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Approximate Zero Polynomials of Polynomial Matrices and Linear

Systems

Nicos Karcanias and George Halikias

Abstract— This paper introduces the notions of approximate
and optimal approximate zero polynomial of a polynomial
matrix by deploying recent results on the approximate GCD
of a set of polynomials [1] and the exterior algebra [4]
representation of polynomial matrices. The results provide a
new definition for the “approximate”, or “almost” zeros of
polynomial matrices and provide the means for computing
the distance from non-coprimeness of a polynomial matrix.
The computational framework is expressed as a distance
problem in a projective space. The general framework defined
for polynomial matrices provides a new characterization of
approximate zeros and decoupling zeros [2], [4] of linear
systems and a process leading to computation of their optimal
versions. The use of restriction pencils provides the means
for defining the distance of state feedback (output injection)
orbits from uncontrollable (unobservable) families of systems,
as well as the invariant versions of the “approximate decoupling
polynomials”.

I. INTRODUCTION

The notion of almost zeros and almost decoupling zeros

for a linear system has been introduced in [4] and their prop-

erties have been linked to mobility of poles under compensa-

tion. The basis of that definition has been the representation

of the Plücker embedding by using the Grassmann polyno-

mial vectors [3]. This process has introduced new system

invariant and led to the definition of “almost zeros” of a set of

polynomials as the minima of a function associated with the

polynomial vector [2]. Here we develop the concept further

by introducing the notion of “approximate zero polynomials”

using the exterior algebra framework introduced in [4], and

then by deploying the results on the approximate GCD

defined in [1]. The notion of “approximate zero polynomials”

(AZP) of a polynomial matrix and “optimal” AZP are defined

in terms of an optimization expressing the computation of the

distance of a point in a projective space from the intersection

of two varieties. The first is the Grassmann variety [3], [13]

and the second is the given degree GCD variety of the

projective space. The results on polynomial matrices are then

used to define the “approximate input, output decoupling

zero polynomials” and “approximate zero polynomial” of a

linear system.

Defining the distance of a system described by the pair

(A,B) (pair (A,C)) from the family of uncontrollable (un-

observable) systems has been a subject under consideration
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for some time [15]. It is worth pointing that although the

controllability (observability) properties are invariant under

state feedback (output injection), their “strength” (measured

with different criteria) is not. This raises the question of

whether invariant measures can be defined. Here we intro-

duce a new framework for evaluating such distances that

allows the computation of the specific system (A,B) ((A,C)),
as well as the state feedback (output injection) orbits (A+
BL,B) ((A+KC,C)) from the uncontrollable (unobservable)

systems. The latter is a new dimension to the problem and

it is complemented by the definition of the corresponding

decoupling zero polynomials.

We are using the exterior algebra framework by deploying

the Plücker embedding [3] to associate polynomial vectors to

polynomial matrices; thus we have a framework that allows

a proper definition of the notion of “approximate matrix

divisor” of polynomial models, as well as the notion of

the distance of a polynomial matrix from families of non-

coprime matrices. It is shown that the characterisation and

computation of an “approximate matrix divisor” is equivalent

to a distance problem of a general set of polynomials from

the intersection of two varieties, a GCD (defined by the

degree of the desirable GCD) and the dynamic Grassmann

variety that is defined by the Forney order [8] of the

polynomial matrix. The notion of approximate matrix divisor

introduced here refers to a family of square matrices all

having the same polynomial as determinant.

The results introduce a computational framework that

potentially can provide the means for defining “approximate

zero polynomials” for linear systems and introduce new

measures of distance of systems from uncontrollability, un-

observability using the “strength” associated with a given

approximate solution. The characterisation of distance from

uncontrollability, un-observability uses the algebraic matrix

pencil characterisation [6], [7] which is based on the proper-

ties of Grassmann vectors and associated Plücker matrices of

the corresponding pencils [9]. Using the algebraic feedback

free criteria introduced by the restriction pencils [13], [14],

a new notion of distance that is invariant under feedback

is introduced, which expresses distance from state feedback

orbit (uncontrollability case), output injection orbit (un-

observability case). The use of Grassmann vectors implies

that the general results on the “strength” of approximation,

defined in [1] for polynomial vectors, yield lower bounds for

the corresponding approximate polynomials of polynomial

matrices.



