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Abstract

The theory of constant polynomial combinants has been well developed [2] and
it is linked to the linear part of the constant Determinantal Assignment prob-
lem [1] that provides the unifying description of the pole and zero assignment
problems in Linear Systems. Considering the case of dynamic pole, zero as-
signment problems leads to the emergence of dynamic polynomial combinants.
This paper aims to demonstrate the origin of dynamic polynomial combinants
from Linear Systems, and develop the fundamentals of the relevant theory by
establishing their link to the theory of Generalised Resultants and examining
issues of their parameterization according to the notions of order and degree.
The paper provides a description of the key spectral assignment problems, de-
rives the conditions for arbitrary assignability of spectrum and introduces a
parameterization of combinants according to their order and degree.
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1 Introduction

For the study of problems of linear feedback synthesis which are of the determi-
nantal type [1] (such as pole zero assignment, stabilisation) a specific school of
thought has been developed which is specially suited to tackle such problems.
This framework is referred to as algebro-geometric because it relies on tools
from algebra and algebraic geometry. The essence of the problems faced in this
set-up is that they are of a multi-linear nature. The main difficulty of the deter-
minantal problems in the case of frequency assignment lies in that the problem
is equivalent to finding real solutions to sets of nonlinear and linear equations; in
the case of stabilisation, this is equivalent to determining solutions of nonlinear
equations and nonlinear inequalities. The first of the two problems naturally
belongs to the intersection theory of complex algebraic varieties, whereas, the
latter belongs to the intersection theory of semi-algebraic sets. Determining real
intersections is not an easy problem [9]; furthermore, it is also important to be
able to compute solutions whenever they exist. The use of algebraic Geome-
try in the study of spectrum assignment problems was originally introduced in
[5], [6], where an affine space approach has been used. The main emphasis in
this approach has been the use of intersection theory for the development of
necessary conditions and the deployment of special techniques for establishing
generic sufficient conditions. Issues of dealing with non-generic cases as well as
computation of solutions are hardly addressed.

The Determinantal Assignment Problem Approach (DAP) [1] has been formu-
lated as a unifying approach for all problems of frequency assignment (dynamic
and constant pole zero) and its basis lies on the fact that determinantal prob-
lems are of a multi-linear nature and thus may be naturally split into a linear
and multi-linear problem (decomposability of multivectors). In this framework,
the final solution is thus reduced to the solvability of a set of linear equa-
tions (characterising the linear problem) together with quadratics (characteris-
ing the multi-linear problem of decomposability). The approach heavily relies
on exterior algebra and this has implications on the computability of solutions
(reconstruction of solutions whenever they exist) and introduces new sets of
invariants (of a projective character) which, in turn, characterise the solvabil-
ity of the problem. This approach has been further developed in [7], [8] by
the development of a “blow-up” methodology for linearization of multi-linear
maps that permit the development of computations, as well as techniques for
establishing the development of real solutions [9]. The distinct advantages of
the DAP approach, which is a projective space approach, are: it provides the
means for computing the solutions; it can handle both generic and exact solv-
ability investigations, and it introduces new criteria for the characterisation of
solvability of different problems. Furthermore, it provides a set-up for exterior
algebra computations by using the methodology of “Global Linearization” [7],
[8]. Most of the work in the DAP framework has been on problems dealing with
non-dynamic compensation, where the linear part of the problem is expressed
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as a constant polynomial combinants, and the study of its properties is well
developed [2]. Dynamic compensation problems may also be studied within the
DAP framework, but their linear sub-problem depends on dynamic polynomial
combinants which have much richer properties. Of course, real intersection the-
ory of varieties is once more the central issue, but the linear varieties (linear
part of the problem), as well as the multi-linear part becomes more complex in
the dynamic case.

This paper deals with the development of the fundamentals of the theory of
dynamic combinants, which define the linear part of the dynamic DAP prob-
lem, by examining the origin of the dynamic combinants in Control Theory
problems, introducing the basic problems related to spectrum assignment, ex-
amining their parameterization according to their order and degree, consider
their representation in terms of generalised resultants and finally establishing
the conditions spectral assignability, which are equivalent to the solvability of a
Diofantine Equation over R[s]. The work here provides the means for studying
the properties of the linear varieties of the Dynamic DAP and set up the ap-
propriate framework that allows the study of spectrum assignment properties
of dynamic combinants.

Throughout the paper the following notation is adopted: If F is a field, or
ring then Fm×n denotes the set of m× n matrices over F If H is a map, then
R(H), N r(H), N l(H) denote the range, right, left nullspaces respectively. Qk,n

denotes the set of lexicographically ordered, strictly increasing sequences of k
integers from the set ñ , {1, 2, . . . , n}. IfV is a vector space and {vi1

, . . . , vik
}

are vectors of V then vi1 ∧ . . . ∧ vik = vω ∧, ω = (i1, . . . , ik) denotes their
exterior product and ∧r V the r−th exterior power of V. If H ∈ Fm×n and
r ≤ min{m,n}, then Cr(H) denotes the r−th compound matrix of H [10]. We
shall denote by R[s], R(s), Rpr(s)the ring of polynomials, rational functions and
proper rational functions over R respectively.

