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Properties and Classification of Generalized  Resultants and 
Polynomial Combinants  

Nicos Karcanias 

  

Abstract—Polynomial combinants define the linear part of 

The st ms (such as pole 

zero

 

always an order and degree such that the corresponding 

the Dynamic Determinantal Assignment Problems, which 
provides the unifying description of the frequency assignment 
problems in Linear Systems. The theory of dynamic polynomial 
combinants have been recently developed by examining issues 
of their representation, parameterization of dynamic 
polynomial combinants according to the notions of order and 
degree and spectral assignment. Dynamic combinants are 
linked to the theory of “Generalised Resultants”, which provide 
the matrix representation of polynomial combinants. We 
consider coprime set polynomials for which assignability is 
always feasible and provides a complete characterisation of all 
assignable combinants with order above and below the 
Sylvester order. The complete parameterization of combinants 
and coresponding Generalised Resultants is prerequisite to the 
characterisation of the minimal degree and order combinant for 
which spectrum assignability may be achieved. 

I.  INTRODUCTION 

udy of determinantal type proble

 assignment, stabilisation) has been unified by the 

development of a framework referred to as Determinantal 

Assignment Problem (DAP) [8]. DAP is a multi-linear nature 

problem and thus may be naturally split into a linear and 

multi-linear problem (decomposability of multivectors). The 

final solution is thus reduced to the solvability of a set of 

linear equations coming from the spectrum assignability of 

polynomial combinants [7], characterising the linear problem, 

together with quadratics characterising the multi-linear 

problem of decomposability, which in turn define some 

appropriate Grassmann variety [3].  
Dynamic compensation problems may also be studied 

within the DAP framework, but their linear sub-problem 
depends on dynamic polynomial combinants which have 
much richer properties and they have been studied recently 
[6]. Amongst the open issues in the area of dynamic 
frequency assignment problems, is defining the least 
complexity compensator, for which we may have solvability 
of the arbitrary spectrum assignment of the corresponding 
DAP. This is referred to as the minimal design problem of 
DAP. The fundamental aspects of the theory of dynamic 
polynomial combinants have been examined in [6], where 
their representation in terms of Generalized Resultants and 
Toeplitz matrices has been established [2]. Dynamic 
polynomial combinants have been parameterized in terms of 
order and degree [6] and this has introduced the foundations 
for the investigation of a number of properties of the family of 
dynamic combinants, where the most prominent is that of 
spectrum assignability for some value of the degree and order 
of the dynamic combinant. Under the conditions of 
coprimeness of polynomials defining the combinant, there is 

combinant has its spectrum assignable. Parametrising all 
dynamic combinants according to order and degree is a 
problem that is considered here. We show that all combinants 
of degree greater than the Sylvester degree have elements  
which are assignable, and there is a set of degrees less than 
the Sylvester degree for which we have assignable 
combinants for some appropriate order. The latter property 
motivates the study for finding the least degree and order 
combinant that is spectral assignable. The paper provides an 
overview of the theory of dynamic combinants and examines 
the solution of the Minimal Design Problem. 

Throughout the paper we use the notation: 
k nQ
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,   denotes 

the set of lexicographically ordered, strictly increasing 

sequences of k  integers from the set  {1n 2 }… n, , , .  If  is 

a v

V
ector space and 

1
{ }

ki i
…v v, ,  are vectors V  then  of 

11
 ( )ki ik

… i … iv v vω ω∧ ∧ = ∧, = , ,  denotes their exterior 

product and r∧ V   t  exterior power of  V . If  he  thr −
m nH ×∈F  and { }r m n≤ , ,min  then ( )rC H denotes the 

r − th compo atrix of und m H   [11].   

I. Basic Definitions and roperties binants 

 

I  P  of  Com

A. he Determinantal Assignment and Polynomial 
ombinants 

ng 
ommon 
gnment 

pro

T
C
A large family of problems for Linear Systems involvi

Dynamic Compensation [4], may be reduced to a c
formulation represented by the determinantal assi

blem (DAP) [8]. This deals with the study of the following 
equation with respect to polynomial matrix H(s): 

                              det (H(s) M(s)) = f(s)                         (1) 

where f(s) is a polynomial of an appropriate degree d.  

