respect 

to the strain field experienced by this particular configuration, 

there are strong indications that experimental observations are 

once again confirmed. The radially constant field within the plug 

is followed by a rapidly changing field in the region of the 

crack, subsequent to which, there is evidence of asymmetric 
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bending strain superimposed on the tensile membrane strain. At 

points increasingly distant from the axis of symmetry this is 

indicated by the increasing slope on the zeroth plastic strain 

contour. The radial stress contours of Figure 6.18 to 6.21 also 

indicate the presence of bending, the effect of which again 

increases along the plate away from the axis. Estimates obtained 

from the contour values give the proportion of stress of an 

asymmetric nature to that of the membrane stretching between 1/3 

and 1/2 and justify the previous assumption that the problem is 

actually in between these two states. 

The effects of elastic recovery are seen in the contour 

changes occurring between Figures 6.20 and 6.21 in which the 

stresses due to membrane action are sharply reduced, although the 

actual stress field remains largely the same. The final plot in 

the sequence is largely free from bending in the region of 

fracture. This transition zone is dominated by the effects of 

shear due to the previous plug/plate interaction. 

6*3 PROJECTILE IMPACT ON AN INTERMEDIATE ALUMINIUM PLATE 

This section investigates further the plugging phenomena 

experienced during the impact between a blunt-faced, hard steel, 

cylindrical projectile and a circular 2024-0 aluminium plate. The 

relevant initial problem data is given in Table 6.8 for the four 

experimental tests considered in this section, whilst Figure 6.22 

depicts the. finite element model to be used. In each case the 

diameter of the projectile is 12.5 mm, the plate clamp diameter 

is 114.8 mm and the plate thickness is 6.4 mm. The mesh consists 

of 222 elements with a six-element depth through the thickness. 

The material properties for both projectile and plate were 

obtained from the cited paper and are given in Table 6.2. 

6.3.1 Results and discussion 

Table 6.9 shows the experimental post impact results, whilst 
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Table 6.10 represents the corresponding results from the 

numerical tests performed. A list of effective plastic strain 

criteria is given in Table 6.11. 

A preliminary test of the material characterisition was 

performed once-again, for which perforation was not experienced, 

(test a) to compare the overall deformation field. The final 

deformed thickness of the plate along the central axis was 

computed as 5.7 mm, the terminal deflection as 10.3 mm, and the 

target entry hole diameter as 12.4 mm. These initial results 

represent an accuracy to-within 2% of the experimental values and 

would indicate that the material parameters used, together with 

the mesh discretisation are sufficient to model the dynamic 

effects in operation for a non-failure application. 

Initial tests revealed the use of a single value of scale 

factor for each of the three interfaces to be impracticable since 

the pressure experienced along slideline two (see section 5.4.1) 

is typically an order of magnitude greater than that for 

slideline three. The value required for slideline one is also 

slightly reduced from that of slideline three. The numerical 

problem manifests itself in the form of a significant amount of 

surface overlap which eventually results in an unreasonable 

degree of mesh deformation. Figure 6.23 depicts a typical 

response with the use of a single value in this way. 

The numerical solution currently expects a unique value of 

scale factor to be defined for each surface which, for the 

experienced analyst, represents a greater degree of control over 

the solution. This is particularly true when considering 

frictional conditions along the slideline interface where the 

normal force is directly related to the shear force generated. 

The method is actually based on the results of the previous 

section in which the effect of a varying scale factor on the 

solution was found to be limited, particularly as the plate 

thickness is increased. The values used for the two plate 

thicknesses considered herein are given in Table 6.12, in which 

the slideline numbers once again refer to the surface pairs 
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defined in Chapter Five. 

The results for the intermediate thickness plate are 

generally closer in agreement to the experimental values than 

those obtained for the thin plate. This is a consequence of the 

greater mesh density through the thickness of the intermediate 

plate. The projectile and plug final velocities have been used as 

the datum point for initial failure criterion initialisation and 

are similarýin their percentage error. It is clear that the plug 

thickness and the maximum deflection results are significantly 

closer to the experimentally determined values. 