II. DEFINITIONS AND PRELIMINARY RESULTS

Consider the linear system S(A,B,C,D) :

S(A,B,C,D) : ẋ = Ax+Bu, y =Cx+Du (1)

where A ∈ R
n×n, B ∈ R

n×p, C ∈ R
m×n and D ∈ R

m×p. It is

assumed that (A,B) is controllable and (A,C) is observable.

Alternatively, S(A,B,C,D) is defined by the transfer function

matrix represented in terms of left, right coprime matrix

fraction descriptions (LCMFD, RCMFD), as

G(s) = Dl(s)
−1Nl(s) = Nr(s)Dr(s)

−1 (2)

where Nl(s), Nr(s) ∈ R
m×p[s], Dl(s) ∈ R

m×m[s] and Dr(s) ∈
R

p×p[s]. We shall denote by N a left annihilator of B, i.e.

N ∈R
(n−p)×n, NB = 0 and by M a right annihilator of C, i.e.

M ∈ R
n×(n−m), CM = 0, where N, M have full rank.

The family of frequency assignment problems has a com-

mon formulation that allows a unifying treatment in terms

of the Abstract Determinantal Assignment Problem. Thus :

(i) Pole assignment by state feedback: Pole assignment

by state feedback L ∈ R
n×p reduces to

pL(s) = det{sI −A−BL}= det{B(s)L̃} (3)

where B(s) = [sI−A,−B] is defined as the system controlla-

bility pencil and L̃ = [In,L
t ]t . The zeros of B(s) are the input

decoupling zeros of the system [6].

(ii) Design observers: The design of an n-state observer

by an output injection T ∈ R
n×m reduces to

pT (s) = det{sI −A−TC}= det{T̃C(s)} (4)

where C(s) = [sI −At ,−Ct ]t is the observability pencil and

T̃ = [In,T ] represents output injection. The zeros of C(s)
define the output decoupling zeros [6].

(iii) Zero assignment by squaring down: Given a system

with m > p and c ∈R
p the vector of the variables which are

to be controlled, then c = Hy where H ∈R
p×m is a squaring

down post-compensator, and G′(s) = HG(s) is the squared

down transfer function matrix [5]. A right MFD for G′(s)
is defined G′(s) = HNr(s)Dr(s)

−1, G(s) = Nr(s)Dr(s)
−1.

Finding H such that G′(s) has assigned zeros is defined as

the zero assignment by squaring down problem [5], and the

zero polynomial of S(A,B,HC,HD) is

zK(s) = det{HNr(s)} (5)

Remark 1: The zeros of M(s) are fixed zeros of all polyno-

mial combinants f (s). The input (output) decoupling zeros

are fixed zeros under state feedback (output injection) and

nonsquare zeros are fixed zeros under all squaring down

compensators. For the case of polynomial matrices, the zeros

are expressed as zeros of matrix divisors [7], or as the

roots of the GCD of a polynomial multi-vector [3], [4]. The

latter formulation allows the development of a framework

for defining “almost zeros” in a way that also permits the

quantification of the strength of approximation. �

A. The Abstract Determinantal Assignment Problem (DAP):

This problem is to solve equation (7) below with respect

to the constant matrix H:

det(HN(s)) = f (s) (6)

where f (s) is the polynomial of an appropriate d-degree.

DAP is a multilinear nature problem of a determinantal

character. If M(s)∈R
p×r[s], r ≤ p such that rank{M(s)}= r

and let H be a family of full rank r× p constant matrices

having a certain structure then DAP is reduced to solve

equation (7) with respect to H ∈ H

fM(s,H) = det(HM(s)) = f (s) (7)

where f (s) is a real polynomial of some degree d.

Notation [3]: Let Qk,n be the set of lexicographically

ordered, strictly increasing sequences of k integers from

1,2, . . . ,n. If {xi1
, . . . ,xik

} is a set of vectors of a vector space

V , ω = (i1, ..., ik) ∈ Qk,n, then xi1
∧ . . .∧ xik

= xω∧ denotes

the exterior product and by ∧rV we denote the r-th exterior

power of V . If H ∈ Fm×n and r ≤ min{m,n}, then by Cr(H)
we denote the r-th compound matrix of H [3].

