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A Quasi-Newton Optimal Method for the Global Linearisation of the

Output Feedback Pole Assignment

John Leventides1, Ioannis Meintanis2 and Nicos Karcanias2

Abstract— The paper deals with the problem of output feed-
back pole assignment by static and dynamic compensators using
a powerful method referred to as global linearisation which
has addressed both solvability conditions and computation of
solutions. The method is based on the asymptotic linearisation
of the pole assignment map around a degenerate point and is
aiming to reduce the multilinear nature of the problem to the
solution of a linear set of equations by using algebro-geometric
notions and tools. This novel framework is used as the basis
to develop numerical techniques which make the method less
sensitive to the use of degenerate solutions. The proposed new
computational scheme utilizes a quasi-Newton method modified
accordingly so it can be used for optimization goals while
achieving (exact or approximate) pole placement. In the present
paper the optimisation goal is to maximise the angle between a
solution and the degenerate compensator so that less sensitive
solutions are achieved.

I. INTRODUCTION

The paper is mainly concerned with the Pole Assignment

(PA) problem by output feedback using static and dynamic

compensators. The construction of output feedback compen-

sators that place the poles of a p−input, m−output, n−state

linear multivariable system, to arbitrary chosen locations

was always a challenging problem in Control theory and

has been studied for over 30 years from many authors. It

is a highly nonlinear problem and multilinear in the gain

parameters and can be formulated as an equivalent problem

of finding solutions to an inherently non-linear problem of a

determinantal character which belongs in the so-called family

of Determinantal Assignment Problems (DAP) as introduced

by (Karcanias and Giannakopoulos, 1984) [1]. The DAP

framework has been developed as a unifying description

to study and tackle all the problems of linear feedback

synthesis (such as pole/zero assignment) which demonstrate

a determinantal character.

It has been shown [1] that the DAP can be split into two

subproblems, one linear and one multilinear. More precisely,

they proved in [1] that the final solution is reduced to

the solvability of a set of linear equations (characterising

the linear subproblem) together with quadratics which char-

acterise the multilinear subproblem of decomposability of

multivectors. Similarly, it can be said that the solvability of

DAP is simplified to an equivalent problem of finding real
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intersections between the linear variety and the Grassmann

variety; since the solution of the linear subproblem defines a

linear space in a projective space whereas the decompos-

ability is characterized by the set of Quadratic Plücker

Relations (QPRs) which define the Grassmann variety of the

related projective space. Furthermore, (Karcanias and Gian-

nakopoulos, 1984) [1] by using this algebro-geometric novel

framework introduced new invariants, such as the Plücker

matrices and the Grassmann invariant, which are suitable for

the the solvability of the problem and the characterisation of

the rational vector spaces.

Previous major results and contributions regarding the pole

assignment problem include but are not limited to the fol-

lowing: in [2] a computational approach has been developed

studying the constant case from the central projection point

of view and in [3] from the state-space point of view.

A non constructive linearisation method was given in [4]

for the dynamic case, claiming that a sufficient condition

for generic pole assignment via nc− degree controllers is

mp + ncmax(m, p) > n. In [5] they present an enhanced

condition for generic pole placement as

mp+ nc(m+ p− 1) > n (1)

Note that for nc = 0 we get mp > n which is the condition

for the static case as proved by [6] and is considered as

the strongest result so far. A similar type of condition was

also proved by algebro-geometric tools in [7]. Furthermore,

the work in [8], [9] has provided for the first time a

systematic procedure for finding solutions to such nonlinear

problems using a “blow up” methodology, known as Global

Linearisation, that treats the general static case mp > n

and extended further in [7] to cover the dynamic frequency

assinment problem as well. This constructive method is

based on the global asymptotic linearisation of the pole

placement map by considering special sequences of feedback

compensators, which in the limit, converge to a so-called

degenerate compensator [9], [7]. The algorithm for solving

the dynamic pole placement problem may be reduced to that

of static by considering an equivalent DAP in terms of the

coefficient matrix of the dynamic controller [7].

The Global Linearisation framework allows us to use

differentials and to formulate the various forms of

Determinantal Assignment Problems into a high-order

differential equation and hence use numerical integration

techniques or homotopy continuation methods for the

systematic computation of solutions which provide exact

(or approximate) pole assignment.



