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ABSTRACT  

Artificial intelligence has become a fundamental component 
of modern computer games as developers are producing 
ever more realistic experiences. This is particularly true of 
the racing game genre in which AI plays a fundamental role. 
Reinforcement learning (RL) techniques, notably Q-
Learning (QL), have been growing as feasible methods for 
implementing AI in racing games in recent years. The focus 
of this research is on implementing QL to create a policy 
which the AI agents to utilise in a racing game using the 
Unity 3D game engine. QL is used (offline) to teach the 
agent appropriate throttle values around each part of the 
circuit whilst the steering is handled using a predefined 
racing line. Two variations of the QL algorithm were 
implemented to examine their effectiveness. The agents also 
make use of Steering Behaviours (including obstacle 
avoidance) to ensure that they can adapt their movements in 
real-time against other agents and players. Initial 
experiments showed that both types performed well and 
produced competitive lap times when compared to a player.  

INTRODUCTION 

Reinforcement learning (RL) techniques such as Q-Learning 
(QL, Watkins 1989) have grown in popularity in games in 
recent years. The drive for more realistic artificial 
intelligence (AI) has increased commensurably alongside 
the high fidelity of experience which is now possible with 
modern hardware. RL can produce an effective AI controller 
whilst removing the need for a programmer to hard-code the 
behaviour of the agent.  

The racing game used for performing the QL experiments 
was built using the Unity game engine. The game was built 
as a side-project in conjunction with this research. The cars 

in the game were created so that the throttle and steering 
values could be easily manipulated to control the car.  

The biggest challenge when considering implementing RL 
is to determine how to represent and simplify the agent’s 
state representation of the game world in an effective way to 
use as input for the algorithm. The information needs to be 
abstracted to a high level in order to ensure that only 
necessary details are provided. Two versions of the QL 
algorithm were implemented; an iterative approach and a 
traditional RL approach.  

The results from the experiments demonstrate that when 
combined with steering behaviours both QL 
implementations produced an effective AI controller that 
could complete competitive lap times.  

BACKGROUND 

Reinforcement Learning and Steering Behaviours 

RL is the method for teaching an AI agent to take actions in 
a given scenario. The goal is to maximise the cumulative 
reward, known as the utility (Sutton and Barto, 1988). The 
result of the RL process is a policy which provides the agent 
a roadmap of how to perform optimally. The RL process can 
be performed online or offline.  

Online learning is the process of teaching the AI agent in 
real-time. Offline learning involves teaching the agent 
before releasing the game. Both methods have their merits 
and issues. For several reasons the offline version is most 
commonly used when RL is applied to games (and is used 
in this research). Primarily, it ensures that the agent will 
behave as expected when the game is finished. It also means 
there is less computational expense in real-time as the AI is 
behaving based on a saved policy and does not need to 
perform as many calculations in real-time. The offline RL 
process works by performing a large number of iterations 
(episodes) of a simulation in order to build up a data store of 
learned Q values relative to their state-action combination.  

 



 

 

The concept of steering behaviours (SBs) was first 
introduced by Craig Reynolds (1999). SBs provide a 
mechanism of control for autonomous game agents. 
Reynolds proposed myriad behaviours which could be used 
independently of one another or holistically to achieve 
different behaviours. 

There were three relevant SBs for this project; seek, 
obstacle avoidance and wall avoidance. Whilst SBs are not 
the focus of this paper, they were used to perform real-time 
avoidance techniques during the game when multiple agents 
were in the scene.  

Q-Learning 

Q-Learning is one of the most commonly used forms of RL 
and is a type of temporal difference learning (Sutton and 
Barto, 1988). QL is used to find the best action-selection 
policy for a finite number of states. It assigns utility values 
to state-action pairs based on previous actions which have 
led to a goal state. As the number of episodes increases, the 
utility estimates and predictions improve and become more 
reliable.  

A state can comprise of any piece of information from the 
agent’s environment. An action is the operation that the 
agent can perform at each state. The action selection policy 
is a key component to the learning process. The two 
common types of action selection are greedy and ε-greedy 
(Sutton and Barto, 1988). Greedy always chooses the 
optimal available action according to the current utility 
estimates. In contrast, ε-greedy has a small probability of 
selecting a random action to explore instead of choosing the 
greedy option.  