If ht
i,mi(s), i ∈ r, denote the rows of H, columns of M(s)

respectively, then

Cr(H) = ht
1 ∧ . . .∧ht

r = ht∧ ∈ R
l×σ (8)

Cr(M(s))=m1(s)∧ . . .∧mr(s)=m∧∈R
σ [s], σ =

(
p

r

)
(9)

and by Binet-Cauchy theorem [3] we have that [4]:

fM(s,H) =Cr(H)Cr(M(s)) = ⟨h∧,m(s)∧⟩= ∑
ω∈Qr,p

hω mω(s)

ω = (i1, . . . , ir) ∈ Qr,p, and hω , mω(s) are the coordinates of

h∧, m(s)∧, respectively. Note that hω is the r× r minor of

H which corresponds to the ω set of columns of H and hω

is a multilinear function of the entries hi j of H.

DAP Linear sub-problem: Set m(s)∧ p(s) ∈ R
σ [s], f (s) ∈

R[s]. Determine the existence of k ∈ R
σ , k ̸= 0, such that

fM(s,H) = kt p(s) = ∑ki pi(s) = f (s), i ∈ σ (10)

DAP Multilinear sub-problem: Assume that K is the

family of solution vectors k of (5). Determine if there exists

Ht = [h1, ...,hr], Ht ∈ R
p×r, such that

h1 ∧ . . .∧hr = h∧= k, k ∈ K (11)

Lemma 1 [3]: Let k ∈ R
σ , σ =

(
p
r

)
and let kω , ω =

(i1, ..., ir) ∈ Qr,p be the Plücker coordinates of a point in

Pσ−1(R). Necessary and sufficient condition for the existence

of H ∈ R
r×p, H = [h1, . . . ,hr]

t
, such that

h∧= h1 ∧ . . .∧hr = k = [. . . ,kω , . . .]
t

(12)

is that the coordinates kω satisfy the quadratics

r+1

∑
k=1

(−1)v−1ki1,...,ir−1, jkv j1,..., jv−1, jv+1, jr+1
= 0 (13)

where 1 ≤ i1 < i2 < .. . < ir−1 ≤ n, 1 ≤ j1 < j2 < .. . < jr+1 ≤
n. �



The quadratics defined by equation (13) are known as the

Quadratic Plücker Relations (QPR) [3] and they define the

Grassmann variety Ω(r, p) of Pσ−1(R).

III. GRASSMANN INVARIANTS OF LINEAR

SYSTEMS

Consider T (s) ∈ R
p×r[s], T (s) = [t1(s), . . . , tr(s)], p ≥

r, rank{T (s)} = r, Xt = Range
R(s)(T (s)). If T (s) =

M(s)D(s)−1 is a RCMFD of T (s), then M(s) is a polynomial

basis for Xt . If Q(s) is a greatest right divisor of M(s)
then T (s) = M̃(s)Q(s)D(s)−1, where M̃(s) is a least degree

polynomial basis of Xt [7]. A Grassmann Representative

(GR) for Xt is defined by [4]

t(s)∧= t1(s)∧ . . .∧ tr(s) = m̃1(s)∧ . . .∧ m̃r(s) · zt(s)/pt(s)
(14)

where zt(s) = det{Q(s)}, pt(s) = det{D(s)} are the zero,

pole polynomials of T (s) and m̃(s) = m1(s)∧ . . .∧ m̃r(s) ∈
R

σ [s], σ =
(

p
r

)
, is also a GR of Xt . Since M̃(s) is a least

degree polynomial basis for Xt , the polynomials of m̃(s)∧
are coprime and m̃(s)∧ is a reduced polynomial GR (R -

R[s]- GR) of Xt . If δ = deg{m̃(s)∧}, then δ is the Forney

dynamical order [8] of Xt . m̃(s)∧ may be expressed as

m̃(s)∧= p(s) = p0 + p1s+ . . .+ pδ sδ = Pδ · eδ (s) (15)

where Pδ ∈ R
σ×(δ+1) is a basis matrix for m̃(s)∧ and

eδ (s) = [1,s, ...,sδ ]t . All R[s]-GRs of Xt differ only by a

nonzero scalar factor a ∈ R and if ∥p
δ
∥ = 1, we define the

canonical R[s]-GR g(Xt) and the basis matrix Pδ is the

Plücker matrix of Xt [4].

