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QUASI-ISOLATED BLOCKS AND
BRAUER’S HEIGHT ZERO CONJECTURE

RADHA KESSAR AND GUNTER MALLE

Abstract. This paper has two main results. Firstly, we complete the parametrisation
of all p-blocks of finite quasi-simple groups by finding the so-called quasi-isolated blocks
of exceptional groups of Lie type for bad primes. This relies on the explicit decomposition
of Lusztig induction from suitable Levi subgroups. Our second major result is the proof of
one direction of Brauer’s long-standing height zero conjecture on blocks of finite groups,
using the reduction by Berger and Knörr to the quasi-simple situation. We also use our
result on blocks to verify a conjecture of Malle and Navarro on nilpotent blocks for all
quasi-simple groups.

1. Main results

Brauer’s famous height zero conjecture [9] from 1955 states that a p-block B of a finite
group has an abelian defect group if and only if every ordinary irreducible character in B
has height zero.

Here we are concerned with one direction of this conjecture:

(HZC1) If a p-block B of a finite group has abelian defect groups, then every ordinary
irreducible character of B has height zero.

One of the main aims of this paper is the proof of the following result:

Theorem 1.1. The ’if part’ (HZC1) of Brauer’s height zero conjecture holds for all finite
groups.

Our proof relies on the crucial paper of Berger and Knörr [3] where they show that this
direction of the conjecture holds for all groups, provided that it holds for all quasi-simple
groups. An alternative proof of this reduction was later given by Murai [41].

Many particular cases of (HZC1) had been considered before. Olsson [44] showed the
claim for the covering groups of alternating groups. The case of unipotent blocks of groups
of Lie type was treated by Broué–Malle–Michel [10] and Broué–Michel [11]. Cabanes–
Enguehard [12] then showed (HZC1) for most blocks of finite reductive groups. In addition
to these results we use the theorem of Blau–Ellers [4] that this direction of the conjecture
holds for all central quotients of special linear and special unitary groups.

Let us mention a few other important partial results: Gluck and Wolf [25] proved
both directions of the height zero conjecture for p-solvable groups. Fong–Harris showed
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(HZC1) for principal 2-blocks, Navarro–Tiep [43] recently proved both directions for 2-
blocks of maximal defect and Kessar–Koshitani–Linckelmann [31] proved (HZC1) for 2-
blocks whose defect groups are elementary abelian of order 8. Our paper is independent
of the latter results.

As our second main result and as a crucial ingredient to the proof of Theorem 1.1 we
complete the parametrisation of the ℓ-blocks of finite quasi-simple groups, where ℓ is a
prime number. (See Remark 6.12 for historic comments on this problem.) The only case
that remains to be considered is the one of quasi-isolated blocks of exceptional groups
of Lie type when ℓ is bad, that is, non-unipotent blocks parametrised by non-identity
semisimple elements whose centraliser in the dual group is not contained in any proper
Levi subgroup. This is the case which we solve here.

Although our determination of quasi-isolated blocks proceeds in a case-by-case manner,
the result on blocks and their defect groups can be phrased in the following general,
generic form, which also appeared for the blocks considered in the earlier work of Cabanes
and Enguehard. Throughout this introduction, G denotes a simple simply connected
algebraic group over an algebraic closure of a finite field Fp with Steinberg endomorphism
F : G→ G. See Sections 2–6 for further notation and the proofs.

Theorem 1.2 (Parametrization of Blocks). Assume that G is simple simply connected of
exceptional Lie type in characteristic p and ℓ 6= p a bad prime for G. Let 1 6= s ∈ G∗F be
a quasi-isolated ℓ′-element.

(a) There is a natural bijection

bGF (L, λ)←→ (L, λ)

between ℓ-blocks of GF in Eℓ(GF , s) and pairs (L, λ) up to GF -conjugation, where
(1) L is an e-split Levi subgroup of G, with e = eℓ(q),
(2) λ ∈ E(LF , s) is e-cuspidal, and
(3) λ is of quasi-central ℓ-defect.

(b) There is a defect group P ≤ NG(L, λ)
F of bGF (L, λ) with a normal series

Z(L)Fℓ ED := CP (Z(L)
F
ℓ )E P,

with quotients P/D isomorphic to a Sylow ℓ-subgroup of WGF (L, λ) and D/Z(L)Fℓ
isomorphic to a Sylow ℓ-subgroup of LF/Z(L)Fℓ [L, L]

F .
(c) Here, bGF (L, λ) has abelian defect if and only if WGF (L, λ) is an ℓ′-group.
(d) Further, when ℓ 6= 2 then D = Z(L)Fℓ in (b) and P is a Sylow ℓ-subgroup of the

extension of Z(L)Fℓ by WGF (L, λ).

In [8], Bonnafé and Rouquier proved that every ℓ-block of a finite reductive group in
characteristic different from ℓ is Morita equivalent, via Lusztig induction, to a quasi-
isolated block of some Levi subgroup. This comparison theorem provides a crucial reduc-
tion in the proof of Theorem 1.1. But note that it is not known in general whether Morita
equivalences preserve abelianess of defect groups. In our context, relying on previous re-
sults, mainly of Cabanes–Enguehard, we prove the following result:

Theorem 1.3 (Preservation of Abelian Defect Groups). Let G be simple, simply connected
in characteristic p and ℓ 6= p a prime. Let M be an F -stable Levi subgroup of G, and
let b and c be Bonnafé–Rouquier corresponding ℓ-blocks of GF and MF respectively (see
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Definition 7.7). Let Z be a central ℓ-subgroup of GF and let b̄ and c̄ be the images of b
and c in GF/Z and MF/Z respectively. If either b̄ or c̄ has abelian defect groups, then
the defect groups of b̄ and c̄ are isomorphic.

The above result should ideally follow from general properties of the bimodules inducing
Bonnafé–Rouquier Morita equivalences, but our proof is different. In fact, one expects
that if b and c are Bonnafé–Rouquier correspondents, then any defect group of c is a
defect group of b — this is known to hold in many cases.

In order to prove Theorem 1.2 we apply a criterion of Cabanes and Enguehard (see
Proposition 2.12 below) which allows one to determine the blocks if Lusztig induction from
suitable Levi subgroups can be shown to satisfy a generalised Harish-Chandra theory. The
following result is not only a crucial ingredient for our proofs but of independent interest:

Theorem 1.4 (e-Harish-Chandra Theory). Assume that G is simple simply-connected of
exceptional Lie type in characteristic p and ℓ 6= p a bad prime for G. Let s ∈ G∗F be a
quasi-isolated ℓ′-element. Then with e = eℓ(q) we have:

(a) The sets E(GF , (L, λ)), where (L, λ) runs over a set of representatives of the GF -
conjugacy classes of e-cuspidal pairs of G below E(GF , s), partition E(GF , s).

(b) GF satisfies an e-Harish-Chandra theory above each e-cuspidal pair (L, λ) of GF below
E(GF , s) (see Definition 2.9 below).

The case when s = 1, that is, the case of unipotent characters, was the main result in
[10, Thm. 3.2] (where there was no restriction on the type of G, but ℓ was assumed to be
large enough).

Finally, we use the previous results to characterise blocks of quasi-simple groups all
of whose height zero characters have the same degree, thus completing a programme
begun by Malle–Navarro [37], and continued by Gramain [26] for the case of spin-blocks
of alternating groups:

Theorem 1.5 (Characterization of Nilpotent Blocks). Let S be a finite quasi-simple group
and p a prime. Assume that B is a p-block of S all of whose height zero characters have
the same degree. Then the defect group of B is abelian and thus B is nilpotent.

The paper is organised as follows. In Section 2 we collect various results on groups
of Lie type, Lusztig induction, blocks and Brauer pairs and we state our main criteria
for block distribution and the structure of defect groups. In Sections 3–6 we determine
the decomposition of Lusztig induction from suitable Levi subgroups in the Lusztig series
belonging to quasi-isolated elements of exceptional groups of rank at least 4 and the block
distribution in these series. Section 7 is devoted to showing Theorem 1.3. The remaining
steps of the proof of (HZC1) are given in Section 8, see Theorem 8.9. Finally, in Section 9
we prove Theorem 1.5.

2. Background results and methods

Throughout this paper, ℓ denotes a prime number.
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2.1. Blocks and Brauer pairs. Let G be a finite group and let (K,O, k) be a splitting
modular system for G, i.e., O is a complete discrete valuation ring with residue field k
of characteristic ℓ and field of fractions K such that k and K are splitting fields for all
groups involved in G. Let CF(G,K) denote the set of K-valued class functions on G and
let Irr(G) denote the subset of CF(G,K) consisting of irreducible characters of G. Let
〈 , 〉G denote the standard inner product on CF(G,K).

By an ℓ-block of G we will mean a primitive idempotent of Z(kG). By idempotent lift-
ing, the canonical surjection of O onto k induces a bijection between the set of primitive
idempotents of Z(OG) and primitive idempotents of Z(kG), and this induces an orthog-
onal decomposition of the set of K-valued class functions CF(G,K) on G with respect to
the standard inner product. For f ∈ CF(G,K) and b an ℓ-block of G, the projection of f
onto the component of b in CF(G,K) is denoted by b.f , and we write b = bG(f) if f = b.f .
This defines a partition Irr(G) =

∐

b Irr(b), where Irr(b) = {χ ∈ Irr(G) | b.χ = χ}.
A Brauer pair of G (or G-Brauer pair) with respect to ℓ is a pair (Q, c), such that Q is

an ℓ-subgroup of G and c is an ℓ-block of CG(Q). The set of G-Brauer pairs has a structure
of a G-poset such that the following properties hold: If (Q, c) and (R, d) are Brauer pairs
with (R, d) ⊆ (Q, c), then R ≤ Q, and for any Brauer pair (Q, c) and any subgroup R of
Q, there is a unique Brauer pair (R, d) such that (R, d) ⊆ (Q, c). In particular, for each
Brauer pair (Q, c), there exists a unique ℓ-block, say b of G such that ({1}, b) ⊆ (Q, c),
and in this case we say that (Q, c) is a b-Brauer pair or that (Q, c) is associated to b. A
Brauer pair (Q, c) is a b-Brauer pair if and only if BrQ(b)c = c, if and only if BrQ(b)c 6= 0,
where BrQ : (kG)Q → kCG(Q) denotes the Brauer homomorphism.

For an ℓ-block b of G, the subset of the set of Brauer pairs of G associated to b is closed
under inclusion and under the action of G. For any Brauer pair (Q, c), Z(Q) is contained
in every defect group of c and (Q, c) is said to be centric (or self-centralising) if Z(Q) is
a defect group of c. A Brauer pair (Q, c) is maximal if and only if (Q, c) is centric and
NG(Q, c)/QCG(Q) is an ℓ′-group, where NG(Q, c) denotes the stabiliser in G of (Q, c).
Further, (Q, c) is maximal if and only if Q is a defect group of the unique ℓ-block of G to
which (Q, c) is associated. G acts transitively on the subset of maximal b-Brauer pairs.

If (Q, c) and (R, d) are Brauer pairs with (R, d) ⊆ (Q, c), and such that R is normal in
Q, then we write (R, d)E (Q, c).

For a more detailed exposition on Brauer pairs, we refer the reader to the monographs
[47, §40], [2, Part IV], or to the original article of Alperin and Broué [1] — in the latter
reference Brauer pairs are referred to as subpairs. Here we recall a few stray facts which
will be used in the sequel.

Let R be an ℓ-subgroup of G and let H be a subgroup of G such that RCG(R) ≤ H ≤
NG(R). Every central idempotent of kH is in kCG(R) = kCH(R) (see [2, Part IV, Lemma
3.17]). Now let (R, d) be a G-Brauer pair and suppose that RCG(R) ≤ H ≤ NG(R, d).
Then, d is an ℓ-block of H . Further, for any subgroup Q of H containing R, CG(Q) =
CH(Q), the H-Brauer pairs with first component Q are the G-Brauer pairs with first
component Q and for any block c of CH(Q) = CG(Q), ({1}, d) ⊆ (Q, c) as H-Brauer pairs
if and only if (R, d) ⊆ (Q, c) as H-Brauer pairs, if and only if (R, d) ⊆ (Q, c) as G-Brauer
pairs (see [2, Part IV, Lemma 3.18]). We will use these facts without further comment.

We will need a few facts about covering blocks. For G̃ a finite group containing G as
normal subgroup, b̃ an ℓ-block of G̃ and b an ℓ-block of G, b̃ is said to cover b if b̃b 6= 0.
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Lemma 2.1. Let b be an ℓ-block of G and let (A, u) ⊆ (D, v) ⊆ (P,w) be b-Brauer pairs
such that D is maximal with respect to D ≤ ACG(A) and P is maximal with respect to
P ≤ NG(A, u). Let G̃ be a finite group with GE G̃. Then:

(a) D is a defect group of the block u of ACG(A) and P is a defect group of the block u of
NG(A, u). Further, D = P ∩ ACG(A) and P/D is isomorphic to a Sylow ℓ-subgroup
of NG(A, u)/ACG(A).

(b) Let b̃ be an ℓ-block of G̃ and (A, ũ) a b̃-Brauer pair. If ũ covers u, then b̃ covers b.

(c) There exists an ℓ-block b̃ of G̃ covering b, and b̃-Brauer pairs (A, ũ)E (P̃ , y) such that
P̃ ≤ NG̃(A, u), ũ covers u, P̃ ∩G = P and P̃ /P is isomorphic to a Sylow ℓ-subgroup
of NG̃(A, u)/NG(A, u).

Proof. By [2, Part IV, Lemma 3.18], (D, v) is a maximal ACG(A)-Brauer pair, and is
associated to u so D is a defect group of u. Similarly, P is a defect group of u as
block of NG(A, u). Consider the normal inclusion ACG(A) E NG(A, u). As u is the
only block of kNG(A, u) covering the block u of kCG(A), by covering block theory, D =
P ∩ACG(A) and P/D is isomorphic to a Sylow ℓ-subgroup of NG(A, u)/ACG(A) (see [42,
Ch. 5, Thm. 5.16]). This proves (a).

Let b̃ and ũ be as in (b) and suppose that ũ covers u. Then, BrA(b̃)ũ = ũ, BrA(b)u =
u and ũu 6= 0. Since BrA is an algebra homomorphism, and ũ is central in CG̃(A),

BrA(b̃b)ũu = ũu 6= 0, and it follows that BrA(b̃b) 6= 0, whence b̃b 6= 0, proving (b).
For (c), consider the normal inclusion NG(A, u) E NG̃(A, u). By (a), u is a block of

NG(A, u) with defect group P . So, again by [42, Ch. 5, Thm. 5.16], there exists a block

u′ of NG̃(A, u) covering u such that u′ has a defect group P̃ ≤ NG̃(A, u) with P̃ ∩ G =

P̃ ∩ NG(A, u) = P and P̃ /P isomorphic to a Sylow ℓ-subgroup of NG̃(A, u)/NG(A, u).

Now, P̃ being a defect group of u′ implies that BrP̃ (u
′) 6= 0. Also, u is the unique block

of NG(A, u) covered by u′, hence u′u = u′. So,

BrP̃ (u
′)BrP̃ (u) = BrP̃ (u

′) 6= 0,

whence BrP̃ (u) 6= 0.
Now consider the normal inclusion CG(A) E CG̃(A). Let U be the set of ℓ-blocks of

CG̃(A) covering u. Since P̃ normalises CG̃(A) and stabilises u, P̃ acts by conjugation on

U . In particular,
∑

f∈U f ∈ (kG̃)P̃ . Also, u(
∑

f∈U f) = u. So,

BrP̃ (u)BrP̃ (
∑

f∈U

f) = BrP̃ (u) 6= 0.

Since P̃ permutes the elements of U , the above equation yields that there is an element

say ũ, of U such that ũ ∈ (kG̃)P̃ and BrP̃ (ũ) 6= 0. Consequently, there exists a G̃-Brauer

pair (P̃ , y) such that (A, ũ) ≤ (P̃ , y). Let b̃ be the unique ℓ-block of G̃ such that (A, ũ) is

a b̃-Brauer pair. Since ũ covers u, (b) gives that b̃ covers b. This proves (c). �

Let χ ∈ Irr(G) and let θ be a linear character of G. Then θ⊗χ is an irreducible character
of G and the map χ 7→ θ ⊗ χ is a permutation on Irr(G) which respects ℓ-blocks: for
any ℓ-block b of G, the set {θ ⊗ χ | χ ∈ Irr(b)} is the set of irreducible characters of an
ℓ-block of G, which we will denote by θ⊗ b. Denoting also by θ the restriction of θ to any
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subgroup of G, the map (Q, f) 7→ (Q, θ⊗ f) is a G-poset isomorphism between the set of
b-Brauer pairs and the set of θ ⊗ b-Brauer pairs.
Lemma 2.2. Let G̃ be a finite group such that GE G̃, b an ℓ-block of G and b̃ an ℓ-block
of G̃ covering b. Suppose that G̃/G is abelian. Then:

(a) Any ℓ-block of G̃ covering b is of the form θ⊗ b̃, where θ is a linear character of G̃/G.

(b) Assume that b has a defect group Z ≤ Z(G̃). Suppose that the unique character

χ ∈ Irr(b) containing Z in its kernel extends to its stabiliser I in G̃. Then, b̃ is

nilpotent, and if D is a defect group of b̃, then D ≤ I, D ∩ G = Z and D/Z is
isomorphic to the Sylow ℓ-subgroup of I/G. Moreover, there are |I : G|ℓ′ ℓ-blocks of

G̃ covering b.

Proof. Let b′ be an ℓ-block of G̃ covering b and let χ ∈ Irr(b). Then there exists η ∈ Irr(b̃)
and η′ ∈ Irr(b′) such that η and η′ both cover b (see [42, Ch. 5, Lemma 5.8(ii)]). But since

G̃/G is abelian, η′ = θ ⊗ η for some linear character θ of G̃/G. This proves (a).
Suppose that the hypotheses of (b) hold. Then I is the stabiliser in G̃ of b. Induction

induces a bijection between the set of ℓ-blocks of I covering b and the set of ℓ-blocks of G̃
covering b; corresponding blocks under this bijection are source algebra equivalent, (see
for instance [30, Sec. 2]) and in particular the correspondence preserves the nilpotency
of blocks and corresponding blocks have common defect groups. Hence, we may assume
that I = G̃.