The purpose of this paper is first to improve the sensitiv-

ity characteristics of the linearisation method and produce

solutions with lower sensitivity so that the desired set of

poles can be approached whereas the feedback controller is

as far as possible from the degenerate point; and secondly

achieving some additional optimisation goals while achieving

pole placement. The method presented here is utilized to

optimize (i.e. maximize) the angle between the degenerate

point and the resulting output feedback matrix.

The paper is organized as follows: In Section 2 we give

the problem formulation and summarize all the theoretical

background and results regarding the Global Linearisation

method. Section 3 deals with the computational aspects

of the method, presents the numerical scheme in terms of

the algorithm and declares the sensitivity/angle measures.

Finally, Section 4 contains the numerical examples (static

and dynamic) to illustrate the applicability of the method.

II. PROBLEM FORMULATION AND

THEORETICAL BACKGROUND

The method of global asymptotic linearisation was first

introduced in [8] and further developed in [9], [7]. The

methodology is based on the remarkable property of the

degenerate gains of a feedback configuration to “blow up”

sequences of gains converging to them.

A. Problem Formulation

The Abstract Determinantal Assignment Problem (DAP) has

been defined in [1], as the problem of the derivation of matrix

A (where A ∈ R
k×l; k ≤ l; rank(A) = k) such that

det {A ·M(s)} = p(s) (2)

where M(s) is a given polynomial matrix in R[s]l×k with

rank(M(s)) = k and p(s) is an arbitrary polynomial of

an appropriate degree. If A is a polynomial matrix then the

problem (2) is reffered to as the Dynamic DAP.

In our formulation, we consider Linear Time Invariant (LTI)

multivariable and proper systems with n−states, p−inputs

and m−outputs described by the Transfer Function (TF)

matrix G(s) ∈ R(s)m×p which is represented by the right

coprime Matrix Fraction Description (MFD) as

G(s) = N(s)D(s)−1 (3)

and output feedback controllers K(s) ∈ R[s]p×m repre-

sented by the left coprime MFD as

K(s) = Dc(s)
−1Nc(s)

For the standard output feedback configuration and under

an output feedback law u = −K(s)y the closed-loop

characteristic polynomial is given by

p(s) = det

{

[Dc(s), Nc(s)]

[

D(s)
N(s)

]}

Using the setting above, the Abstract DAP, as given in (2),

takes the following forms:

(I) Static Output Feedback Pole Assignment (SOF-PA):

If A ≡ [Ip,K] ∈ R
p×(p+m) is an output feedback com-

pensator, then the closed-loop characteristic polynomial

is given as:

p(s,K) = fn(k11, ..., kp(p+m))s
n+

+ · · ·+ f0(k11, ..., kp(p+m))

= det{[Ip,K]

[

D(s)
N(s)

]

}

= det{D(s) +KN(s)} = det{K̃M(s)}

(4)

where M(s) ∈ R[s](m+p)×p, K̃ ∈ R
p×(m+p) are the

composite matrices for the plant and the compensator

respectively and k11, ..., kp(p+m) indicate the entries of

the output feedback matrix.

(II) Dynamic Output Feedback Pole Assignment (DOF-PA):

If the output feedback controller is a polynomial matrix,

i.e. A ≡ K(s) ∈ R[s]p×(m+p), represented by

K(s) = [Dc(s), Nc(s)] = sqKq+sq−1Kq−1+ · · ·+K0

then the closed-loop characteristic polynomial is given

as:

p(s,K(s)) = det

{

[Dc(s), Nc(s)]

[

D(s)
N(s)

]}

= det{[Kq,Kq−1, . . . ,K0]























sqD(s)
sqN(s)
sq−1D(s)
sq−1N(s)

...

D(s)
N(s)























}

(5)

where Kq, . . . ,K0 are coefficient matrices of dimension

p×(m+p) and q is a number that satisfies the McMillan

degree of the controller, i.e. nc = q · p.

Thus, for the SOF-PA problem, it can be stated that for

a given arbitrary polynomial p(s) ∈ R[s] of appropriate

degree and for a given plant G(s) described as in (3)

find a static compensator K such that the closed loop

characteristic polynomial is p(s), the so-called prime or

target polynomial. Whereas, for the DOF-PA problem (5)

has to be solved with respect to [Dc(s), Nc(s)] such that

the closed-loop pole polynomial is p(s). Probably the best

studied of all pole assignment problems is the so-called

static pole placement problem where compensators are

required to have McMillan degree 0, i.e. one requires that

the transfer matrix K(s) is a constant matrix. Furthermore,

since all dynamics can be shifted from K(s) to M(s) (as

indicated in (5)) we will focus our investigation on the static

problem only.