Theorem 1: g(Xt), or the associated Plücker matrix Pδ ,

is a complete (basis free) invariant of Xt . �

If M(s)∈R
p×r[s], p ≥ r, rank{M(s)}= r, is a polynomial

basis of Xt , then M(s) = M̃(s)Q(s), where M̃(s) is a least

degree basis and Q(s) is a greatest right divisor of the rows

of M(s) and thus

m(s)∧= m̃(s)∧·det(Q(s)) = Pδ eδ (s)zm(s) (16)

A number of Plücker type matrices are:

(a) Controllability Plücker Matrices: For the pair (A,B),
b(s)t∧ denotes the exterior product of the rows of B(s) =
[sI −A,−B] and P(A,B) is the basis matrix of b(s)t∧, then

P(A,B) is the controllability Plücker matrix and its rank

characterises the controllability properties. For the linear

system an equivalent “state feedback-free” characterisation

of controllability [14] is provided by the input-restricted

pencil R(s) = sN −NA ∈ R
(n−p)×n[s] which is invariant of

the state feedback orbit and its elementary divisors define

the set of input-decoupling zeros of the system. If r(s)t∧ is

the exterior product of the rows of R(s) and P(N,NA) is the

basis matrix of r(s)t∧, then P(N,NA) will be referred to as

the restricted controllability Plücker matrix.

Theorem 2 [9]: S(A,B) is controllable, iff P(A,B) or

equivalently P(N,NA) has full rank. �

(b) Observability Plücker Matrix: For the pair (A,C),
c(s)∧ denotes the exterior product of the columns of C(s) =
[sI −At ,−Ct ]t and P(A,C) is the basis matrix of c(s)∧.

P(A,C) is the observability Plücker matrix and its rank

characterises system observability. For the linear system an

equivalent “output injection feedback-free” characterisation

of observability [14] is provided by the output-restricted

pencil Q(s) = sM − AM ∈ R
n×(n−m) which is invariant of

the output-injection orbit and its elementary divisors define

the set of output-decoupling zeros of the system. If q(s)t∧
is the exterior product of the rows of Q(s) and P(M,AM) is

the basis matrix of q(s)t∧, then P(M,AM) will be referred

to as the restricted observability Plücker matrix.

Theorem 3 [9]: S(A,C) is observable, iff P(A,C) or

equivalently M(M,AM) has full rank. �

Remark 2: As far as the exact properties of controllability

(observability) the pencils B(s), R(s) (C(s), Q(s)) provide

equivalent characterisations. The invariance of R(s), Q(s)
under feedback has significant differences when it comes

to characterising the “relative degree” of controllability,

observability, respectively. The relative rank properties of

the matrices P(A,B), P(N,NA) and P(A,C), P(M,AM) as

defined by the singular values characterise respectively dif-

ferent system properties. In fact, rank properties of:

(i) P(A,B), P(A,C) provide an indication for relative con-

trollability and observability respectively.

(ii) P(N,NA), P(M,AM) provide an indication for relative

controllability and observability of the state feedback,

output injection orbits respectively. �

The vectors bt∧, rt∧, ct∧, and qt∧ are decomposable mul-

tivectors [3] and thus the corresponding matrix coefficients

should satisfy special conditions (based on the QPRs [3])

and thus they are sub-families of the corresponding general

sets of matrices. This leads to:

Proposition 1: The smallest singular values of the Plücker

matrices may be used to provide lower bounds for the dis-

tance from the family uncontrollable (unobservable) systems.

In particular, the smallest singular values of:

(i) P(A,B) (P(A,C)) provide a lower bound for distance of

the system S(A,B,C) from the family of uncontrollable

(unobservable) systems.

(ii) P(N,NA) (P(M,AM)) provide a lower bound for dis-

tance of the state feedback (output injection) system

orbit S(A+ BL,B) (S(A+KC,C)) from the family of

uncontrollable (unobservable) systems. �

Remark 3: For the cases p = 1, or p = n−1, for (A,B)
or m = 1, or m = n−1 for (A,C) the lower bounds become

exact. �

(c) Column Plücker Matrices: For the transfer function

G(s), m ≥ p, n(s)∧ is the exterior product of the columns

of the numerator Nr(s), of a RCMFD and P(N) is the basis

matrix of n(s)∧. Note that d = δ , the Forney order of Xt ,

if G(s) has no finite zeros and d = δ + k, where k is the

number of finite zeros of G(s), otherwise. If Nr(s) is least

degree, then Pc(N) is the column space Plücker matrix .