2 Linear Systems and Dynamic Polynomial
Combinants

Consider the linear system [11] described by S (A, B, C, D) :

ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×p, y = Cx+Du, C ∈ Rm×n, D ∈ Rm×p (1)

where (A,B) is controllable, (A,C ) is observable, or by the transfer function
matrix G(s) = C(sI-A) -1B+D, where . In terms of left, right coprime matrix
fraction descriptions (LCMFD, RCMFD), G(s) may be represented as

G(s) = Dl(s)− 1Nl(s) = Nr(s)Dr(s)− 1 (2)
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where Nı(s), Nr(s) ∈ Rm×p[s], Dı ∈ Rm×m[s] and Dr(s) ∈ Rp×p The system
will be called square if m = p and nonsquare if m 6= p. Within the state space
framework we may define a number of constant, frequency assignment problems
such as the Pole assignment by state feedback, Design of an n-state observer,
Pole assignment by constant output feedback and Zero assignment by squaring
down, which are all reduced to a Constant Determinantal assignment problem
[1]. A number of dynamic assignment problems may be defined on a linear
system as shown below:

Dynamic Compensation Problems

Consider the standard feedback configuration [11] below

FigureFeedback Configuration
If G(s) ∈ Rpr(s)m×p, C(s) ∈ R(s)p×m , and assume coprime MFDs as in

(2) and

C(s) = A`(s)−1B`(s) = Br(s)Ar(s)−1 (3)

The closed loop characteristic polynomial may be expressed as [10]:

f(s) = det
{

[D`(s), N `(s)]
[

Ar (s)
Br (s)

]}
= det

{
[A`(s), B `(s)]

[
Dr (s)
Nr (s)

]}

(4)

1. if p ≤ m, then C(s) may be interpreted as feedback compensator and we
will use the expression of the closed loop polynomial described by (2.4b)

2. if p ≥ m, the C(s) may be interpreted as pre-compensator and we will use
the expression of the closed loop polynomial described by (2.4a).

The above general dynamic formulation covers a number of important fami-
lies of C(s) compensators [11] as : (a) Constant, (b) PI, (c) PD, (d) PID, (e)
Bounded degree. In fact,

(a) Constant Controllers : If p ≤ m, A` = Ip, B` = K ∈ Rp×m,
then 4 expresses the constant output feedback case, whereas if p ≥ m , Ar =
Im, Br =K∈ Rp×mexpresses the constant pre-compensation formulation of the
problem.

(b) Proportional plus Integral Controllers: Such controllers are de-
fined by

C(s) = K0 +
1
s
K1 = [sIp]−1[sK0 + K1] (5)

where K0,K1 ∈ Rp×m and the left MFD for C(s) is coprime, iff rank(K) = p.
From the above the determinantal problem for the output feedback PI design is
expressed as :
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f(s) = det

{
[sIp, sK0 + K1]

[
Dr(s)
Nr(s)

]}

= det



[Ip,K0,K1]




sDr(s)
sNr(s)
Nr(s)






 (6)

(c) Proportional plus Derivative Controllers: Such controllers are
expressed as

C(s) = sK0 + K1 = [Ip]−1[sK0 + K1] (7)

where K0, K1 ∈ Rp×m and the left MFD for C(s) is coprime for finite s and
also for s = ∞ if rank(K0) = p. From the above and (??) the determinantal
output PD feedback is expressed as :

f(s) = det{[Ip, sK0 + K1]
[

Dr(s)
Nr(s)

]
} = det{[Ip,K1,K0]




Dr(s)
Nr(s)
sNr(s)


} (8)

(d) PID Controllers: These controllers are expressed as

C(s) = K0 +
1
s
K1 + sK2 = [sIp]−1[s2K2 + sK0 + K1] (9)

where K0,K1 ∈ Rp×m and the left MFD is coprime with the only exception
possibly at s = 0, s = ∞ (coprimeness at s=0 is guaranteed by rank(K1) = p
and at s = ∞ by rank(K2) = p. From the above, the determinantal output
PID feedback is expressed as :

f(s) = det

{
[sIp, s

2K2 + sK0 + K1]
[

Dr(s)
Nr(s)

]}

= det





[Ip,K2,K0,K1]




sDr(s)
s2Nr(s)
sNr(s)
Nr(s)








(10)

(e) Observability Index Bounded Dynamics (OBD) Controllers:
These are defined by the property that their McMillan degree is equal to pk,
where k is the observability index [11] of the controller. Such controllers are
expressed by the composite MFD representation as

[Al(s), Bl(s)] = Tksk + . . . + T0 (11)
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Tk, Tk−1, . . . , T0 ∈ Rp×(p×m) and Tk = [Ip, X]. Note that the above repre-
sentation is not always coprime, and coprimeness has to be guaranteed first for
McMillan degree to be pk; otherwise, the McMillan degree is less than pk. The
dynamic determinantal OBD output feedback problem is expressed as

f(s) = det

{
[Tksk + . . . + T0]

[
Dr(s)
Nr(s)

]}
= det{(Tksk + . . . + T0)M(s)} =

= det





[Tk, Tk−1, . . . , T0]




skM(s)
sk−1M(s)

...
M(s)








(12)

Remark 2.1 The above formulation of the determinantal dynamic assignment
problems is based on the assumption that p ≤ m and thus output feedback con-
figuration is used. If p ≥ m, we can similarly formulate the corresponding
problems as determinantal dynamic pre-compensation problems and use right
coprime MFDs for C(s).

-
Abstract Determinantal Assignment Problem

All the problems introduced above, belong to the same problem family i.e. the
determinantal assignment problem (DAP) [1]. This problem is to solve the
following equation with respect to polynomial matrix H(s):

det(H(s)M(s)) = f(s) (13)

where f(s) is a polynomial of an appropriate degree d. The difficulty for the
solution of DAP is mainly due to the multi-linear nature of the problem, as this
is described by its determinantal character. We should note, however, that in
all cases mentioned previously, all dynamics can be shifted from H(s) to M(s),
which, in turn, transforms the problem to a constant DAP. This problem may
be described as follows:

Let M(s) ∈ Rp×m[s], r ≤ p, such that rank M(s) = r and let H be a family
of full rank r×p constant matrices having a certain structure. Solve with respect
to H ∈ H the equation:

fM (s,H) = det(HM(s)) = f(s) (14)

where f(s) is a real polynomial of an appropriate degree d.