The accuracy in the maximum deflection is a consequence of 

both the reduced sensitivity to the hourglass coefficient and the 

increase in the number of integration points through the 

thickness, permitting a higher resolution of the bending strain 

field. The accuracy obtained in the plug thickness is similarly 

expected, again because of the 'softer' solutions resulting from 

the rather coarse use of this element in the previous example. 

Table 6.13 summarises the percentage errors experienced in the 

intermediate thickness plate test suite. Note however that the 

mesh was refined principally in the axial direction rather than 

radially. ' This has resulted in the radial-field variables such as 

plug base diameter and plate hole diameters having the same order 

of'error as the previous example, indicating the potential 

improvement in results to be gained in this manner. 

In a similar fashion to-the previous section, a single test 

case from this suite will be used to investigate certain 

transient aspects of the solution procedure, for this purpose, 

test (b) will be utilised. In anticipation of future use, Table 

6.14 gives the time at which each nodal fracture takes place for 

this configuration. 

Figure 6.24 represents the variation of kinetic energy loss 

of the system with time up to the moment of distal face fracture. 

Although the three phases discussed previously are to be seen 

once again, the curve is substantially smoother in nature since 

the effect of the initial elastic wave is virtually eliminated by 
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the increase in the number of support nodes at the clamped edge, 

enabling a smoother reflection as the initial elastic wave 

encounters this boundary. The interface force curve of Figure 

6.25 depicts a similar response to that of the previous example 

also (see Figure 6.8), in which an initial peak is followed by a 

brief trough from which a secondary, rather broader maximum 

proceeds, subsequently tailing off to zero. The cause of the 

initial transient peak has already been seen to arise as a result 

of the compression of the plug material beneath the projectile 

face, and is further demonstrated in Figure 6.26 in which the 

significant difference in the plug centreline velocities when 

measured at both the base and tip are clearly shown. This 

difference, and particularly the higher frontal velocity than 

that of the distal surface within the first 3 PsF demonstrates 

the large compressive accelerations present within the plug. At 

subsequent times this difference becomes much reduced. 

The plate velocity time history is given in Figure 6.27, the 

data for which is obtained from the nodes immediately adjacent to 

the projectile edge and which eventually form part of the 

fracture surface of the plate. The diagram is similar in form to 

that of Figure 6.26 in the initial contact phase in the sense of 

the immediate disparity between the frontal and distal surface 

velocities, again indicating a substantial amount of compressive 

acceleration, albeit at a decreased level. 

The rather jagged nature of the force and, velocity time 

curves is due principally to the degre-e of mesh refinement used 

in this solution. An increase in the number of elements through 

the thickness would have the effect of decreasing this effect 

since the time between nodal releases would be reduced. It is to 

be noted that the force generally experiences a local decrease in 

the presence of a nodal fracture while the corresponding 

velocities experience an increase. The notation (1) to (6) 

correspond to the nodal fracture times. The nodal velocity 

differential across the projectile (Figure 6.28) is negligible in 

this test and indicates the observed experimental observation 
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that little deformation is seen in this region, implying an 

almost wholly rigid body translation. 

The cause of the secondary peak is not as clear from the 

velocity time histories but may be seen in the deformation plots 

of the previous example (Figures 6.9 to 6.12), in which it was 

noted that very little bending occurred outside of the plug 

region until the first nodal fracture. The fracture actually has 

little effect here, rather it is the propagation of the elastic 

wave front through the material which is predominant. Taking the 

longtitudinal wave speed as a basis (X[e/w] w 5200 ms-1) it may 

be seen that the initial peak occurs while the wave is still 

travelling within the plug region. As soon as the main 

compressive stage is terminated, the first fracture occurs and 

the wave is now traversing through the plate away from the 

centreline. At this stage a dynamic balance is achieved between 

the increasing bending effects due to the propagating wave and 

the decreasing driving force as the plug passes through the plate 

material. The secondary peak is thus a result of the resistance 

of the plate to the plug through bending action and which appears 

in the solution only after a certain amount of elapsed time. 