Since Z is a central subgroup of G̃, the canonical surjection of G̃ onto G̃/Z induces a

bijection between the ℓ-blocks of G̃ and the ℓ-blocks of G̃/Z (see [42, Ch. 5, Thm. 8.11]),
and also between the ℓ-blocks of G and the ℓ-blocks of G/Z; for any block d of G̃ (respec-

tively G) denote by d̄ the corresponding block of G̃/Z (respectively G/Z). Then a block

b′ of G̃ covers b if and only if b̄′ covers b̄, b′ is nilpotent if and only if b̄′ is nilpotent, and
the defect groups of b̄′ are of the form D/Z, where D is a defect group of b′. Further, χ
extends to an irreducible character of G̃, so χ considered as an element of G̃/Z extends

to an irreducible character of G̃/Z.
Thus, we may assume that Z = 1. If G̃/G is an ℓ′-group, the claim is immediate. Thus

we may also assume that G̃/G has ℓ-power order. Then there is a unique block b̃ lying

above b. By assumption, χ extends to G̃, so a defect group D of b̃ is isomorphic to G̃/G

and satisfies D ∩G = 1. In particular, b̃ is nilpotent. �

2.2. Lusztig series and ℓ-blocks. We set up the following notation. Let G be a con-
nected reductive algebraic group over an algebraic closure of a finite field Fp with a
Steinberg endomorphism F : G → G, and GF the finite group of fixed points. We are
interested in the ℓ-blocks of GF , where ℓ is a prime number different from the defining
characteristic p of G. We first recall several useful results.

Let T be an F -stable maximal torus of G, and G∗ a group in duality with G with
respect to T , with corresponding Steinberg endomorphism again denoted by F (see [19,
13.10]). We denote by q the absolute value of the eigenvalues of F on the character group
of T , an integral power of

√
p. By the fundamental results of Lusztig, the set of complex

irreducible characters of GF is a disjoint union of rational Lusztig series E(GF , s), where
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s runs over semisimple elements of G∗F up to conjugation. Lusztig series are compatible
with block theory in the following sense (see [15, Thm. 9.12]):

Theorem 2.3 (Broué–Michel, Hiss). Let s ∈ G∗F be a semisimple ℓ′-element. Then:

(a) The set

Eℓ(GF , s) :=
⋃

t∈CG∗ (s)F
ℓ

E(GF , st)

is a union of ℓ-blocks (where t runs over the ℓ-elements in CG∗(s)F up to conjugation).
(b) Any ℓ-block in Eℓ(GF , s) contains a character from E(GF , s).

Thus, to parametrise the ℓ-blocks of GF , it suffices to decompose E(GF , s) into ℓ-blocks,
for all ℓ′-elements s ∈ G∗F .

We’ll also use the following notation for the union of Lusztig series corresponding to
ℓ′-elements:

E(GF , ℓ′) :=
⋃

ℓ′-elements s∈G∗F

E(GF , s).

2.3. Quasi-central defect and defect groups. In this subsection we develop some
results which will allow us to identify the defect groups of blocks.

Definition 2.4. Let ζ ∈ E(GF , ℓ′). We say that ζ is of central ℓ-defect if |GF |ℓ =
ζ(1)ℓ|Z(G)F |ℓ and that ζ is of quasi-central ℓ-defect if some (and hence any) character of
[G,G]F covered by ζ is of central ℓ-defect.

The above definition makes sense since if ζ ∈ E(GF , ℓ′), then any character of [G,G]F

covered by ζ is in E([G,G]F , ℓ′). The following are some properties of characters of quasi-
central and central ℓ-defect. They rely on Lusztig’s result [34, Prop. 10] on the restriction
of irreducible characters under regular embeddings being multiplicity free.

Proposition 2.5. Let ζ ∈ E(GF , ℓ′), A = Z(G)Fℓ , and A0 = Z([G,G])Fℓ . Then:

(a) ζ is of quasi-central ℓ-defect if and only if |[G,G]F |ℓ = ζ(1)ℓ|Z([G,G])F |ℓ.
(b) If ζ is of central ℓ-defect, then ζ is of quasi-central ℓ-defect.
(c) ζ is of central ℓ-defect if and only if A is a defect group of bGF (ζ).

Suppose that ζ is of quasi-central ℓ-defect. Then:

(d) bGF (ζ) is nilpotent.
(e) Any defect group D of bGF (ζ) contains A with D/A isomorphic to a Sylow ℓ-subgroup

of GF/A[G,G]F and D ∩ [G,G]F = A0.
(f) E(GF , ℓ′) ∩ Irr(bGF (ζ)) = {ζ}.
(g) ζ is of central ℓ-defect if and only if GF/A[G,G]F is an ℓ′-group.

Proof. Let ζ0 be an irreducible constituent of the restriction of ζ to [G,G]F and let I be
the stabiliser in GF of ζ0. Since ζ0 ∈ E([G,G]F , ℓ′), the index of I in GF is prime to ℓ.
On the other hand, by [34, Prop. 10], ζ0 extends to an irreducible character of I. Thus,
ζ0(1)ℓ = ζ(1)ℓ, proving (a) and (b). Since A is a central ℓ-subgroup of G and ζ ∈ E(GF , ℓ′),
A is in the kernel of ζ , from which (c) is immediate.

Assume till the end of the proof that ζ is of quasi-central ℓ-defect. By (c), b[G,G]F (ζ0)

has defect group A0. Further, since G = Z(G)[G,G] and A0 ≤ Z([G,G])F , A0 is central
in GF . So the hypotheses of Lemma 2.2(b) are satisfied for the normal subgroup [G,G]F
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of GF and the blocks b[G,G]F (ζ0) and bGF (ζ), proving (d) and (e). The index of I in GF

is prime to ℓ, so again by Lemma 2.2(b) there are |I : [G,G]F |ℓ′ ℓ-blocks of GF covering
b[G,G]F (ζ0). Also, there are |I : [G,G]F |ℓ′ elements of E(GF , ℓ′) covering ζ0. Now (f) follows
from Theorem 2.3 and (g) follows from (c) and (e). �

The next results will be our main tools for the identification of defect groups. We first
derive an easy upper bound for the orders of defect groups:

Lemma 2.6. Let s ∈ G∗F be a semisimple ℓ′-element.

(a) The defect groups of any ℓ-block in Eℓ(GF , s) have order at most |CG∗F (s)|ℓ.
(b) There exists an ℓ-block in Eℓ(GF , s) whose defect groups have order |CG∗F (s)|ℓ.
In particular, if Eℓ(GF , s) is a single ℓ-block, then the defect groups of this block have order
|CG∗F (s)|ℓ.
Proof. Let t be an ℓ-element of CG∗F (s) and let χ ∈ E(GF , st). By the Jordan decompo-
sition of characters, there exists an irreducible (unipotent) character ψ of CG∗F (st) such
that

|GF |ℓ
χ(1)ℓ

=
|CG∗F (st)|ℓ
ψ(1)ℓ

.

In particular,
|GF |ℓ
χ(1)ℓ

≤ |CG∗F (st)|ℓ ≤ |CG∗F (s)|ℓ.

This proves the first part. If χ ∈ E(GF , s) corresponds to the trivial character of CG∗F (s),
then by the above formula, the ℓ-defect of χ is |CG∗F (s)|ℓ, hence the block containing χ
has defect at least |CG∗F (s)|ℓ. This proves (b). �

Proposition 2.7. Let L ≤ G be an F -stable Levi subgroup and A = Z(L)Fℓ , A0 =
Z([L, L])Fℓ . Suppose that

L = C◦
G(A), LF = CGF (A).

For λ ∈ E(LF , ℓ′) of quasi-central ℓ-defect let u = bLF (λ) and let b be the block of GF such
that (A, u) is a b-Brauer pair. Then

(a) NGF (A) = NGF (L), NGF (A, u) = NGF (L, λ), and NGF (A, u)/CGF (A) = WGF (L, λ),
where WGF (L, λ) := NGF (L, λ)/LF .

Let (A, u) ⊆ (D, v) ⊆ (P,w) be b-Brauer pairs such that D is maximal with respect to
D ≤ CGF (A) and P is maximal with respect to P ≤ NGF (L, λ). Then:

(b) D/A is isomorphic to a Sylow ℓ-subgroup of LF/A[L, L]F , P ∩ LF = D and P/D is
isomorphic to a Sylow ℓ-subgroup of WGF (L, λ).

Let s ∈ G∗F be an ℓ′-element such that Irr(b) ⊆ Eℓ(GF , s). Then:

(c) If
|CG∗F (s)|ℓ = |Z◦(L)Fℓ | · |A0| · |WGF (L, λ)|ℓ,

then P is a defect group of b.
(d) If A is characteristic in P , then P is a defect group of b.
(e) If the defect groups of b are abelian, then ℓ does not divide |WGF (L, λ)|.
(f) If A = D and ℓ does not divide |WGF (L, λ)|, then A is a defect group of b.
(g) If Z◦(L)F ∩ [L, L]F is an ℓ′-group, then A = D.
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Proof. Since L = C◦
G(A), NGF (A) ≤ NGF (L) and since A = Z(L)Fℓ , NGF (L) ≤ NGF (A).

Thus, NGF (A) = NGF (L). By Proposition 2.5(f), λ is the unique element of E(LF , ℓ′) ∩
Irr(u). Since conjugation by elements of NGF (L) stabilises E(LF , ℓ′), we get that

NGF (A, u) = NGF (L, u) = NGF (L, λ).

This proves (a). From this, (b) follows by Lemma 2.1 and Proposition 2.5(e).
By (b) we have

|P | = |A| · |L
F |ℓ · |WGF (L, λ)|ℓ
|A[L, L]F |ℓ

.

Now, |LF | = |Z◦(L)F | · |[L, L]F | and as pointed out in the proof of Proposition 2.5,
A0 = A ∩ [L, L]F . Hence

|P | = |Z◦(L)Fℓ | · |A0| · |WGF (L, λ)|ℓ
and (c) follows from Lemma 2.6(a).

Suppose that A is characteristic in P . Let (P,w) ⊆ (R, f) ⊆ (S, j) be b-Brauer pairs
with (S, j) maximal and R = NS(P ). Since R normalises A, P ≤ R ≤ NGF (A, u) =
NGF (L, λ). So, by maximality of P , R = P , whence S = P , proving (d).

Part (e) is immediate from part (b).
If A = D and WGF (L, λ) is an ℓ′-group, then P = A, which means that if (S, j) is any

maximal Brauer pair containing (A, u), then NS(A) = A. But this implies that (A, u) is
maximal, proving (f).

If Z◦(L)F ∩ [L, L]F is an ℓ′-group, then from the equality |LF | = |Z◦(L)F | · |[L, L]F | it
follows that LF/Z◦(L)F [L, L]F and hence LF/A[L, L]F is an ℓ′-group. But by part (a),
D/A is isomorphic to a Sylow ℓ-subgroup of LF/A[L, L]F . This proves (g). �

2.4. Lusztig induction and e-Harish-Chandra theory. It is known that the ℓ-blocks
of GF are in close relation with Lusztig induction. For any F -stable Levi subgroup L of
a (not necessarily F -stable) parabolic subgroup P of G Lusztig defines linear maps

RG
L⊂P : ZIrr(LF ) −→ ZIrr(GF ),

∗RG
L⊂P : ZIrr(GF ) −→ ZIrr(LF ),

adjoint to each other with respect to the standard scalar product on complex characters.
This Lusztig induction enjoys the following important properties:

Theorem 2.8. Let L be an F -stable Levi subgroup of a parabolic subgroup P of G.

(a) If M ≤ L is an F -stable Levi subgroup of a parabolic subgroup Q of P then

RG
M⊂Q = RG

L⊂P ◦RL
M⊂Q∩L.

(b) Let L∗ be an F -stable Levi subgroup of G∗ in duality with L. For any semisimple
element s ∈ L∗, RG

L⊂P restricts to a linear map

RG
L⊂P : ZE(LF , s) −→ ZE(GF , s).

(c) If P is F -stable, then

RG
L⊂P = IndGF

PF ◦ InflPF

LF .

(d) The Mackey formula holds for RG
L⊂P except possibly if GF has a simple component

2E6(2), E7(2) or E8(2).
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Proof. See [19, 11.5] for (a), part (b) is immediate from this and the definition of the
Lusztig series, for (c) see [19, §11], and the recent paper of Bonnafé–Michel [7] for (d). �

Note that, as a formal consequence of the validity of the Mackey formula, Lusztig
induction is independent of the choice of parabolic subgroup P containing L (except
possibly in the groups excluded in Theorem 2.8(d)). We will henceforth just write RG

L .

An F -stable torus T of G is called an e-torus if it splits completely over Fqe but does

not split over any smaller field. Equivalently, there is a ≥ 0 such that |T F k| = Φe(q
k)a

for all k ≥ 1, where Φe denotes the eth cyclotomic polynomial. The centralisers of e-tori
of G are called e-split Levi subgroups. (Note that these are indeed Levi subgroups, which
are F -stable.) A character χ ∈ Irr(GF ) is called e-cuspidal if ∗RG

L (χ) = 0 for every e-split
proper Levi subgroup L of G. A pair (L, λ) consisting of an e-split Levi subgroup L and
an e-cuspidal character λ ∈ Irr(LF ) is then called an e-cuspidal pair. Given an e-cuspidal
pair (L, λ), we write

E(GF , (L, λ)) := {χ ∈ Irr(GF ) | 〈∗RG
L (χ), λ〉 6= 0}

for the set of constituents of RG
L (λ). This is called the e-Harish-Chandra series of GF

above (L, λ).

Definition 2.9. We say thatRG
L satisfies an e-Harish-Chandra theory above the e-cuspidal

pair (L, λ) if there exists a collection of isometries

IM(L,λ) : ZIrr(WMF (L, λ))→ ZE(MF , (L, λ)) ,

where M runs over the set of all e-split Levi subgroups of G containing L, such that

(1) for all M we have

RG
M ◦ IM(L,λ) = IG(L,λ) ◦ Ind

W
GF (L,λ)

W
MF (L,λ) ;

(2) the collection
(

IM(L,λ)

)

M,(L,λ)
is stable under the conjugation action by WGF ; and

(3) IL(L,λ) maps the trivial character of the trivial group WLF (L, λ) to λ.

The following is shown in [10, Prop. 3.15 and Thm. 3.11]:

Proposition 2.10. Assume that RG
L satisfies an e-Harish-Chandra theory above (L, λ).

Then for any e-split Levi subgroup L ≤ H ≤ G and any χ ∈ Irr(HF ) with 〈RH
L (λ), χ〉 6= 0

we have:

(a)
∗RH

L (χ) = 〈 ∗RH
L (χ), λ〉LF

∑

g∈N
HF (L)/N

HF (L,λ)

gλ.

(b) Every constituent ψ of RG
H(χ) is a constituent of RG

L (λ).

2.5. ℓ-adapted Levi subgroups and Cabanes’ criterion. The results in this section
are adaptations and extensions of a powerful criterion of Cabanes, formulated in [20,
Prop. 3], which provides a strong relation between the explicit decomposition of the
Lusztig induction functor RG

L for suitable Levi subgroups L of G and the subdivision of
Eℓ(GF , s) into ℓ-blocks through the inclusion of Brauer pairs.
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For an ℓ-element z of GF , we write dz,G
F

for the generalised decomposition map which
sends a K-valued class function f of GF to the class function dz,G

F

(f) on CGF (z) by the

rule dz,G
F

(f)(zy) = f(zy) if y ∈ CGF (z) has order prime to ℓ and dz,G
F

(f)(zy) = 0 if the

order of y ∈ CGF (z) is divisible by ℓ. The map d1,G
F

is the usual decomposition map.
Note that if A is an abelian ℓ-subgroup of GF contained in a maximal torus of G, then
CG(A)/C

◦
G(A) is an ℓ-group (see [38, Prop. 14.20], [13, Prop. 2.1(i)]). So, CGF (A)/C◦

G(A)
F

is an ℓ-group, and hence, each ℓ-block of C◦
G(A)

F is covered by a unique block of CGF (A).
We will use this fact without further comment.

Lemma 2.11. Let L be an F -stable Levi subgroup of G, let λ ∈ E(LF , ℓ′) and χ ∈
E(GF , ℓ′). Suppose that 〈χ,RG

L (λ)〉 6= 0 and 〈∗RG
L (χ), d

1,LF

(λ)〉 6= 0. Then, for any
z ∈ Z(L)Fℓ , there exists an irreducible constituent φ of RH

L (λ), where H := C◦
G(z), such

that denoting by b̃ the unique block of CGF (z) covering the block containing φ, (〈z〉, b̃) is
a bGF (χ)-Brauer pair.

Proof. We have

d1,L
F

(∗RG
L (χ)) = dz,L

F

(∗RG
L (χ)) =

∗RH
L (d

z,GF

(χ)),

the first equality holding since z is a central ℓ-element of LF whereas χ is in an ℓ′-
series, and the second because of the commutation of Lusztig restriction and generalised
decomposition maps (see [15, Thm. 21.4]). It follows that

〈dz,GF

(χ), RH
L (λ)〉 6= 0.

Now the result follows by Brauer’s second main theorem and the fact that the index of
H = C◦

G(z) in CG(z) is a power of ℓ. �

Proposition 2.12. Let L be an F -stable Levi subgroup of G and let λ ∈ E(LF , ℓ′). Let Z
be a subgroup of Z(L)Fℓ and {z1, . . . , zm} a generating set for Z. Set Hi = C◦

G(z1, . . . , zi),
1 ≤ i ≤ m, and H0 = G. Suppose the following:

(1) For any i, 0 ≤ i ≤ m− 1, and any character χ ∈ Irr(HF
i ) with 〈RHi

L (λ), χ〉HF
i
6= 0 we

have 〈d1,LF

(λ), ∗RHi

L (χ)〉LF 6= 0.
(2) The irreducible constituents of RHm

L (λ) lie in a single ℓ-block of HF
m.

Then, for all i, 0 ≤ i ≤ m, there exists a unique block, say bi of HF
i such that all

constituents of RHi

L (λ) lie in bi. Further, letting b̃i be the unique block of CG(z1, . . . , zi)
F

covering bi for 1 ≤ i ≤ m, we have inclusions of Brauer pairs

({1}, b0) ⊆ (〈z1〉, b̃1) ⊆ . . . ⊆ (Z, b̃m).

Proof. Proceed by induction on m. Suppose first that m = 1, and let b1 be the block of
HF

1 in which all constituents of RH1

L (λ) lie. By (1) and Lemma 2.11, for any irreducible
constituent χ of RG

L (λ), we have an inclusion of Brauer pairs

({1}, bGF (χ)) ⊆ (〈z1〉, b̃1) = (Z, b̃1).

