
Child, C. H. T. & Trusler, B. P. (2014). Implementing Racing AI using Q-Learning and Steering

Behaviours. Paper presented at the GAMEON 2014 (15th annual European Conference on

Simulation and AI in Computer Games), 09-09-2014 - 11-09-2014, University of Lincoln, Lincoln,

UK.

City Research Online

Original citation: Child, C. H. T. & Trusler, B. P. (2014). Implementing Racing AI using Q-Learning

and Steering Behaviours. Paper presented at the GAMEON 2014 (15th annual European

Conference on Simulation and AI in Computer Games), 09-09-2014 - 11-09-2014, University of

Lincoln, Lincoln, UK.

Permanent City Research Online URL: http://openaccess.city.ac.uk/7123/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42627823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Implementing Racing AI using Q-Learning and Steering Behaviours

Blair Peter Trusler and Dr Christopher Child
School of Informatics

City University London
Northampton Square, London, UK

Email: btrusler@gmail.com / C.Child@city.ac.uk

KEYWORDS

Q-Learning, Reinforcement Learning, Steering Behaviours,
Artificial Intelligence, Computer Games, Racing Game,
Unity.

ABSTRACT

Artificial intelligence has become a fundamental component
of modern computer games as developers are producing
ever more realistic experiences. This is particularly true of
the racing game genre in which AI plays a fundamental role.
Reinforcement learning (RL) techniques, notably Q-
Learning (QL), have been growing as feasible methods for
implementing AI in racing games in recent years. The focus
of this research is on implementing QL to create a policy
which the AI agents to utilise in a racing game using the
Unity 3D game engine. QL is used (offline) to teach the
agent appropriate throttle values around each part of the
circuit whilst the steering is handled using a predefined
racing line. Two variations of the QL algorithm were
implemented to examine their effectiveness. The agents also
make use of Steering Behaviours (including obstacle
avoidance) to ensure that they can adapt their movements in
real-time against other agents and players. Initial
experiments showed that both types performed well and
produced competitive lap times when compared to a player.

INTRODUCTION

Reinforcement learning (RL) techniques such as Q-Learning
(QL, Watkins 1989) have grown in popularity in games in
recent years. The drive for more realistic artificial
intelligence (AI) has increased commensurably alongside
the high fidelity of experience which is now possible with
modern hardware. RL can produce an effective AI controller
whilst removing the need for a programmer to hard-code the
behaviour of the agent.

The racing game used for performing the QL experiments
was built using the Unity game engine. The game was built
as a side-project in conjunction with this research. The cars

in the game were created so that the throttle and steering
values could be easily manipulated to control the car.

The biggest challenge when considering implementing RL
is to determine how to represent and simplify the agent’s
state representation of the game world in an effective way to
use as input for the algorithm. The information needs to be
abstracted to a high level in order to ensure that only
necessary details are provided. Two versions of the QL
algorithm were implemented; an iterative approach and a
traditional RL approach.

The results from the experiments demonstrate that when
combined with steering behaviours both QL
implementations produced an effective AI controller that
could complete competitive lap times.

BACKGROUND

Reinforcement Learning and Steering Behaviours

RL is the method for teaching an AI agent to take actions in
a given scenario. The goal is to maximise the cumulative
reward, known as the utility (Sutton and Barto, 1988). The
result of the RL process is a policy which provides the agent
a roadmap of how to perform optimally. The RL process can
be performed online or offline.

Online learning is the process of teaching the AI agent in
real-time. Offline learning involves teaching the agent
before releasing the game. Both methods have their merits
and issues. For several reasons the offline version is most
commonly used when RL is applied to games (and is used
in this research). Primarily, it ensures that the agent will
behave as expected when the game is finished. It also means
there is less computational expense in real-time as the AI is
behaving based on a saved policy and does not need to
perform as many calculations in real-time. The offline RL
process works by performing a large number of iterations
(episodes) of a simulation in order to build up a data store of
learned Q values relative to their state-action combination.

The concept of steering behaviours (SBs) was first
introduced by Craig Reynolds (1999). SBs provide a
mechanism of control for autonomous game agents.
Reynolds proposed myriad behaviours which could be used
independently of one another or holistically to achieve
different behaviours.

There were three relevant SBs for this project; seek,
obstacle avoidance and wall avoidance. Whilst SBs are not
the focus of this paper, they were used to perform real-time
avoidance techniques during the game when multiple agents
were in the scene.

Q-Learning

Q-Learning is one of the most commonly used forms of RL
and is a type of temporal difference learning (Sutton and
Barto, 1988). QL is used to find the best action-selection
policy for a finite number of states. It assigns utility values
to state-action pairs based on previous actions which have
led to a goal state. As the number of episodes increases, the
utility estimates and predictions improve and become more
reliable.