The increase in the magnitude of the effective plastic 

strain over the values obtained in the thin plate test cases is 

demonstrated in the deformation plots of Figures 6.29 to 6.31, 

together with the typical locally propagating plastic field. Note 

that the full radius of the plate is not shown in order to 

exhibit the fracture zone more clearly. It is also of interest 

that the deflection of the distal surface is correctly shown to 

be a direct result of the propagation of the plastic strain 

field, the distal surface of the plug eventually having 

practically radially constant lines of plastic strain through the 

thickness whose magnitude decrease towards the frontal surface. 

The maximum plastic strain is again experienced, however, along 

the fracture surface. 

The radial stress field is also given in Figures 6.32 to 

6.34. The effects of an increase in the number of elements 
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through the thickness is clearly evident in the accurate 

positioning of the neutral axis of the plate. Once again, the 

stress field is seen to be radially constant in the region of the 

newly formed plug, although varying*through the thickness. After 

a brief transitory region the typical bending stress field is 

indicated together with a small amount of membrane action. As 

time progresses, the transitory zone may be seen to increase 

along the length of the plate. 

The average fracture propagation velocity, based upon the 

initial length of the elements in the axial direction, has been 

calculated as 127 ms-1. This estimation, however, is dependent to 

a large degree on the spatial discretisation of the structure and 

it was found that the six individual components comprising this 

averaged value varied quite considerably between 50 and 202 ms-11 

implying the need of further refinement for this particular 

parameter. The magnitudes are similar to those obtained for the 

plate and once again represent an adequate estimation when 

compared with the theoretical plastic wave speed. 

The elements which satisfied the failure criteria are once 

again given in Figure 6.35 for the sake of completeness, and 

demonstrate a similar response to that of the previous example. 

6.4 CONCLUSIONS 

The application of the fracture slideline method to the 

simulation of plugging failure in the manner described is ideally 

utilised in conjunction with experimental test data as described 

in Chapter One. In this way any inadequacies in the numerical 

simulation may be minimised through an initial comparison with a 

known datum so that numerical predictions may be more confidently 

obtained. 

The overall results are clearly consistent between 

calculations, a higher impact velocity producing perforation 

together with the resultant unrestrained projectile and plug 

motion, whereas the lower velocity resulted in projectile contact 
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only. A lower level of effective plastic strain criterion enables 

complete perforation with the formation of a plug while high 

levels resulted in considerable penetration but no perforation. 

With respect to the more detailed experimentally observed 

behaviour, the model correlates well qualitatively with respect 

to all of the chosen field parameters. Moreover, quantitative 

estimates are also computed which have been shown very close to 

the experimental observations, such as final plate displacement, 

plug thickness, projectile and plug final velocities and the 

plate entry hole diameters. The plate exit diameters experienced 

the least accuracy yet remained within 24% of the experimental 

values. The principal limiting factor in these calculations was 

seen to be the restriction on computer resources which 

constrained the mesh to contain less than 250 elements. The 

elimination of this restriction by, for example, porting this 

code to one of the many supercomputers now available, would 

enable significantly more accurate simulation of this type of 

problem. 

The results given in this section demonstrate that the 

effective plastic strain failure criterion remains essentially 

constant over a large range of impact velocities for a given 

plate thickness. The stability'of this failure parameter appears 

to be reduced in the vicinity of the ballistic limit as 

exhibited in the thin plate tests. 

The use of a unique value of scale factor, for each slideline 

has been shown to be both robust and flexible. Moreover, when 

used within the guidelines given in Table 6.12, the results 

produced are very good. In all the test cases there was no need 

of manual intervention during the solution, either to modify the 

slidelines to take into account changing surface interaction 

or to rezone the mesh in regions of unsatisfactorily high 

deformation. 
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TABLE 6.1 

Geometric data summary of thin plate experiments 

Projectile 

Test case Im CI Mass 
number ty 

y: 
C Ve 

(m/s) (g) 

a. 92.9 39.7 

b. 132.2 39.8 

ce 172.5 39.7 

d. 187.2 40.0 

TABLE 6.2 

Summary of material properties 

Property Projectile Target 

E 211 Gpa 

1 

69 Gpa 

V 0.30 0.33 

w 50548 Kgm 2770 Kgm 

Et 690 Mpa 850 Mpa 

uo 2290 Mpa 167 Mpa 
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TABLE 693 