Classes of Determinantal Assignment Problems

We consider different classes of Determinantal Assignment

Problems according to the type of the target polynomial p(s):



(a) Exact Pole Placement: For a given system, M(s) ∈
R[s](m+p)×p and a specific given polynomial, p(s), of

appropriate degree solve (2) with respect to matrix A;

(b) Arbitrary Pole Placement: For a given system, M(s) ∈
R[s](m+p)×p and any polynomial, p(s), of appropriate

degree solve (2) with respect to matrix A;

(c) Determinantal Stabilization Problem: For a given sys-

tem, M(s) ∈ R[s](m+p)×p, if it is required that p(s,K)
is an arbitrary Hurwitz (stable) polynomial then this is

referred to as the class of Determinantal Stabilization

Problems and involves the solution of (2) w.r.t. matrix

A.

Remark 1: The “blow up” methodology addresses the

class of arbitrary assignment problems and is being used

as a method to prove that the Pole Placement Map (PPM)

is surjective (onto), as it will be explained in the following

section. It is clearly that if the problem of class (b) is solvable

then (a) and (c) problems are solvable too.

B. The Pole Placement Map

The Pole Placement Map associated with the problem, in the

generalized form, is the map assigning K to the coefficient

vector p of the target polynomial p(s), i.e.

F : Rp×(q+1)(m+p) → R
n+nc+1 : F(K) = p

Note that for q = 0 and nc = 0 the above is reduced to

express the Static Pole Placement Map. For a system to have

the arbitrary assignment property the map F has to be onto.

A more relaxed condition for arbitrary pole assignment is

that F is a dominant morphism. It has been shown [9] that it

is sufficient to find a degenerate compensator KD such that

the differential of F evaluated at KD, symbolized as DFKD
,

has full rank. Also, for a generic proper system of p−inputs,

m−outputs and McMillan degree n represented by a transfer

function as in (3) such that the condition mp > n is satisfied,

the map F is onto.

C. Degeneracy and Construction of Degenerate Solutions

Degenerate gains were first introduced in [10] in their

generalized form as follows:

Definition 1: A generalized gain D = rowspan[A,K] is

degenerate if and only if it satisfies equation:

det{[A,K]M(s)} = 0, ∀s ∈ C (6)

Despite the fact that (6) is multilinear with respect to

[A,K], degenerate gains can be constructed easily from the

null-spaces of certain matrices as illustrated in [6], [9]. In

the following, we denote by M = colspR[s]{M(s)} the

R[s]−module generated by the columns of M(s).
Theorem 1 ([9]): For the system represented by M(s) ∈

R[s](m+p)×p, a p−dimensional space D = rowspan[A,K]
corresponds to a degenerate gain, if and only if either of the

following equivalent conditions holds true:

(i) There exists a ((m + p) × 1) polynomial vector

m(s) ∈M such that [A,K]m(s) = 0, ∀s ∈ C.

(ii) There exists a ((m + p) × 1) polynomial vector

m(s) ∈M with coefficient matrix P such that the

rank{P} 6 m.

Proof : See [9].

D. Parametrisation into Families of Degenerate Solutions

Theorem (1) clearly, suggests that the parametrisation of the

family of degenerate solutions, i.e. all degenerate gains, finite

and infinite, is related to the properties of the module M
[11] and in particular to the properties of minimal bases

of M as these are defined by the corresponding minimal

indices and the associated real invariant spaces [12]. The

results produced in [11] for the parametrisation of degenerate

solutions will allow the selection of appropriate degenerate

points shaping the properties of the Pole Placement Map;

how to choose the optimal degenerate point with the desired

properties as far as spectrum assignment is currently being

examined.

E. The Global Linearisation Method

Having constructed a degenerate gain is the starting point

for our method and in order to achieve global linearisation,

it is essential to consider sequences of generalized gains [9],

such as

S(t) = [A,K] + t · [A1,K1]

that converge to the degenerate gain [A,K] as t → 0. For

the standard feedback configuration and using the gain matrix

(A+ tA1)
−1(K + tK1) the closed loop polynomial has the

same roots as:

pt(s) = det

{

S(t)

[

D(s)
N(s)

]}

= det {S(t)M(s)} (7)

where pt(s) tends to the prime polynomial p(s) as t→ 0.