Now by the uniqueness of inclusion of Brauer pairs it follows that bGF (χ) = bGF (χ′) for
any irreducible constituents χ, χ′ of RG

L (λ).
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Now suppose m > 1. Since Hm = C◦
Hm−1

(zm), by the previous argument there exists a

unique block bm−1 of HF
m−1 such that all constituents of R

Hm−1

L (λ) lie in bm−1 and there
is an inclusion of HF

m−1-Brauer pairs

({1}, bm−1) ⊆ (〈zm〉, b′m),
where b′m is the unique block of CHF

m−1

(zm) covering the block bm of HF
m (note that

CHm−1
(zm) may be a proper subgroup of CG(z1, . . . , zm)). This yields an inclusion of

CG(z1, . . . , zm−1)
F -Brauer pairs

({1}, b̃m−1) ⊆ (〈zm〉, b̃m),
and hence we have the inclusion of GF -Brauer pairs

(〈z1, . . . , zm−1〉, b̃m−1) ⊆ (Z, b̃m).

The result now follows by induction since we have shown above that all constituents of
R

Hm−1

L (λ) lie in the same block. �

The following gives sufficient criteria for condition (2) of Proposition 2.12 to hold.

Proposition 2.13. In the notation of Proposition 2.12 condition (2) is satisfied for any
λ ∈ E(LF , ℓ′) if one of the following holds:

(1) L = C◦
G(Z); or

(2) ℓ = 2 and the simple components of C◦
G(Z) are of classical type B, C or D.

Proof. The assertion is obvious in the first case since then Hm = L. In the second case,
the assertion follows by [21, Prop. 1.5(b)]. �

We will make mostly use of condition (1) above which has been checked in many cases
by Enguehard [20] for the choice Z = Z(L)Fℓ .

Now we develop sufficient criteria for condition (1) of Proposition 2.12 to hold.

Definition 2.14. Let L ≤ G be an e-split Levi subgroup. We say that L is (e, ℓ)-adapted,
if there exist generators Z(L)Fℓ = 〈z1, . . . , zm〉 such that C◦

G(z1, . . . , zi) is an e-split Levi
subgroup of G for all 1 ≤ i ≤ m.

Proposition 2.15. Let e ≥ 1 and let (L, λ) be an e-cuspidal pair such that λ ∈ E(LF , ℓ′).
Assume that RG

L satisfies an e-Harish-Chandra theory above λ. Then for any e-split Levi
subgroup L ≤ H ≤ G and any χ ∈ Irr(HF ) such that 〈RH

L (λ), χ〉 6= 0, we have
〈

d1,L
F

(∗RH
L (χ)),

∗RH
L (χ)

〉

LF
6= 0.

Further, if L is (e, ℓ)-adapted in G with respect to the generating set {z1, . . . , zm} of
Z(L)Fℓ , then condition (1) of Proposition 2.12 is satisfied with respect to z1, . . . , zm.

Proof. Let L ≤ H ≤ G be e-split and χ ∈ Irr(HF ) such that 〈RH
L (λ), χ〉 6= 0. By

Proposition 2.10 we have

∗RH
L (χ) = a

∑

g∈N
HF (L)/N

HF (L,λ)

gλ

with a := 〈λ, ∗RH
L (χ)〉 = 〈RH

L (λ), χ〉 6= 0, whence we see that ∗RH
L (χ)(1) 6= 0, and thus

〈

d1,L
F

(∗RH
L (χ)),

∗RH
L (χ)

〉

LF
6= 0.
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But,
〈

d1,L
F

(∗RH
L (χ)),

∗RH
L (χ)

〉

LF
= a

∑

g∈N
HF (L)/N

HF (L,λ)

〈

d1,L
F

(gλ), ∗RH
L (χ)

〉

LF

= a|NHF (L) : NHF (L, λ)|
〈

d1,L
F

(λ), ∗RH
L (χ)

〉

LF
.

This proves the first assertion. The second part follows by repeatedly applying the first
assertion to the cases H = G, respectively H = C◦

G(z1, . . . , zi), 1 ≤ i ≤ m. �

The next result contains further useful criteria for condition (1) of Proposition 2.12.

Proposition 2.16. Let L be an F -stable Levi subgroup of G, let λ ∈ E(LF , ℓ′) and let b
be the ℓ-block of LF containing λ. Suppose that one of the following holds:

(1) L is a torus;
(2) ℓ is good for L and the ℓ-block of LF containing λ is nilpotent;
(3) λ is of quasi-central ℓ-defect; or
(4) Irr(b) ∩ E(LF , ℓ′) = {λ}.
Then for any character χ ∈ Irr(GF ) with 〈RG

L (λ), χ〉GF 6= 0 we have

〈d1,LF

(λ), ∗RG
L (χ)〉LF 6= 0.

Consequently, condition (1) of Proposition 2.12 holds for any subgroup Z of Z(L)Fℓ and
any generating set {z1, . . . , zm} of Z.
Proof. (1) is a special case of (2) and of (3), and by Proposition 2.5(f), (3) is a special
case of (4). Also, the second assertion follows by applying the first part with G replaced
by Hi, 1 ≤ i ≤ m. For any irreducible character χ of GF , we have that

〈

d1,L
F

(λ), ∗RG
L (χ)

〉

LF
=

〈

d1,L
F

(λ), b · ∗RG
L (χ)

〉

LF
=

〈

d1,L
F

(λ), d1,L
F

(b.∗RG
L (χ))

〉

LF
.

Hence, in order to prove the proposition it suffices to show that if either (2) or (4) of the
statement hold, then

〈

d1,L
F

(λ), d1,L
F

(b.∗RG
L (χ))

〉

LF
6= 0

for any χ ∈ Irr(GF ) such that 〈RG
L (λ), χ〉GF 6= 0. Indeed, for such χ we have by adjunction

∗RG
L (χ) = aλ+

∑

φ∈I

aφφ

for suitable a 6= 0, aφ ∈ Z, where I is a subset of E(LF , ℓ′) \ {λ}. So,
b.∗RG

L (χ) = aλ+
∑

φ∈I′

aφφ

where I ′ = I ∩ Irr(b).
Suppose first that (2) holds. Since ℓ is good for L, by [14, Thm. 1.7] the restriction of

the right hand side of the above equation to the ℓ′-elements of LF is non-zero. On the
other hand, since b is nilpotent, {d1,LF

(λ)} is an ℓ-basic set for b. Hence d1,LF

(b.∗RG
L (χ)) =

md1,L
F

(λ) for some non-zero m. The result follows since λ(1) 6= 0.
Now suppose (4) holds. Then again since I ′ ⊆ Irr(b) ∩ E(LF , ℓ′) \ {λ}, the hypothesis

implies that I ′ = ∅. The result follows since λ(1) 6= 0. �



14 R. Kessar and G. Malle

The previous results combine to give the following criterion which will be crucial for
the proof of Theorem 1.2. Here, (L, λ) is said to lie below E(GF , s) if the constituents of
RG

L (λ) lie in E(GF , s), or equivalently, if λ ∈ E(LF , s).

Proposition 2.17. Let e ≥ 1 and let s ∈ G∗F be a semisimple ℓ′-element. Suppose the
following.

(1) The assertions of Theorem 1.4 hold for the set of e-cuspidal pairs below E(GF , s).
(2) For any e-cuspidal pair (L, λ) below E(GF , s) we have L = C◦

G(Z(L)
F
ℓ ), and L

F =
CGF (Z(L)Fℓ ), and L is (e, ℓ)-adapted.

Then for any e-split Levi subgroup H of G such that HF = CGF (Z(H)Fℓ ) the following
holds:

For any ℓ-block b of HF such that Irr(b) ∩ E(HF , s) 6= ∅, there exists a unique ℓ-block c
of GF such that for any χ ∈ Irr(b)∩E(HF , s) all constituents of RG

H(χ) lie in c. Moreover,
(Z(H)Fℓ , b) is a c-Brauer pair.

Proof. Let H be as in the statement and let (L, λ) be an e-cuspidal pair of G such that
L ≤ H . We claim that L = C◦

H(Z(L)
F
ℓ ), L

F = CHF (Z(L)Fℓ ), L is (e, ℓ)-adapted in H , and
RH

L satisfies an e-Harish-Chandra theory above λ. The first two assertions of our claim
follow from

L ≤ C◦
H(Z(L)

F
ℓ ) ≤ C◦

G(Z(L)
F
ℓ ) ∩H = L ∩H = L.

Next, we show that L is (e, ℓ)-adapted in H . Let Z(L)Fℓ = 〈z1, . . . , zm〉 be a system of
generators such that Li := C◦

G(z1, . . . , zi) is e-split, and for 1 ≤ i ≤ m let Ti be the Sylow
e-torus of Z(Li) and T the Sylow e-torus of Z(H), so that Li = CG(Ti) and H = CG(T ).
Since T is central in H , and L ≤ H is a Levi subgroup, we have T ≤ Z(Li), so T ≤ Ti
and

C◦
H(z1, . . . , zi) ≤ CG(Ti) ∩ CH(T ) = CH(Ti) = H ∩ Li = C◦

H(z1, . . . , zi)

for 1 ≤ i ≤ m. Finally, since any e-split Levi subgroup of H is an e-split Levi subgroup
of G, RH

L satisfies an e-Harish-Chandra theory over λ by condition (1), proving the claim.
Now let b be as in the statement and let χ ∈ Irr(b)∩E(HF , s). Let (L, λ) be an e-cuspidal

pair of G such that L ≤ H , and χ is a constituent of RH
L (λ). By Proposition 2.10(b)

every constituent ψ of RG
H(χ) is a constituent of RG

L (λ). As RG
L satisfies an e-Harish-

Chandra theory above λ, condition (1) of Proposition 2.12 holds for {z1, . . . , zm} by
Proposition 2.15. Further, condition (2) holds by hypothesis and by Proposition 2.13.
Hence we have an inclusion of GF -Brauer pairs

({1}, bGF (ψ)) ⊆ (Z(L)Fℓ , bLF
(λ)).

On the other hand, by using the claim one sees that the arguments in the preceding
section all apply to H also, hence we have an inclusion of HF -Brauer pairs

({1}, b) ⊆ (Z(L)Fℓ , bLF
(λ)).

Since by hypothesis HF = CGF (Z(H)Fℓ ), this also yields an inclusion of GF -Brauer pairs
(

Z(H)Fℓ , b
)

⊆ (Z(L)Fℓ , bLF
(λ)).

Let c be the unique block of GF such that we have an inclusion of GF -Brauer pairs

({1}, c) ⊆
(

Z(H)Fℓ , b
)

.
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By transitivity and uniqueness of inclusion of Brauer pairs, we get that c = bGF (ψ). This
proves the result. �

3. The quasi-isolated blocks in F4(q)

In this section we prove Theorems 1.2 and 1.4 on quasi-isolated blocks of simple groups
of type F4.

For this recall that a semisimple element s of a connected reductive group G is called
quasi-isolated if its centraliser CG(s) is not contained in any proper Levi subgroup of G.
Correspondingly, a quasi-isolated ℓ-block is a block lying in the Lusztig series parametrised
by a quasi-isolated ℓ′-elements of the dual group.

By earlier results on blocks (see Remark 6.12) the decomposition of Eℓ(GF , s) into ℓ-
blocks of GF is known except when ℓ is a bad prime for G and s 6= 1 is a quasi-isolated
ℓ′-element of G∗, an exceptional group of adjoint type. The various (ℓ, s) will be treated
case-by-case in Sections 3–6, so to start we need to recall the classification of quasi-isolated
elements in exceptional groups of adjoint type from [5, Prop. 4.9 and Table 3].

Proposition 3.1 (Bonnafé). Let G be a simple exceptional algebraic group of adjoint
type and of rank at least 4. Then the conjugacy classes of quasi-isolated elements s whose
order is not divisible by all bad primes for G, the root system of their centraliser CG(s), the
group of components A(s) := CG(s)/C

◦
G(s) and the automiser A(C) := NG(CG(s))/C

◦
G(s)

are given in Table 1.

Table 1. Quasi-isolated elements in exceptional groups

G o(s) C◦
G(s) A(s) A(C)

F4 2 C3+A1, B4 1 1

3 A2+Ã2 1 2

4 A3+Ã1 1 2
E6 2 A5+A1 1 1

3 A2+A2+A2, D4 3 S3

E7 2 D6+A1 1 1
2 A7, E6 2 2
3 A5+A2 1 2
4 A3+A3+A1, D4+A1+A1 2 4

E8 2 D8, E7+A1 1 1
4 D5+A3, A7+A1 1 2
3 A8, E6+A2 1 2
5 A4+A4 1 4

In Table 1, in the last two columns, n stands for a cyclic group of order n. Furthermore,
Ãk denotes a component of C◦

G(s) of type Ak generated by short root subgroups.
From now on let G be simple of type F4, with Steinberg endomorphism F : G → G,

so GF = F4(q), and let ℓ ∈ {2, 3} be one of the two bad primes for G. According to
Proposition 3.1 there exist four different types of centralisers of quasi-isolated elements
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1 6= s ∈ G∗F . In Table 2 we have collected various information on their centralisers
and the corresponding Lusztig series in Irr(GF ) as follows. Firstly, in the second column
we list the possible rational structures of centralisers of quasi-isolated elements. Here, a
quasi-isolated element of order 4 with centraliser structure A3(q)Ã1(q) exists when q ≡
1 (mod 4), while there is one with centraliser structure 2A3(q)Ã1(q) when q ≡ 3 (mod 4).
Similarly, a quasi-isolated 3-element with centraliser structure A2(q)Ã2(q) exists when q ≡
1 (mod 3), while there is one with centraliser structure 2A2(q)

2Ã2(q) when q ≡ 2 (mod 3).
In each case there is a unique bad prime ℓ not dividing o(s). The third column contains

one of the two possibilities for

e = eℓ(q) := order of q modulo

{

ℓ if ℓ > 2,

4 if ℓ = 2.

More precisely, in order to avoid duplication of arguments, we assume that e = 1, that is,
q ≡ 1 (mod 4) when ℓ = 2, and q ≡ 1 (mod 3) when ℓ = 3, respectively. The cases where
e = 2, that is, where q ≡ 1 (mod 4) for ℓ = 2, respectively q ≡ 2 (mod 3) for ℓ = 3, can be
obtained from the former by formally exchanging q by −q in all arguments to come (the
operation of Ennola duality, see [10, (3A)]). Note that GF itself is its own Ennola dual.

Table 2. Quasi-isolated blocks in F4(q)

No. CG∗(s)F (ℓ, e) LF CL∗(s)F λ WGF (L, λ)

1 A2(q) Ã2(q) (2, 1) Φ4
1 L∗F 1 A2 × A2

2 2A2(q)
2Ã2(q) (2, 1) Φ2

1.A1(q)
2 Φ2

1Φ
2
2 1 A1 × A1

Φ1.B3(q) Φ1Φ2.
2A2(q) φ21 A1

Φ1.C3(q) Φ1Φ2.
2Ã2(q) φ̃21 A1

GF CG∗(s)F φ21 ⊗ φ̃21 1

3 B4(q) (3, 1) Φ4
1 L∗F 1 B4

4 Φ2
1.B2(q) L∗F B2[1] B2

5 C3(q)A1(q) (3, 1) Φ4
1 L∗F 1 C3 × A1

6 Φ2
1.B2(q) L∗F B2[1] A1 × A1

7 A3(q) Ã1(q) (3, 1) Φ4
1 L∗F 1 A3 × A1

8 2A3(q) Ã1(q) (3, 1) Φ3
1.Ã1(q) Φ3

1Φ2 1 C2 × A1

2b (2, 2) Φ4
2 L∗F 1 A2 × A2

For each type of centraliser occurring in the table we have also listed in Table 2 all
e-cuspidal pairs (L, λ) in G (up to GF -conjugacy) such that λ ∈ E(LF , s), together with
their relative Weyl groups. More precisely, we denote λ by the standard name of its
unipotent correspondent under Lusztig’s Jordan decomposition of characters; for example
φ21 denotes the unipotent character of SL3(q) parametrised by the partition 21 of 3.
Thus, in particular, if λ ∈ E(L, s) corresponds to ρ ∈ E(CL∗(s), 1), then λ(1) = |L∗ :
CL∗(s)|p′ ρ(1).
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The relative Weyl groupsWGF (L, λ) = NGF (L, λ)/LF can be computed using the GAP-
package Chevie [39], see also the paper of Howlett [28]; they are Coxeter groups of the
indicated type.

The last line 2b will be needed in one of the arguments below.

Proposition 3.2. Let s 6= 1 be a quasi-isolated ℓ′-element of G∗F = F4(q), and assume
that e = eℓ(q) = 1. Then we have:

(a) E(GF , s) is the disjoint union of the e-Harish-Chandra series listed in the rows of
Table 2.

(b) The assertion of Theorem 1.4 holds for G of type F4.

Proof. We first determine the decomposition of RG
L in the relevant cases. If L is 1-split,

this is given by the usual 1-Harish-Chandra theory. Secondly, if L is a maximal torus, or
if λ is uniform, this was determined by Lusztig [33, Thm. 4.23]. Thus, the decomposition
of RG

L is known in all cases listed in Table 2, and also for their Ennola duals unless
ℓ = 2, e = 2, and L is the Ennnola twist of lines 2 or 3 in case 2, or ℓ = 3, e = 2
and LF = Φ2

2.B2(q) is the Ennola twist of case 4 or 6. In the second situation, by the
Mackey formula in Theorem 2.8(d), RH

L (λ), with H ≥ L an e-split Levi subgroup of type
B3 or C3 has norm 2, while RG

H(µ), for µ a constituent of RH
L (λ), has norm 3. So in both

cases the decomposition can be recovered from the uniform projections, for which the
decomposition is known by Lusztig’s work. Similarly, in the case that ℓ = 2 we use that
RG

L (λ) has norm 3 to determine its decomposition.
It turns out that all decompositions are independent of q. Both (a) and (b) can now

be checked from these decompositions. �

We now verify the assumptions for Proposition 2.17.

Lemma 3.3. Let L and ℓ be as in Table 2, with e = eℓ(q) = 1. Then:

(a) in Cases 1–8, L = CG(Z(L)
F
ℓ ) and L is (e, ℓ)-adapted;

(b) λ is of quasi-central ℓ-defect precisely in the numbered lines of the table; and
(c) in Case 2b, there is z ∈ Z(L)F2 with CG(z) of type B4.

Proof. This is easy to check using Chevie or by hand calculations in the root system of
type F4. �

In fact, in all numbered lines except 2, λ is even of central ℓ-defect.