The QL formula (1) is performed upon reaching a state. The 
QL formula is defined as follows: 

Q(s, a) = (1 - α)Q(s, a) + α(r + γ maxa’(Q(s', a' ) ) )     (1) 

Where: 
 Q(s, a) – Q value of the current state-action pair 
 Q(s’, a’) – Q value of the next state-action pair 
 r – reward value associated with next state 
 α – learning rate parameter 
 γ – discount value parameter 

The learning rate and discount value parameters are crucial 
in defining the learning process. The learning rate 
determines to what extent newly acquired information will 
override the previously stored information. A learning rate 
value of 0 will mean that the agent will not learn anything 
whilst a rate of 1 means that the agent will only consider the 
most recently acquired data. The discount parameter defines 

the importance of future rewards to the agent. A factor of 0 
creates a short-sighted agent which only considers current 
rewards, whilst a factor of 1 ensures the agent will aim for 
the highest possible long-term reward.  

Q-Learning in Games 

Patel et al (2011) used QL to create an AI agent for the 
popular first-person shooter game Counter-Strike. They 
used QL to train a simple AI agent in order to teach it how 
to fight and plant a bomb. A higher reward value was 
assigned to the AI if it accomplished the goal of the game. 
For example planting the bomb produced a higher reward 
than killing an enemy. Their results showed that the QL bots 
performed competitively against the traditionally 
programmed bots. However, they did note that this was not 
tested against players. This could identify further issues that 
would need to be resolved in the learning process 

A popular commercial racing game that makes heavy use of 
RL is the Forza series (Drivatars). The development team 
created a database of pre-generated racing lines for every 
corner on a race track (several slightly different lines per 
corner). For example, some racing lines will be optimal 
whilst others may go wide and miss the apex of the corner. 
The agent uses QL (offline) to learn the appropriate throttle 
values to follow each racing line as fast as possible. The 
cars also learn various overtaking manoeuvres at each part 
of the track. During a race, the racing lines at each corner 
are switched to vary the behaviour. This approach meant 
that the programmers were not required to hard-code the 
values for each track and corner and produced a reusable 
and effective tool for creating AI agents for each type of 
vehicle. This technique has resulted in the Forza series 
having one of the most realistic AI  systems in the racing 
game market today. 

IMPLEMENTING Q-LEARNING 

Game World Representation 

The first challenge was converting the three dimensional 
game world into a series of states for the algorithm to 
interpret. Firstly, a racing line was generated by positioning 
waypoints along the race track and creating a Catmull-Rom 
spline by interpolating between these points.  

The states were then defined as track segments (points along 
the racing line). The region was implemented by placing a 
box collider at each of these points. The collider width was 
equal to that of the race track width and rotated based on the 



 

 

direction of the spline. The quality of the state is evaluated 
based on the agent’s proximity to the centre of the racing 
line and time taken to reach the state.  

Discrete Action Space 

It was decided to focus the QL on learning the cars throttle 
values whilst using the racing line to generate the 
appropriate steering values. This helped to reduce the action 
space to an appropriate size in order to minimise the number 
of iterations required to perform the learning process. The 
action space was set to nine evenly spaced throttle values 
ranging from +1.0 to -1.0 (where +1.0 represents full 
throttle and -1.0 represents full braking or reversing). 

Q-Store Data Structure 

A data structure (the Q-Store) was implemented to store all 
of the data required by the learning algorithm. The Q-Store 
maintained a two-dimensional array of doubles. The first 
dimension in the array represented the state values whilst 
the second dimension represented the action values. This 
allowed for the Q value for each state-action pair to be 
easily stored and accessed. 

Q-Learning Algorithm 

As previously mentioned two versions of the QL algorithm 
were implemented. Both versions are very similar in nature 
but with some key differences as highlighted in the 
following sections. The algorithm works by applying each 
action (throttle values) at each state on the track. A reward 
was calculated if the car reached or did not reach the next 
state and the QL formula was calculated and stored. Both 
versions used the greedy action selection policy.  

The action policy generated from each version of the 
algorithm was stored in a text file. This allowed the policy 
to be retrieved and utilised without having to re-perform the 
learning process each time.  