If ( ) [ ]p mM s s×∈ , r ≤ p, such that rank(M(s)) = r and let 

      f  

H  be a family of full rank r×p constant matrices having a 

certain structure. Solve with respect to H ∈H  the equation:  

 M (s,H) = det (H M(s)) = f(s)        (2) 

where f(s) [s]∈ with a degree d. If h ( )  , m (s) , it

ii s r∈ , 

are the rows of H(s), columns of M(s) respectively, then  

 C ( (s)) ( )  ... ( ) ( )t t t l

1 r h h sr H = s h s σ×∧ ∧ = ∧ ∈
 

C ( (s)) = (s)  ... ( ) [s1 rr M m m (s) m s σ∧ ∧ = ∧ ∈ ]  

p

r
=σ ⎛ ⎞⎜ ⎟⎝ ⎠,then by the Binet-Cauchy theorem[11] we have that [7]  

 



  

fM(s,H) = < h(s) ∧, m(s) ∧ > =  ω ω= h (s)m (s)∑     (3) 

r,pQω∈
ω = ω(s) are the coordi f 

h

(i1, ..., ir)∈Qr,p , and hω(s), m nates o

(s)∧, m(s)∧ respectively. Note th inor oat hω(s) is the r×r m f 

H(s), which corresponds to the ω set of columns of H(s) and 

thus hω(s), is a multilinear alternating function of the entries 
hij(s) of H(s). The study of the zero assignment of fM(s,H) 
may thus be reduced to a linear subproblem and a standard 
multilinear algebra problem as it is shown below. 

(i) Linear subproblem of DAP: Set ( ) ( ) [s]m s p s σ∧ = ∈ . 

Determine whether there exists a ( ) [s]k s σ∈ , ( )k s  ≠ 0, :  

fM(s, k(s)) = k(s)t  p(s) = k (s)p (s) =i∑  f(s) [ ]  i s∈   (3) 

(ii)  Multilinear subproblem of DAP:  Assume that is 

ctors k

K  

the family of solution ve (s) of (3). Determine w  
t 

hether

there exists H(s) = [h1(s), ..., hr(s)], ( ) [s] :  
t p rH s ×∈

( ) ... ( ) ( )  ( )1 rh s h s h s k s∧ ∧ = ∧ = ∈K      (4) 

                                                
The representation problem of a 

                                         
given order and degree 

dynamic combinant is summarised here [6] and this in
the param

                                                                                   

volves 
eterization of all sets leading to a polynomial 

combinant of a given degree p. We assume that the maximal 

degree polynomial inK , 1( ) 0k s ≠ . If we define P  as 

{ ( ) [ ]ip s s i m= ∈ , ∈ ,P ( ){ { }  2 }i smax degq p i … m= , = , ,
{ ( )} ( ,deg p s degn … m≥= , , ,                (5a

1
{

i
p )}  2s i =     )            
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1

1 1 1( ) ,n n

np s s a s … a s a−−= + + + +                             (5.b) 

1 1 0( )  2q

i i q ip s b s … b s b i … m, , ,= + + + , = , ,  

1

2

0 1

( ) 1

( )
( ) [ ] ( )

( )

nn

n

m

p s

p s s
p p pp s … e

p s s

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

⎡ ⎤⎢ ⎥⎢ ⎥= = , , , =⎢ ⎥⎢ ⎥⎣ ⎦
P s          (5.c) 

Then the set  will be referred to as an (m;n(q))-ordered 

set of R[s]. Co ider now the , set 

P
ns

≤
{ ( ) [ ] }ik s s i m= ∈ , ∈K

{ ( )}ideg k s d with the resulting d-order polynomial 

combinant  of P , defined as 

1

( ) ( ) ( ) ( ) ( )
m

t

d i

i

if s k s p s s p sk
=

, , = =∑K P
 

where   
1 0

( ) [ ( ) ( )]
t tt d

m d
s k s … k s … sk k= , , = + + t

k   (6) 

The matrix  is the basis matrix of  and 

s t e 

 
( 1)m nP × +∈

he representativ

P
generate ( ) [ ]mp s s∈  of .  