Corollary 3.4. For each quasi-isolated ℓ′-element 1 6= s ∈ G∗F the e-Harish-Chandra
series above any e-cuspidal pair (L, λ) below E(GF , s) is contained in a unique ℓ-block of
GF .

Proof. By Proposition 3.2(b) and Lemma 3.3 the assumptions of Proposition 2.17 are
satisfied, so each e-Harish-Chandra series in E(GF , s) lies in a unique ℓ-block. �

We’re now ready to determine the quasi-isolated ℓ-blocks and their defect groups:

Proposition 3.5. Assume that eℓ(q) = 1. For any quasi-isolated ℓ′-element 1 6= s ∈
G∗F = F4(q) the block distribution of E(GF , s) is as indicated by the horizontal lines in
Table 2.
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For each ℓ-block corresponding to one of the cases 1–8 in the table, there is a defect
group P ≤ NGF (L, λ) with the structure described in Theorem 1.2. In particular, the
defect groups are abelian precisely in cases 4, 6 and 8.

Proof. In cases 1, 7 and 8 in particular, E(GF , s) is a single 1-Harish-Chandra series.
Then Eℓ(GF , s) must be an ℓ-block by Theorem 2.3. In case 2b, by Lemma 3.3(c) there is
z ∈ Z(L)F2 with centraliser C of type B4. But by [21, Prop. 1.5] each E2(CF , s) is a single
2-block. So by Proposition 2.12 all constituents of RG

L (λ) lie in a unique 2-block. Since
this 2-Harish-Chandra series contains all four 1-Harish-Chandra series under line 2, they
all must lie in the same 2-block. In order to complete the proof of the first assertion, it
remains to show that the blocks in lines 3 and 4 correspond to distinct blocks as well as
the blocks in lines 5 and 6. We will do this after determining the defect groups.

By Lemma 3.3, the assumptions on (L, λ) of Proposition 2.7 are satisfied. Let P be as
in Proposition 2.7. We show that P is a defect group of the corresponding block B. In
lines 1, 2, 3, 5, 7, and 8 one checks the equality

|CG∗(s)F |ℓ = |Z◦(L)Fℓ | · |Z([L, L])Fℓ | · |WGF (L, λ)|ℓ,
whence by Proposition 2.7(c), P is a defect group of B. Further, in cases 1, 2, 3, 5, and 7,
WGF (L, λ) is not an ℓ′-group, so by Proposition 2.7(e), P is not abelian.

In cases 4, 6 and 8, Z◦(L)F ∩ [L, L]F and WGF (L, λ) are both ℓ′-groups, hence by
Proposition 2.7(f),(g), Z(L)Fℓ = D = P is a defect group of B.

Finally, since the block corresponding to line 3 has non-abelian defect groups whereas
the one corresponding to line 4 has abelian defect groups, these lines correspond to dif-
ferent blocks. Similarly, lines 5 and 6 correspond to different blocks. �

This completes the proof of Theorem 1.2 for type F4.

4. The quasi-isolated blocks in E6(q) and 2E6(q)

Here we prove Theorems 1.2 and 1.4 for G a simple simply connected group of type
E6. Let’s first assume that GF = E6(q)sc. The situation here is more complicated than
for type F4 since the dual group G∗ of adjoint type contains semisimple elements with
disconnected centralisers. In Table 3 we have collected the six possible types of quasi-
isolated elements 1 6= s ∈ G∗F and their centralisers according to Proposition 3.1. Note
that, whether ℓ = 2 or ℓ = 3, we may have e = eℓ(q) = 1 or 2, which explains the fact
that each centraliser occurs twice in the table.

Again, for each element s we have listed all e-cuspidal pairs (L, λ) below E(GF , s)
up to GF -conjugation. (If L is a proper Levi subgroup of G, the e-cuspidality of the
given character λ is known by induction; when L = G it will be a consequence of the
explicit decomposition of Lusztig induction.) We denote the characters λ as explained
for F4. Moreover, φ, φ′, φ′′ denote the three extensions of the unique 2-cuspidal unipotent
character of D4(q) to its extension by the graph automorphism of order 3.

The column headedWGF (L, λ) describes the relative Weyl group for the given e-cuspidal
pairs as a Coxeter group, possibly extended by a cyclic group of order 3 if CG∗(s) is
disconnected.

We now proceed as in the case of F4 and first discuss the decomposition of RG
L for each

line in Table 3:
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Table 3. Quasi-isolated blocks in E6(q)

No. CG∗(s)F (ℓ, e) LF CL∗(s)F λ WGF (L, λ)

1 A2(q)
3.3 (2, 1) Φ6

1 L∗F 1 A2 ≀ 3
2 A2(q

3).3 (2, 1) Φ2
1.A2(q)

2 Φ2
1Φ

2
3.3 1 A2

3 Φ2
1.D4(q).3 (2, 1) Φ6

1 L∗F 1 D4.3
Φ2

1.D4(q) L∗F D4[1] 3
4 Φ1Φ2.

2D4(q) (2, 1) Φ4
1.A1(q)

2 Φ4
1Φ

2
2 1 B3

5 Φ3.
3D4(q).3 (2, 1) Φ2

1.A2(q)
2 Φ2

1Φ
2
3.3 1 G2

GF CG∗(s)F 3D4[±1] 1
6 A2(q

2).2A2(q) (2, 1) Φ3
1.A1(q)

3 Φ3
1Φ

3
2 1 A2 ×A1

Φ2
1.D4(q) Φ2

1Φ
2
2.

2A2(q) φ21 A2

7 A2(q)
3.3 (2, 2) Φ2

1Φ
3
2.A1(q) Φ3

1Φ
3
2 1 A1 ≀ 3

Φ1Φ
2
2.A3(q) Φ2

1Φ
2
2.A2(q) φ21 A1 ×A1

Φ2.A5(q) Φ1Φ2.A2(q)
2 φ21 ⊗ φ21 A1

GF CG∗(s)F φ⊗3
21 1

8 A2(q
3).3 (2, 2) Φ2.A2(q

2)A1(q) Φ1Φ2Φ3Φ6.3 1 A1

GF CG∗(s)F φ21 1
9 Φ2

1.D4(q).3 (2, 2) Φ2
1Φ

4
2 L∗F 1 D4.3

GF CG∗(s)F φ, φ′, φ′′ 1
10 Φ1Φ2.

2D4(q) (2, 2) Φ2
1Φ

4
2 L∗F 1 B3

11 Φ3.
3D4(q).3 (2, 2) Φ2

2.A2(q
2) Φ2

2Φ3Φ6.3 1 G2

GF CG∗(s)F φ2,1, φ2,2 1
12 A2(q

2).2A2(q) (2, 2) Φ2
1Φ

4
2 L∗F 1 A2 ×A2

13 A5(q)A1(q) (3, 1) Φ6
1 L∗F 1 A5 ×A1

14 A5(q)A1(q) (3, 2) Φ2
1Φ

4
2 L∗F 1 C3 × A1

15 Φ2.A5(q) L∗F φ321 A1

Proposition 4.1. Let 1 6= s ∈ G∗F = E6(q)ad be a quasi-isolated ℓ′-element, and e =
eℓ(q). Then we have:

(a) E(GF , s) is the disjoint union of the e-Harish-Chandra series listed in Table 3.
(b) The assertion of Theorem 1.4 holds for G of type E6.

Proof. The characters of all proper Levi subgroups in cases 1, 4, 6, 7, 10, and 12–15
are uniform, so the decomposition of Lusztig induction can be reduced to the known
decomposition of RG

T (θ) for suitable maximal tori T . The same is true for the first line
in cases 3 and 9. Whenever L = G, there is nothing to do. For each of the two Levi
subgroups L of type A2

2 (cases 2, 5 and 11) there are three NGF (L)-orbits of characters of
degree 1

3
Φ4

1Φ
2
2, their sum being uniform. Since L only involves factors of type A, Lusztig

induction of this sum can be decomposed. In the second line in case 3, RG
L (λ) has norm 3

by Theorem 2.8(d), and from its known degree one concludes that it equals the sum of
the three remaining characters of E(GF , s) not occurring in the e-Harish-Chandra series
in line 3 of the table. The same considerations apply to case 8.
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It follows from the explicit decompositions that both (a) and (b) hold. �

The following is easily checked by explicit computation:

Lemma 4.2. Let L and ℓ be as in Table 3, with e = eℓ(q). Then:

(a) L = CG(Z(L)
F
ℓ ) and L is (e, ℓ)-adapted; and

(b) in the table, λ is of quasi-central ℓ-defect precisely in the numbered lines.

In fact, in all numbered lines except 6–8, λ is even of central ℓ-defect.
By Proposition 4.1(b) and Lemma 4.2, the assumptions of Proposition 2.17 are satisfied,

so again each e-Harish-Chandra series in Table 3 is contained in a unique ℓ-block of GF .

Proposition 4.3. Let e = eℓ(q). For any quasi-isolated ℓ
′-element 1 6= s ∈ G∗F = E6(q)ad

the block distribution of E(GF , s) is as indicated by the horizontal lines in Table 3.
For each ℓ-block corresponding to one of the cases 1–15 in the table there is a defect

group P ≤ NGF (L, λ) with the structure described in Theorem 1.2. In particular, the
defect groups are abelian precisely in case 15.

Proof. In cases 1, 2, 4, 10, 12 and 13, E(GF , s) is a single e-Harish-Chandra series, hence
Eℓ(GF , s) is an ℓ-block by Theorem 2.3. The Levi subgroup in the second line of case 3
contains the one in the first line of case 3. In the second line of case 3, the irreducible
characters in E(LF , s) are products of a fixed linear character of Z(L)F of order 2 with
unipotent characters of the derived group [L, L]F of type D4. Now by [21, Prop. 1.5]
all unipotent characters of this derived group are contained in a single 2-block, hence all
elements of E(LF , s) are in the same 2-block so the two Harish-Chandra series of GF lie
above a single 2-block of LF , and hence lie in a single 2-block of GF by Proposition 2.17.
The same argument applies to case 6, using again that E2(LF , s) forms a single 2-block and
that the Levi subgroup corresponding to the second line contains the one corresponding
to the first.

In case 7 we also use 1-Harish-Chandra theory from the 1-cuspidal pair (L, λ) in line 1.
It turns out that all assertions of Lemma 4.2(a) are also satisfied there when q ≡ 3 (mod 4).
Then, by Proposition 2.17, all constituents of RG

L (λ) lie in a single 2-block. Since this 1-
Harish-Chandra series contains all 2-Harish-Chandra series below 7, the latter must form
a single 2-block. The same argument applies to line 9, using line 3.

For case 8, we verify that the 1-cuspidal pair (L, λ) in line 2, with q ≡ 3 (mod 4), satisfies
L = C◦

G(Z(L)
F
ℓ ) and that λ is of central ℓ-defect. We may conclude by Proposition 2.16

that the 1-Harish-Chandra series in 2 lies in a unique 2-block. Since this contains both
2-Harish-Chandra series below 8, these lie in a single 2-block.

In case 5 all character of E(GF , s) but three (corresponding to the cuspidal unipotent
character of D4) lie in the same 1-Harish-Chandra series, hence in the same 2-block. Now
we also consider Lusztig induction from the 2-split Levi subgroup with fixed point group
Φ2

2.A2(q
2) (line 11 with q ≡ 1 (mod 4)). Then again all characters in E(GF , s) but three

different ones lie in the same 2-Harish-Chandra series, hence in the same 2-block. The
same argument applies to case 11, using line 5.

In order to complete the proof of the distribution of blocks, it remains only to show that
lines 14 and 15 correspond to different blocks, and this will be done after the determination
of defect groups.
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By Lemma 4.2, the assumptions on (L, λ) of Proposition 2.7 are satisfied. Let P be as
in Proposition 2.7. In lines 1–14 one checks the assumption of Proposition 2.7(c), whence
P is a defect group of B. Further, in all these cases WGF (L, λ) is not an ℓ′-group, so by
Proposition 2.7(e), P is not abelian. In case 15, Z◦(L)F ∩ [L, L]F and WGF (L, λ) are both
ℓ′-groups, hence by Proposition 2.7(f) and (g), Z(L)Fℓ = D = P is a defect group of B.

Finally, since the block corresponding to line 14 has non-abelian defect groups whereas
the one corresponding to line 15 has abelian defect groups, these lines correspond to
different blocks. �

This completes the proof of Theorem 1.2 for G = E6(q).

The Lusztig series to consider in 2E6(q) are Ennola duals of those in E6(q), and thus
precisely the same arguments as for the latter case apply. We obtain ℓ-blocks as in
Table 3, with the cases (ℓ, 1) and (ℓ, 2) interchanged, and the Levi subgroups replaced by
their Ennola-duals.

5. The quasi-isolated blocks in E7(q)

We now prove Theorems 1.2 and 1.4 for G a simple simply connected group of type
E7, so G

F = E7(q)sc. The relevant non-central quasi-isolated elements s ∈ G∗F and their
centralisers when q ≡ 1 (mod 4) (for the first two entries) respectively q ≡ 1 (mod 3)
(for the remaining entries) are given in Table 4 according to Proposition 3.1. Thus, we
have e = eℓ(q) = 1 for the cases listed in the table, and hence ℓ|(q − 1). The cases where
q ≡ 3 (mod 4) and ℓ = 2 (respectively q ≡ 2 (mod 3) and ℓ = 3) are obtained from these
by Ennola duality. Note that cases 12, 15, 16 and 19 only occur for q ≡ 1 (mod 4), and
cases 13, 17, 18 and 20 only for q ≡ 3 (mod 4).

As for F4 and E6, in each case we give all relevant 1-cuspidal pairs (L, λ) (up to
GF -conjugation) lying below characters from E(GF , s) and their relative Weyl groups.
Case 2b, with e = 2, case 10b, with e = 3, will be used to further investigate the ℓ-blocks
in cases 2 and 10.

In order to fit the table on the page, we’ve adopted the following notation for the Levi
subgroups L, except in lines 2b and 10b: we just give the Dynkin type of the derived
subgroup [L, L], with the understanding that L contains a maximally split torus (since
e = 1).

(We remark that the conjugacy class of parabolic subgroups of type A3
1 of W (E7) with

normaliser quotient F4, denoted by (A3
1)

′ in the above table, seems to have been overseen
in [28].)

Proposition 5.1. Let 1 6= s ∈ G∗F = E7(q)ad be a quasi-isolated ℓ′-element, and assume
that e = eℓ(q) = 1. Then we have:

(a) E(GF , s) is the disjoint union of the e-Harish-Chandra series listed in the upper part
of Table 4.

(b) The assertion of Theorem 1.4 holds for G of type E7.

Proof. Whenever λ is uniform, the decomposition of RG
L is obtained from the known

decomposition of RG
T for various maximal tori T of G. Secondly, whenever the relative

Weyl group is of order 2, RG
L (λ) is of norm 2 by the Mackey formula, and its constituents

are easily determined from the uniform projection. Furthermore, in all cases the induction
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Table 4. Quasi-isolated blocks in E7(q)

No. CG∗(s)F (ℓ, e) LF CL∗(s)F λ WGF (L, λ)

1 A5(q)A2(q) (2, 1) ∅ L∗F 1 A5 × A2

2 2A5(q)
2A2(q) (2, 1) A3

1 Φ4
1Φ

3
2 1 C3 ×A1

D4 Φ3
1Φ

2
2.

2A2(q) φ21 C3

D6 Φ1Φ2.
2A5(q) φ321 A1

E7 CG∗(s)F φ321 ⊗ φ21 1

3 D6(q)A1(q) (3, 1) ∅ L∗F 1 D6 × A1

4 D4 L∗F D4[1] B2 × A1

5 A7(q).2 (3, 1) ∅ L∗F 1 A7.2
6 2A7(q).2 (3, 1) (A3

1)
′ Φ4

1Φ
3
2.2 1 C4

7 D6 Φ1Φ2.
2A5(q).2 φ321 A1

8 Φ1.E6(q).2 (3, 1) ∅ L∗F 1 E6.2
9 D4 L∗F D4[1] A2.2

E6 L∗F E6[θ
±1] 2

10 Φ2.
2E6(q).2 (3, 1) (A3

1)
′ Φ4

1Φ
3
2.2 1 F4

E7 CG∗(s)F 2E6[θ
±1], 2E6[1] 1

11 D6 Φ1Φ2.
2A5(q).2 φ321 A1

12 A3(q)
2A1(q).2 (3, 1) ∅ L∗F 1 A3 ≀ 2×A1

13 2A3(q)
2A1(q).2 (3, 1) A2

1 Φ5
1Φ

2
2 1 B2 ≀ 2×A1

14 A3(q
2)A1(q).2 (3, 1) (A3

1)
′ Φ4

1Φ
3
2.2 1 A3 × A1

15 Φ1.D4(q)A1(q)
2.2 (3, 1) ∅ L∗F 1 (D4 ×A2

1).2
16 D4 L∗F D4[1] A1 ≀ 2
17 Φ2.D4(q)A1(q)

2.2 (3, 1) A1 Φ6
1Φ2 1 (D4 ×A2

1).2
18 D4 ·A1 Φ2

1Φ2D4(q) D4[1] A1 ≀ 2
19 Φ1.

2D4(q)A1(q
2).2 (3, 1) A2

1 Φ5
1Φ

2
2 1 (B3 × A1).2

20 Φ2.
2D4(q)A1(q

2).2 (3, 1) (A3
1)

′ Φ4
1Φ

3
2.2 1 B3 × A1

2b (2, 2) Φ7
2 L∗F 1 A5 × A2

10b (3, 3) Φ2
3.A1(q

3) Φ2Φ
2
3Φ6.2 1 G5

to a Levi subgroup of type E6 respectively 2E6 is known by the results of the previous
section. The norm of characters induced from these Levi subgroups is small enough to
again determine them uniquely from their uniform projections. �

The conditions on L and on λ can be checked as in the previous cases:

Lemma 5.2. Let L and ℓ be as in cases 1–20 in Table 4 (and recall that e = eℓ(q) = 1).
Then:

(a) L = CG(Z(L)
F
ℓ ), and L is (e, ℓ)-adapted; and

(b) in the table, λ is of quasi-central ℓ-defect precisely in the numbered lines.

Additionally, in cases 2b and 10b we have L = C◦
G(Z(L)

F
ℓ ).

In fact, in all numbered lines except 2, λ is even of central ℓ-defect.
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Proposition 5.3. Assume that eℓ(q) = 1. For any quasi-isolated ℓ′-element 1 6= s ∈
G∗F = E7(q)ad the block distribution of E(GF , s) is as indicated by the horizontal lines in
Table 4.