First (Iterative) Version 

The first version of the algorithm was based on an iterative 
approach. The learning agent was designed to evaluate each 
possible action for a state before moving on to the next 
state. The agent would continually reset to the starting state 
after each evaluation. This meant that the agent would 
gradually make its way along the racing line and during the 
process the agent would ultimately evaluate the actions 
between the penultimate state and the goal state. This 
iterative approach meant that the number of episodes could 
be predetermined (number of states * number of actions).  

Second (Traditional) Version 

The second version was based on a more traditional RL 
approach. Unlike the first version the learning process did 
not continually reset in an iterative manner. It gradually 
developed a policy over a number of episodes (ranging from 
10 to 5000 in testing). Theoretically, an increased number of 
episodes will make the policy more likely to allow the agent 
to reach the goal in an effective way. 

Reward Function 

The reward function used for the agents produced a reward 
value based on the quality of the action performed at the 
current state. The value returned by the function was based 
on whether the action performed was good or bad. A good 
move would return a positive scaling reward value based on 
two key factors (proximity to the racing line and time taken 
between the two states). A final large multiplier would be 
added to the reward value if the car reached the goal state 
(the final point on the racing line). A bad move (eg 
crashing) would result in the function returning a negative 
reward value. 

Execute Policy 

The policy was stored in a text file that consisted of a single 
value (representing the action number) per line (the state). 
The agent would identify its current state and apply the 
corresponding action as specified in the file until reaching 
the next state. 

TESTING AND RESULTS 

This initial aim of this research was to investigate whether 
QL could be used to create a high quality controller for a 
racing game. Subsequent to this goal, the two versions of 
the QL algorithm suggested a further area of research in 
order to determine how they differed and which performed 
to a higher level. Each version of the agent was taught using 
the same racing line, race track and car properties. The two 
agents were taught using the same number of episodes 
(1,000) for the first two experiments. The third experiment 
involved varying the number of episodes for the second 
version of the algorithm.  

State-Action Tables (Q Tables) 

The first area of comparison was between the Q Tables 
produced by each version of the algorithm. These tables 
were produced after the learning process was completed by 
retrieving the data from the QStore. Tables 1 and 2 show 
that there was a difference in action selection at state 93 
whilst the same action was picked at state 94.  



 

 

Table 1: State-Action Table (Version 1) 

State Action Q Value 
93 6 2805597255.12183 
94 0 2920734984.09786 

Table 2: State-Action Table (Version 2) 

State Action Q Value 
93 0 730021813 
94 0 531860033 

Lap Times 

The overall goal of this research was to produce a high 
quality AI controller for a racing game using the two 
variations of the QL algorithm. As a result the most tangible 
measurement of performance provided by the project was in 
terms of lap-times.  

The same race track and racing line was used for each 
version and they both started from the same position at the 
beginning of each lap. Ten laps times were recorded for 
each version The average lap times are shown in Table 3. 
The lap times were performed with the obstacle avoidance 
and wall avoidance behaviours disabled as there were no 
obstacles present in the scene to check for in real-time.  

Table 3: Average Lap Time Comparison 

Lap Number Version 1  Version 2 
Average 42.73594 42.65832 
Standard Deviation 0.52378007 1.597068 

Whilst the lap times were very similar, the first version 
appeared to produce more consistent results. 

Episode Variation 

Unlike the first version of the implementation, the second 
version could be taught using an indefinite number of 
episodes. This raised the question of what effect would 
varying numbers of episodes have on the lap-time produced 
by the agent. Up to this point, the results produced for the 
second version was taught using the same number of 
episodes as the first version of the algorithm (approximately 
1,000).  

Table 4: Episode Variation Table 

Episodes Lap Time / Result 
10 44.33456 (crashed into wall) 
100 44.96534 (crashed into wall) 
1000 42.65832 
1500 41.74825 
2500 40.95938 
5000 41.46755 

The policies which caused the car to crash still managed to 
complete their laps as the car was built with a reset function 
to reset the car after 2.5 seconds to a point slightly further 
long the racing line. Table 4 shows that the fastest lap time 

was produced by the 2500 iteration version whilst similar 
lap times were produced by the 1000, 1500 and 5000 
versions.  