Experimental results from the thin plate impact tests 

Projectile Plug Ta rget 

Final Final Thickness B se 
Df 

I 

Max. 
D fl 

Hile 
t D Velocity Velocity am. e . ame e 1 

Entry(Ex t) 

(m/s) (m/s) (mm) (mm) (mm) (mm) 

a. 0.0 - 3.0 - 14.0 12.1 (-) 

b. 102.8 109.8 2.8 12.5 10.9 12.5 (12.5) 

C. 156.9 172.8 3.0 12.5 6.1 12.5 (13.0) 

d. 175.6 188.3 3.1 12.3 1.7 12.3 (12.9) 

TABLE 6.4 

Numerical results from the thin plate impact tests 

Projectile Plug Target 

Final 

I 

Final Thickness Base 

I 

Max. Hyle 
t Velocity Velocity Diam. Defl. e D ame 1 

Entry(Ex t) 

(m/s) (m/s) (mm) (mm) (mm) (mm) 

a. 0.0 - 3.0 - 11.7 

b. 93.0 103.0 2.8 12.7 11.4 12.6 (14.4) 

co 151.0 174.0 2.7 12.6 7.4 12.8 (15.8) 

d. 169.0 186.0 ' 2.7- 12.7 7.0 13.0 (16.1) 
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TABLE 6*5 

Effective plastic strain criteria for the thin plate 

impact tests 

Test case Effective Elaftic strain 
cri er 

a. 

b. 0.34 

C. 0.38 

d. 0.37 

TABLE 6.6 

Comparative (percentage) errors from the thin plate 

impact tests 

Projectile Plug Target 

Final 

I 

Final Thickness B se f Max. Hyle 
t velocity Velocity am. D 

1 

Defl. er D ame 
Entry (Exit) 

a. 0 - -1.7 0 -16.8 

b. -9.5 -6.2 0 +2.0 +5-0 +0.8 (+15.2) 

C. -3.8 +0.7 -10.0 +1.0 +21.3 +2.4 (+21.5) 

d. -3.3 -1.2, 1 -12.9 +3.3 1 +311.8 1 +5.7 (+24.8) 
1 , )1 

- 6.19 - 



TABLE 6.7 

Time for each nodal fracture 

Node Number Time of fracture 
PS 

126 8.10 

67 22.03 

39 28.90 

11 28.95 

TABLE 698 

Geometric data summary of intermediate plate experiments 

Proj ectile 

Test case Impact. Mass 
number Velocity 

(m/s) (g) 

a. 132.6 39.8 

b. 149.0 39.7 

C. 155.6 39.8 

d. 175.1 40.0 
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TABLE 6.9 

Experimental results from the intermediate 

plate impact tests 

Projectile Plug Target 

Final Final Thickness Base Max. Hyle 
Velocity Velocity Diam. Defl. D amete 

t E E 
1t 

I 

ry( n x ) 

(m/s) (m/s) (mm) (mm) (mm) (mm) 

a. 0.0 - 5.7 - 10.1 12.2 (-) 

b. 95.4 103.3 5.8 12.2 6.3 12.2 (12,2) 

ce 105.0 111.5 5.9 12.3 6.0 12.2 (12.2) 

d. 135.9 151.6 5.9 12.5 4.8 12.0 (12.5) 

TABLE 6,10 

Numerical results from the intermediate 

plate impact tests 

Projectile Plug Target 

Final Final Thickness B se f Max i 
Hyle 

t Velocity Velocity am. D Def . D ame e 
t 

1t 
E E ry( ) n x 

(m/s) (m/s) (mm) (mm) (mm) 

a. 0.0 - 5.7 - 10.3 12.4 (-) 

b. 87.5 102.5 5.8 13.1 6.7 12.9 (15.0) 