For each ℓ-block corresponding to one of the cases 1–20 in the table, there is a defect
group P ≤ NGF (L, λ) with the structure described in Theorem 1.2. In particular, the
defect groups are abelian precisely in cases 4, 7, 11, 13, 16 and 18.

Proof. By Proposition 2.17, each e-Harish-Chandra series in Table 4 is contained in a
unique ℓ-block of GF . In cases 1, 5, 12–14, 19 and 20, E(GF , s) is a single ℓ-block by
Theorem 2.3. By [21, Tables for E6(q)] all unipotent characters of positive 3-defect of
the Levi subgroup of type E6 lie in the same 3-block, so by Proposition 2.17 the Harish-
Chandra series in line 9 and the following line belong to the same 3-block. Here note that
the Levi subgroup in the second line in each case contains the one in the first line.

In case 2, we claim that all four Harish-Chandra series lie in the same 2-block. For
this note that the 2-split Levi subgroup L in case 2b satisfies L = C◦

G(Z(L)
F
ℓ ), and

then the claim follows from Proposition 2.16 applied to the 2-Harish-Chandra series in
case 2b, which contains all Harish-Chandra series from case 2. By the same arguments,
the 1-cuspidal characters λ = E6[θ

±1] in the second line of case 10 lie in the same block
as line 10, since these lie in the same 3-Harish-Chandra series as in case 10b. We will
show that different numbered lines corresponding to the same quasi-isolated element lie
in different blocks after the determination of the defect groups.

Now let B be an ℓ-block in Eℓ(GF , s) and let P be as in Proposition 2.7. In all numbered
lines which are in the first line of the part of the table corresponding to s we have that P
is a defect group of B by Proposition 2.7(c). Further, in all of these cases, except line 13,
WGF (L, λ) is not an ℓ′-group, so by Proposition 2.7(e), P is not abelian.

For lines 4, 7, 11, 13, 16 and 18, Z◦(L)F ∩ [L, L]F and WGF (L, λ) are both ℓ′-groups,
hence by Proposition 2.7(f),(g), Z(L)Fℓ = D = P is a defect group of B.

For case 9, we note that by Proposition 2.7(b),(g) there is a subgroup P of a defect
group of B of the required type and with D = A = Z(L)F3 . Further, Z(L)

F
3 = E3, where

E is a cyclic group of order (q−1)3, Z(L)
F
3 has index 3 in P and if σ ∈ P \Z(L)F3 , then σ

acts on E3 by cyclically permuting the factors. Thus CP (σ) has order 3(q − 1)3 whereas
CP (τ) for any τ ∈ Z(L)F3 has order at least 3(q − 1)33. So, Z(L)F3 is characteristic in Q,
and it follows from Proposition 2.7(d) that P is a defect group of B.

The defect groups in cases 8 and 9 have different orders, hence they correspond to
different blocks. The defect groups in cases 3, 6, 10, 15 and 17 are non-abelian whereas
those in cases 4, 7, 11, 16 and 18 are abelian, hence correspond to different blocks. �

6. The quasi-isolated blocks in E8(q)

Throughout this section, G is a simple group of type E8, so G
F = E8(q). The situation

is yet more complicated since now there are three bad primes ℓ = 2, 3, 5 to deal with,
which we’ll do one at a time. Until Section 6.4 we assume that q 6= 2.

6.1. Quasi-isolated 2-blocks of E8(q). We begin by considering the case when ℓ = 2.
Table 5 contains the possible rational types of centralisers of quasi-isolated 3- and 5-
elements 1 6= s ∈ G∗F , all e-cuspidal pairs (L, λ) with s ∈ L∗F and their relative Weyl
groups for the case q ≡ 1 (mod 4). Here, a quasi-isolated 3-element as in cases 1 and 3
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occurs when q ≡ 1 (mod 3), as in cases 2 and 5 when q ≡ 2 (mod 3); and a quasi-isolated
5-element as in case 7 occurs when q ≡ 1 (mod 5), as in case 8 when q ≡ 2, 3 (mod 5) and
as in case 9 when q ≡ −1 (mod 5). The notation for Levi subgroups and for the cuspidal
characters is as in Table 4 above.

The cases where q ≡ 3 (mod 4) can be obtained from the former by Ennola duality.

Table 5. Quasi-isolated 2-blocks in E8(q), q ≡ 1 (mod 4)

No. CG∗(s)F e LF CL∗(s)F λ WGF (L, λ)

1 A8(q) 1 ∅ L∗F 1 A8

2 2A8(q) 1 A4
1 Φ4

1Φ
4
2 1 B4

D4 ·A1 Φ3
1Φ

3
2.

2A2(q) φ21 B3

3 E6(q).A2(q) 1 ∅ L∗F 1 E6 × A2

D4 L∗F D4[1] G2 × A2

4 E6 L∗F E6[θ
±1] A2

5 2E6(q).
2A2(q) 1 A3

1 Φ5
1Φ

3
2 1 F4 × A1

D4 Φ4
1Φ

2
2.

2A2(q) φ21 F4

D6 Φ2
1Φ2.

2A5(q) φ321 A1 × A1

E7 Φ1.
2A5(q)

2A2(q) φ321 ⊗ φ21 A1

E7 Φ1Φ2.
2E6(q)

2E6[1] A1

E8 CG∗(s)F 2E6[1]⊗ φ21 1
6 E7 Φ1Φ2.

2E6(q)
2E6[θ

±1] A1

E8 CG∗(s)F 2E6[θ
±1]⊗ φ21 1

7 A4(q)
2 1 ∅ L∗F 1 A2

4

8 2A4(q
2) 1 A2

3 Φ2
1Φ

2
2Φ

2
4 1 B2

D7 Φ1Φ2Φ4.
2A2(q

2) φ21 A1

9 2A4(q)
2 1 A4

1 Φ4
1Φ

4
2 1 B2

2

D4 ·A1 Φ3
1Φ

3
2.

2A2(q) φ21 (2×) B2 × A1

D6 Φ2
1Φ

2
2.

2A2(q)
2 φ21 ⊗ φ21 A2

1

5b 2E6(q).
2A2(q) 2 Φ8

2 L∗F 1 E6 × A2

6b Φ2
2.
2E6(q) L∗F 2E6[θ

±1] A2

Lets’ point out one particularity here. Since E7 has two non-conjugate Levi subgroups
of type A3

1 (see the remark before Proposition 5.1), the quasi-isolated involution in case 5
embeds in two different ways into a 1-split Levi subgroup of type E7, with non-isomorphic
centralizers (see rows 4 and 5 in case 5).

Proposition 6.1. Let 1 6= s ∈ G∗F = E8(q) be a quasi-isolated 2′-element and assume
that e = eℓ(q) = 1. Then we have:

(a) E(GF , s) is the disjoint union of the e-Harish-Chandra series listed in the upper part
of Table 5.

(b) The assertion of Theorem 1.4 holds for G of type E8 with ℓ = 2.
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Proof. We determine the decomposition of RG
L (λ) for the e-Harish-Chandra series occur-

ring in Table 5 as in the previous proofs, using mainly the Mackey formula and transitiv-
ity. �

Lemma 6.2. Let L be as in cases 1–9 of Table 5, and recall that q ≡ 1 (mod 4). Then
L = CG(Z(L)

F
2 ), and L is (1, 2)-adapted. In each numbered line of the table, and no other,

λ is of quasi-central 2-defect. It is of central ℓ-defect in the lines 1, 3, 4, 7, 5b and 6b.
Moreover, in Cases 5b and 6b we have L = C◦

G(Z(L)
F
2 ).

Note that for q ≡ 3 (mod 4) this is no longer true; there are many cases for which
L < C◦

G(Z(L)
F
2 ):

Example 6.3. Assume that q ≡ 3 (mod 4) and let LF be of type Φ2
1.A3(q)

2. Then
C◦

G(Z(L)
F
2 ) is of type D4(q)

2. Similarly, for LF of type Φ4
1.A1(q)

4 we have C◦
G(Z(L)

F
2 ) is

of type A1(q)
8.

But as explained above, for that congruence we choose the Ennola duals of the above
Levi subgroups, and for those the analogue of Lemma 6.2 continues to hold.

Proposition 6.4. Suppose that q ≡ 1 (mod 4). For any quasi-isolated 2′-element 1 6=
s ∈ G∗F the block distribution of E(GF , s) is as indicated by the horizontal lines in the
upper part of Table 5.

For each 2-block corresponding to one of the cases 1–9 in the table, there is a defect
group P ≤ NGF (L, λ) with the structure described in Theorem 1.2. In particular, the
defect groups are non-abelian.

Proof. We first prove part of the block distribution. Again, each e-Harish-Chandra series
in Table 5 is contained in a unique 2-block of GF . The lines 1 and 7 in Table 5 both
correspond to a unique block by Theorem 2.3. The unnumbered Harish-Chandra series
below cases 2, 3, 8 and 9 lie in the same 2-block as the respective numbered line by
Proposition 2.17 since all characters of E(LF , s) lie in the same 2-block by [21, Prop. 1.5].

Similarly, all characters in each of the two Lusztig series E(LF , s), for L a Levi of type
E7 in rows 4 and 5 of case 5, lie in a single 2-block, except for those denoted 2E6[θ

±1], hence
so do the characters in E(GF , s) above them. To see that the cuspidal character in the
line before case 6 belongs to the block in case 5, we use the alternative 2-Harish-Chandra
series above (L, λ) given in cases 5b, which by Lemma 6.2 still satisfies L = C◦

G(Z(L)
F
2 ).

Thus Proposition 2.16 applies. The 1-Harish-Chandra series in line 6 and the subsequent
line are both contained in the 2-Harish-Chandra series above (L, λ) in line 6b. As λ is
of central defect, an application of Proposition 2.16 shows that both 1-Harish-Chandra
series lie in the same 2-block.

Again, we defer the question of different numbered lines corresponding to different
blocks to after the discussion on defect groups.

For any ℓ-block B in E(GF , s), let (D, v) ≤ (P,w) be B-Brauer pairs as in Proposi-
tion 2.7. In all numbered cases, WGF (L, λ) is not a 2′-group, so by Proposition 2.7(e), P
is not abelian. In all numbered lines which are at the top of the part of the table cor-
responding to a particular s, we conclude by Proposition 2.7(c) that P is a defect group
of B.

In case 4, by Proposition 2.7(g), D = A = Z(L)F2 . Further, Z(L)
F
2 = E2, where E is a

cyclic group of order (q− 1)2. The Levi subgroup of type E6 is contained in the maximal
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rank subgroup of type E6 + A2, and Z(L)
F
2 .WGF (L, λ) is contained in the normaliser of

the maximal torus of the A2-factor. Any 2-element σ ∈ P \ Z(L)F2 interchanges two
cyclic subgroups of Z(L)F2 of order at least 4, so Z(L)F2 is the only abelian subgroup of
P properly containing Z(P )[P, P ]. Further, since [P, P ] * Z(P ) and Z(L)F2 is of index
2 in P , Z(L)F2 = CP ([P, P ]). Since any subgroup of index 2 of P contains [P, P ], it
follows that Z(L)F2 is the unique abelian subgroup of index 2 of P . In particular, Z(L)F2
is characteristic in P and it follows from Proposition 2.7(d) that P is a defect group of B.

The Levi subgroup of type E7 in case 6 lies in a maximal rank subgroup of type E7+A1,
and L is a central product E7 ◦T , where T is a split torus of A1 and where the involution
of the centre of E7 is identified with the involution of T . Thus Z(L)F2 = |T F |2 is cyclic
of order (q − 1)2 and by Proposition 2.7(b), Z(L)F2 has index 2 in D. By considering the
projection of D into T , one sees that D is cyclic of order 2(q− 1)2. Further, if σ ∈ P \D,
then σ acts by inversion on A. Since D is cyclic of order at least 8, and A is of index 2 in
D, it follows that D is the unique cyclic subgroup of index 2 in P . Thus, D and hence A
is characteristic in P . Hence by Proposition 2.7(d), P is a defect group of B.

Since the defect groups in cases 3 and 4 have different order as do the defect groups in
cases 5 and 6, we see that these lines correspond to distinct blocks. In case 4, as shown
above Z(L)F2 is the unique abelian subgroup of P of index 2. So, if the Brauer pairs
corresponding to the two choices of λ in case 4 correspond to the same block, then they
are GF -conjugate, and hence by Lemma 6.2 the corresponding e-cuspidal pairs are GF -
conjugate, which is not the case. Thus, the two entries of case 4 correspond to different
blocks. A similar argument applies in case 6. The subgroup D is the unique cyclic
subgroup of P of index 2, and the group Z(L)F2 is the unique subgroup of index 2 in
D. �

6.2. Quasi-isolated 3-blocks of E8(q). Now let ℓ = 3. In Table 6 we present the
centralisers of quasi-isolated 2- and 5-elements together with data for the relevant cuspidal
pairs in the case where q ≡ 1 (mod 3). Again those for q ≡ 2 (mod 3) are obtained by
Ennola duality. As in the case when ℓ = 2, there occurs just one type of quasi-isolated
5-elements, depending on q (mod 5). The quasi-isolated 4-elements in cases 6 and 9 occur
when q ≡ 1 (mod 4), those in cases 8 and 10 when q ≡ 3 (mod 4).

Proposition 6.5. Let 1 6= s ∈ G∗F = E8(q) be a quasi-isolated 3′-element and recall that
e = eℓ(q) = 1. Then we have:

(a) E(GF , s) is the disjoint union of the e-Harish-Chandra series listed in Table 6.
(b) The assertion of Theorem 1.4 holds for G of type E8, q 6= 2, and ℓ = 3.

Proof. The decomposition of RG
L (λ) for the e-Harish-Chandra series 12–17 has already

been computed in the proof of Proposition 6.1. For the remaining Harish-Chandra series,
the usual arguments yield the claim. �

Lemma 6.6. Let L be as in Table 6 and recall that q ≡ 1 (mod 3). Then L = CG(Z(L)
F
3 ),

and L is (1, 3)-adapted. Moreover, in each numbered line of the table, and only in those,
λ is of central 3-defect.

We obtain:
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Table 6. Quasi-isolated 3-blocks in E8(q), q ≡ 1 (mod 3)

No. CG∗(s)F L CL∗(s)F λ WGF (L, λ)

1 D8(q) ∅ L∗F 1 D8

2 D4 L∗F D4[1] B4

3 E7(q)A1(q) ∅ L∗F 1 E7 × A1

4 D4 L∗F D4[1] C3 ×A1

E6 L∗F E6[θ
±1] A1 ×A1

5 E7 L∗F E7[±ξ] A1

6 D5(q)A3(q) ∅ L∗F 1 D5 ×A3

7 D4 L∗F D4[1] A3 ×A1

8 2D5(q).
2A3(q) A2

1 Φ6
1Φ

2
2 1 B4 × C2

9 A7(q)A1(q) ∅ L∗F 1 A7 ×A1

10 2A7(q)A1(q) A3
1 Φ5

1Φ
3
2 1 C4 ×A1

11 D6 Φ2
1Φ2.

2A5(q) φ321 A2
1

12 A4(q)
2 ∅ L∗F 1 A2

4

13 2A4(q
2) A2

3 Φ2
1Φ

2
2Φ

2
4 1 B2

14 D7 Φ1Φ2Φ4.
2A2(q

2) φ21 A1

15 2A4(q)
2 A4

1 Φ4
1Φ

4
2 1 B2

2

16 D4 ·A1 Φ3
1Φ

3
2.
2A2(q) φ21 (2×) B2 ×A1

17 D6 Φ2
1Φ

2
2.
2A2(q)

2 φ21 ⊗ φ21 A2
1

Proposition 6.7. Suppose that q ≡ 1 (mod 3). For any quasi-isolated 3′-element 1 6=
s ∈ G∗F the block distribution of E(GF , s) as indicated by the horizontal lines in Table 6.

For each 3-block B corresponding to one of the cases 1–17 in the table, there is a defect
group P ≤ NGF (L, λ) with the structure described in Theorem 1.2.

In particular, the defect groups of B are abelian precisely in the cases 5, 11 and 13–17,
and then Z(L)F3 is a defect group of B.

Proof. Each e-Harish-Chandra series in Table 6 is contained in a unique 3-block of GF .
Next, note that lines 8, 9 and 12 correspond to a single 3-block each. The two 1-cuspidal
unipotent characters E6[θ

±1] of the derived subgroup of the Levi subgroup of typeE6 below
line 4 lie in the same 3-block of E6(q) as those above D4[1] by [20], so by Proposition 2.17
their Harish-Chandra series are contained in the 3-block from case 4. All other separations
of blocks will be argued once we’ve determined defect groups.

Concerning the structure of the defect groups, in all numbered lines which are at the
top of the part of the table corresponding to a particular s, we conclude as usual by
Proposition 2.7(c). Further, for all of these except cases 13 and 15, WGF (L, λ) is not a
3′-group, so P is non-abelian by Proposition 2.7(e).

In cases 5, 11 and 13–17, Z◦(L)F ∩ [L, L]F and WGF (L, λ) are both 3′-groups, hence by
Proposition 2.7(f),(g), Z(L)F3 = D = P is a defect group of B.

In cases 2, 4, 7, by embedding L in a maximal rank subgroup of typeD4+D4, we see that
L is a central product of D4 with a split maximal torus T of type D4 and Z(L)

F
3 = (T )F3 .

Since Z◦(L)F ∩ [L, L]F is a 3′-group, by Proposition 2.7(g), D = Z(L)F3 . The action of
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σ ∈ P \D on D = (T )F3 can be determined through the action of the Weyl group of type
D4 on T . We have D = 〈z1, z2, z3, z4〉 with σ cyclically permuting the z1, z2, z3 and fixing
z4. So, Z(P )[P, P ] = 〈z1z2z3, z4, z1z−1

2 , z2z
−1
3 〉 is a subgroup of index 3 in D and it follows

that D is the only abelian subgroup of Q properly containing Z(P )[P, P ]. Thus, D is
characteristic in P , and it follows by Proposition 2.7(d) that P is a defect group of B.

In all cases, except the two represented by cases 5, respectively 16, one sees that different
numbered lines correspond to different blocks by comparing orders of the defect group or
noting that one of the lines corresponds to abelian defect while the other doesn’t. To see
that the two blocks represented by case 16 are different, note that each has a maximal
Brauer pair of the form (Z(L)F3 , λ) and that by Lemma 6.6, L = CG(Z(L)

F
3 ). Since the

pairs (L, λ) are not GF -conjugate, neither are the corresponding maximal Brauer pairs.
Similarly, the two blocks represented by case 5 are different. �

6.3. Quasi-isolated 5-blocks of E8(q). Finally, let ℓ = 5. Here, we distinguish two
cases according to whether q ≡ ±1 (mod 5) or q ≡ ±2 (mod 5). The cuspidal pairs
for the case e = 1, are collected in Table 7; here the decomposition of RG

L was already
determined in the previous two subsections. The case e = 2 is obtained from this by
Ennola duality. Table 8 contains the relevant information in the case e = 4. Here, the
relative Weyl groups are, in general, no longer true Weyl groups, but various types of
complex reflection groups occur.

