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ABSTRACT
The paper examines the problem of systems redesign within
the context of passive electrical networks by considering the
problem of multi-parameter and topology changes, and their
representation. This representation may be used to investigate
the impact of such changes on properties such as characteris-
tic frequencies. The general problem area is the modelling
of systems, whose structure is not fixed but evolves during
the system life-cycle. The specific problem we are addressing
is the study of effect of changing the topology of an electri-
cal network that is changing individual elements of the net-
work into elements of different type and value, augmenting /
or eliminating parts of the network and developing a frame-
work that allows the study of the effect of such transforma-
tions on the natural frequencies. This problem is a special
case of the more general network redesign problem. We use
the Impedance-Admittance models and we establish a rep-
resentation of the different types of transformations on such
models. The representation of the structural transformations
is given in terms of the companion pencil that preserves the
natural topologies of the RLC network.

Index Terms— Systems Theory, Networks Theory

1. INTRODUCTION

The problem of redesigning autonomous (no inputs or out-
puts) passive electric networks [1], [2] aims to change the
network (natural frequencies) by modification of the types
of elements, possibly their values, interconnection topology
and possibly addition, or elimination of parts of the network.
As such, this is a problem that differs considerably from a
standard control problem, since it involves changing the sys-
tem itself without control and aims to achieve the desirable
system properties, as these may be expressed by the natural
frequencies by system re-engineering. In fact, this problem
involves the selection of alternative values for dynamic ele-
ments (inductances, capacitances) and non-dynamic elements
(resistances) within a fixed interconnection topology and/or
alteration of the network interconnection topology and possi-
ble evolution of the (increase of elements, branches). The aim

of the paper is to define an appropriate representation frame-
work that allows the deployment of control theoretic tools
for the re-engineering of properties of a given network when
there are multi-parameter variations within a fixed, or variable
cardinality network topology. We use impedance and admit-
tance modelling [2], [3] for passive electrical networks and
consider here systems with no sources (autonomous descrip-
tions), since our current interest is on the shaping of natural
frequencies. The emphasis here is on the study of the different
representations of the passive network that enable the inves-
tigation of the transformations on such models as structural
transformations. The problem considered here is:

• Define the representation of changes of a many dy-
namic, or non-dynamic elements with preservation, or
alteration of existing topologies without changes in
the overall nodal or loop cardinality of the network
and define a framework for studying natural frequency
assignment.

The overall aim is to explore the structure and representations
of the Impedance-Admittance model W (s) and introduce ap-
propriate representation of the above transformations which
enable the study of the shaping of natural frequencies. Matrix
representations of the above transformations are introduced
as additions of structural transformations on the W (s) model.
For RL (resistor-inductor) or RC (resistor-capacitor) networks
the corresponding impedance or admittance models become
matrix pencils and it has been shown that the single param-
eter variation problem is equivalent to Root Locus problems
[4]. The general case of RLC networks is considered and
we introduce the notion of companion pencil, sF + G, that
has the same non-zero structure with W (s) and preserves the
natural topological properties of the network. We establish
the representation of cardinality preserving transformations
as additive transformations on sF +G [5] and show that nat-
ural frequency assignment may be studied within the exterior
algebra framework of the Determinantal Assignment Problem
[6], [7], [8].
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2. PASSIVE NETWORK MODELS AND
TOPOLOGIES

2.1. Impedance and Admittance Models

In the network loop analysis method, the variables are se-
lected such that the vertex law is automatically satisfied.
Here, we consider only planar graphs with b branches and
n vertices. We then consider the variables associated with
each of the meshes and we define them as loop variables. The
overall system is reduced to a number of meshes, which are
[q = (b� n + 1) [3],[9], referred to as loop cardinality of

the network. If we denote by (f1, f2, ..., fq) the set of the
Laplace transforms of the loop currents and by (us1, ..., usq)
the set of Laplace transforms of equivalent voltage sources,
then the loop or impedance model is defined by [10]:

Z(s)f(s) = us(s) (1)

where Z(s) has elements zii(s) expressing the sum of
impedances in loop i and zij(s) is the sum of impedances
common between loops i and j. This is known as the loop or
impedance model and it is an integral-differential symmetric
matrix and Z(s) is the network impedance matrix.

Alternative modeling is the method using the across vari-
ables from each vertex to some reference vertex. The number
of vertex equations is in general p = (n � 1) and will be re-
ferred to as nodal cardinality of the network. If we denote by
(u1, u2, ..., un) the Laplace transforms of the node voltages
and by (is1, ..., isn) the set of Laplace transforms of equiv-
alent current sources, then the node or admittance model is
defined by [2]:

Y (s)u(s) = is(s) (2)

where: yii(s) is the sum of admittances in node i; yij(s) is
the sum of admittances common between nodes i and j. This
is referred to as the node or admittance model and it is an
integral-differential symmetric matrix and Y (s) is referred to
as the network admittance matrix.