Remark 2: When rowspan[A,K] is a degenerate gain,

the prime polynomial p(s) is not unique and depends on

the direction [A1,K1] and as the following theorems state

[9] the relation between them is linear.

Theorem 2: Let rowspan[A,K] be a degenerate gain and

S(t) a sequence of gains converging to it. Then the cor-

responding sequence of closed-loop polynomial coefficient

vectors
〈

p
t

〉

converges as t → 0 to a vector
〈

p
〉

∈ P (R)n

which depends on [A1,K1] and the function τ which maps

the direction [A1,K1] to
〈

p
〉

is linear.

�

The matrix representation of the linear map τ can be

deduced from the next Theorem [9]:

Theorem 3: Let D = rowspan[A,K] be a degenerate

point of a system defined by the composite coprime MFD

representation M(s); then the prime polynomial of the given

system with respect to D and the direction [A1,K1] = [bij ]
can be written as:

p(s) =
∑

(bij · pij(s)) (8)



where i = 1, 2, . . . , p, j = 1, 2, . . . , p+m and pij(s) is the

determinant of the p × p polynomial matrix Dij(s) having

the same rows as the matrix [AD(s) +KN(s)] apart from

the i−th, which is replaced by the j−th row of M(s).

Using notions from algebraic geometry and tools from ex-

terior algebra (Karcanias and Giannakopoulos, 1984; Lev-

entides and Karcanias, 1995) [1], [9] proposed a notion of

Grassmann invariant (Plücker matrix) as a complete system

invariant of a SOF system and exposed a necessary condition

for the SOF-PA problem in a real matrix form (in terms of the

full rank of the so-called Plücker matrix) associated with the

Grassmann invariant. Furtermore, in [1], [9] they demonstrate

that the prime polynomial, in terms of its coefficient vector

p can be written in a linear matrix form as:

p = L · k (9)

where k is the vector formed by all the columns of

the direction [A1,K1] and L denotes the linearisation

matrix, i.e. the matrix representation of the linear map,

that is the coefficient matrix of the polynomial vector
[

p11(s), p12(s), . . . , pp(p+m)(s)
]

as described above in The-

orem 3.

The importance of degenerate compensators to the Global

Linearisation method stems from the following:

Lemma 1 ([9]): If there exists a degenerate matrix K ≡
KD such that the differential of the Pole Placement Map is

onto, then any polynomial of a certain degree n+nc can be

assigned via an output feedback (static (nc = 0) or dynamic)

controller.

It is important to mention here that in the characterization

of degenerate controllers we consider all possible gains

(bounded and unbounded) and we classify them as:

(i) Regular (or Full) Degenerate Controllers when

rank(L) = n+ nc + 1;

(ii) Non-Regular Degenerate Controllers when

rank(L) < n+ nc + 1;

where L denotes the matrix representation of the linear

map F, the so-called linearization matrix (as in (9)), or

equivalently the differential of the PPM associated with

the particular degenerate point. The following result is

necessary in order to apply the Global Linearisation method.

Corollary 1: A given open-loop system with p−inputs,

m−outputs and n−states which has a degenerate compen-

sator KD possesses the arbitrary pole assignment property if

and only if the linearization matrix L of (9), associated with

this degenerate point, has rank equal to n+ nc +1; in other

words the degenerate compensator KD needs to be Regular

(or Full).

III. COMPUTATIONAL SCHEME: THE

QUASI-NEWTON OPTIMAL METHOD

The Global Linearisation method, as a constructive method

can provide solutions which allows considerably large num-

ber of states in the open loop system compared with the

existing ones and with feedback compensators which in

general are of low order. The disadvantage is that it has

inherent certain limitations which stems from the fact that

the method is based on a point of singularity of the feedback

configuration, that is the degenerate compensator. Solutions

close to the degenerate point, have infinite sensitivity and

they result to an explosion of the norm of the sensitivity

function and hence small perturbations in the parameters

may result to very big perturbations in the set of closed-

loop poles. Thus, such solutions, have only a theoretical

significance. Using, however, this degenerate compensator

and assuming that the resulting linearisation matrix is of full

rank, the following proposed numerical scheme can be used

iteratively to compute solutions as far as possible from the

neighbourhood of the base locus and thus with improved

sensitivity. In the following we denote by

k ≡ [kij ] = [row1(A,K), row2(A,K), · · · , rowp(A,K)]
T

all the elements kij of the augmented output feedback matrix

K̃ ∈ R
p×(q+1)(m+p), stacked in one vector, which are

also defined as inhomogeneous coordinates of the Grass-

mann space, Grass(p, (q + 1)(m+ p)) and are constrained

in Quadratic Plucker Relations (QPRs); and with p =
[1, a1, a2, . . . , an+nc

]T ∈ R
n+nc+1 the vector which con-

tains all the coefficients of the target polynomial p(s) we

want to assign, i.e.