Remark 2.2 The degree of the polynomial f(s) depends firstly upon the degree
of M(s) and secondly, upon the structure of H. Generically, the degree of f(s)
is equal to the degree of M(s).
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The determinantal assignment problem has two main aspects. The first has
to do with the solvability conditions for the problem and the second, whenever
this problem is solvable, to provide methods for constructing these solutions. If
hi(s)

t, mi(s), i ∈ r̃, we denote the rows of H(s), columns of M(s) respectively,
then

Cr(H) = ht
1 ∧ . . . ∧ ht

r = ht ∧ ∈ Rl×σ (15)

Cr(M(s)) = m1(s) ∧ . . . ∧mr(s) = m(s)∧ ∈ Rσ[s], σ = ( p
r

). (16)

and by Binet-Cauchy theorem [10] we have that [1] :

fM (s,H) = Cr(H)Cr(M(s)) =< h(s)∧, m(s)∧ >=
∑

ω∈Qr,p

hω(s)mω(s) (17)

where < ·, · > denotes inner product, ω = (i1, ..., ir) ∈ Qr,p and hω(s), mω(s)

are the coordinates of h(s)∧, m(s)∧ respectively. Note that hω(s) is the r × r
minor of H(s), which corresponds to the ω set of columns of H(s) and thus
hω(s), is a multilinear alternating function of the entries hij(s) of H(s). The
multilinear, skew symmetric nature of DAP suggests that the natural framework
for its study is that of exterior algebra. The essence of exterior algebra is that it
reduces the study of multilinear skew-symmetric functions to the simpler study
of linear functions. The study of the zero structure of the multilinear function
fM (s,H) may thus be reduced to a linear subproblem and a standard multilinear
algebra problem as it is shown below.

1. Linear subproblem of DAP: Set m(s)∧ = p(s)∈ Rσ[s]. Determine
whether there exists a k(s) ∈ Rσ[s], k(s) 6= 0, such that

fM (s, k) = ktp(s) =
∑

kipi(s) = f(s), i ∈ σ
∼
, f(s) ∈ R[s] (18)

2. Multilinear subproblem of DAP : Assume that KK is the family
of solution vectors k(s) of (18). Determine whether there exists H(s)t =
[h1(s), ..., hr(s)], where H(s)t ∈ Rp×r[s] , such that

h1 ∧ . . . ∧ hk = h∧ = k, k ∈ K (19)

-

The polynomials fM (s, k(s)) are generated by p(s) = [p
1
(s), . . . , pi(s), . . . , pσ(s)t ∈

Rσ[s], or as linear combinations of the set P = {pi(s) ∈ R[s], i ∈ σ̃} and they
will be referred to as dynamic polynomial combinants. The study of the spectral
properties of such polynomials is the objective of this paper.
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3 Basic Definitions and Representation of Dy-
namic Combinants

Given a set of polynomials P = {pi(s) ∈ R[s], i ∈ m̃} and a family of poly-
nomial sets < K >= {Kd,∀d ∈ Z+ : K = (k1(s) : k1(s) ∈ R, i ∈ m̃), d =
max{deg(ki(s))}}, we consider

f(s,K,P) =
∑

ki(s)pi(s), where ki(s) ∈ Kd (20)

which are referred to as d order dynamic-polynomial combinants of P and
are polynomials with some degree p. Dynamic compensation of linear systems
always involves polynomial combinants generated by the corresponding system
descriptions. Concepts such as those of multivariable zeros and decoupling ze-
ros are related to the greatest common divisor [12], [4], [13] of certain sets P
associated with the system they and define fixed zeros of the associated combi-
nants. The pole, zero assignment and stabilizability properties of linear systems
are based on properties of corresponding combinants and thus on the structure
of sets P, which generate these combinants. The examination of those proper-
ties of a set P which affect the assignability, stabilizability and ”nearly fixed”
zero phenomena of the corresponding combinants f(s,K,P)is the main drive
for the research here. This paper develops the fundamentals of the theory of
polynomial combinants. The representation problem of given order and degree
dynamic polynomial combinants is considered here, which involves a parameter-
ization of all sets < K >= {Kd,∀d ∈ Z+ : K = (k1(s) : k1(s) ∈ R, i ∈ m̃), d =
max{deg(ki(s))}} which lead to a polynomial combinant of a given degree p.

Given the sets P with m elements and maximal degree n and the set Kof m
elements and maximal degree d of R[s], the generated combinant is denoted by

fd(s,K,P) =
m∑

i=1

ki(s)pi(s) = φ(s) (21)

This is a polynomial generated by the set P and characterised by the order d
of K and the resulted degree ∂[fd(s,K,P)] of the combinant. We always assume
that the maximal degree polynomial in K, k1(s) 6= 0 and such sets K are referred
to as proper. If we explicitly define P as

P = {pi(s) ∈ [s], i ∈ m̃, n = deg{p1(s)} ≥ deg{pi(s)}, i = 2, . . . , m,

q = max{deg{pi(s)}; i = 2, . . . , m} (22)

p1(s) = sn + an−1s
n−1 + . . . + a1s + a0, pi(s) = bi,qs

q + . . . + bi,1s + b1,0,

i = 2, . . . ,m (23)
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p(s) =




p1(s)
p2(s)

...
pm(s)


 = [p

0
, p

1
, . . . , p

n
]




1
s
...

sn


 = Pen(s) (24)

Then the set P will be referred to as an (m;n(q))-ordered set of R[s] . Consider
now a set of m polynomials of maximal degree d, K = {ki(s) ∈ [s], i ∈
m̃, deg{ki(s)} ≤ d}, referred to in short as an (m; d) set of R[s]. The resulting
polynomial combinant is

fd(s,K,P) =
m∑

i=1

, ki(s)pi(s) = kt(s)p(s) (25)

where

kt(s) = [k1(s), k2(s), . . . , km(s)]t = kt
0 +s k1

t + . . . + sd kt
d (26)

is defined as a d-order polynomial combinant of , or in short as d- R[s]-combinant
of . The matrix P ∈ Rm×(n+1) generates the representative p(s) ∈ Rm[s] of
and it is referred to as the basis matrix of. Clearly fd(s,K, ) ∈ R[s]and some

interesting problems related to its spectrum stem from the fact that the setKmay
take arbitrary form in terms of its degree and selection of free parameters. The
combinant fd(s,K, ) as a polynomial of R[s] has degree ∂[fd(s,K, )] that clearly
satisfies the inequality

−∞ ≤ ∂[fd(s,K,P)] ≤ n + q (27)

In the following we consider two different representations of fd(s,K,P) and
the parametrisation of all combinants of different order and degree and show
how these lead to standard linear algebra problem formulations. The order and
degree parameterisations introduce some interesting links with the theory of
generalised resultants.