Proposition 6.8. Let 1 6= s ∈ G∗F = E8(q) be a quasi-isolated 5′-element. Then we
have:

(a) E(GF , s) is the disjoint union of the e-Harish-Chandra series listed in Tables 7 and 8.
(b) The assertion of Theorem 1.4 holds for G of type E8, q 6= 2, and ℓ = 5.

Proof. The decomposition of RG
L (λ) for the e-cuspidal pairs (L, λ) in Table 7 was already

determined in Propositions 6.1 and 6.5. As for Table 8, λ is always uniform except in
case 2, or when L = G (in which case RG

L (λ) = λ). �

Lemma 6.9. Let L be as in Table 7 or 8. Then L = CG(Z(L)
F
5 ) and L is (e, 5)-adapted.

Moreover, each character λ in the tables is of central 5-defect.

Proposition 6.10. Suppose that 2 6= q ≡ 1, 2, 3 (mod 5). For any quasi-isolated 5′-
element 1 6= s ∈ G∗F the block distribution of E(GF , s) is as given in Tables 7 and 8 for
the respective congruences of q (mod 5).

For each 5-block B corresponding to one of the cases in Table 7 or 8 there is a defect
group P ≤ NGF (L, λ) with the structure described in Theorem 1.2.

In particular, B has abelian defect groups precisely when the order WGF (L, λ) is not
divisible by 5, in which case Z(L)F5 is a defect group of B.

Proof. Again, each e-Harish-Chandra series in the tables is contained in a unique 5-block
of GF . In all numbered lines which are at the top of the part of the table corresponding
to a particular s we conclude by Proposition 2.7(c). In all cases, Z◦(L)F ∩ [L, L]F is a
5′-group, so D = A, and in all lines which are not at the top of the part of the table
corresponding to a particular s, WGF (L, λ) is a 5′-group. The assertion on the defect
groups follows by Proposition 2.7(f),(g). We see that different numbered lines correspond
to different blocks by comparing orders of defect groups, or differentiating on the basis
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Table 7. Quasi-isolated 5-blocks in E8(q), q ≡ 1 (mod 5)

No. CG∗(s)F L CL∗(s)F λ WGF (L, λ)

1 D8(q) ∅ L∗F 1 D8

2 D4 L∗F D4[1] B4

3 E7(q)A1(q) ∅ L∗F 1 E7 × A1

4 D4 L∗F D4[1] C3 × A1

5 E6 L∗F E6[θ
±1] A1 × A1

6 E7 L∗F E7[±ξ] A1

7 D5(q)A3(q) ∅ L∗F 1 D5 × A3

8 D4 L∗F D4[1] A1 × A3

9 2D5(q).
2A3(q) A2

1 Φ6
1Φ

2
2 1 B4 × C2

10 A7(q)A1(q) ∅ L∗F 1 A7 × A1

11 2A7(q)A1(q) A3
1 Φ5

1Φ
3
2 1 C4 × A1

12 D6 Φ2
1Φ2.

2A5(q) φ321 A2
1

13 A8(q) ∅ L∗F 1 A8

14 2A8(q) A4
1 Φ4

1Φ
4
2 1 B4

15 D4 ·A1 Φ3
1Φ

3
2.

2A2(q) φ21 B3

16 E6(q).A2(q) ∅ L∗F 1 E6 × A2

17 D4 L∗F D4[1] G2 × A2

18 E6 L∗F E6[θ
±1] A2

19 2E6(q).
2A2(q) A3

1 Φ5
1Φ

3
2 1 F4 × A1

20 D4 Φ4
1Φ

2
2.

2A2(q) φ21 F4

21 D6 Φ2
1Φ2.

2A5(q) φ321 A1 × A1

22 E7 Φ1Φ2.
2E6(q)

2E6[1],
2E6[θ

±1] A1

23 E7 Φ1.
2A5(q)

2A2(q) φ321 ⊗ φ21 A1

24 E8 CG∗(s)F 2E6[1]⊗ φ21,
2E6[θ

±1]⊗ φ21 1

of whether the defect groups are abelian or not. For the cases where one numbered line
corresponds to several cuspidal pairs, eg. cases 5, 6, . . ., one notes that the maximal Brauer
pairs of the two blocks are not conjugate (see the argument for the two blocks represented
by line 16 of Table 6). �

6.4. The group E8(2). The general Mackey formula has not (yet) been proved for E8(2).
Since this group has three bad primes 2, 3, and 5, the 3-blocks for quasi-isolated 5-elements
and the 5-blocks for quasi-isolated 3-elements are not covered by previous results.

Proposition 6.11. The results on 3-blocks and 5-blocks of E8(q), q > 2, stated in Sec-
tions 6.2 and 6.3 above continue to hold for q = 2.

Proof. Let first ℓ = 3, so we are in the situation of the Ennola dual of Table 6. Here, only
quasi-isolated 5-elements need to be considered, that is, the Ennola duals of lines 12–17 in
that table. Now all relevant centralisers CL∗(s) are of type A, so their cuspidal characters
λ are uniform. In this case, the decomposition of RG

L (λ) is known by the results of Lusztig,
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Table 8. Quasi-isolated 5-blocks in E8(q), q ≡ ±2 (mod 5)

No. CG∗(s)F LF CL∗(s)F λ WGF (L, λ)

25 D8(q) Φ4
4 L∗F 1 G(4, 2, 4)

26 Φ2
4.D4(q) L∗F 4 chars G(4, 1, 2)

27 GF CG∗(s)F 4 chars 1
28 E7(q)A1(q) Φ2

4.D4(q) Φ2
4.A1(q)

4 4 chars G8

29 Φ2
4.D4(q) Φ2

4.A1(q)
4 4 chars G(4, 1, 2)

30 GF CG∗(s)F 32 chars 1
31 D5(q)A3(q) Φ3

4.A1(q
2) Φ1Φ2Φ

3
4 1 G(4, 1, 2)× Z4

32 Φ2
4.D4(q) Φ1Φ

2
4.A3(q) φ22 G(4, 1, 2)

33 Φ2
4.D4(q) Φ1Φ

2
4.

2A3(q) φ22 Z4 × Z4

34 Φ4.
2D6(q) Φ1.

2A3(q)A3(q) φ22 ⊗ φ22 Z4

35 GF CG∗(s)F 4 chars 1
36 A7(q)A1(q) Φ2

4.D4(q) Φ1Φ
2
2Φ

2
4.A1(q) 1, φ11 G(4, 1, 2)

37 Φ4.
2D6(q) Φ1Φ2Φ4.A3(q)A1(q) φ22 ⊗ 1, φ11 Z4

38 GF CG∗(s)F 8 chars 1
39 A8(q) Φ2

4.A1(q
2)2 Φ2

1Φ
2
2Φ

2
4 1 G(4, 1, 2)

40 Φ4.
2D6(q) Φ1Φ2Φ4.A4(q) φ41, φ311, φ2111 Z4

41 GF CG∗(s)F 4 chars 1
42 E6(q).A2(q) Φ2

4.D4(q) Φ2
1Φ

2
4.A2(q) 3 chars G8

43 Φ4.
2D6(q) Φ1Φ4.

2A3(q)A2(q) 3 chars Z4

44 GF CG∗(s)F 30 chars 1

and the Mackey formula is not needed. We thus obtain the same Harish-Chandra series
as in the case q > 2, and the results there continue to hold.

Similarly for ℓ = 5, since q = 2, we are in the situation of Table 8 and we only need
to consider Lusztig-series for quasi-isolated 3-elements. Thus, only cases 39–44 in that
table matter. But note that again either λ is uniform (cases 39,40,42,43) in which case
the Mackey formula is not needed for the determination of RG

L (λ), or L = G and λ is of
5-defect zero, so lies in a block of defect zero. �

Remark 6.12. This completes the parametrization of ℓ-blocks of the finite quasi-simple
groups. Indeed, the ℓ-blocks of the covering groups of alternating groups were found by
Brauer and Robinson, and by Cabanes and Humphreys (see e.g [44]). The case of groups
of Lie type in their defining characteristic was solved a long time ago by Humphreys; here,
the non-trivial block are in bijection with irreducible characters of the centre, and they
all have full defect.

This leaves the case of groups of Lie type where ℓ is different from the defining char-
acteristic. The first general results on block distribution for classical type groups were
obtained in the landmark papers of Fong and Srinivasan [22, 23], which also introduced
some of the fundamental methods. For exceptional type groups, the case of unipotent
blocks, that is, blocks containing some unipotent character, was first considered by Schewe
[46]; complete results for some groups of low rank were obtained by Hiss, Deriziotis and
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Michler, Malle in [27, 18, 35]. The parametrisation of all unipotent blocks for large primes
ℓ was obtained in [10] in terms of e-Harish-Chandra series. Cabanes and Enguehard [14]
determined all ℓ-blocks whenever ℓ is a good prime. Bonnafé and Rouquier [8] showed
that ℓ-blocks parametrised by semisimple elements of the dual group whose centraliser
lies in a proper Levi subgroup are Morita equivalent via Lusztig induction to unipotent
blocks of smaller groups. The unipotent blocks for small ℓ and the quasi-isolated blocks
of classical groups were found by Enguehard [20, 21].

6.5. Quasi-isolated blocks for G2 and 3D4. For later use we also record the following
easy observations on quasi-isolated blocks for small exceptional type groups:

Lemma 6.13. Let GF = G2(q) or GF = 3D4(q), p 6= ℓ ∈ {2, 3} and s ∈ G∗F a quasi-
isolated ℓ′-element. Then for e = eℓ(q), the e-Harish-Chandra series in E(GF , s) satisfy
Theorem 1.4 and Eℓ(GF , s) is a single ℓ-block. Moreover in each numbered line in Table 9,
L = T is a torus with T = CG(T

F
ℓ ). For each ℓ-block corresponding to one of the numbered

lines in the table there is a defect group P ≤ NGF (L, λ) with the structure described
in Theorem 1.2. In particular, the defect groups are abelian precisely in case 3 when
GF = G2(q), and in case 1 when GF = 3D4(q).

Proof. In Table 9 we give the information on the 1-Harish-Chandra series in E(GF , s) with
the same conventions as earlier. The decomposition of RG

L was determined by Lusztig,
and from that it is easy to check Theorem 1.4 in this case. The situation for e = 2
is completely analogous. The assertion on the block and defect group structure can be
deduced as previously; it was also already obtained in [27] for G2(q) and in [18] for
3D4(q). �

Table 9. Quasi-isolated blocks in G2(q) and
3D4(q)

GF No. CG∗(s)F (ℓ, e) LF λ WGF (L, λ)

G2 1 A2(q) (2, 1) Φ2
1 1 A2

2 2A2(q) (2, 1) Φ1Φ2 1 A1

GF φ21 1
3 A1(q)A1(q) (3, 1) Φ2

1 1 A1 × A1

3D4 1 A1(q)A1(q
3) (3, 1) Φ2

1Φ3 1 A1 × A1

This concludes and completes the proof of Theorem 1.2 on the parametrization of
quasi-isolated blocks for exceptional type groups and bad primes.

7. Defect groups and Bonnafé–Rouquier equivalences

The aim of this section is the proof of Theorem 1.3 which shows that abelian defect
groups are preserved under Bonnafé–Rouquier Morita equivalences. Throughout, G will
denote a connected reductive algebraic group over the algebraic closure of a finite field,
and F : G→ G a Steinberg endomorphism.
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7.1. Miscellany. We start by proving some auxiliary statements.

Lemma 7.1. Let G be connected reductive with derived subgroup of simply connected type,
L an F -stable Levi subgroup of G and ℓ a prime. Let G1, . . . , Gr be a set of representatives
for the F -orbits on the set of simple components of [G,G], and Li := Gi ∩ L. Suppose
that

CGi
(Z(Li)

F di

ℓ ) = Li for i = 1, . . . , r,

where di denotes the length of the F -orbit of Gi. Then CG(Z(L)
F
ℓ ) = L.

Proof. Let H1, H2, . . . , Hd denote an F -orbit on the set of simple components of [G,G],
H := H1 · · ·Hd, and set Mj := L ∩ Hj for 1 ≤ j ≤ d, M := M1 · · ·Md = L ∩ H . Then

MF ∼= MF d

1 (see e.g. [38, Ex. 30.2]), and similarly CH(Z(M)Fℓ )
∼= CH1

(Z(M1)
F d

ℓ ) = M1

by assumption.
Now G′ = [G,G] is the direct product of F -orbits as before, and hence

CG′(Z(L ∩G′)Fℓ ) = CG1
(Z(L1)

F d1

ℓ ) · · ·CGr
(Z(Lr)

F dr

ℓ ) = L1 · · ·Lr = L ∩G′.

Finally, G = G′T for a central torus T , whence the claim follows. �

Lemma 7.2. Suppose that G has simply connected derived subgroup and ℓ is a good prime
for G. For any finite abelian ℓ-subgroup A of G, CG(A) is a Levi subgroup of G.

Proof. Let A = 〈z1, . . . , zr〉 be a generating system for A. Since [G,G] is simply connected,
C := CG(z1) is connected, and it is a Levi subgroup of G by [15, Prop. 13.16] since ℓ is a
good prime for G. By [38, Prop. 12.14], [C,C] is simply connected. We may now replace
G by C and apply induction to conclude. �

Proposition 7.3. Assume that G has simply connected derived subgroup over a field of
odd characteristic. Let T ≤ G be an F -stable maximal torus of G containing a Sylow
e-torus, where e = e2(q), and A = T F

2 the Sylow 2-subgroup of T F . Then:

(a) NG(T )
F contains a Sylow 2-subgroup of GF .

(b) NGF (T )/T F acts faithfully on A.
(c) CG(A) = T .

Proof. Since G = Z(G)[G,G], we may argue in [G,G], which is a direct product of simple
groups, with F permuting the factors. So after possible extension of scalars we are reduced
to G being simple.

By [36, Prop. 5.20] for example, NG(T )
F contains a Sylow 2-subgroup of GF . For G of

exceptional type, or for GF of type 3D4, the assertion in (b) can be checked using [39].
Otherwise T is the centralizer of a Sylow 1- or 2-torus and WG(T )

F is a Coxeter group
of type Al, Bl or Dl, with l suitable. Let’s then write Wl := WG(T )

F . The cases where
l ≤ 4 can again be checked by computer, so now assume l ≥ 5. Then it is easy to see that
all non-trivial normal subgroups N of Wl have non-trivial intersection with its parabolic
subgroup Wl−1, and thus act non-trivially on T F by induction, except for N = 〈w0〉
generated by the longest element w0 in types Bl and Dl. But the longest element acts by
inversion on T F , hence also non-trivially as T F contains elements of order 4. So Wl acts
faithfully in all cases.

For (c) letM := 〈T g | g ∈ G, Ag = A〉 be generated by the maximal tori of G containing
A. Then M is connected (see e.g. [38, Prop. 1.16]), F -stable, WGF (T )-invariant, and
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T ≤ M ≤ CG(A). Let X denote its unipotent radical. If [M/X,M/X ] 6= 1 then we
obtain a non-trivial 2-element in the Weyl group NMF (T ), centralizing A but not lying in
A, contradicting (b). Thus M is solvable. Let B denote a Borel subgroup of G containing
M , with unipotent radical U , so B = U.T with X ≤ U . Let w0 ∈ WGF (T ) be the longest
element. If u ∈M is unipotent, then

uw0 ∈ Xw0 ∩ Uw0 = X ∩ Uw0 ⊆ U ∩ Uw0 = 1

(see [38, Cor. 11.18]), so X = 1 and M = T . This show that CG(A) ≤ NG(A) ≤ NG(T ),
but WGF (T ) acts faithfully on A by (b), whence CG(A) = T . �

Lemma 7.4. Assume that G has simply connected derived subgroup with all simple factors
of type A, over a field of odd characteristic. Let T ≤ G denote an F -stable maximal
torus such that NG(T )

F contains a Sylow 2-subgroup P of GF and CG(T
F
2 ) = T , and set

A = T F
2 . Let Z ≤ Z(GF ) be a central subgroup of order 2. Then:

(a) If P centralises A/Z, then either G is a torus and P = A or the components of [G,G]
are of type A1, form a single F -orbit and the index of A in P is 2.

(b) Suppose that Z = Z(P ) and P/Z is abelian. Then P is quaternion of order 8.

Proof. For (a), suppose that G is not a torus. Let I be the set of F -orbits on the sim-
ple components of [G,G], and for each i ∈ I, let Hi denote the product of the simple
components in i. So [G,G] is a direct product of the Hi’s and by the above, T is a
product

Z◦(G)(
∏

i∈I

Ti),

where Ti is an F -stable maximal torus of Hi such that NHF
i
(Ti) contains a Sylow 2-

subgroup, say Pi of H
F
i , CHi

((Ti)
F
2 ) = Ti and P contains

∏

i∈I Pi. Since T is a maximal
torus of G, T F covers GF/[G,G]F and hence P = A(

∏

i∈I Pi).
Set Ai = (Ti)

F
2 = A ∩ Ti. For each i, Pi centralises AiZ/Z. We claim that |I| = 1.

Else, since Z is cyclic and the product of the Hi’s is direct, Hi ∩ Z = 1 for some i ∈ I,
whence Pi centralises Ai

∼= AiZ/Z. But this is impossible as the Sylow 2-subgroups of
HF

i are non-abelian. So, |I| = 1, and either [G,G]F ∼= SLn(q
d) or [G,G]F ∼= SUn(q

d). If
n ≥ 3, then Pi does not centralise Ai/U , for a central subgroup U of order 2 of [G,G]F .
So, n = 2 and [P1 : A1] = 2. Since P = AP1, it follows that [P : A] = 2.

We prove (c). Since P1 is a Sylow 2-subgroup of a special linear or unitary group of
degree 2, P1 is quaternion. Also, P1/Z is abelian, hence P1 has order 8.