A state can comprise of any piece of information from the
agent’s environment. An action is the operation that the
agent can perform at each state. The action selection policy
is a key component to the learning process. The two
common types of action selection are greedy and ε-greedy
(Sutton and Barto, 1988). Greedy always chooses the
optimal available action according to the current utility
estimates. In contrast, ε-greedy has a small probability of
selecting a random action to explore instead of choosing the
greedy option.

The QL formula (1) is performed upon reaching a state. The
QL formula is defined as follows:

Q(s, a) = (1 - α)Q(s, a) + α(r + γ maxa’(Q(s', a'))) (1)

Where:
 Q(s, a) – Q value of the current state-action pair
 Q(s’, a’) – Q value of the next state-action pair
 r – reward value associated with next state
 α – learning rate parameter
 γ – discount value parameter

The learning rate and discount value parameters are crucial
in defining the learning process. The learning rate
determines to what extent newly acquired information will
override the previously stored information. A learning rate
value of 0 will mean that the agent will not learn anything
whilst a rate of 1 means that the agent will only consider the
most recently acquired data. The discount parameter defines

the importance of future rewards to the agent. A factor of 0
creates a short-sighted agent which only considers current
rewards, whilst a factor of 1 ensures the agent will aim for
the highest possible long-term reward.

Q-Learning in Games

Patel et al (2011) used QL to create an AI agent for the
popular first-person shooter game Counter-Strike. They
used QL to train a simple AI agent in order to teach it how
to fight and plant a bomb. A higher reward value was
assigned to the AI if it accomplished the goal of the game.
For example planting the bomb produced a higher reward
than killing an enemy. Their results showed that the QL bots
performed competitively against the traditionally
programmed bots. However, they did note that this was not
tested against players. This could identify further issues that
would need to be resolved in the learning process

A popular commercial racing game that makes heavy use of
RL is the Forza series (Drivatars). The development team
created a database of pre-generated racing lines for every
corner on a race track (several slightly different lines per
corner). For example, some racing lines will be optimal
whilst others may go wide and miss the apex of the corner.
The agent uses QL (offline) to learn the appropriate throttle
values to follow each racing line as fast as possible. The
cars also learn various overtaking manoeuvres at each part
of the track. During a race, the racing lines at each corner
are switched to vary the behaviour. This approach meant
that the programmers were not required to hard-code the
values for each track and corner and produced a reusable
and effective tool for creating AI agents for each type of
vehicle. This technique has resulted in the Forza series
having one of the most realistic AI systems in the racing
game market today.

IMPLEMENTING Q-LEARNING

Game World Representation

The first challenge was converting the three dimensional
game world into a series of states for the algorithm to
interpret. Firstly, a racing line was generated by positioning
waypoints along the race track and creating a Catmull-Rom
spline by interpolating between these points.

The states were then defined as track segments (points along
the racing line). The region was implemented by placing a
box collider at each of these points. The collider width was
equal to that of the race track width and rotated based on the

direction of the spline. The quality of the state is evaluated
based on the agent’s proximity to the centre of the racing
line and time taken to reach the state.

Discrete Action Space

It was decided to focus the QL on learning the cars throttle
values whilst using the racing line to generate the
appropriate steering values. This helped to reduce the action
space to an appropriate size in order to minimise the number
of iterations required to perform the learning process. The
action space was set to nine evenly spaced throttle values
ranging from +1.0 to -1.0 (where +1.0 represents full
throttle and -1.0 represents full braking or reversing).

Q-Store Data Structure

A data structure (the Q-Store) was implemented to store all
of the data required by the learning algorithm. The Q-Store
maintained a two-dimensional array of doubles. The first
dimension in the array represented the state values whilst
the second dimension represented the action values. This
allowed for the Q value for each state-action pair to be
easily stored and accessed.

Q-Learning Algorithm

As previously mentioned two versions of the QL algorithm
were implemented. Both versions are very similar in nature
but with some key differences as highlighted in the
following sections. The algorithm works by applying each
action (throttle values) at each state on the track. A reward
was calculated if the car reached or did not reach the next
state and the QL formula was calculated and stored. Both
versions used the greedy action selection policy.

The action policy generated from each version of the
algorithm was stored in a text file. This allowed the policy
to be retrieved and utilised without having to re-perform the
learning process each time.

First (Iterative) Version

The first version of the algorithm was based on an iterative
approach. The learning agent was designed to evaluate each
possible action for a state before moving on to the next
state. The agent would continually reset to the starting state
after each evaluation. This meant that the agent would
gradually make its way along the racing line and during the
process the agent would ultimately evaluate the actions
between the penultimate state and the goal state. This
iterative approach meant that the number of episodes could
be predetermined (number of states * number of actions).