C. 104.4 122.7 5.8 13.2 6.2 12.9 (14.9) 

d. 131.4 159.2 5.9 13.4 5.0 12.8 (14.7) 
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TABLE 6.11 

Effective plastic strain criteria for the 

intermediate plate impact tests 

Test case Effective, tlaftic strain 
cr er a 

a. 

b. 0.42 

c00.42 

d. 0.42 

TABLE 6,12 

Typical scale factors used in plugging simulation 

Slideline Typical sc4le factor 
Number magn itude 

1. 0.1 - 2.0 

2. 0.2 - 0.3 

3. 0.05 - 0.07 
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TABLE 6.13 

Comparative (percentage) errors from the intermediate 

plate impact tests 

Projectile Plug Target 

Final Final Thickness Base Max. l H 
Velocity Velocity Diam. Defl. 

ya 
D 

: 
eter 

Entry (Exit) 

a. 0 - 0 - +2.0 +1.6 (-) 

b. -8.3 -0.8 0 +7.4 +6.0 +5.7 (+23.0) 

C. -0.6 +10.0 -1.7 +7.3 +4.2 +5.7 (+22.1) 

d. -3.3 +5.0 0 +7.2 +4.2 1 +6.7 (+17.6) 

TABLE 6.14 

Time for each nodal fracture 

Node Number Time of fracture 
Ps 

179 8.02 

151 15.26 

123 36.67 

95 48.30 

67 55.82 

39 61.11 

11 61.16 
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Figure 6.1 

Finite element mesh for the thin plate impact test 

tug thickness fp 

Ptug base &L 

Comptete perforation 
Exit hoLe dia. 

Entry hote dia. -J Lx3 

Figure 6.2 

Description of the experimental measurements involved 

in the plugging tests 
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Figure 6.3 

Deflected shapeýof the transient thin plate test at 

the moment of maximum deflection 
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Figure 6 .4 
Variation of plug and projectile final velocities with 

effective plastic strain failure criterion 
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Figure 6.5 

Variation of various dimensional parameters with 

effective plastic strain failure criterion 
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Figure 6.6 

Variation of plate hole diameters with effective 

plastic strain failure criterion 
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Figure 6.7 

Variation of kinetic energy with time for the 

transient thin plate test 
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Figure 6.8 

Variation of interface force with time for the 

transient thin plate test 
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Figure 6.9 

Deformation configuration of the transient 

thin plate test at t=8.5Ps 

Figure 6.10 

Deformation configuration of the transient 

thin plate test at t=12.7ps 
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Figure 6.11 

Deformation configuration of the transient 

thin plate test at t=25Ps 

Figure 6.12 

Deformation configuration of the transient 

thin plate test at t=31ps 
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Figure 6.13 

Thin plate test element failure sequence 
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Figure 6.14 

Von Mises plastic strain contours for the transient 

thin plate test at t=8.5ps 

- 6.30 - 



9 
. 
284q5£-031 

9. s691 t -ei 

0.1707 

0.1 gge 
0.227t 

0 2sat 

8.2845 

9.3139 
0.3414 

0.3699 

Figure 6.15 

Von Mises plastic strain contours for the transient 

thin plate test at t=12.7ps 
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Figure 6.16 

Von mises plastic strain contours for the transient 

thin plate test at t=25vs 
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Figure 6.17 

Von Mises plastic strain contours for the transient 

thin plate test at t=31ps 
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Figure 6.18 

Radial stress contours for tile transient 

thin plate test at t=8.5ws 
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Radial stress contours for the transient 

thin plate test at t=12.7ps 
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]Radial stress contours for the transient 

thin plate test at t=25ps 
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Radial stress contours for the transient 

thin plate test at t=31ps 

Figure 6.22 

Finite element mesh for the intermediate 

plate impact test 
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Figure 6.23 

Deformation of the transient intermediate thickness 

plate test with a singly defined scale factor 
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Figure 6.24 