Since Z = Z(P ), Z(G)F2 ≤ Z, and hence the natural surjection of G onto G/Z(G)
induces an injection of P/Z into (G/Z(G))F ∼= PGL2(q

d) (or PGU2(q
d)). The Sylow

2-subgroups of (G/Z(G))F are non-abelian of order 8, hence |P/Z| ≤ 4. So P = P1 is
quaternion of order 8. �

For M an F -stable Levi subgroup M of G and s a semi-simple element of M∗F , we
will be interested in the condition CG∗(s) ≤ M∗. The following translates this into the
corresponding condition on G and M .

Lemma 7.5. Let M be an F -stable-Levi subgroup of G and s ∈ M∗F a semi-simple
element. The following are equivalent.

(i) CG∗(s) ≤M∗.
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(ii) For i = 1, 2, let Ti ≤ M be F -stable maximal tori of M and θi ∈ Irr(T F
i ) such that

the M-geometric conjugacy class of (Ti, θi) both correspond via duality to the class
of s. Then any g ∈ G which geometrically conjugates (T1, θ1) to (T2, θ2) is in M .

Proof. The implication (i) ⇒ (ii) is in [19, Lemma 13.26(i)] and the reverse implication
follows from reversing the argument of [19, Lemma 13.26(i)], and noting that for any
F -stable torus T ∗ of M∗ containing s, if NG∗(T ∗) ∩ CG∗(s) ⊆ M∗, then CG∗(s) ⊆ M∗

(since NG∗(T ∗) ∩ C◦
G∗(s) is a Levi-subgroup of C◦

G∗(s)). �

Lemma 7.6. With the notation of Lemma 7.5, suppose that CG∗(s) ≤ M∗. Let L be
an F -stable Levi subgroup of M and λ ∈ Irr(LF ) such that all constituents of RM

L (λ) lie
in E(MF , s). Let z ∈ Z(L)F and set G0 = C◦

G(z) and M0 = C◦
M(z). Let s′ ∈ M∗

0
F

be a semisimple element such that all constituents of RM0

L (λ) lie in E(MF
0 , s

′). Then
CG∗

0
(s′) ≤M∗

0 .

Proof. Let T be an F -stable maximal torus of L and θ an irreducible character of T F

such that λ is a constituent of RL
T (θ). Since Lusztig induction preserves Lusztig series,

the M-geometric conjugacy class of (T, θ) corresponds to the M∗-class of s and the M0-
geometric conjugacy class of (T, θ) corresponds to the G∗

0-class of s
′. The assertion follows

from Lemma 7.5 — here, note that M0 = G0 ∩M . �

7.2. Bonnafé–Rouquier correspondents. In this subsection, M will denote an F -
stable Levi subgroup of G and s ∈M∗F a semi-simple ℓ′-element. We let c be an ℓ-block
of MF contained in Eℓ(MF , s) and let b be an ℓ-block of GF contained in Eℓ(GF , s).

Recall that if CG∗(s) ≤ M∗, then for any semisimple ℓ-element t ∈ CG∗(s), ǫM ǫGR
G
M

induces a bijection between E(MF , st) and E(GF , st). This bijection is independent of
choice of parabolic containing M (see [19, Rem. 13.28]) and it induces a bijection be-
tween ℓ-blocks in Eℓ(MF , s) and in Eℓ(GF , s). Further, by [8, Thm. B’] there is a Morita
equivalence over O between pairs of corresponding blocks which induces the bijection
χ 7→ ǫM ǫGR

G
M(χ) on ordinary irreducible characters.

Definition 7.7. We say that blocks b and c are Bonnafé–Rouquier correspondents if
CG∗(s) ⊆M∗ and for some (and hence any) χ ∈ E(MF , s)∩ Irr(c) we have ǫM ǫGRG

M (χ) ∈
Irr(b).

Lemma 7.8. Suppose that b and c are Bonnafé–Rouquier correspondents. Let L be an F -
stable Levi subgroup of M , let λ ∈ E(LF , ℓ′), and suppose that every constituent of RM

L (λ)
is contained in Irr(c). Then every constituent of RG

L (λ) is contained in Irr(b), and for
every χ0 ∈ Irr(c), 〈χ0, R

M
L (λ)〉 6= 0 if and only if 〈χ,RG

L (λ)〉 6= 0, where χ = ǫGǫMR
G
M(χ0)

denotes the corresponding element of Irr(b). Further, 〈∗RM
L (χ0), d

1,MF

(λ)〉 6= 0 if and only

if 〈∗RG
L (χ), d

1,GF

(λ)〉 6= 0.

Proof. The first two assertions follow from transitivity of Lusztig induction (see Theo-
rem 2.8(a)). For the third claim, let χ0 ∈ Irr(c) and write

d1,M(χ0) = α1φ
1
0 + · · ·+ αtφ

r
0

with αi non-zero for all i and the φi
0 pairwise distinct irreducible characters in c. So,

d1,G(χ) = α1φ
1 + · · ·+ αrφ

r.
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Then,

〈d1,MF

(χ0), R
M
L (λ)〉 6= 0

if and only if φj
0 = χi

0 for some i, j, if and only if φj = χi for some i, j, if and only if

〈d1,GF

(χ), RG
L (λ)〉 6= 0. Now the result follows since

〈∗RM
L (χ0), d

1,MF

(λ)〉 = 〈d1,MF

(χ0), R
M
L (λ)〉

and
〈∗RG

L (χ), d
1,GF

(λ)〉 = 〈d1,GF

(χ), RG
L (λ)〉.

�

Proposition 7.9. Suppose that b and c are Bonnafé–Rouquier correspondents. Let L be
an F -stable Levi subgroup ofM and let λ ∈ E(LF , ℓ′) be such that RM

L (λ) has a constituent
in the block c. Let A = 〈z1, . . . , zm〉 be a subgroup of Z(L)Fℓ and set Mi = C◦

M(z1, . . . , zi),
Gi = C◦

G(z1, . . . , zi), 1 ≤ i ≤ m, M0 =M , G0 = G. Suppose the following:

(1) For any i, 1 ≤ i ≤ m, and any character χ ∈ Irr(MF
i ) with 〈RMi

L (λ), χ〉MF
i
6= 0 we

have 〈d1,LF

(λ), ∗RMi

L (χ)〉LF 6= 0.
(2) The irreducible constituents of RMm

L (λ) lie in a single block.

Then, (1) and (2) hold with Mi replaced by Gi for 1 ≤ i ≤ m. Consequently, for any
i there exists a unique block, say bi of G

F
i containing the constituents of RGi

L (λ), and a

unique block say ci of M
F
i containing all constituents of RMi

L (λ). Further, the following
holds.

(a) b0 = b, c0 = c, and for all i, 0 ≤ i ≤ m, bi and ci are Bonnafé–Rouquier correspon-
dents.

(b) Let c̃m denote the unique ℓ-block of CMF (A) covering cm and b̃m denote the unique

ℓ-block of CGF (A) covering bm. Then (A, c̃m) is a c-Brauer pair and (A, b̃m) is a
b-Brauer pair. Moreover,

(c) NMF (A, c̃m) ≤ NGF (A, b̃m), and hence

NMF (A, c̃m)/CMF (A) ≤ NGF (A, b̃m)/CGF (A)

under the inclusion of M in G.

Proof. By Proposition 2.12, for all i, 0 ≤ i ≤ m, the irreducible constituents of RMi

L (λ)
lie in a unique block, ci of MF

i . Further, by Lemma 7.6, ci has a Bonnafé–Rouquier
correspondent, say bi in G

F
i . The first assertion and (a) holds by Lemma 7.8, applied to

ci and bi, 0 ≤ i ≤ m. (b) follows from Proposition 2.12 applied to both M and G.
For (c), let g ∈ NMF (A, c̃m). Then,

gcm is covered by c̃m, whence
gcm = hcm for some

h ∈ CMF (A). Let χ0 ∈ Irr(cm). Then h−1gχ0 is an irreducible character of cm. Since cm
and bm are Bonnafé–Rouquier correspondents, RGm

Mm
( h−1gχ0) and R

Gm

Mm
(χ0) are irreducible

characters in bm. So, noting the independence from the choice of parabolic subgroup of
Gm containing Mm as pointed out before Definition 7.7,

RGm

Mm
( h−1gχ0) =

h−1gRGm

Mm
(χ0),

and h−1gRGm

Mm
(χ0) is in

h−1g bm. Hence,
gbm = hbm and it follows that g b̃m = b̃m. �
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7.3. Good pairs.

Definition 7.10. Let G be connected reductive with Steinberg endomorphism F : G→
G. Let ℓ be a prime and let b be an ℓ-block of GF . A pair (L, λ) consisting of an F -stable
Levi subgroup of G and λ ∈ E(LF , ℓ′) is called a good pair for b if the following holds:

(1) L = CG(Z(L)
F
ℓ ),

(2) λ is of quasi-central ℓ-defect,
(3) (Z(L)Fℓ , bLF (λ)) is a b-Brauer pair, and
(4) there is a maximal GF -Brauer pair (P, f) such that (Z(L)Fℓ , bLF (λ))E (P, f).

Note that when (L, λ) satisfies (1)–(3) then by Propositions 2.5, 2.16(4), 2.13, and 2.12
all irreducible constituents of RG

L (λ) lie in b.
The notion of good pairs is related to that of e-cuspidal pairs in that many ℓ-blocks ofGF

have good pairs which are also e-cuspidal pairs of G where e = eℓ(q) (see Theorem 7.12
below). However, the two notions are not identical, and it will be easier to track the
structure of defect groups through Bonnafé–Rouquier Morita equivalences using good
pairs (see Proposition 7.13 below).

Lemma 7.11. Let G̃ be connected reductive with Steinberg endomorphism F : G̃ → G̃,
containing G as an F -stable closed subgroup with [G̃, G̃] ≤ G and let Z̃ = Z◦(G̃). Let b

be a block of GF and b̃ a block of G̃F covering b. Let L be an F -stable Levi subgroup of
G and L̃ = Z̃L, a Levi subgroup of G̃. Set A = Z(L)Fℓ and Ã = Z(L̃)Fℓ . Suppose that
λ ∈ E(LF , ℓ′) is such that (L, λ) is a good pair for b, and let (P, f) be a maximal b-Brauer
pair such that (A, bLF (λ))E (P, f). Then:

(a) There exists λ̃ ∈ E(L̃F , ℓ′) covering λ and a maximal b̃-Brauer pair (P̃ , d) such that

(L̃, λ̃) is a good pair for b̃, (Ã, bL̃F (λ̃))E (P̃ , d) and P ≤ P̃ ≤ NG̃F (A, bL̃F (λ)).

(b) Further, if b and b̃ are unipotent and (L, λ) is an e-cuspidal pair for G, then (L̃, λ̃) is
a unipotent e-cuspidal pair of G̃.

(c) Suppose that Z̃∩G contains no non-trivial ℓ-element. If λ is of central ℓ-defect, then

so is λ̃.

Proof. We have L̃ ≤ CG̃(Ã) ≤ CG̃(A) = Z̃L = L̃, hence L̃ = CG̃(A) = CG̃(Ã). Also, note

that the inclusion of L̃ in G̃ induces an isomorphism between L̃F/LF and G̃F/GF .

By Lemma 2.1, there exists an ℓ-block b′ of G̃F covering b and b′-Brauer pairs (A, v)
and (P̃ , d) such that (A, v)E (P̃ , d), P̃ ≤ NG̃F (A, bLF (λ)), v covers bLF (λ), P̃ ∩ GF = P

and P̃ /P is isomorphic to a Sylow ℓ-subgroup of NG̃F (A, bLF (λ))/NGF (A, bLF (λ)). Since

G̃F/GF is abelian, by Lemma 2.2, b̃ = θ ⊗ b′, for some linear character θ of G̃F/GF . So,

(A, θ ⊗ v) and (P̃ , θ ⊗ d) are b̃-Brauer pairs and since θ contains LF in its kernel, θ ⊗ v
covers θ ⊗ bLF (λ) = bLF (λ). Thus, replacing θ ⊗ d by d and θ ⊗ v by v, we may assume

that b′ = b̃. Since Ã is central in L̃F , we also get that (Ã, v) is a b̃-Brauer pair and
(Ã, v)E (P̃ , d).

We claim that P̃ is a defect group of b̃. Indeed, since P is a defect group of b, and b̃
covers b, it suffices to prove that |P̃ : P | ≥ |G̃F : GF |ℓ. But,

|P̃ : P | = |NG̃F (A, bLF (λ)) : NGF (A, bLF (λ))|ℓ
≥ |NL̃F (A, bLF (λ)) : LF |ℓ = |L̃F : LF |ℓ = |G̃F : GF |ℓ.
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Here, for the second equality, note that the index of NL̃F (A, bLF (λ)) in L̃F is prime to ℓ.
This proves the claim.

Now let λ̃ ∈ E(L̃F , ℓ′)∩ Irr(v). Then λ̃ covers an element of E(LF , ℓ′)∩ Irr(bLF (λ)) (see

[6, Prop. 11.7(b)]). Since Irr(bLF (λ)) ∩ E(LF , ℓ′) = {λ} by Proposition 2.5, λ̃ covers λ.

Further, λ̃ and λ cover a common character of [L̃, L̃]F = [L, L]F , so λ̃ is of quasi-central
ℓ-defect. This proves (a).

(b) follows from (a) and the fact that restriction induces a bijection between E(G̃F , 1)
and E(GF , 1) which commutes with Lusztig induction and restriction.

It remains to prove (c). Since L ≤ G, Z̃ ∩L contains no non-trivial ℓ-element. So, any

Sylow ℓ-subgroup of L̃F is a direct product of the Sylow ℓ-subgroup of Z̃F and a Sylow
ℓ-subgroup of LF , and similarly, the Sylow ℓ-subgroup of Z(L̃F ) is a direct product of

the Sylow ℓ-subgroup of Z̃F and the Sylow ℓ-subgroup of Z(L)F . The result follows as

|λ̃(1)|ℓ = |λ(1)|ℓ. �

The next result shows in particular that all quasi-isolated blocks have good pairs.

Theorem 7.12. Suppose that [G,G] is simply connected. Let b be an ℓ-block of GF with
Irr(b) ⊆ Eℓ(GF , s) and let e = eℓ(q).

(a) Suppose that ℓ is odd, good for G and ℓ 6= 3 if 3D4(q) is involved in GF . Then b has
a good pair (L, λ) and a maximal b-Brauer pair (P, f) with (Z(L)Fℓ , bLF (λ))E (P, f),
such that λ is of central ℓ-defect, the extension

1→ Z(L)Fℓ → P → P/Z(L)Fℓ → 1

is split and Z(L)Fℓ is the unique maximal normal abelian subgroup of P . If s is
central, then (L, λ) can be chosen to be e-cuspidal, and in that case (L, λ) is unique
up to GF -conjugacy.

(b) Suppose that ℓ = 2 and all components of G are of type A. Then b has a good pair
(L, λ) and a maximal b-Brauer pair (P, f) with (Z(L)F2 , bLF (λ)) E (P, f), such that
Z(L)F2 = T F

2 , λ is of central 2-defect and AutP (T
F
2 ) = AutP ′(T F

2 ). Here, T is an
F -stable maximal torus of G such that CG1

(T F
2 ) = T for a Levi subgroup G1 of G in

duality with C◦
G∗(s), and such that NGF

1

(T ) contains a Sylow 2-subgroup P ′ of GF
1 .

(c) Suppose that ℓ = 2, G is simple, of classical type different from type A and s is quasi-
isolated in G∗. Then b has a good pair (L, λ), where L is an F -stable maximal torus
of G containing a Sylow e-torus of G.

(d) Suppose that s is quasi-isolated and either G is simple of exceptional type and ℓ is bad
for G, or G is of rational type 3D4 and ℓ = 2, 3. Then b has a good pair (L, λ) which
is e-split cuspidal. Further, if ℓ is odd, λ is of central ℓ-defect.

In particular, if b is quasi-isolated then b has a good pair.

Proof. Suppose the assumptions of (a) hold. Then there exists a pair (L, λ) (denoted
(M, ζM) in [14]) such that C◦

G(Z(L)
F
ℓ ) = L ([14, Lemma 4.8]), λ is of central ℓ-defect ([14,

Lemma 4.11]), and letting û denote the unique ℓ-block of CGF (Z(L)Fℓ ) covering bLF (λ),
(Z(L)Fℓ , û) is a b-Brauer pair ([14, Lemma 4.10]). Further, there exists a maximal GF -
Brauer pair (P, f) with (Z(L)Fℓ , û)E (P, f) and such that the short exact sequence above
has the required properties ([14, Lemma 4.16]). Thus, in order to prove that (L, λ) is a
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good pair for b, we need only show that L = CG(Z(L)
F
ℓ ). But since C

◦
G(Z(L)

F
ℓ ) = L this

follows from Lemma 7.2. The final assertion follows from [13, Thm. 1.1, Lemma 4.5].
Suppose that the assumptions of (b) hold and note that T as in the statement exists by

Proposition 7.4 applied to G1. Let G → G̃ be a regular embedding. For G̃1 an F -stable
Levi subgroup of G̃ with G̃1 ∩G = G1 we let T̃ be an F -stable maximal torus of G̃1 with
T̃ ∩ G1 = T . Set A = T F

2 and Ã = T̃ F
2 . By Lemma 7.2, L̃ := CG̃(A) is a Levi subgroup

of G̃ and L := CG(A) is a Levi subgroup of G.

Let s̃ ∈ G̃∗F be an element of odd order lifting s such that CG̃∗(s) = G̃∗
1, where G̃

∗
1 is

the dual of G̃1 in G̃∗ and let θ be the linear character of G̃F
1 in duality with s̃ (see [19,

Prop. 13.30]). By [21, Prop. 1.5], E2(G̃F
1 , s̃) is a single 2-block, say c̃ and E2(G̃F , s̃) is a

single 2-block, say b̃. In particular, b̃ covers b. Moreover, RG̃
G̃1

induces a Morita equivalence

between c̃ and b̃. Since CG1
(A) = T , CG̃1

(A) = T̃ , and hence by Proposition 7.9, applied

with M = G̃1, G = G̃, and L = T̃ , RL̃
T̃
(θ) is (up to sign) an irreducible character, say χ̃

of L̃F = CG̃(A)
F and (A, bL̃F (χ̃)) is a b̃-Brauer pair.

Let P ′ ≤ NG1
(T ) be a Sylow 2-subgroup of GF

1 . Then P ′ ≤ NG̃1
(A, θ), so by Propo-

sition 7.9, P ′ ≤ NG̃(A, bL̃F (χ̃)). In particular, P ′ acts on the blocks of LF covered by
bL̃F (χ̃). There is an odd number of such blocks, so there exists a block f of LF covered
by bL̃F (χ̃) which is P ′-stable. Let χ′ ∈ Irr(f) ∩ E(LF , ℓ′) be covered by χ̃ and let b′ be

the block of GF such that (A, f) is a b′-Brauer pair. Then b′ is covered by b̃. Since

±RL̃
T̃
(θ) ∈ Irr(L̃F , s̃), and s̃ is an odd order element,

χ′(1)2 = χ̃(1)2 =
|L̃F |2
|T̃ F |2

≥ |L
F |2
|T F |2

=
|LF |2
|A| .