p(s) = sn + a1s
n−1 + · · ·+ an+nc+1

Let also define the differential of the PPM F as the (n+nc+
1)× p(q + 1)(m+ p) matrix, symbolized as DFk, which is

the Jacobian ∂Fi/∂kj , evaluated at a particular solution k.

Based on the above setting, the problem under investigation

can be formulated as the integration of a high-order differ-

ential equation which is defined as

[DFk] · k̇ = p, k(0) = KD (10)

and therefore we can use numerical integration methods,

or homotopy continuation methods, in order to provide

adequate linearised solutions in a closed form. The following

numerical scheme proposed here guarantees the maximum

distance from the degenerate point by maximizing the angle

between the degenerate compensator and the final output

feedback matrix.

A. Numerical Procedure

Solution of (10) can be achieved by using a quasi-Newton

iterative scheme. The numerical method has been imple-

mented in a way such that additional optimization goals

might be achieved as well. Here, the iterative scheme utilizes

an objective function which maximizes the angle between the

degenerate point and the particular controller which places

a given arbitrary closed loop characteristic polynomial. The

main pole placement equations are defined as:

F (K(t)) = a(t) · p (11)



with initial conditions

K(0) = KD: the degenerate point; a(0) = 0

such that

〈KD,K(t)〉 = 1− t (12)

〈K(t),K(t)〉 = 1 (13)

as t varies from (0→ 1) with a fixed step size ∆t. This can

be rewritten as:

F̄ (K̄(t)) = p
1
− t.p

2

where K̄ denotes the augmented feedback matrix, that is

K̄ = [K, a] and p
1
, p

2
are fixed vectors of appropriate

dimensions given by:

p
1
= (0, 0, . . . , 0, 1, 1), p

2
= (0, 0, . . . , 0, 1, 0)

Based on the above, the equations of the augmented PPM

can be denoted as:

F̄ (K, a) =
{

F (K)− a.p; 〈KD,K〉 ; 〈K,K〉
}

(14)

Note here, that (12) represents the main objective function,

where as t increases guarantees that the angle from the

degenerate point will increase too, and hence the actual

distance from that point, with maximum angle the 90◦ when

t = 1; whereas (13) express the normalisation constraint

on the output feedback matrix. In order to apply the quasi-

Newton’s method for finding a desired controller one has to

use as initial point the degenerate compensator K = KD,

starting the iterations from t = 0 and gradually increase it

(0 < t1 < t2 < t3 < · · · ) by a fixed step size ∆t and use

the optimal quasi-Newton’s method to compute iteratively a

sequence of static compensators K1,K2,K3, ... by

K̄i+1 = K̄i −
[

DF̄K̄i

]†
∗ (F̄ (K̄i)− (p

1
− t ∗ p

2
) (15)

It is important to recall that the above method works if the

degenerate compensator is regular (or full).

Remark 3: Note that since the matrix [DFK ] is not a

square matrix, in order to compute the solutions of (10),(15)

we need to find the generalized inverse (or pseudoinverse)

denoted here by [DFK ]†. For that we use the Moore-Penrose

pseudoinverse given by A† = AT (AAT )−1.

As a measure of accuracy, the norm

∥

∥

∥
∆p

∥

∥

∥
of the difference

of the closed loop polynomial pt(s) and the desired prime

polynomial p(s) is used, whereas for sensitivity measures we

consider the following:

(a) The norm of the Differential (or Jacobian)
∥

∥

∥
D(F )K(t)

∥

∥

∥
of the pole assignment map F evalu-

ated at the final compensator that places the given

closed loop pole polynomial.