Fixed Order Representations of Dynamic Combinants: Gener-
alised Resultant Representations

For the general (m;d) set K with a representative vector

k(s)t = kt
0 + skt

1 + . . . + sdkt
d = [k1(s), k2(s), . . . , km(s)] (28)

where ki(s) = ki,0 + ki,1s + . . . + ki,ds
d, then fd(s,K,P) may be expressed as

fd(s,K,P) =
m∑

i=1

[ki,d, . . . , ki,1, k1,0]




sdpi(s)
...

spi(s)
pi(s)


 = [kt

1,d, . . . , k
t
m,d]




p
i,d

(s)
...

p
m,d

(s)




(29)
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The above leads to the following representation of dynamic combinants:

Proposition 3.1 Every dynamic combinant fd(s,K,P) defined by an (m;d) set
K is equivalent to a constant polynomial combinant defined by the (m(d+1);0)
set K0 and generated by the (m(d+1);(n+d)(q+d)) the d-th power of the (m;n(q))
set P, defined by

Pd = {sdp1(s), . . . , sp1(s), p1; . . . ; sdpm(s), . . . , spm(s), pm(s)} (30)

The above leads to the following representation of dynamic combinants as equiv-
alent constant combinants. If µ = n + d ẽµ(s)t = [sµ, sµ−1, . . . , s, 1] , then
∂ [p1,d(s)] = n + d , ∂ [pi,d(s)] ≤ q + d for all i=2,3,. . . ,m and

p1,d(s) =




1 an−1 an−2 · · · a1 a0 0 · · · 0
0 1 an−1 · · · a2 a1 a0 · · · 0
...

. . .
...

0 0 · · · 1 an−1 · · · · · · a1 a0


 ẽµ(s) (31)

or
p1,d(s) = Sn,d(p1)ẽµ(s), Sn,d(p1) ∈ R(d+1)×(µ+1) (32)

and for i = 2, 3, . . . , m

pi,d(s) =




0 . . . 0 bi,q . . . bi,1 bi,0 0 . . . . . . 0
0 . . . 0 0 bi,q . . . bi,1 bi,0 0 . . . 0
... 0

...
. . . . . .

...
0 . . . 0 0 . . . 0 bi,q . . . . . . bi,1 bi,0


 ẽµ(s)

(33)
(3.9b)

pi,d(s) = Sn,d(pi)ẽµ(s), Sn,d(pi) ∈ R(d+1)×(µ+1)i = 2, 3, . . . ,m. (34)

The set Pd has then a matrix representation as shown below

p
d
(s) =




p
1,d

(s)
p
2,d

(s)
...

p
m,d

(s)




=




Sn,d(p1)
Sn,d(p2)

...
Sn,d(pm)


 ẽµ(s) = SP,dẽµ(s) (35)

where SP,d ∈ Rm(d+1)×(µ+1) and is referred to as the d-th Resultant repre-
sentation of the set P. Clearly,SP,d is the basis matrix Pd set.

Fixed Order Representations of Dynamic Combinants: Toeplitz
Representation
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An alternative expression for the dynamic combinant is obtained using the
basis matrix description of the set P. Thus , let us assume that

p(s) =




p1(s)
...

pm(s)


 = P ẽn(s), P = [p

n
, . . . , p

1
, p

0
] ∈ Rm×(n+1) (36)

where P is the basis matrix of P. Then,

fd(s,K,P) = (kt
0 + skt

1 + · · ·+ sdkt
d)P ẽn(s) =

= kt
0P ẽn(s) + skt

1P ẽn(s) + · · ·+ sdkt
dP ẽn(s) =

= kt
d[P, 0, . . . , 0]̃eµ(s) + kt

d−1[0, P, 0, . . . , 0]̃eµ(s) + · · ·+ kt
0[0, . . . , 0, P ]̃eµ(s) =

= [kt
d, k

t
d−1, . . . , k

t
0]




p
0
, p

1
, p

2
, . . . , p

n
, 0, · · · · · · 0

0 p
0
, p

1
, p

2
, . . . , p

n
, 0, · · · 0

...
. . . . . . . . . 0

0, · · · · · · 0 p
0
, p

1
, p

2
, . . . , p

n
,


 eµ(s)

(37)
or equivalently

fd(s,K,P) = kt
d+1,mQP,dẽµ(s), QP,d ∈ Rm×(d+1)×(µ+1). (38)

The matrixQP,d generating the dynamic combinant as a constant combinant
is referred to as the d-th Toeplitz Toeplitz Representation of the set P. From
the construction of the matrices SP,d, QP,d we have

Remark 3.1 The matrices QP,d and SP,d associated with P have the same
dimensions and are permutation equivalent, i.e. ∃ permutation matrices PL, PR

such that
QP,d = PLSP,dPR. (39)

The above implies that establishing the rank properties of SP,d implies the
same properties for QP,d and vice versa. Thus either of the two representations
may be used. In the following we shall concentrate on the Generalised Resultant
representation and the general properties may be referred back to the Toeplitz
Representations as well.

4 Fixed degree and order Parametrisation
of (m; d) sets K and Combinants

The general unstructured representation of dynamic combinants considered
before may lead to combinants of varying degree. An alternative characterisa-
tion based on the fixed degree of fd(s,K,P), but with varying order K provides
an alternative parametrisation of the K sets. We always assume proper sets K,
i.e. k1(s) 6= 0. The fixed degree parametrisation of combinants is summarised
by the following result
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Theorem 4.1 Given the (m; q(n)) set P and a general proper (m; d) set K,
then the following properties hold true

(i) For all proper (m; d) sets K

n ≤ ∂[fd(s,K,P)] ≤ n + d (40)

(ii) If p ∈ N>0, p ≥ n then the family {K}p for which ∂[fd(s,K,P)] = p,
satisfies the conditions

∂[k1(s)] ≤ p− n, ∂[ki(s)] ≤ p− q, i = 2, . . . ,m (41)

where at least one of the first two conditions holds as an equality.