Second (Traditional) Version

The second version was based on a more traditional RL
approach. Unlike the first version the learning process did
not continually reset in an iterative manner. It gradually
developed a policy over a number of episodes (ranging from
10 to 5000 in testing). Theoretically, an increased number of
episodes will make the policy more likely to allow the agent
to reach the goal in an effective way.

Reward Function

The reward function used for the agents produced a reward
value based on the quality of the action performed at the
current state. The value returned by the function was based
on whether the action performed was good or bad. A good
move would return a positive scaling reward value based on
two key factors (proximity to the racing line and time taken
between the two states). A final large multiplier would be
added to the reward value if the car reached the goal state
(the final point on the racing line). A bad move (eg
crashing) would result in the function returning a negative
reward value.

Execute Policy

The policy was stored in a text file that consisted of a single
value (representing the action number) per line (the state).
The agent would identify its current state and apply the
corresponding action as specified in the file until reaching
the next state.

TESTING AND RESULTS

This initial aim of this research was to investigate whether
QL could be used to create a high quality controller for a
racing game. Subsequent to this goal, the two versions of
the QL algorithm suggested a further area of research in
order to determine how they differed and which performed
to a higher level. Each version of the agent was taught using
the same racing line, race track and car properties. The two
agents were taught using the same number of episodes
(1,000) for the first two experiments. The third experiment
involved varying the number of episodes for the second
version of the algorithm.

State-Action Tables (Q Tables)

The first area of comparison was between the Q Tables
produced by each version of the algorithm. These tables
were produced after the learning process was completed by
retrieving the data from the QStore. Tables 1 and 2 show
that there was a difference in action selection at state 93
whilst the same action was picked at state 94.

Table 1: State-Action Table (Version 1)

State Action Q Value
93 6 2805597255.12183
94 0 2920734984.09786

Table 2: State-Action Table (Version 2)

State Action Q Value
93 0 730021813
94 0 531860033

Lap Times

The overall goal of this research was to produce a high
quality AI controller for a racing game using the two
variations of the QL algorithm. As a result the most tangible
measurement of performance provided by the project was in
terms of lap-times.

The same race track and racing line was used for each
version and they both started from the same position at the
beginning of each lap. Ten laps times were recorded for
each version The average lap times are shown in Table 3.
The lap times were performed with the obstacle avoidance
and wall avoidance behaviours disabled as there were no
obstacles present in the scene to check for in real-time.

Table 3: Average Lap Time Comparison

Lap Number Version 1 Version 2
Average 42.73594 42.65832
Standard Deviation 0.52378007 1.597068

Whilst the lap times were very similar, the first version
appeared to produce more consistent results.

Episode Variation

Unlike the first version of the implementation, the second
version could be taught using an indefinite number of
episodes. This raised the question of what effect would
varying numbers of episodes have on the lap-time produced
by the agent. Up to this point, the results produced for the
second version was taught using the same number of
episodes as the first version of the algorithm (approximately
1,000).

Table 4: Episode Variation Table

Episodes Lap Time / Result
10 44.33456 (crashed into wall)
100 44.96534 (crashed into wall)
1000 42.65832
1500 41.74825
2500 40.95938
5000 41.46755

The policies which caused the car to crash still managed to
complete their laps as the car was built with a reset function
to reset the car after 2.5 seconds to a point slightly further
long the racing line. Table 4 shows that the fastest lap time

was produced by the 2500 iteration version whilst similar
lap times were produced by the 1000, 1500 and 5000
versions.

EVALUATION

State-Action Tables (Q Tables)

The state-action tables showed that the learning agents took
a different approach entering the corner. The states chosen
(93 and 94) were located before the tightest corner on the
track. It is interesting to note the different actions selected
for state 93. The first version selected a braking action
whilst the second version selected the full throttle action.
This was because the first version was focused on one
individual state at a time. This meant it often braked at the
latest possible state as it didn’t keep track of the reward
based on the final end goal state. The second version had a
more long-term view and as a result performed the braking
action earlier (during states 89, 90 and 92) in order to
achieve a better speed through the corner. This is because
the QL function is aimed at achieving the highest possible
long-term reward which is provided upon reaching the goal
state. It would have been interesting to see the effect of
different action-selection policies on the Q values produced.

Lap Times

The lap time comparison produced an interesting set of
results. Table 3 shows the average and standard deviation
between lap times for each version. The average lap time
between the two algorithms was extremely close. The
standard deviation, however, was very different. The first
version appeared to produce very consistent lap times and
results, whilst the second produced a wider range of very
fast and relatively slow lap times. The slow lap times were
often a result of going off track or hitting a wall. This would
indicate that the number of episodes used to teach the
second version was too low.