2.2. The Autonomous Natural Impedance-Admittance
Model and Topologies

When we consider networks with no inputs (no current, or
voltage sources) the resulting admittance, or impedance net-
work models may be described in a unifying way as:

{pB + p�1C +D}x(t) = 0 (3)

where p, p � 1 are respectively the differential, integral op-
erators respectively and x(t) is the vector of nodal voltages,
or loop currents. Such a description may be referred to as
the natural autonomous network description and the operator
W (s) = sB + s�1C +D will be called the natural network
operator. Note that for the case of admittance we have that
B is a matrix of A-type elements (i.e. mass, inertance, ca-
pacitance), C is the matrix of T-type elements (i.e. spring,

inductance) and D is a matrix of D type elements (i.e. re-
sistance). For the case of impedance the reverse holds true.
Hence, B is the matrix of T-type elements, C is the matrix
of A-type elements and D is the matrix of D-type elements.
The symmetric operator W (s) is thus a common description
of Y (s) and Z(s) matrices. The operator W (s) describes the
dynamics of the network and of special interest are the prop-
erties of its zeroes. Network modeling uses the system graph,
which is the basic topological structure that generates the sys-
tem equations. We may introduce some additional topologies,
which are linked to the specifics of the Node and Loop analy-
sis. The detailed topological structures that emerge depend on
the nature of the elements in the network. The mass, inertia
and capacitance store energy by virtue of their across- vari-
ables (velocity, voltage) and they are referred to as A-type
energy storage units [2]. Springs and inductances store en-
ergy by virtue of their through- variables and are called T-type
energy- storage devices. The dampers and resistances dissi-
pate energy and will be called D-type elements.

2.2.1. The Vertex Topology

Every network may be represented in terms of a set of ver-
tices, or nodes and all branches between two vertices may be
represented by an admittance function. The nature of the el-
ements in the branches of the natural vertex graph defines an
element dependent topology, which is characterized by adja-
cency type matrices. If we set the external sources to zero, the
reduced graph will be referred to as the kernel vertex graph.
For a given kernel vertex graph we define A-vertex sub-graph
by eliminating from the kernel vertex graph all T- and D-type
edges. Similarly, we define the T-vertex sub-graph by elim-
inating all A- and D-type edges and the D-vertex sub-graph
by eliminating all A- and T-type edges. The sub-graph of
the natural vertex graph obtained by eliminating all T-, D-,
A- type elements represents the location of the through vari-
able sources and will be called the source-vertex sub-graph,
or simply S-vertex sub-graph.

2.2.2. The loop topology

The loop topology is a notion dual to that of the vertex topol-
ogy and it is based on the following principle: Every network
of n vertices and b edges (branches) may be represented by
q = (b� n+ 1) loops leading to independent equations. All
branches common between two loops may be represented by
an impedance function. Specification of the values of through
variables for the loops defines the values of all across vari-
ables in the network. In a similar way to the case of nodal
analysis, we may define the loop topology based on the ker-
nel loop graph and its sub-graphs the A-loop sub-graph, the
T-loop sub-graph, the D-loop sub-graph and the source-loop
sub-graph [2].



3. THE LINEARISATION OF THE AUTONOMOUS
NATURAL IMPEDANCE-ADMITTANCE MODEL

Starting from the integral-differential model of (3), described
by the operator W (s) the natural question that arises is how
we can transform it to an equivalent first-order, matrix pencil
description, which preserves the topology of the network. We
introduce a new set of variables, bx = [x, x̃]t, p�1x = ex which
reduces (3) to a first order description given by equation (5)
which has an associated matrix pencil sF +G defined by (6)
and referred to as the network matrix pencil which is defined:
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Note that the above autonomous differential description pre-
serves the topological properties of the network as these are
represented by the B, C, D matrices, but its dimensionality
is not necessarily minimal (dimensionality of sF + G). The
pencil derived is structured, but not symmetric in the general
case and it will be referred to as the companion pencil of the
network. The zeroes of W (s) define the natural frequencies
of the network. Note that:
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or
|sF +G| = sk. |W (s)| ,W (s) 2 k⇥k(s) (6)

Remark (1): The non-zero natural frequencies of the network
are given by the zeroes of the pencil and thus this pencil may
be used for the study of assignment of natural frequencies
under different types of transformations. For the special cases
where the network is characterized only by A- and D- type
elements or T- and D- type elements

fW (s) = sB +D,cW (s) = bsC +D,bs = s�1 (7)

which are symmetric matrix pencils [5]. These pencils are
derived from passive networks and thus inherit the passivity
properties [4], [2].