(iii) The fixed degree p family {Kp} contains n−q+1 subfamilies parameterised
by a fixed order d. The possible values for the order are:

d1 = p− q > d2 = p− q − 1 > . . . > dn−q+1 = p− n (42)

and the corresponding subfamilies are

{Kd1
p } = {ki(s) : ∂[k1(s)] ≤ p−n, ∂[k2(s)] = d1 = p−q, ∂[ki(s)] ≤ d1, i = 3, . . . , m}

{Kd2
p }={ki(s) : ∂[k1(s)] ≤ p−n, ∂[k2(s)] = d2 =p−q−1, ∂[ki(s)] ≤ d2, i=3, . . . ,m}

...

{Kdn−q+1
p } = {ki(s) : ∂[k1(s)] = ∂[k2(s)] = dn−q+1 = p− n, ∂[ki(s)] ≤ p− n,

i = 3, . . . , m} (43)

Proof: Parts (i) and (ii) are rather straight forward and follow from the
definition of the combinant. The parameterisation implied by part (iii) follows
by the construction of the combinant as indicated by the following table

p1(s) : ∂[p1(s)] = n, k1(s) ∂[k1(s)] ≤ p− n
p2(s) : ∂[p2(s)] = q, k2(s) ∂[k2(s)] ≤ p− q

...
...

...
...

pm(s) : ∂[pm(s)] ≤ q, km(s) ∂[km(s)] ≤ p− q

(44)

where amongst the first two relationships at least one is an equality. The
above table follows from the need to guarantee degree p to the fd(s,K,P) com-
binant. The condition from the above implies:

• If ∂[k2(s)] = p − q > p − n then we have the maximal degree d1 = p − q
subfamily of {Kd1

p } with degrees

∂[k1(s)] ≤ p− n, ∂[k2(s)] = d1 = p− q, ∂[ki(s)] ≤ d1, i = 3, . . . , m.
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• If ∂[k2(s)] = p − q − 1 > p − n then we have the next value of degree
d2 = p− q − 1 and the {Kd2

p } subfamily with degrees

∂[k1(s)] = p− n, ∂[k2(s)] = d2 = p− q − 1, ∂[ki(s)] ≤ d2, i = 3, . . . , m

• the process finishes when ∂[k1(s)] = p− n = ∂[k2(s)] = dn−q+1, when

∂[k1(s)] = ∂[k2(s)] = dn−q+1 = p− n, ∂[ki(s)] ≤ p− n, i = 3, . . . ,m.

Clearly this is the last family in {Kp} for which the degree has minimal value
dn−q+1 = p− n .

Remark 4.1 For the (m, n(q)) set P the degree of the proper combinants (cor-
responding to proper sets K) takes values p ≥ n.

The entire family of proper combinants of P may thus be parameterised
by degree and orders and the entire set may be characterised by the sets of K
vectors which will be denoted as < K > Clearly,

< K >= {Kn}
⋃
{Kn+1}

⋃
. . .

⋃
. . . {Kn+q−1}

⋃
. . . (45)

whereas each subset {Kp} has the structure defined by the previous result.

Corollary 4.1 Given an (m;q) set P and a general (m;q) set K, then:

(i) The minimal degree family p=n, {K}n is expressed as

{Kn} = {{K0
n} :< K0

n >= (0, . . . , 0);
{K1

n} :< K1
n >= (0, 1, . . . , 1);

...
{Kn−q

n } :< Kn−q
n >= (0, n− q, . . . , n− q)}

(46)

(ii) The general degree family p = n + d, {Kp} is then expressed as

{Kp} = {{Kd
p} :< Kd

p >= (0, . . . , 0) + (d, d, . . . , d)
{Kd+1

p } :< Kd+1
p >= (0, 1, . . . , 1) + (d, d, . . . , d)

...
{Kd+n−q

p } :< Kd+n−q
p >= (0, n− q, . . . , n− q) + (d, d, . . . , d)}.

(47)

(iii) For the general degree p family, p ≥ n, the values of possible orders, in
decreasing order, are

d1 = p−q > d2 = p−q−1 > · · · > dn−q = p−n+1 > dn−q+1 = p−n (48)

and are given as di = p− q +1− i, i = 1, 2, . . . , n− q +1, or in increasing
order

d̃1 = p−n < d̃2 = p−n+1 < · · · < d̃n−q = p−q−1 < d̃n−q+1 = p−q(4.30c)

and are given recursively as d̃i = p− n− 1 + i, i = 1, 2, . . . , n− q + 1.

13



The proof of the above result follows by induction as indicated by the pre-
vious example. Amongst all (m; d) sets K, the set which is defined by

{Kn−1
n+q−1} = {k1(s) : ∂[k1(s)] = q − 1, ki(s) : ∂[ki(s)] = n− 1, i = 2, . . . ,m}

(31)
plays a particular role in our study and it is referred to as the Sylvester set of
P

The general p degree family may be expressed as

{Kp} = {mathcalK d̃i
p , d̃i = p− n− 1 + i, i = 1, 2, . . . , n− q + 1} =

= {Kp−n
p ;Kp−n+1

p ; . . . ; mathcalKp−q+1
p ;Kp−q

p }. (32)

The element Kp−q
p that corresponds to the highest order p − q will be referred

to as the generator of the family and its degrees are

{Kp−q
p } = (p− n, p− q, . . . , p− q). (33)

Similarly, the element Kp−n
p that corresponds to the lowest order p−n is referred

to as a co-generator of the family and its degrees are

{Kp−n
p } = (p− n, p− n, . . . , p− n). (34)

The above suggests that the entire family of rector sets K may be expressed
in a “direct sum” form as

< K >= {Kn}
•∪ {Kn+1}

•∪ . . . {Kn+q−1}
•∪ . . .

{Kp} = {Kp−n
p } •∪ {Kp−n+1

p } •∪ . . .
•∪ {Kp−q

p } (35)

for all p ≥ n. This parametrisation of K sets leads to a corresponding parametri-
sation of generalised resultants that is considered next.