Theorem 4 [10]: For a generic system with m > p, for

which p(m− p)> δ +1, where δ is the Forney order, Pc(N)
has full rank. �



IV. APPROXIMATE GCD OF POLYNOMIAL SETS

Consider a set P = {a(s),bi(s) ∈ R[s], i = 1,2, . . . ,h of

polynomials which has h + 1 elements and with the two

largest degrees (n, p), which is also denoted as Ph+1,n.

The greatest common divisor (GCD) of P will be denoted

by ϕ(s). For any Ph+1,n we define a vector representative

p
h+1

(s) and a basis matrix Ph+1. The classical approaches

for the study of coprimeness and determination of the GCD

makes use of the Sylvester Resultant, SP, [11], [12]:

Theorem 5: For as set of polynomials Ph+1,n with a

resultant SP the following properties hold true:

1) Necessary and sufficient condition for a set of polyno-

mials to be coprime is that rank(SP) = n+ p.

2) Let ϕ(s) be the GCD of P. Then rank(SP) = n+ p−
degϕ(s).

3) If we reduce SP, by using elementary row operations,

to its row echelon form, the last non-vanishing row

defines the coefficients of the GCD. �

The results in [12] establish a matrix based representation

of the GCD, which is equivalent to the standard algebraic

factorisation of the GCD of polynomials. This new GCD

representation provides the means to define the notion of the

“approximate GCD” subsequently in a formal way, and thus

allows the definition of the optimal solution.

Theorem 6: Consider P = {a(s),b1(s), . . . ,bh(s)},

dega(s) = n, degbi(s) ≤ p ≤ n, i = 1, . . . ,h be a

polynomial set, SP the respective Sylvester matrix,

ϕ(s) = λksk + · · ·+λ1s+λ0 be the GCD of the set and let

k be its degree. Then there exists transformation matrix

Φϕ ∈ R
(n+p)×(n+p) such that:

S̄
(k)
P∗ = SPΦϕ =

[
0k S̄P∗

]
(17)

or

SP = S̄
(k)
P∗ Φ̂ϕ =

[
0k S̄P∗

]
Φ̂ϕ (18)

where Φϕ = Φ̂−1
ϕ , Φ̂ϕ being the Toeplitz form of ϕ(s) [12]

and

S̄
(k)
P∗ =




0 S
(k)
0

0 S
(k)
1

...
...

0 S
(k)
h



= [0 S̃

(k)
P ] (19)

where S
(k)
i are appropriate Toeplitz blocks. �

The problem which is addressed next is the formal defi-

nition of the notion of the “approximate GCD” [1] and the

evaluation of its strength. We shall denote by Π(n, p;h+1)
the set of all polynomial sets Ph+1,n with the (n, p) the maxi-

mal two degrees and h+1 elements. If Ph+1,n ∈Π(n, p;h+1)
we can define an (n, p)-ordered perturbed set

P′
h+1,n = Ph+1,n −Qh+1,n ∈ Π(n, p;h+1) (20)

= {p′i(s) = pi(s)−qi(s) : degqi(s)≤ deg pi(s)} (21)

This process is described by Figure 1.

Lemma 2 [1]: For a set Ph+1,n ∈ Π(n, p;h+ 1) and an

ω(s) ∈ R[s] with degω(s)≤ p, there always exists a family

of (n, p)-ordered perturbations Qh+1,n and for every element

of this family P′
h+1,n = Ph+1,n −Qh+1,n has a GCD divisible

by ω(s). �

Definition 1: Let Ph+1,n ∈Π(n, p;h+1) and ω(s)∈R[s] be

a given polynomial with degω(s) = r ≤ p. If Σω =
{

Qh+1,n

}

is the set of all (n, p)-order perturbations

P′
h+1,n = Ph+1,n −Qh+1,n ∈ Π(n, p;h+1) (22)