EVALUATION 

State-Action Tables (Q Tables) 

The state-action tables showed that the learning agents took 
a different approach entering the corner. The states chosen 
(93 and 94) were located before the tightest corner on the 
track. It is interesting to note the different actions selected 
for state 93. The first version selected a braking action 
whilst the second version selected the full throttle action. 
This was because the first version was focused on one 
individual state at a time. This meant it often braked at the 
latest possible state as it didn’t keep track of the reward 
based on the final end goal state. The second version had a 
more long-term view and as a result performed the braking 
action earlier (during states 89, 90 and 92) in order to 
achieve a better speed through the corner. This is because 
the QL function is aimed at achieving the highest possible 
long-term reward which is provided upon reaching the goal 
state. It would have been interesting to see the effect of 
different action-selection policies on the Q values produced.  

Lap Times 

The lap time comparison produced an interesting set of 
results. Table 3 shows the average and standard deviation 
between lap times for each version. The average lap time 
between the two algorithms was extremely close. The 
standard deviation, however, was very different. The first 
version appeared to produce very consistent lap times and 
results, whilst the second produced a wider range of very 
fast and relatively slow lap times. The slow lap times were 
often a result of going off track or hitting a wall. This would 
indicate that the number of episodes used to teach the 
second version was too low.  

Episode Variation 

This experiment was inspired by the standard deviation 
result in the lap-time test. The question raised was at what 
point was it that the number of episodes used cease to have 
an effect. Lap-times produced by the car were recorded for 
10 laps. Table 5 highlights the average lap times produced 
and the standard deviation between them.  

Table 5: Average and Standard Deviation for Episode Variation of 
Lap Times (Version 2 only) 

Episodes Lap Time / Result 
Average 42.6889 
Standard Deviation 1.62844 



 

 

The results show that for 100 episodes or less, the car 
crashed or had an incident causing the lap-time to be 
increased. This was to be expected given the number of 
possible actions for the number of states in the game world. 
Interestingly, it also shows that the fastest lap time was 
produced from a policy created by 2500 episodes. In 
contrast the policies produced by 1500 and 5000 episodes 
produced relatively similar lap times. 

One would have imagined that the lap time for 5000 
episodes would have been at least as quick if not faster than 
the controller produced from 2500 episodes. This result is 
possibly due to the algorithm performing further learning 
and discovering that a policy for this type of lap-time would 
result in a crash in the tighter parts of the racetrack. 
Therefore it made safer choices whilst still maintaining a 
good overall speed.  

Results Discussion 

The lap-times produced by both versions are relatively 
competitive compared to player lap-times (with times 
ranging between 39 and 42 seconds on average depending 
on the type of player). The overall performance of the 
algorithm in terms of lap-time is restricted by the optimality 
of the racing line. The line was generated from waypoints 
that were implemented by hand and based on what appeared 
to be the best line around each corner. Better lap times 
would possibly have been achieved if this line was produced 
algorithmically to create a minimum-curvature line around 
the race track. It was also surprising to note that both 
versions produced relatively similar lap times despite the 
differing approach to the QL process.  

CONCLUSIONS AND FUTURE WORK 

This paper has presented the use of QL to produce an AI 
controller in a racing game. The results have shown that the 
controller produces reasonable lap-times and performance 
compared to a player. The QL formula used in this project 
was the standard QL approach. Other versions could have 
been used (eg SARSA) which may have produced differing 
or even improved policies for the AI controller.  

There are several other areas that are open to investigation 
in the future. The most pertinent of these would be to utilise 
alternative reward functions. This could be used to create 
different types of AI controllers (ie varying difficulties or 
driving styles). A further development could have been to 
use multiple racing lines with differing lines into and out of 
corners. These lines could have been learnt and switched in 
real-time to produce more realistic and seemingly human 

behaviour. Another modification would be to increase the 
state-space of the game world. This would increase the size 
of the QStore but in turn increase the number of possible 
actions that can be taken around the race track. This could 
result in enhanced behaviour, in particular through tight or 
twisting corners. The state space could be expanded further 
by taking other factors into account such as the car velocity.  

This project has shown that QL produces a reasonable 
controller without hard-coding a complex AI system. The 
racing line is the principle requirement to be implemented 
into the game world. In the future QL could be used to teach 
the agent how to steer based on its current position on the 
track and what lies ahead. This would then allow AI 
developers to focus their efforts on improving the agent’s 
steering behaviours to create more realistic real-time 
interactions.  
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