5 Generalised Resultants based on Fixed degree
and order Parametrisations

The parameterisation of the sets K based on degree and order induces in a
natural parameterisation of the corresponding Generalized Resultants. This is
now considered here and this provides the basis for the study of the properties
of the family of Generalised Resultants. We consider the general (m;d) set K
that leads to a combinant of degree p which is defined by:

{Kd
p} = {k1(s) : ∂[k1(s)] = p− n = d̃, k2(s) : ∂[k2(s)] = d,

d̃ ≤ d ≤ d∗ = p− q, ki(s) : ∂[ki(s)] ≤ d, i = 3, . . . , m} (36)

The above set {Kd
p}, p ≥ n and with d taking values as above, represents the

general set generating dynamic combinants a given degree p and order p. Note
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that in the above expression we consider all ki(s), i = 3, . . . , m as polynomials
with reference degree d (∂[ki(s)] ≤ d) and thus we can express them as

k1(s) = k1,d̃s
d̃ + · · ·+ k1,1s + k1,0 = [k1,d̃, . . . , k1,1, k1,0]ẽd̃(s) = kt

1,d̃
ẽd̃(s)

ki(s) = ki,ds
d + · · ·+ ki,1s + ki,0 = [ki,d, . . . , ki,1, ki,0]ẽd(s) = ki,d̃ẽd̃(s). (37)

ẽµ(s)t = [sµ, sµ−1, . . . , s, 1].

Using this representation for {Kd
p} the corresponding combinant becomes

fd(s,K,P) =
m∑

i=1

ki(s)pi(s) =

= kt
1,d̃




sd̃p1(s)
...

sp1(s)
p1(s)


 +

m∑

i=2

kt
i,d̃




sdpi(s)
...

spi(s)
pi(s)


 , p

i,d
(s) (38)

Proposition 5.1 The dynamic combinant fd(s,Kd
d,P) is equivalent to a con-

stant combinant of degree p that is generated by the set:

Pd
p = {sd̃p1(s), . . . , sp1(s), p1(s); sdp2(s), . . . , sp2(s), p2(s); . . . ;

sdpm(s), . . . , spm(s), pm(s)} (39)

where d̃ = p− n, d̃ ≤ d ≤ p− q = d∗.

The set Pd
p is the (p, d)-power of P and has degree p. The polynomial vector

representative is

p
p,d

(s) =




p
1,d̃

(s)
p
2,d

(s)
...

p
m,d

(s)




=




Sn,d̃(p1)
Sn,d(p2)

...
Sn,d(pm)


 ẽp(s) = Sp,dẽp(s) (40)

where the structure of the Toeplitz type blocks above Sn,d̃(p1), Sq,d(pi) i =
2, . . . , m defining the corresponding Generalised Resultants is given below

Proposition 5.2 The Generalised Resultants corresponding to the parameter-
ized set {Kd

p} are defined by:

(i) Given that p
1,d̃

(s) has degree d̃ + n = p− n + n = p then

Sn,d̃(p1) =




1 an−1 an−2 · · · a1 a0 0 · · · 0
0 1 an−1 · · · a2 a1 a0 · · · 0
...

. . .
...

0 0 · · · 1 an−1 · · · · · · a1 a0


 ∈ R

(d̃+1)×(p+1)

(41)
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(ii) Given that p
1,d

(s) has degree d+q which satisfies the inequality p−(n−q) ≤
d + q ≤ p and thus d + q + 1 ≤ p + 1. The structure of Sq,d(pi) is defined
for all i = 2, . . . ,m and ∀d : p− n ≤ d ≤ p− q by

Sq,d(pi) =




0 . . . 0 bi,q . . . bi,1 bi,0 0 . . . . . . 0
0 . . . 0 0 bi,q . . . bi,1 bi,0 0 . . . 0
... 0

...
. . . . . .

...
0 . . . 0 0 . . . 0 bi,q . . . . . . bi,1 bi,0


 ∈ R

(d+1)×(p+1)

(42)

Clearly in the boundary case d = p − q, there is no zero block and when
d = p− n, then the zero block takes its maximal dimension n− q. The matrix
Sp,d ∈ Rσ×(p+1), σ = p − n − d + m(d + 1) will be called the (p, d)-generalised
resultant of the set P where p−n ≤ d ≤ p−q. Clearly the Sp,d is the basis matrix
of the (p, d) power of P,Pd

p . Clearly the properties of the (p, d) generalised
resultant.

Remark 5.1 For the given (m;n(q)) set P we can parameterise all dynamic
combinants in terms of the degree p and the corresponding order d as

(a) p = n: then 0 ≤ d ≤ n− q

(b) p = n + 1: then 1 ≤ d ≤ n− q + 1

(c) p > n + 1: then p− n ≤ d ≤ p− q

and their properties are defined by the properties of corresponding (p, d)-generalised
resultants Sp,d(P).

In the following we will investigate the properties of all dynamic combinants
by considering the corresponding family

S(P) = {Sp,d ∀ p ≥ n and ∀ d : p− n ≤ d ≤ p− q} (43)

which will be referred to as the family of generalised resultants of the set P.
Amongst the elements of S we distinguish a special element that corresponds to
p = n + q − 1, d = n − 1 and thus ∂[k1(s)] = p − n = q − 1. This generalised
resultant Sn+q−1,n−1(P) is denoted in short as S̃P and it is referred to as the
Sylvester Resultant of the set P and has the following form

S̃P =




Sn,q−1(p1)
Sq,n−1(p2)

...
Sq,n−1(pm)


 ∈ R

τ×(n+q), τ = [q + (m− 1)n] (44)

where Sn,q−1(p1) ∈ Rq×(n+q),Sq,n−1(pi) ∈ Rq×(n+q), j = 2, . . . , m and τ = [q +
(m−1)n]. The characteristic of this is that none of the blocks Sn,q−1(p1),Sq,n−1(pi)
have zero columns blocks and that the rank of S̃P is clearly related to algebraic
properties of P, as it will be seen subsequently.
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6 Spectrum Assignment of Dynamic Combinants
and the Sylvester Resultant