Variation of kinetic energy with time for the 

transient intermediate thickness plate test 
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Figure 6.25 

Variation of interface force with time'for the 

transient intermediate thickness plate test 
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Figure 6.26 

Variation of plug centreline velocities with time for 

the transient intermediate thickness plate test 
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Figure 6.27 

Variation of plate velocities with time for the 

transient intermediate thickness plate test 
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Figure 6.28 

Variation of projectile velocities with time for the 

transient intermediate thickness plate test 
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Figure 6.29 

Von Mises plastic strain contours for the transient 

intermediate thickness plate at t=23ps 
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Figure 6.30 

Von Mises plastic strain contours for the transient 

intermediate thickness plate at t=44ps 
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Figure 6.31 

Von Mises plastic strain contours for the transient 

intermediate thickness plate at t=65ps 
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Radial stress contours for the transient intermediate 

thickness plate at t=23ps 
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Figure 6.33 

Radial stress contours for the transient intermediate 

thickness plate at t=44PS 
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Figure 6.34 

Radial stress contours for the transient intermediate 

thickness plate at t=65ýls 
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Figure 6.35 

Intermediate thickness plate test element 

failure sequence 
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CHAPTER 7 

GENERIQ CONCLUSIONS 

The primary intent of this thesis has been to develop a 

numerical method of solutionl'whereby an Engineer may be better 

equipped to predict the initiation and growth of metallic 

fracture in the presence of plugging modes, of failure. The 

product of this research has been an improved fracture slideline 

technique based on the penalty function slideline method. This 

improved technique has been embedded within a two dimensional, 

materially and geometrically nonlinear, ' explicit dynamics, finite 

element computer program. In the process of this work a number of 

contributions have been made, namely; 

(a) The penalty function slideline technique utilised as a 

basis for the numerical simulation of shear band 

failure has been enhanced, to, include; 

A reduced amount of computer time spent in the 

mandatory slave search by acknowledgement of 

the small displacement increments present within 
I 

each time step. 

The use of a zonal contact detection check to 

eliminate the majority of the potential contact 

nodes prior to the more exacting contact detection 

processing. 

Development of a simple datastructure specifically 

designed for use in slideline problems, 

particularly those involving the generation and 

addition of slidelines as the solution progresses. 

The capacity is indefinite and is limited only by 

the confines of the host computer. 

(b) The development of a fracture slideline method based 

upon the penalty function slideline technique. This 
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proposed scheme has a,, number of" 
, 
be efits'with respect 

to the methods utilised currently and includes; 

The ability to operate . effectively without any 

reduction in the critical ý time, step magnitude to 

maintain stability, 

(ii) The elimination of the'excitation of any interface 

hourglassing through the utilisation of a double 

pass procedure. 

(iii) The greater flexibility,, in dealing with tangential 

interface motion, particularly -along the plug-plate 

interface. 

(c) The implementation of, -the 
proposed fracture slideline 

technique within an improved nonlinear explicit 

dynamics finite element code which includes; 

The use of a more consistent failure criteria 

in the form of the Von Mises effective plastic 

strain measure. The use of this field variable 

has been shown to produce an improved initial 

fracture location. 

The use of quadrilateral ý elements, to eliminate the 

unrealistically stiff, responselexperienced with 

triangular elements in, the presence of significant 

plastic flow. 

The utilisation of the central difference method to 

integrate temporally in preference to the 

negatively damped Newmark-Beta scheme. 

(d) Demonstration of the effectiveness of the proposed 

fracture slideline method to model crack initiation and 

propagation in plugging modes of failure. The close 

correlation between the quantitative comparisons with 

experimental results presented in Chapter Six indicate 
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that this has been accomplishedý particularly for 
4, , 

increasingly transient, applications. 

(e) Identification of the ý principal-, sources of, 

computational inefficiency during the solutionýof high 

velocity impact problems. The, inefficiencies occur as a 

result of disk transferý 
' 
overheads,. andý, unnecessary 

calculations within the element post processing loop, 

each of which is discussed, in'i Chapter Two. 