Episode Variation

This experiment was inspired by the standard deviation
result in the lap-time test. The question raised was at what
point was it that the number of episodes used cease to have
an effect. Lap-times produced by the car were recorded for
10 laps. Table 5 highlights the average lap times produced
and the standard deviation between them.

Table 5: Average and Standard Deviation for Episode Variation of
Lap Times (Version 2 only)

Episodes Lap Time / Result
Average 42.6889
Standard Deviation 1.62844

The results show that for 100 episodes or less, the car
crashed or had an incident causing the lap-time to be
increased. This was to be expected given the number of
possible actions for the number of states in the game world.
Interestingly, it also shows that the fastest lap time was
produced from a policy created by 2500 episodes. In
contrast the policies produced by 1500 and 5000 episodes
produced relatively similar lap times.

One would have imagined that the lap time for 5000
episodes would have been at least as quick if not faster than
the controller produced from 2500 episodes. This result is
possibly due to the algorithm performing further learning
and discovering that a policy for this type of lap-time would
result in a crash in the tighter parts of the racetrack.
Therefore it made safer choices whilst still maintaining a
good overall speed.

Results Discussion

The lap-times produced by both versions are relatively
competitive compared to player lap-times (with times
ranging between 39 and 42 seconds on average depending
on the type of player). The overall performance of the
algorithm in terms of lap-time is restricted by the optimality
of the racing line. The line was generated from waypoints
that were implemented by hand and based on what appeared
to be the best line around each corner. Better lap times
would possibly have been achieved if this line was produced
algorithmically to create a minimum-curvature line around
the race track. It was also surprising to note that both
versions produced relatively similar lap times despite the
differing approach to the QL process.

CONCLUSIONS AND FUTURE WORK

This paper has presented the use of QL to produce an AI
controller in a racing game. The results have shown that the
controller produces reasonable lap-times and performance
compared to a player. The QL formula used in this project
was the standard QL approach. Other versions could have
been used (eg SARSA) which may have produced differing
or even improved policies for the AI controller.

There are several other areas that are open to investigation
in the future. The most pertinent of these would be to utilise
alternative reward functions. This could be used to create
different types of AI controllers (ie varying difficulties or
driving styles). A further development could have been to
use multiple racing lines with differing lines into and out of
corners. These lines could have been learnt and switched in
real-time to produce more realistic and seemingly human

behaviour. Another modification would be to increase the
state-space of the game world. This would increase the size
of the QStore but in turn increase the number of possible
actions that can be taken around the race track. This could
result in enhanced behaviour, in particular through tight or
twisting corners. The state space could be expanded further
by taking other factors into account such as the car velocity.

This project has shown that QL produces a reasonable
controller without hard-coding a complex AI system. The
racing line is the principle requirement to be implemented
into the game world. In the future QL could be used to teach
the agent how to steer based on its current position on the
track and what lies ahead. This would then allow AI
developers to focus their efforts on improving the agent’s
steering behaviours to create more realistic real-time
interactions.

REFERENCES

Lucas, S, Togelius, J. 2007. Point-to-Point Car Racing: an Initial
Study of Evolution Versus Temporal Difference Learning.
Symposium on Computational Intelligence and Games. 1 (1),
p260-267.

Moreton, H. 1983. Minimum Curvature Variation Curves,
Networks, and Surfaces for Fair Free-Form Shape Design.
United States: Berkeley. p1-213.

Patel, P, Carver, N, Rahimi, S. 2011. Tuning Computer Gaming
Agents using Q-Learning. Proceedings of the Federated
Conference on Computer Science and Information Systems. 1
(1), p581-588.

Reynolds, C. 1999. Steering Behaviors For Autonomous
Characters. Game Developers Conference. 1 (1), p763-782.

Sutton, R and Barto, A. 1998. Reinforcement Learning:An
Introduction. United States: MIT Press. p324-332.

Watkins, C. 1989. Learning from Delayed Rewards. London:
King's College.

WEB REFERENCES

FIAS. 2010. Reinforcement Learning. Available:
http://www.cs.utexas.edu/~dana/RL08.pdf. Last accessed 20th
September 2013.

Microsoft. 2004. Drivatar. Available:
http://research.microsoft.com/en-us/projects/drivatar/. Last
accessed 16th September 2013.

Candela, J, Herbrich, R, Graepel, T. 2011. Machine Learning in
Games. Available: http://research.microsoft.com/en-
us/events/2011summerschool/jqcandela2011.pdf. Last
accessed 16th September 2013.

Thirwell, E. 2013. Forza 5's AI is "much more engaging than
anything you'll see in another racing game". Available:
http://www.oxm.co.uk/62293/forza-5s-ai-is-much-more-
engaging-than-anything-youll-see-in-another-racing-game/.
Last accessed 20th September 2013.