We have described the link of dynamic combinants to Generalised Resultants,
the structure of the family SP of all generalised resultants, and we now consider
the problem of arbitrary assignment of the spectrum of dynamic combinants for
some appropriate order and degree. This is part of the more problem dealing
with the parameterisation of all possible degree and order combinants for which
assignment may be achieved. Given that problems of spectrum assignment
of dynamic combinants are always reduced to equivalent problems of constant
combinants, we start our study by reviewing the basic results from the theory
of constant combinants

Spectral Properties and Assignability of Constant Polynomial Com-
binants

Consider the (m; n(q)) set P as described previously, with a polynomial
vector representative

p(s) =




p1(s)
p2(s)

...
pm(s)


 = [p

n
, p

n−1
, . . . , p

1
, p

n0
]




sn

sn−1

...
s
1




= P̃ ẽn(s) (45)

where P̃ ∈ Rm×(n+1) is the basis matrix of P with respect to the vector ẽn(s).
The constant polynomial combinant fd(s,K,P) is defined by

f0(s,K,P) =
m∑

i=1

kipi(s) = [k1, k2, . . . , km]P̃ ẽn(s) (46)

where K = {ki ∈ R, i ∈ m̃} is an arbitrary set. Clearly this is a polynomial of
maximal degree n and if k1 6= 0 then it has degree n. We may thus write

f0(s,K,P) = ktP̃ ẽn(s) = φ(s) = [φn, . . . , φ1, φ0]ẽn(s) (47)

The above suggests that study of properties of f0(s,K,P) is equivalent to a
study of properties of degree n polynomials with real coefficients defined by a
vector φ of Rn+1 which are defined by:

[k1, k2, . . . , km][p
n
, p

n−1
, . . . , p

1
, p] = [φn, . . . , φ1, φ0] (48)

or
ktP̃ = φt, P̃ ∈ Rm×(n+1) (49)

Lemma 6.1 For the set P with a basis matrix P̃ ∈ Rm×(n+1) the constant
combinant f0(s,K,P) is arbitrarily assignable if and only if

rank{P̃} = n + 1 (50)
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Clearly, if f0(s,K,P) is assignable a necessary condition is that m > n. The
study of constant combinants has been given in [2], where also some classification
of the sets has been given according to their spectra assignability properties.

Definition 6.1 If for a set P there exists k such that f0(s,K,P) = φ0 ∈ R, 6=
0, then the n-th degree combinant has all its roots at s = ∞ and P may be
referred to as ∞ − assignable set. In the case where there is no k such that
f0(s,K,P) = φ0 ∈ R then f0(s,K,P) has effective degree at least one and the
set P will be called strongly non - assignable. For strongly non assignable sets,
for all k at least one of the roots of f0(s,K,P) is finite.

Proposition 6.1 Consider the set P with a basis matrix P̃ = [p
n
, p

n−1
, . . . , p

1
, p

0
] ∈ Rm×(n+1).

The following properties hold true:

(i) The set P is ∞− assignable if and only if

N`{[pn
, p

n−1
, . . . , p

1
]} 6= {0} (51)

(ii) The set P is strongly nonassignable if and only if

N`{[pn
, p

n−1
, . . . , p

1
]} = {0} (52)

Furthermore, f0(s,K,P) has at least ν finite roots for all K if and only if

N`{[Pn, Pn−1, . . . , P ν ]} = {0} (53)

If we denote by P̃ (ν) = [p
n
, p

n−1
, . . . , p

ν
] the submatrix of P̃ , then ifN`{P̃ ν} =

{0} and Nr{P̃ (ν+1)} 6= {0} then ν will be called the index of P and denotes the
least number of finite zeros of f0(s,K,P) for all K. The existence of finite roots
for all k when ν ≥ 1 raises the question of whether there exists a region Ω of C
that contains the ν finite roots. Such a problem has been investigated [14]. We
consider next the spectrum assignment case for the dynamic case.

Spectral Assignability of Dynamic Combinants

We start our investigation of assignability by using the previous Lemma
that establishes assignability for the case of constant combinants. This result
together with the reduction of dynamic combinants to equivalent constant for-
mulation leads to the following result:

Proposition 6.2 Given the (m; n(q)) set P, then the combinant fd(s,K,P)
generated by the (m; d) set K is assignable, if and only if the m(d+1)×(d+n+1)
Toeplitz representation QP,d defined by (37) satisfies the condition

rank{QP,d} = n + d + 1 (54)

The link of coprimeness of P to the assignability is considered next
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Proposition 6.3 If the set P is not coprime and φ(s) is its GCD, then for all
d and all K sets the combinant fd(s,K,P) is not completely assignable and

rank{QP,d} < n + d + 1 (55)

Proof:

If P is not coprime and φ(s) is its GCD, then if P = {pi(s), i ∈ m̃} we
may write pi(s) = φ(s)p̃i(s), i ∈ m̃ and thus fd(s,K,P) =

∑m
i=1 ki(s)pi(s) =

φ(s){∑m
i=1 ki(s)p̃i(s)}

Clearly fd(s,K,P) has all zeros of φ(s) as fixed zeros and thus for all K we
do not have assignability. For such sets P (φ(s) nontrivial gcd), we have that

rank{QP,d} ≤ min(m(d + 1), n + d + 1) (56)

and thus rank{QP,d} ≤ n + d + 1. If equality holds true, then by the previous
Lemma we have assignability of fd(s,K,P) which contradicts the assumption
made above

Corollary 6.1 Necessary condition for complete assignability of fd(s,K,P) for
some d is that P is coprime.

We consider next sufficient conditions for the assignability of combinants for
some appropriate order d. This study involves an extensive use of generalised
resultants. For the special case of resultants with p = n + q − 1, d = n− 1 the
so called Sylvester resultant S̃P = Sn+q−1,n−1(P) we have the following well
known property.