(b) The angle θ◦ between the degenerate point KD and

the final (solution) compensator K(t) defined as

cos θ =
tr{KD ·K(t)}

‖KD‖ · ‖K(t)}‖
(16)

Algorithm 1 Quasi-Newton Optimal Iterative Method

Input: M(s), p(s), KD, etol, ∆t, p
1
, p

2
and maxiter

Output: The Output feedback matrix K ∈ R
p×m

1: Compute the augmented PPM: F̄

2: Compute the differential of the augmented PPM:

D(F̄ ) ≡ D̄F

3: K̄0 ← [KD, a]
4: t← ∆t

5: for i = 0 to maxiter do

6: while Norm(p1 − t ∗ p2 − F̄ (K̄i)) < etol do

7: Evaluate the differential of the augmented PPM at

K̄i, denoted as D̄F K̄i

8: Calculate the next solution using (15)

K̄ = K̄ −
[

D̄F K̄

]†
∗ (F̄ (K̄)− (p

1
− t · p

2
)

9: end while

10: Set K̄i = K̄

11: t = t+∆t

12: end for

The basic steps of the algorithm in pseudo-code are given

in Algorithm 1. The numerical procedure requires as input

data: the given MIMO (p,m, n)-system described by the

composite MFD M(s) ∈ R[s](q+1)(m+p)×p; the real coef-

ficient vector p ∈ R
n+nc+1 of the closed loop polynomial

to be assigned and the degenerate compensator KD which

fulfils the pole placement equations at limit and satisfies the

necessary conditions for generic pole assignability.

IV. NUMERICAL EXAMPLES

To illustrate the method as described above we use two

examples which cover both problems, one static and one

dynamic which will be transformed to the equivalent static

of larger dimensions.

A. Example 1

Let consider first a proper MIMO system with p = 3
inputs, m = 4 outputs and n = 11 states represented by the

following composite MFD

M(s) =





















s4 0 0
1 s4 s− 3

s3 + 1 s− 1 s3 − s2 + 1
s2 + 3 s2 + 1 2s2 − 1

s2 + s+ 1 s+ 1 s+ 1
s3 − 2 s3 + 2s− 1 2s2 + 3s

1 −1 s2 + s+ 1





















(17)

Since the necessary condition mp = 12 > 11 = n is

satisfied, then the poles of the system can be placed in

arbitrary locations by some static compensator (i.e. nc = 0,

q = 0). A degenerate point for this system is defined by

D = rowspan[A,K] and calculated as

KD =





0 1 0 −4 −9 0 8
0 −1 0 −2 −5 2 0
1 0 0 0 0 0 0







It can be verified that det(KD · M(s)) = 0 and that

the linearisation matrix (i.e. the differential of the lifted

pole assignment map) is of full rank. Let for simplicity

the desired closed-loop characteristic polynomial be set by

p(s) = (s+ 1)11 with a real coefficient vector in R
12

pT = [1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1]

Thus using as starting point (t = 0) the degenerate com-

pensator KD we produced a set of 100 static compensators

by applying the computational method as described in Algo-

rithm 1 with ∆t = 0.01. The errors ‖∆p‖ between the actual

closed-loop polynomial and the ideal one (s+1)11 are shown

in Figure 1. Note that, the compensators corresponding to

small t have large norm and are the ones close to the

degenerate point as demonstrated by the angle measure in

Figure (2).

The compensator with the lower norm and hence with the

lower sensitivity and with the maximum distance from the

degenerate point (90 degrees) is given by

Kf =





−3.24468 −14.5316 −2.04266 −0.156795
49.0151 217.497 28.3229 6.23728
−4.16871 −23.7617 −2.97827 0.0136797





(18)

and the resulting closed-loop characteristic polynomial is

1.+ 11.s+ 55.s2 + 165.s3 + 330.s4 + 462.s5+

+462.s6 + 330.s7 + 165.s8 + 55.s9 + 11.s10 + 1.s11

The angle KD∠Kf (in degrees), between the degenerate

Fig. 1. Distance from the target closed loop polynomial p(s) vs. t

compensator KD and the final output feedback matrix Kf ,

as defined in (16) is θ = 90◦ and guarantees the maximum

distance from the degenerate point and hence the lower

sensitivity solution. The variation of angle θ for all the

produced compensators is indicated in Figure (2).