with the property that ω(s) is a common factor of the

elements of P′
h+1,n. If Q∗

h+1,n is the minimal norm element

of the set Σω , then ω(s) is referred as an r-order almost

common factor of Ph+1,n, and the norm of Q∗
h+1,n, denoted

by ∥Q∗∥, as the strength of ω(s). If ω(s) is the GCD of

P∗
h+1,n = Ph+1,n −Q∗

h+1,n (23)

then ω(s) will be called an r-order almost GCD of Ph+1,n

with strength ∥Q∗∥. A polynomial ω̂(s) of degree r for which

the strength ∥Q∗∥ is a global minimum will be called the r-

order optimal almost GCD (OA-GCD) of Ph+1,n. �

The above definition suggests that any polynomial ω(s)
may be considered as an “approximate GCD”, as long as

degω(s) ≤ p. Important issues in the definition of approxi-

mate (optimal approximate) GCD are the parameterisation of

the Σω set, the definition of an appropriate metric for Qh+1,n

and the solution of the optimization problem to define Q∗
h+1,n.

The set of all resultants corresponding to Π(n, p;h+1) set,

will be denoted by Ψ(n, p;h+1).
Remark 4: If Ph+1,n, Qh+1,n, P′

h+1,n ∈ Π(n, p;h+ 1) are

sets of polynomials and SP, SQ, S̄′P denote their generalised

resultants, then these resultants are elements of Ψ(n, p;h+1)
then S′P = SP −SQ. �

Theorem 7: Let Ph+1,n ∈ Π(n, p;h + 1) be a set, SP ∈
Ψ(n, p;h+1) be the corresponding generalized resultant and

let υ(s)∈R[s], degυ(s) = r ≤ p, υ(0) ̸= 0. Any perturbation

set Qh+1,n ∈ Π(n, p;h + 1), i.e. P′
h+1,n = Ph+1,n − Qh+1,n,

which has υ(s) as common divisor, has a generalized re-

sultant SQ ∈ Ψ(n, p;h+1) that is expressed as

SQ = SP − S̄
(r)
P∗ Φ̂υ =

[
0r S̄P∗

]
Φ̂υ (24)

where Φ̂υ is the Toeplitz representation of υ(s) and S̄P∗ ∈
R
(p+hn)×(n+p−r) the (n, p)-expanded resultant of a P∗ ∈

Π(n− r, p− r;h+ 1). Furthermore, if the parameters of S̄P∗

are such that S̄P∗ has full rank, then υ(s) is a GCD of set

P′
h+1,n. �

Remark 5: The result provides a parameterisation of all

perturbations Qh+1,n ∈ Π(n, p;h+1) which yield sets P′
h+1,n

having a GCD with degree at least r and divided by the given

polynomial υ(s). The free parameters are the coefficients of

theP∗
h+1,n−r ∈ Π(n− r, p− r;h+ 1) set of polynomials. For

a set of parameters, υ(s) is a divisor of P′
h+1,n; for generic

sets, υ(s) is a GCD of P′
h+1,n. �

The evaluation of strength of “approximate GCD” has to

relate to the coefficients of the polynomials and the Frobenius

norm is an appropriate choice.

Corollary 1: Let Ph+1,n ∈ Π(n, p;h+1) and υ(s) ∈ R[s],
degυ(s) = r ≤ p. The polynomial υ(s),υ(0) ̸= 0 is an r-order



almost common divisor of Ph+1,n and its strength is defined

as a solution of the following minimization problem:

f (P,P∗) = min
∀P∗

∥∥SP −
[

0r S̄P∗
]

Φ̂υ

∥∥
F

(25)

where P∗ ∈ Π(n, p;h+ 1). Furthermore υ(s) is an r-order

almost GCD of Ph+1,n if the minimal corresponds to a

coprime set P∗ or to full rank SP∗ . �

The optimization problem defining the strength of any

order approximate GCD is now used to investigate the “best”

amongst all approximate GCDs of a degree r. We consider

polynomials υ(s), υ(0) ̸= 0.

Optimisation Problem [1]: This can be expressed as

f1(P,P
∗), ∥Φ̂υ∥F · f (P,P∗) (26)

= min
∀P∗

{∥SP −
[

0r S̄P∗
]

Φ̂υ∥F · ∥Φυ∥F} (27)

= min
∀P∗

∥SPΦυ −
[

0r S̄P∗
]
∥F (28)

where P, Φυ have the structure defined by υ(s) of degree r.