Lemma 6.2 Let P be an (m,n(q)) set with Sylvester Resultant S̃P . The set P
is coprime, if and only if S̃P has full rank

We may now state the main result on the assignability of dynamic combi-
nants:

Theorem 6.1 Let P be an (m,n(q)) set. There exists a d such that fd(s,K,P)
is completely assignable, if and only if the set P is coprime.

Proof:
The necessity has already been established by the previous proposition. To

prove sufficiency, we consider d = n − 1. We consider a special combinant of
degree p = n + q − 1 and order n− 1 such as

f̃n−1(s,K,P) =
m∑

i=1

ki(s)pi(s) (57)

where
∂[k1(s)] = q − 1, ∂[ki(s)] = n− 1, i = 2, 3, . . . , m. (58)
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If we denote

k1(s) = k̃
t

1ẽq−1(s), ki(s) = k̃
t

iẽn−1(s), i = 2, 3, . . . , m (59)

Then

f̃n−1(s,K,P) = [k̃
t

1, k̃
t

2, . . . , k̃
t

m]




Sn,q−1(p1)
Sq,n−1(p2)

...
Sq,n−1(pm)


 ẽn+q−1(s) (60)

k̃
tS̃n+q−1,n−1(P)ẽp(s) = k̃

tS̃P ẽp(s)

However, S̃P is the Sylvester resultant and by the previous Lemma it has
full rank, since the set P is coprime. Therefore, rank{S̃P} = n + q and given
that S̃P and QP,d are equivalent under column - row permutations, then by the
previous remark assignability is established.

Corollary 6.2 From the (m,n(q)) coprime set P the following properties hold
true:

(i) There exists a combinant f̃n−1(s,K,P) of degree p=n+q-1 and order d=n-
1 which is completely assignable

(ii) All combinants fn−1(s,K,P) of order d=n-1 and degree p : n + q − 1 ≤
p ≤ 2n− 1 are also completely assignable.

Proof:

Part(i) follows from Theorem ?? proof by the construction of the Sylvester
resultant which leads to the definition of the combinant f̃n−1(s,K,P) with
∂[k1(s)] = q − 1 and ∂[ki(s)] = n− 1, i = 2, . . . ,m.

Consider now the general combinant of order d = n− 1 which has maximal
degree p = 2n− 1. We can then express k1(s) as

k1(s) = kn−1,1s
n−1 + . . . + kq,1s

q + kq−1,1s
q−1 + . . . + k1,1s + k0,1 =

= [kn−1,1 + . . . + kq,1; kq−1,1, k1,1, k0,1]ẽn−1(s) =

= [k̂
t

1; k̃
t

1]ẽn−1(s) (61)

Then equationfn−1(s,K,P) =
∑m

i=1 ki(s)pi(s), ∂[ki(s)] = n − 1 can be ex-
pressed as

fn−1(s,K,P) = [k̂
t

1; k̃
t

1, k̃
t

2, . . . , k̃
t

m]S2n−1,n−1(P)ẽ2n−1(s) (62)

where the generalised resultant S2n−1,n−1(P) = ŜP may be partitioned accord-

ing to the partitioning of [k̂
t

1; k̃
t
] and it is expressed as
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ŜP =




1 an−1 · · · · · · ... x · · · x

0 1 an−1 · · · · · · ... x · · · x
...

. . . . . .
... x · · · x

...
. . . . . .

...
...

...
. . . . . .

...

0 0 1
... x · · · x

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... S̃p




(63)

The upper block diagonal structure of ŜP and the full rank property of the
Sylvester Resultant S̃P implies that ŜP has full rank since rank{ŜP} = n− q +
rank{S̃P} = n− q + n + q = 2n. The proof for any degree p = n + q − 1 ≤ p <
2n− 1 follows along similar lines.

The matrix ŜP defined by (??) is an extension of the Sylvester Resultant
and may be referred to as n-order extended Sylvester Resultant. The special
combinant of order d = n− 1 and degree p = n+ q− 1 will be referred to as the
Sylvester combinant of the set P.

Remark 6.1 For the Sylvester combinant f̃n−1(s,K,P:

f̃n−1(s,K,P) =
m∑

i=1

ki(s)pi(s) (64)

∂[k1(s)] = q − 1, ∂[ki(s)] = n − 1, i = 2, . . . , m the zero assignment problem
is equivalent to making f̃n−1(s,K,P) be an arbitrary polynomial α(s) of degree
n+q-1, i.e. α(s) = αtẽn+q−1(s). This is equivalent to solving the equation

[k̃
t

1; k̃
t

2; . . . ; k̃
t

m]




Sn,q−1(p1)
Sq,n−1(p2)

...
Sq,n−1(pm)


 = αt (65)

or
k̃

tS̃P = αt. (66)

Under coprimeness assumption the above equation has always a solution and
the number of degrees of freedom is ρs = mn + 1− 2n. For the case m = 2 the
assignment problem has a unique solution.

From the previous corollary it is clear that the two combinants of the same
order d = n − 1 and different degree may be both assignable. In fact, under
the coprimeness assumption, both combinants f̃n−1(s,K,P), fn−1(s,K,P) of
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degree respectively n + q − 1 and 2n − 1 are assignable This raises the fol-
lowing important questions of investigating the assignability of all combinants
fd(s,K,P) with d < n− 1 and parameterize all combinants f̂d(s,K,P) of order
d, d ≤ n− 1 and degree p ≤ n + q − 1 which are assignable.

7 Conclusions

The fundamentals of the theory of dynamic polynomial combinants have been
introduced and their representation in terms of Generalized Resultants has been
established. The parameterization of combinants in terms of order and degree
has been introduced and this lays the foundations for investigating the properties
of the family of Generalised Resultants. The current framework allows the
development of the theory of dynamic combinants that may answer questions
related to zero distribution of combinants, and its links to the existence of a
nontrivial GCD, as well as “approximate GCD”. The conditions for existence of
spectrum assignable combinants have been established and these are equivalent
to the coprimeness of the generating set PP . Amongst the problems under
current investigation is the minimal design problem dealing with finding the
least order and degree for which spectrum assignability may be guaranteed.
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