4. NETWORK TRANSFORMATIONS

The general modeling for passive electrical networks provides
a description of networks in terms of symmetric, integral, dif-
ferential operator, W (s) = sB + s�1C + D. It is clear
that the network may be represented by the triple of matri-
ces structural transformations {C,B,D}. The study of the
structural changes on the network may be expressed as trans-
formations on the matrices {C,B,D}. The general classes
of structural transformations which may preserve, or alter the
cardinality of the network, and may also change its different
types of topology are defined below.

4.1. Classification of Structural Transformations

Type 1: Changing the values of the components of the sys-
tem without changing the topology as this is described by
{C,B,D} tipple.
Type 2: Altering the nature of components by transformations
on tipple without changing the element cardinality of the net-
work.
Type 3: Modifying the networks topology and changing the
cardinality of elements by removing components / subsys-
tems.
Type 4: Augmenting the networks topology and changing the
cardinality of elements of the system by adding subsystems
to the existing topology of the network. In the following we
focus on Cases 1, 2 preserving the loop, or nodal cardinality
and thus the dimensionality of {C,B,D}. These transforma-
tions are then expressed as:
Definition 1: Given the triple of matrices {C,B,D} we con-
sider transformations on the network matrices of the type

C 0 = C ± c(x, b), B0 = B ± l(x, b), D0 = D ± r(x, b) (8)

which preserve the physical elements cardinality (loop, or
nodal cardinality) and depend on the real parameter x 2 <
and the position vector b 2 <k. In fact, consider the changes
c(x, b), l(x, b), r(x, b) which have the general form f(x, b)
[4] where:

f(x, b) = xbbT for b = ei , or b = ei � ej , i 6= j (9)

4.2. Examples

Consider the electrical network of Figure (1). The network
variables are the loop currents I1, I2, I3. The impedance
model expresses the impedances in the three loops and thus
has the form of (9). We now assume that in this network we
change the corresponding topology by adding the elements
L4, R5, C3 as shown in Figure (2).

Figure 1: Initial RLC network

Specifically the transformations are:

• Add a resistor to loop 1

• Add an inductance common to loops 1 and 2



• Add a capacitor to loop 2
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Using the formulation (11) the above transformations can be
expressed formally with modification to the corresponding
matrices as shown below:

Figure 2: Augmented RLC network

(i) For the A-type elements:
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t
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The above expresses the addition of capacitor C3 to loop 2.
Hence, we have:
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(ii) For the D-type elements:

D0 = D +R5b1b
t
1 ,where b1 = e1 =

⇥
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⇤t
(13)

The above expresses the addition of resistor R3 to loop 1.
Hence, we have:
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(iii) For the T-type elements:

B0 = B + L4b12b
t
12 ,where b12 = e1 � e2 (15)

The above expresses the addition of inductance to the
branch common to loops 1 and 2. Hence, we have:
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Summarizing, the transformed network is described by the
corresponding matrices B0, C 0 , D0, which lead to the new
impedance matrix W (s) describes the above transformations,
is given by: fW (s) = s�1C 0 + sB0 +D0.
Remark (2): The presence of an element of A�, T�, D�
type is expressed by an entry in the corresponding matrix
C,B, T respectively. In specific:

• If an element is present in the ith loop (node), then its
value is added in the ith position of the respective ma-
trix.

• If an element is common to the ith and jth loop then its
value is added to the ith and jth loop diagonal entries,
as well as subtracted from the (i, j) and (j, i) position of
the corresponding matrix.

Theorem (1): Consider a network described by the triple C,
B, D with natural operator W (s) = sB+s�1C+D and cor-
responding companion pencil sF +G. Any network preserv-
ing cardinality transformation (combination of Type 1 and 2)
may be represented by a triple {C⇤, B⇤, D⇤} and it results
in a companion pencil sF 0 +G0 defined by:

sF 0 +G0 = sF +G+


sB⇤+D⇤ C⇤

0 0

�

= (sF +G) + (sH +K) (17)

Thus, structural transformations that preserve network cardi-
nality are expressed as structured additive perturbations on the
companion matrix pencil. This allows for the development of
a framework for determinantal assignment of natural frequen-
cies discussed next. A version of this problem was recently
considered in [5].



5. CONCLUSIONS

The paper has examined the problem of redesign of passive
electric networks as a problem describing the structure evo-
lution of systems linked to changes in the nature of topology,
and values of the physical elements. Four different types of
structural transformations have been defined and for the two
which preserve the network cardinality it has been shown that
these transformations are expressed as additive structured
transformations on the companion pencil. The assignment of
natural frequencies of the network may then be formulated
as a spectrum assignment of matrix pencils under additive
transformations and may be studied within the framework of
Determinantal Assignment introduced in [6], [7]. Amongst
the problems under investigation is the study of spectrum
assignment under special families of (H,K) transformations,
the characterization of the fixed frequencies (if any) and
the derivation of conditions for arbitrary assignment of such
frequencies.
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