Theorem 8 [1]: Consider the set of polynomials P ∈
Π(n, p;h+1) and SP be its Sylvester matrix. Then,

1) For a certain approximate GCD υ(s) of degree k, the

perturbed set P̃ corresponding to minimal perturbation

applied on P, such that υ(s) becomes an exact GCD,

is defined by:

SP̃ = S̃
′

PΦ̂υ =
[

0k Ŝ2
P

]
Φ̂υ (29)

2) The strength of an arbitrary υ(s) of degree k is

f (P,P∗) = min
∀P∗

∥∥S̃′PΦυ

∥∥
F

.

3) The optimal approximate GCD of degree

k is a ϕ(s) defined by solving f (P,P∗) =
min

∀P∗ degϕ(s)=k

{∥∥S̃′PΦϕ

∥∥
F

}
.

�

The optimization problem defined in the above Theorem is

non-convex. Computational algorithms for for calculating the

optimal approximate GCD are currently under investigation.

V. GRASSMANN INVARIANTS, APPROXIMATE

ZERO POLYNOMIALS AND DISTANCE PROBLEMS

The characterisation of the “approximate GCD” and its

“optimal” version provides the means to define the respective

approximate zero polynomials for different classes of linear

systems properties, which cover the cases: (a) Approximate

zero polynomial based on n(s)∧; (b) Approximate input

decoupling zero polynomial based on b(s)∧; (c) Approximate

invariant input decoupling polynomial based on r(s)∧; (d)

Approximate output decoupling polynomial based on c(s)∧;

(e) Approximate invariant output decoupling polynomial

based on q(s)∧.

Note that such polynomial multi-vectors have to satisfy the

corresponding set of QPRs and this makes the computation

of the approximate polynomials a more difficult problem. We

shall develop the results for the case of a general polynomial

matrix.

Corollary 2: Let Π(n, p;h+1) be the set of all polynomial

sets Ph+1,n with h + 1 elements and with the two higher

degrees (n, p), n ≥ p and let SP be the Sylvester resultant of

the general set Ph+1,n. The variety of PN−1 which characterise

all sets Ph+1,n having a GCD with degree d, 0 < d ≤ p is

defined by the set of equations Cn+p−d+1(SP) = 0. �

The above defines a variety ∆d(n, p;h+1) described by the

polynomial equations in the coefficients of the vector p
h+1,n

,

or the point Ph+1,n of PN−1, and will be called the d-GCD

variety of PN−1. This characterises all sets in Pi(n, p;h+1)
with a GCD of degree d. The definition of the the “optimal

GCD” is thus a problem of finding the distance of a given

set Ph+1,n from the variety ∆d(n, p;h+1). For any Ph+1,n ∈
Π(n, p;h+1) this distance is defined by

d(P,∆) = min
∀P∗,ϕ

∥∥SP −
[

0k S̄P∗
]

Φ̂ϕ

∥∥
F

(30)

ϕ(s) ∈ R[s], P∗ ∈ Π(n− k, p− k;h+1), degϕ(s) = k, the k-

distance of Ph+1,n from the the k-GCD variety ∆k(n, p;h+1)
and ϕ̃(s) emerges as a solution to an optimisation problem

and it is the k-optimal approximate GCD and the value

d(P,∆) is its k-strenght. For polynomial matrices we can

extend the scalar definition of the approximate GCD as

follows:

Definition 2: Consider the coprime polynomial matrix

T (s)∈R
q×r[s] and let ∆T (s)∈R

q×r[s] be an arbitrary matrix

such that

T (s)+∆T (s) = T̂ (s) = T̃ (s)R(s) (31)

where R(s) ∈ R
r×r[s]. Then R(s) will be called an approxi-

mate matrix divisor of T (s). �

The above definition may be interpreted using exterior

products as an extension of the problem defined for poly-

nomial vector sets. The difference between general sets

of vectors and those generated from polynomial matrices

by taking exterior products is that the latter must satisfy

the decomposability conditions [3] and in turn they define

another variety of the Grassmann type.