B ed Resultant 

 with a representative vector  

P

. Generalis Representations of Dynamic 
Combinants 

For the general (m;d) set K

10
( ) [ ( ) ( )]

t tt dk s … s k s … k sk k= + + = , ,  (7) md

then ( )df s, ,K P  may be expressed as 

1 1 0

1

( )

( ) [ ]
( )

( )

d

i

m

d i d i

i i

i

s p s

f s k … k k
sp s

p s

, , ,=

⎡ ⎤
, , = , , , ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

∑K P
⎢⎢ ⎥⎥  (8) 

The above leads to the following representation of mic 

combinants:  

 

dyna

Proposition (1): Every dynamic combinant combinant 

(df s, ,P )K ) defined by an (m;d) set K  is equivalent to 

a constant poly

power of the (m

nomial combinant define  the (m(d+1);0) d by

set 
0K  and generated by the (m(d+1);(n+d)(q+d)) the d-th 

;n(q)) set P , defined by 

1 1{ ( ) ( ) ( ) ( )}

    

d d d

m m

     

s p s … p s … s p s … p s= , , ; ; , ,P    (9)  ▀ 

If n dμ = + , ( ) [ 1]ts s se …μ
μ = , , , ,

1
 [ ( )]

d
p s n d,∂ = , +

 [ ( )]
i d

p s q, d∂ ≤ +  for all i=2,…,m,  then 

 

1 12 0

a a a
1 2 1 0

1

1 1 0

( 1) ( 1)

1 1

0

0 1 0
( ) ( )

0 0 1

           = ( ) ( )  ( ) 2, 

n n

n

d

n

d

n d n d

a a

a

1 0a a

p s se

a a a

S p s S pe … mi

μ

μ
μ

− −

−
,

−
+ × +

, ,

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

=

, ∈ , ,=
  

1 0

1 0

1 0

( 1) ( 1)

0 0 0 0

0 0 0 0 0
( ) ( )

0

0 0 0 0

          ( ) ( )  ( )

i q i i

i q i i

i d

i q i i

d

n d i n d i

… b … b b … …

… b … b b …
p s se

… … b … … b b

S p s S pe

μ

μ
μ

, , ,

, , ,
,

, , ,
+ × +

, ,

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

=

= , ∈

(10) 

The set  has then a basis matrix representation as shown 

in (11) where which is the d-th 

 Resu

 
dP

t P

( 1) ( 1)m d

dS μ+ × +, ∈P

d

Generalised ltant representation representation [1], [2] 

of the se and S ,P
sion for the dynamic co

 is the basis matrix of the 
dP set.   An 

alternative expres mbinant is obtained 

using the basis matrix description of the set P [6], referred 

to as the T plitz sentation. 

 

oe repre

 



  

1 1
( ) ( )d n d

p s S p

p
22

( ) ( )
( ) ( ) ( )

( )( )

n dd

dd

n d m
md

s S p
p s s S se e

S pp s

μ μ
,, ,

,,

, ,⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

P    (11) 

III.  DEGREE AND ORDER PARAMETERISATION OF  

The general representation of dynamic combinants based on 
the order may lead to combinants of varying degree. An 
alte e f 

If

⎢ ⎥ ⎢ ⎥

K   

rnative characterisation based on the fixed degre  o

( )df s, ,K P  but with varying order K  provides an explicit 

parameterisation of the K  sets. The fixed degree 

parameterisation of combinants is summarised below [6]: 

Theorem (1): Given the set  and a general proper (m;d) 

set K . Then, 

P

(i) For all proper (m;d) sets K  [ ( )]
d

f s n d≤∂ , , ≤ +KP  

(ii)  

 n

0p p n, ≥>∈ , then the family { }pK for 

which  [ ( )]df s p∂ , , =K P , dsatisfies the ns  

e of the first two condit  as qu

(iii)  The fixed degree p family 

con itio

where

     

1 [ ( [ ( )]  2 ...ik s k s p q i m∂ ≤ − , = , ,
 at 

least on ions holds  an e ality. 

)]   p n≤ − , ∂
{ }pK  contains n-q+1 

1

subfamilies parameterised by a fixed order d. The possible 

values for the order are: 

1 2 1d p q d p q d p n− += − > = − − > = −  

       and the corresponding subfamilies are 
1{ } { ( )  [ (

d
k s k

1 n q…>
1 2)]  [ ( )]p i s

1          [ ( )] 3 }i

p n k s d≤ − , ∂ =
 

p q k s d i … m= − , ∂ ≤ , = , ,
= : ∂K =

 

2 =

,

▀ 
Clearly, the degree of the proper combinants satisfies 

2

1 2

2

{ } { ( )  [ ( )]  [ ( )]