(f) The variation of the numerical- results with the 

interface scale factor, the effective plastic strain 

failure criteria and the bulk viscosity coefficients 

have been investigated,, and, discussed. + The results of 

this investigation shouldýlead to a, more efficient and 

correct usage of these type, of impact-codes-in the 

future. 

The proposed Finite Element, solution scheme has been applied 

to several impact problems, both, with and7without, the presence of 

perforation, from which 'several -conclusions., may -been made 

concerning the effectiveness of the method; 

(a) A criticism of the penalty-based slideline method is 

with regard to the determination of an interface scale 

factor prior to the analysis. Several guidelines have 

been suggested in Chapter Four to assist in the task 

based upon the comparative, studies performed, however 

the range of scale factorý, 'which_permits an-adequate 

degree of accuracy has been, showný, to be large and is 

not seen as a limiting,. factor. It is concluded,, 

therefore, that the slight variation in the results due 

to differing scale factors is, not a-severe penalty to 

pay for the substantial computational efficiency 

gained. 
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(b) Problems that are not governed by the effects of wave 

propagation, and for which only displacement fields are 

of interest, may be simulated with a coarse mesh 

without detriment to the results. The computational 

effort required for such problems is,, thus,, not 

restrictive on most contemporary computers provided a 

sufficient amount of high speed memory is available. 

(c) The choice of the effective plastic strain material 

failure parameter, albeit not ideal, is a reasonable 

approximation within the limits of the current state 

of knowledge. 

(d) The recommendation of the NMAB committee quoted in 

Chapter one is regarded as a reasonable approach to 

high velocity impact problems involving perforation. 

The numerical comparisonsý, performed have indicated 

that the extrapolation of'-known' results to prototype 

designs may be performed with confidence provided a 

reference set of resultý`is available with which to 

validate the dynamic material characterisation. 

A number of areas of concern have been highlighted in this 

work which have been rather restricting and will require further 

attention. These are as follows; 

(a) The material models currently utilised in high velocity 

perforation dynamics problems are rather rudimentary in 

their ability to model failure phenomena. Furthermore, 

the material constants available for many of even the 

most commonly used materials have not been defined at 

either the strain rates or temperatures involved in 

impact loading. The further development of fracture 

slideline solution schemes will be limited until 

material models are devel 
' 
oped 

' 
which are capable of 

simulating such physical characteristics and, moreover, 

fulfil the requirements of numerical efficiency. 
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(b) The present method used to stabilise the hourglassing 

patterns generated in the four node element is not yet 

optimal, requiring a greater element density to 

accurately model bending deformation fields than should 

actually be necessary. The benefits accrued with its 

use are, however, immense and the quest for an 

efficient and reliable stabilisation technique must 

continue. 

(c) Transient measurements from impact tests are not easily 

available outside of Government research centres and 

a few commercial establishments, furthermore, the 

results obtained tend to yield only post perforation 

measurements. Consequently, there is need for openly 

published results from impact experiments which 

concentrate on transient phenomena such as deflection, 

strain, depth of penetration and force histories. These 

measurements and many others, albeit very difficult to 

obtain, would be invaluable in the validation of 

numerical impact codes. A further result of the 

dissemination of such information would be the ensuing 

discussions on the interpretation of the physical 

behaviour implied by such experiments. 

(d) The proposed fracture slideline method still requires 

additional work to determine the effects of variations 

in the effective stiffness of the interface regions 

during the solution process. It is thought, at present, 

that the effects are limited but for problems in which 

there are large amounts of unloading, the hysteretic 

losses may become significant. 

(e) The mechanism of nodal release derived within this 

report does not take into account any intermediate 

damage effects. Further work is required to quantify 
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the effects of instantaneous release of nodes in a 

structure. 

(f) The modelling of plugging failure in the high velocity 

regime would be enhanced by including mass loss due to 

phase changes at the projectile surface in the 

calculations. Techniques are currently being developed 

to include eroding slidelines, which have already given 

good results for the ultra-high velocity regime and 

would be of use to account for these second order 

temperature effects. 

e 
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