Consider now the set of polynomial vectors Π(n, p;h+1)
and let Π∧(n, p;h + 1) be its subset of the decomposable

polynomial vectors p(s) ∈ R
σ [s], which correspond to the

q×r polynomial matrices with degree n. The set Π∧(n, p;h+
1) is defined as the Grassmann variety G(q,r;R[s]) of the

projective space Pσ−1(R[s]). The way we can extend the

scalar results is based on:

(i) Parameterise the perturbations that move a general set

Pσ ,n, to a set P′
σ ,n = Pσ ,n +Qσ ,n ∈ ∆k(n, p;σ) where initially

Qσ ,n and P′
σ ,n are free.

(ii) For the scalar results to be transferred back to the

polynomial matrices the sets P′
σ ,n have to be decomposable

multi-vectors which are denoted by Π∧(n, p;σ). The latter

set will be referred to as the n-order subset of the Grassmann

variety G(q,r;R[s]) and the sets P′
σ ,n must be such that

P′
σ ,n ∈ Π(n, p;σ)

∩
∆k(n, p;σ) = ∆∧

k Π(n, p;σ) (32)

where ∆∧
k Π(n, p;σ) is the decomposable subset of

∆k(n, p;σ). Parameterising all sets P′
σ ,n provides the means

for posing a distance problem as before. This is clearly a

constrained distance problem since now we have to consider



the intersection variety defined by the corresponding set

of QPRs and the equations of the GCD variety. Some

preliminary results on this problem are stated below:

Lemma 3: The following properties hold true:

1) Π∧(n, p;h+1) is proper subset Π(n, p;h+1) if r ̸= 1

and q ̸= r−1.

2) Π∧(n, p;h+ 1) = Π(n, p;h+ 1) if either r = 1 or q =
r−1.

3) The set ∆∧
k Π(n, p;σ) is always nonempty. �

The result is a direct implication of the decomposability

conditions for multivectors [3].

Theorem 9: Let Pσ ,n ∈Π∧(n, p;σ) and denote by d(P,∆k),
d(P,∆∧

k ) the distance from ∆k(n, p;σ) and ∆∧
k (n, p;σ) respec-

tively. The following hold true:

1) If q = r − 1 or r = 1, then the solutions of the two

optimisation problems are identical and d(P,∆k) =
d(P,∆∧

k ).
2) If q ̸= r−1 and r ̸= 1, then d(P,∆k)≤ d(P,∆∧

k ). �

Remark 6: For polynomial matrices this distance problem

is defined on the set Ph+1,n of Π(n, p;h + 1) from the

intersection of the varieties ∆d(n, p;h+1) and G(q,r;R[s]).
�

The above suggests that the Grassmann distance problem

has to be considered only when q ̸= r − 1 and r ̸= 1. The

Grassmann distance problem requires the study of some

additional topics linked to algebraic geometry and exterior

algebra such as: (i) Parameterisation of all decomposable

sets P with a fixed order n; (ii) Characterisation of the set

∆∧
k (n, p;σ) and its properties. For the special case r = 1,

q = r − 1 the distance d(P,∆k) is reduced to that of the

polynomial vector case since we guarantee decomposability.
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Fig. 1. The notion of “approximate GCD”

VI. CONCLUSIONS

The paper uses the recently introduced notion of “approx-

imate GCD” of a set of polynomials [1] and the charac-

terization of controllability and observability properties in

terms of exterior products and associated Plücker matrices of

controllability and observability pencils [9] to define distance

from the set of uncontrollable, unobservable systems, as well

as the corresponding approximate decoupling polynomials;

furthermore, the use of the restriction pencils R(s) and Q(s)
allows the definition of the distance of the state feedback,

output injection orbits from uncontrollable, unobservable

families respectively. The main distinctive feature of the

approach, is the definition of distance of the orbits of systems

from the uncontrollable, unobservable sets, as well as the

definition of the approximate decoupling polynomials. The

paper also extends the notion of approximate GCD of a set

of polynomials to the case of approximate matrix divisors.

It has been shown that this problem is equivalent to a

distance problem from the intersection of two varieties and

it is much harder than the polynomial vectors case. Our

approach is based on the optimal approximate GCD and

when this is applied to linear systems introduces new system

invariants with significance in defining system properties

under parameter variations on the corresponding model.

The optimization problem is non-convex and developing

methodology for computing this distance is a problem of

current research.
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