      1  [ ( )] 3 }

d

p i

i

k s k s p n k s d

p q k s d i … m

= : ∂ ≤ − , ∂ =
= − − , ∂ ≤ , = , ,

K
 

  

 

1 2 1

1

1{ } { ( )  [ ( )]  [ ( )]

                              [ ( )]  3 }

d

p i n q

i n

n q k s k s k s d p n

k s d p n i … m

− +
− +

− + = : ∂ = ∂ = = −
∂ ≤ = − , = , ,

K
 

q

p n . 

 thus be

vector

≥
The entire family of proper combinants of  may  

   

whereas each subset 

P
parameterised by degree and orders. The set of  allK  

is denoted as < >K  and may be partitioned as 

1 1{ } { } { }n n n q…+ + −< >= ∪ ∪ ∪K K K K             (12) 

 

s,  

{ }pK

{ }nK
 has the structure  

previous result.  Thus,  class acts as a generator of all 

 simp

defined by the

other classes derived ly by adding the corresponding 

increase in the degree. For a class { }d

pK  , 
d

p< >K  denotes  

the ordered set of degrees of the { ( ) }ik s i m, ∈  polynomials. 

Corollary (1): Given an (m;q) set nd al (m;d) 

setK , then: 

 P  a

0 0,

0 1

0

…

…

n q

, ,
, ,

, −
 p=n+d

 a gener

0) ;

)}… n q, , −
, { }

(i) The minimal degree family p=n, { }nK  is expressed as 

0 0{{ }

           { }

n n n

n q n q

n n

− −

:< >

:< >=

K K
K K K

K K

 

1 1
1{ }   { }    ( ) ;     (13)

n n

,= :< > =
 (

(

=

ily(ii)  The general degree fam
pK  is

);    

);      (14)

) (

d

d … d

q d d

,
,

+ , ,

 then 

expressed as 

 

(iii)  For the general degree p 

1

} {{ } (0 0) (                    

{ }

d d

p p p

d

p

… d d …

+
:< >= , , + , ,

:<
K K K

K K 1

{

(0 1                  

{ } (0 )}             

d

p

d n q d n q

p p
… d

+

+ − + −

=
>= , ,

:< >= , ,K K

1, ,

− −

fam

) (… d

n q … n

+ ,

, ,

ily, p n , the valu

 

≥
order are:

es of 

possible orders in decreasing 

1 2

1

1 ....

   1

n q

n q

d p q d p q d

p n d p n

−
− +

= − > = − − >
= − + > = −  

>

and they are given as  

1 ,   i p qd i− + ..., =1,2,i n - q +1= −
▀ 

ned by 

,
. The general 

1 }p q

p

−K

Amongst all (m;d) sets K , t

is referred to as the Sylvester s p

degree family may be expressed as:

he 

)]

e

set defi

1  q= − ,

t of P
 

;p

1 1

1

1 ( )  [ ({ } {

}
i i

n

n q k s k s

k m

−+ − : ∂=K
 

                    ( )  [ ( )] 1  2k s s n i …: ∂ = − , = ,
 

1

, ...,{ }  { ,  

{ ; ;....;

,   }

       =   

d

p p

p n p n p q

i
i 1,2 n q 1d p n i i

− − + − −
− +− += =K K

K K K

=

p p

=

The set 
p q

p

−K  with the highest 1 order p qd −=  is the 

generator of the family and its degrees are 

( p q

p )p n p q …− , − ,< > = 5) 

p n

p q−  (1
−K ,

Similarly, the set p

−K  the
n qd − +1 p n−= with  lowest 

order  is the co-generator of th re e family and its deg

( )

rees a

 p n

p p n p
− − ,< > =K n … p− , , n−           (16)                  

 



  

The above suggests the entire may be 

expressed in “direct sum” form ( ∪ ) as 

 that family

IV.  GENERALISED RESULTANTS AND PARAMETRISATI

The parameterisation of the sets  induces a natural 

param terisation of the corres ding Generalized 

ts. Fo d) set inants o

The set 

< >K  

1 1  { } { }  ..... {

}   (

n n n q+ + −
−

< > = ∪ ∪ ∪K K K K
1{ }  { } { } ..... { 17) p n p n p q

p p p p

− − += ∪ ∪ ∪K K K K
 

}  .....∪
                                                       

ONS 

K
pone

Resultan r the (m; K  that leads to comb f 

degree p its structure is explicitly defined by:  