B. Example 2

Consider the system of p = 2 inputs, m = 2 outputs and

n = 8 states whose composite MFD of its transfer function

Fig. 2. Angle (in degrees) between degenerate compensator and the
resulting output feedback matrix

is given by

M(s) =

[

D(s)
N(s)

]

=









s4 0
s3 s4

s 1
1 0









Since mp = 4 < 8 = n the system does not have

the arbitrary pole assignability property via SOF. The least

degree family of controllers that satisfies condition (1) is

nc = 2, such that 4 + 4nc > 8 + nc. Therefore, using a

controller with 2 inputs, 2 outputs and 2 states it is desired

to assign a closed-loop polynomial of n+nc = 8+2 = 10-

th degree, given here for simplicity as (s+ 1)10 with a real

coefficient vector ∈ R
11.

p = [1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1]T

The dynamic problem given here will be transformed into an

equivalent static one (of a higher dimension) by shifting the

dynamics from K(s) to M(s) as shown in (5) and will be

indicated next. Let K(s) = sK1 + K0 be the composite

MFD of the controller, where K1,K0 are p × (m + p)
constant coefficient matrices and q = 1 in order to satisfy

the McMillan degree of the controller (i.e. nc = q · p = 2).

Then, based on (5) we have that

[sK1 +K0]

[

D(s)
N(s)

]

=
[

K1|K0

]









sD(s)
sN(s)
D(s)
N(s)









are equivalent and the resulting static problem has a com-

posite system matrix of a higher-degree with dimensions

(q + 1)(m+ p)× p, i.e. 2(2 + 2)× 2 = 8× 2, given as

M̃(s) =

[

s5 s4 s2 s s4 s3 s 1
0 s5 s 0 0 s4 1 0

]T

By considering the degenerate controller [KD1
|KD0

] ∈ R
2×8

KD(s) = [sKD1
+KD0

] =

[

1 −s 0 0
0 0 1 −s

]

= s

[

0 −1 0 0
0 0 0 −1

]

+

[

1 0 0 0
0 0 1 0

]



as a starting point, we run the numerical method (as de-

scribed in Algorithm 1), and a set of 100 controllers pro-

duced. The errors, ‖∆p‖, between the actual closed-loop

polynomial and the ideal one (s + 1)10 are summarised in

Figure (3). In overall, were less than 2× 10−6 for all t.

Fig. 3. Distance from the target closed loop polynomial p(s) vs. t

The controller, Kf (s), with the maximum angle from

KD(s), has the following composite MFD
[

0.546 − 0.279s 0.095 − 0.144s 0.078 + 0.132s 0.244 + 0.391s

0.275 − 0.129s 0.053 − 0.067s 0.118 + 0.111s 0.368 + 0.308s

]

whose transfer function matrix Kf (s) = D−1
c (s)Nc(s) is

given by
[

0.00717s2+0.0082s−0.00717

5.98×10−5s2+5.98×10−4s+0.027

0.018s2+0.028s−0.0223

5.98×10−5s2+5.98×10−4s+0.027

−0.014s2+0.0014s−0.043

5.98×10−5s2+5.98×10−4s+0.027

−0.035s2−0.010s+0.134

5.98×10−5s2+5.98×10−4s+0.027

]

which assigns the closed loop characteristic polynomial to

0.999999 + 10.s+ 45.s2 + 120.s3 + 210.s4 + 252.s5+

+210.s6 + 120.s7 + 45.s8 + 10.s9 + 1.s10

and has the following characteristics:

• Gap from degenerate compensator= 90◦

• MaxSV [K1,K0] = 0.9985
• MinSV [K1,K0] = 0.0542

As before in Example 1, the angle KD∠Kf between the

degenerate compensator and the final output feedback matrix

is θ = 90◦. The angle for all the produced controllers versus

t are shown in Figure (4).

V. CONCLUSIONS

An improvement of the Global Linearisation framework has

been introduced, for the output feedback pole assignment

problem, that allows to produce systematic solutions which

improve the sensitivity characteristics of the methodology

and its inherent dependence on degenerate compensators.

The proposed numerical scheme for finding output feedback

controllers is based on a quasi-Newton method modified

accordingly to use the freedom that exists in order to achieve

optimization goals while achieving pole placement. Here,

the numerical method was adjusted to maximize the angle

from the degenerate point and hence the distance from

Fig. 4. Angle (in degrees) between degenerate compensator and the
resulting output feedback matrix

that in order to examine the sensitivity properties of such

solutions. The results indicated that the solutions far from

the degenerate point are indeed the ones with the lower

sensitivity. Furthermore, the selection of the degenerate point

around which global linearisation is achieved is a possible

factor that affects the overall performance and hence the

optimal selection of degenerate points needs to be further

examined.
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