1 1

2 2

( )  [ ( )]

              ( )  [ ( )] ....,

              ( )  [ ( )]  3

{ } {

}   (18

d

p
k s k s p n d

k s k s d d d p q

k s k s d i … m

∗

: ∂ = − = ,
: ∂ = , ≤ ≤ = − ,
: ∂ ≤ , = , ,

=K

  

 

 

)
i i

d

{ }d

p p n≥,K  and with d taking values as above, 

represents the general set generating dynamic combin ts of 

a given degree d and order p. This representation leads to: 

 

on (2): The

an

Propositi  dynamic combinant ( )d

d df s, ,K P , 

generated by the set { }d

pK  is equivalent to a constant 

combinant of degree p t generated by th  

         

its v tor representative is  

hat is e polynomial set

). 
d

pP ,   d p n d d p q d ∗= − , ≤ ≤ − = ,as in (9

                                                                                  ▀ 

The set 
d

pP  is the (p,d)- power of P  and has degree p and  

ec

 

1 1
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p s S p
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p
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p dp p
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(19

Proposition (3): The Generalised Resultants corresponding 

to the parameterized set  are defined by: 

i) Given that

                     

) 

 

{ }d

pK

 (  
1

( )
d

p s,  has degree 

a

         (20a)     

(ii) Given that

d n p n n+ = − + = p , 

then 
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 ( )
di

p s,  has degree d+q which satisfies th

inequality  and thus 

e 

( )p n q d q p− − ≤ + ≤

1 1d q p+ + ≤ + structure of ( )q d iS p,  is defined for 

all 2i …

,

m

 the 

= , q,  and d p n d p∀ : − ≤
  1  0

  

0

0

0

i q i i

i q i

i q i
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≤

1  0

 

0

0
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b b

b …

,

,

−  by 
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 1  0
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i
… b , ,
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0
q d i

…

S p,

0 0 0… …
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b
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  (20b)              

)

=

The matrix p dS ,
will be called the (

s

( 1)( ) pσ× +∈ ,P
p,d)- Generalised

ible values of d are: 

▀ 

 

( 1d m d− + +  

 of the set P
d p q≤ − . 

 p nσ = −
 Resultant

p n− ≤where the pos

Clearly the ( )p dS , P  matrix, or p dS , , is the basis matrix  

the (p,d) power of 
d

 of

p,P P .  

Remark (1):  set P  we c rameterise all dynamic 

combinants by the 

(a)     p=n: then    

 For th

 

e an 

degree p and the

0 d n q

pa

 corresponding order d as:  

 ≤ ≤ −   

(b)     p=n+1 : then 1 1d n q≤ ≤ − +   

    p>n+1: then p n d p q(c) − ≤ ≤   −
and their properties are define

neralised 

d by the pr

resultants
p dS ,

operties of 

▀ corresponding (p,d)- ge ( )P  

 

The properties of all dynamic combinants are described by 

the corresponding family of matrices 

 

 ( ) {  }p dS S p n d p n d p q,= ∀ ≥ ∀ : − ≤ ≤ −P and    (21)                 
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where ≅  denotes row equivalence on matrices.  
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The above clearly leads to the following result: 
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rms of Generalized Resultants has been establish  

eterization of combinants in terms of order and de

has been introduced and this lays the foundations f

investigating ily of Generalised 
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Representation of GCD”. Int. J. Control. Vol 76, pp1666–

1683. 

[3] Hodge, W.V.D.  and. Pedoe, P.D (1952). “Methods of 

erization of the greatest common divisor of a set of 

ial Combinants and Generalised Resultants”, 
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 Strength of Approximation”. 

pole placement map: a closed 

. and Karcanias, N. (1993). “Computation of 
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te ed. The
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or 

 the properties of the fam

Resultants. The current framework allows the development 

of the theory of dynamic combinants that may answer 

questions related to zero distribution of combinants, and its 

links to the existence of a nontrivial GCD, as well as 

“approximate GCD”. The parameterizations in terms of order 

and degree and the conditions for existence of spectrum 

assignable combinants provide the means for the 

investigation of the minimal design problem dealing with 

finding the least order and degree for which spectrum 

assignability may be guaranteed.  The study of this problem 

and the proof of the results is given in  [14]. 
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