Since A is central in LF , A ≤ ker(χ′). From the above displayed equation it follows that
A = Z(L)F2 and χ′ is of central 2-defect. Let (P, d) be a b′-Brauer pair, maximal with
respect to (A, f) E (P, d). Then P ∩ LF = A and by Lemma 2.1(a), P/A is a Sylow
ℓ-subgroup of NGF (A, f)/LF . Since P ′ ≤ NGF (A, f) and P ′∩CGF (A) = A, it follows that
|P | ≥ |P ′|. On the other hand, since b′ being covered by b means that Irr(b′) ⊆ Eℓ(GF , s),
by [21, Prop. 1.5], any Sylow 2-subgroup of GF

1 is a defect group of b′. Hence, (P, d) is
a maximal b′-pair. Since L is a Levi subgroup of G, (A, χ′) is a good pair for b′. Now b

and b′ are both covered by b̃ hence replacing (L, χ′) by a suitable G̃F -conjugate gives the
desired result.

Now suppose that the assumptions of (c) hold. So G is simple of type B, C or D.
Then s = 1 is the only odd order quasi-isolated element of G∗. By [21, Prop. 1.5] GF has
a unique unipotent 2-block, hence by Proposition 7.3 (L, 1) is a good pair for b for any
F -stable maximal torus L of G containing a Sylow e-torus of G.

Suppose the assumptions of (d) hold. If s is non-central in G∗, then the result follows
from Theorem 1.2 and its proof. If s is central in G∗, then (d) follows from [20]. Note that
Enguehard does not state the equality L = CG(Z(L)

F
ℓ ) for all unipotent e-cuspidal pairs

(L, λ) but this can be checked — the Levis occurring for central quasi-isolated elements
also occur in our tables, except for the 1-split Levis of type D4 in E6, and of type E6 in
E7 and their Ennola duals, and these cases can be easily checked also.
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Finally, suppose that b is a quasi-isolated block of GF . Then any block of [G,G]F

covered by b is quasi-isolated, so by Lemma 7.11, we may assume that G = [G,G]. Since
G is a direct product of simple simply connected groups and the component of b in the
fixed points of each F -orbit is quasi-isolated, by Lemma 7.1 we may assume that G is
simple. Now the result follows from parts (a)–(d). �

Proposition 7.13. Suppose that b and c are Bonnafé–Rouquier correspondents and that
c has a good pair (L, λ). Let A = Z(L)Fℓ , let u = bLF (λ) and let (P, f) be a maximal
c-Brauer pair with (A, u)E (P, f). Then:

(a) Let v be the ℓ-block of C◦
G(A)

F containing the constituents of R
C◦

G
(A)

L (λ) and let ṽ be
the block of CG(A)

F covering v. Then there is a maximal GF -Brauer pair (Q, d) such
that (A, ṽ)E (Q, d), CQ(A) ∼= CP (A) and AutQ(A) = AutP (A).

(b) b has abelian defect groups if and only if c has abelian defect groups. If this is the
case, then the defect groups of b and c are isomorphic.

(c) Let Z be a central ℓ-subgroup of GF and let c̄ (respectively b̄) be the image of c (re-
spectively b) in MF/Z (respectively GF/Z). If either b̄ or c̄ has abelian defect groups,
then P centralises A/Z and Q centralises A/Z.

(d) If λ is of central ℓ-defect and c has abelian defect groups, then A is a defect group of
both b and c.

Proof. Let U be a subgroup of A. Since CM(A) = L, CCM (U)(A) = L. So, since λ is of
quasi-central ℓ-defect, by Proposition 2.16, the conditions of Proposition 7.9 hold for any
choice of generators 〈z1, . . . , zm〉 of A and the statement of (a) makes sense. In particular,
u and v are Bonnafé–Rouquier correspondents.

Let (A, ṽ)E(Q, d) where Q is maximal with respect to the property thatQ ≤ NGF (A, ṽ).
Then QCGF (A)/CGF (A) is a Sylow ℓ-subgroup of NGF (A, ṽ)/CGF (A) (see Lemma 2.1).
So by Proposition 7.9(c), and by replacing if necessary (Q, d) by an NGF (A, ṽ)-conjugate,
QCGF (A)/CGF (A) contains PCMF (A)/CMF (A). In particular, P/CP (A) is isomorphic to
a subgroup of Q/CQ(A).

Now CP (A) is a defect group of the block u, u is nilpotent and is Morita equivalent
to v (over O). By a result of Puig a Morita equivalence over O between a nilpotent
block and a block preserves nilpotency and isomorphism type of defect groups (see [45,
Thm. 8.4 and Cor. 7.3]), so v is nilpotent and a defect group of v is isomorphic to
CP (A). Since CQ(A) contains a defect group of ṽ, CQ(A) contains a defect group of
v, and hence |CQ(A)| ≥ |CP (A)|. We have shown above that P/CP (A) is isomorphic
to a subgroup of Q/CQ(A), hence |Q| ≥ |P |. On the other hand, |Q| ≤ |P | as Q is
contained in a defect group of b, and P is a defect group of c, and b and c are Morita
equivalent. Thus Q is a defect group of b, CQ(A) ∼= CP (A) is a defect group of v and
PCGF (A)/CGF (A) = QCGF (A)/CGF (A). This proves (a).

Part (b) follows from (a) as Q is abelian if and only if Q = CQ(A) and CQ(A) is abelian,
and similarly P is abelian if and only if P = CP (A) and CP (A) is abelian. Part (c) follows
from (a) and (b) on observing that P/Z is a defect group of c̄ and Q/Z is a defect group
of b̄. Finally, suppose that λ is of central ℓ-defect and c has abelian defect groups. Then
P = A = Q. �
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7.4. Proof of Theorem 1.3. In this subsection, M will denote an F -stable Levi sub-
group of G, and b and c will be ℓ-blocks of GF and MF respectively. For large ℓ, Theo-
rem 1.3 follows from the work of Cabanes–Enguehard and Enguehard.

Proposition 7.14. Suppose that b and c are Bonnafé–Rouquier correspondents. Let Z be
a central ℓ-subgroup of GF and let b̄ and c̄ be the images of b and c in GF/Z and MF/Z
respectively.

(a) If [G,G] is simply connected, ℓ is odd, good for G and ℓ 6= 3 if 3D4(q) is involved in
GF , then b̄ and c̄ have isomorphic defect groups.

(b) If ℓ = 2, and all components of G are classical, then b̄ and c̄ have a common defect
group.

Proof. In the situation of (a), c has a good pair (L, λ) by Theorem 7.12(a), and A = Z(L)Fℓ
has a complement in P and CP (A) = A, with (P, f) a maximal c-Brauer pair with
(A, u) E (P, f). If (Q, d) is a maximal b-Brauer pair as in Proposition 7.13(a), then
CQ(A) = A, whence A is a maximal normal abelian subgroup of Q. But by the structure
of the defect groups of b as given in [14, Lemma 4.16], Q has a unique maximal normal
abelian subgroup and this subgroup has a complement in Q. So, A has a complement in
Q. The result follows from Proposition 7.13(a).

In (b) let G1 ≤ M be a Levi subgroup of G in duality with CG∗(s) ≤ M∗. Then, by
[21, Prop. 1.5], any Sylow 2-subgroup of GF

1 is a defect group of both b and c. �

In fact, as pointed out to us by Marc Cabanes, it can be deduced from [14, Lemma 4.16]
that the two blocks in the situation of Proposition 7.14(a) have a common defect group.
The next result will be needed to deal with E6 at ℓ = 3.

Lemma 7.15. Suppose that G is simply connected in characteristic not 3 and all com-
ponents of G are of type A. Let b be a unipotent 3-block of GF , (L, λ) an e3(q)-cuspidal
unipotent pair which is a good pair for b as in Theorem 7.12(a), A = Z(L)F3 and let
(P, u) be a maximal b-Brauer pair with (A, bLF (λ))E (P, u). Let Z be a central subgroup
of order 3 of GF . Suppose that P is non-abelian and that P acts trivially on A/Z. Then:

(a) There is an F -orbit of irreducible components of [G,G] of type A2 whose group of
F -fixed points contains Z, and this is the only F -orbit of irreducible components of
[G,G] whose fixed points contain a central subgroup of order 3. Further, P/A is cyclic.

(b) If moreover Z(P ) = Z and P/Z is abelian, then P is extra-special of order 33.

Proof. Since restriction induces a bijection between the unipotent characters of GF and
[G,G]F , there is a unique block, say b0 of [G,G]F covered by b and it is unipotent. Let I
be the set of F -orbits on the simple components of [G,G], and for each i ∈ I, let Hi denote
the product of the simple components in i. So [G,G] is a direct product of the Hi’s and
[G,G]F is a direct product of the HF

i ’s. For i ∈ I let bi be the block of HF
i covered by b0,

let (Li, λi) be an e-cuspidal unipotent good pair for bi and let (L0, λ0) = (
∏

i∈I Li,
∏

i∈I λi)
be the corresponding pair for b0. Further, let Pi be the first component of a maximal bi-
Brauer pair normalising (A, bFLi

(λi)). Then, up to replacing (L, λ) and then (P, u) by a

GF -conjugate, (L, λ) is an extension of (L0, λ0) as in Lemma 7.11, A ∩ LF
i = Z(Li)

F
3 and

Pi = P ∩ LF
i for all i ∈ I.
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For each i ∈ I, [Pi, Ai] ≤ [P,A] ≤ Z, and Z is cyclic, hence there exists at most one
i ∈ I with [Pi, Ai] 6= 1, say i = j. Since, by Theorem 7.12(a), λi is of central 3-defect, we
have Ai = Pi for all i 6= j.

Let i ∈ I and suppose that the rational type ofHF
i is (An, ǫq

m). The group HF
i contains

a central element of order 3 if and only if 3|di := gcd(qm− ǫ, n+1). Further, if 3|di, then
by [13, Prop. 3.3], bi is the principal block of HF

i , and Pi is a Sylow 3-subgroup of HF
i .

Consequently, if 3|di, then Pi is non-abelian. So for all j 6= i ∈ I, 3 6 |di and in particular
HF

i does not contain a central element of order 3.
By Theorem 7.12(a), λ is of central defect, hence CP (A) = A. Since P is non-abelian,

Z ≤ [P, P ] ≤ [G,G]F . Hence, HF
j contains a central element of order 3, thus 3|dj. Suppose

the rational type of HF
j is (An, ǫq

m). If n ≥ 5, or 32|(qm − ǫ) then [Pj, Aj] ≤ Z has order

at least 9. Thus, n = 2, 3||(qm − ǫ) and Pj is extra-special of order 3
3.

Let H ′ = Z(G)Hj , let b
′ be the (unique) block of H ′F covered by b and P ′ = P ∩H ′F ,

a defect group of b′. Then P ′ is a Sylow 3-subgroup of H ′F and P = P ′ ×∏

i∈I,j 6=iAi.

Since Z(G) ∩HF
j has order at most 3, Z(G)F3 ≤ A, and Aj has index 3 in Pj, it follows

that A has index 3 in P . This proves (a).
Now suppose that the hypothesis of (b) hold. We have shown above that Pj has order

33. Since Z = Z(P ), P = P ′ and Z(H ′)F3 ≤ Z. Thus the surjection ofH ′ onto (H ′/Z(H ′))
induces an injection of P/Z into (H ′/Z(H ′))F . But (H ′/Z(H ′))F has non-abelian Sylow
3-subgroups of order |Pj|, hence |P/Z| < |Pj| which means that P = Pj is extra-special
of order 33. �

Theorem 7.16. Suppose that G is simple, simply connected and that b and c are Bonnafé–
Rouquier correspondents. Let Z be a central ℓ-subgroup of GF and let b̄ and c̄ be the images
of b and c in GF/Z and MF/Z respectively. If either b̄ or c̄ has abelian defect groups,
then the defect groups of b̄ and c̄ are isomorphic.

Proof. By Proposition 7.14, we may assume that either G is of exceptional type and ℓ is
a bad prime for G, or ℓ = 3 and GF = 3D4(q). If Z = 1, the statement is immediate from
Proposition 7.13(b). So, we may assume that Z 6= 1, whence either ℓ = 3 and G is of
type E6, or ℓ = 2 and G is of type E7.

We first consider the case that c is quasi-isolated. By Theorem 7.12, c has a good pair,
say (L, λ). Set A = Z(L)Fℓ , let (P, f) be a maximal c-Brauer pair with (A, bLF (λ)) E
(P, f) and let (Q, d) be a maximal b-Brauer pair as in Proposition 7.13(b). By Proposi-
tion 7.13(c), [P,A] ≤ Z.

We make some reductions. Suppose that λ is of central defect. Then CP (A) = A, hence
either P = A or [P,A] = Z and Z(P ) ≤ A. If P = A, then P/Z = Q/Z = A/Z and there
is nothing to prove. Also, [P, P ] is contained in [CG(z1), CG(z1)] and in [CM(z1), CM(z1)]
for z1 ∈ Z(P ). Thus, we may assume the following: If λ is of central defect, then
Z = [P,A], Z(P ) ≤ A and for any z1 ∈ Z(P ), [CG(z1), CG(z1)] and [CM(z1), CM(z1)]
contain non-trivial central ℓ-elements.

Next, let z1 ∈ A, M1 = CM(z1), G1 = CG(z1). By Proposition 7.9, there exist blocks
c1 and b1 of MF

1 and GF
1 respectively, which are Bonnafé–Rouquier correspondents, and

such that (〈z1〉, c1) is a c-Brauer pair, and (〈z1〉, b1) is a b-Brauer pair. Note that since G
and M are simply connected, G1 and M1 are connected. If z1 ∈ Z(P ), then P ≤ MF

1 is
a defect group of c1, and also Q ≤ GF

1 is a defect group of b1. Thus, by Proposition 7.14,
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applied to the blocks b1 and c1 we may assume the following. If G is of type E6, ℓ = 3
and z1 ∈ (Z(P )∩A) \Z then CG(z1) contains a component of type D4 and if G is of type
E7, ℓ = 2 and z1 ∈ (Z(P ) ∩ A) \ Z, then CG(z1) contains a component of type E6.

Suppose that G is of type E6 and ℓ = 3. Then M is classical, so 3 is good for M and
by Theorem 7.12, λ0 is of central 3-defect. Suppose first that [M,M ] has a component
of type D4 or D5. By rank considerations [M,M ] does not contain a central element of
order 3, so λ is of central defect by Lemma 7.11(c), whence by the first reduction above
Z ≤ [P, P ]. But [P, P ] ≤ [M,M ], a contradiction.

So, we may assume that all components of M are of type A. By Theorem 7.12, λ is of
central 3-defect. By rank consideration, if z ∈ P is such that [CG(z), CG(z)] contains a
component of type D4 or D5, then [CG(z), CG(z)] does not contain a central element of
order 3, hence by the first reduction z /∈ Z(P ). By the second reduction, we may assume
that Z(P ) = Z.

Now CM∗(s)/C◦
M∗(s) is isomorphic to a subgroup of Z(M)/Z◦(M), hence to a sub-

group of Z(G)/Z◦(G), the latter being of order 3. On the other hand, the exponent of
CM∗(s)/C◦

M∗(s) divides the order of s, which is prime to 3. Thus, CM∗(s) is connected,
whence s is isolated in M∗. But all components of M∗ are of type A, hence M∗ has
no non-central isolated elements. Thus s is central in M∗ and c = θ ⊗ c′, where c′ is a
unipotent block of MF and θ is a linear character of MF in duality with s. In particular,
P is a defect group of a unipotent block of MF . By Lemma 7.15(a), P/A (and hence
Q/A) is cyclic of order 3, thus P/Z is abelian if and only if Q/Z is abelian. So, we may
assume that P/Z is abelian. We have shown above that Z = Z(P ). By Lemma 7.15(b),
P is extra-special of order 33. Thus, Q is extra-special of order 33, so P/Z and Q/Z are
elementary abelian of order 32, and in particular isomorphic.

Suppose that G is of type E7 and ℓ = 2. Let Z be the centre of G of order 2. Suppose
first thatM has a component of type E6. Then [M,M ] is simple of type E6. Consequently
[M,M ] does not contain a central element of order 2, and it follows that P is abelian. By
Proposition 4.3, [M,M ]F does not contain a non-unipotent, quasi-isolated 2-block with
abelian defect groups, so c covers a unipotent block of [M,M ]F . By the tables for E6(q)
and 2E6(q) in [20], c0 is of defect 0. Since MF /[M,M ]F has cyclic Sylow 2-subgroups, P
and hence Q are cyclic and so are P/Z and Q/Z.

Thus, we may assume that M is classical. Suppose that M has a simple component,
say H1 of type Dn, n ≥ 4. The principal 2-block of HF

1 is the only quasi-isolated 2-block
of HF

1 , hence P contains a Sylow 2-subgroup of HF
1 and by Theorem 7.12(c), we may

assume that this Sylow 2-subgroup normalises T F
2 where T is an F -stable maximal torus

containing a Sylow e-torus and such that the commutator of the Sylow subgroup with T F
2

is contained in a cyclic group of order 2. But this is not the case.
So, we may assume that all components of M are of type A. Then by Theorem 7.12,

λ is of central 2-defect. By the same argument as in the E6-case above we conclude that
z /∈ Z(P ) and Z(P ) = Z.

Let G1 ≤ M be a Levi subgroup of G in duality with C◦
G∗(s) = C◦

M∗(s). Let P ′ ≤
NG1

(A) be a Sylow 2-subgroup of GF
1 as in Theorem 7.12(b). Since [P,A] ≤ Z, [P ′, A] ≤

Z. So, by Lemma 7.4(b), the index of A in P ′ is 2. Hence the index of A in P and Q is
also 2 and P/Z is abelian if and only if Q/Z is abelian. So, we may assume that P/Z is
abelian, and hence that P ′/Z is abelian.
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Since Z(P ) = Z, Z(P ′) = Z, and by Lemma 7.4(c), P ′ is quaternion of order 8, hence
both P and Q are non-abelian of order 8, and P/Z and Q/Z are elementary abelian of
order 4.

Now suppose that c is not quasi-isolated in M . Then, replacing M by an F -stable Levi
subgroup whose dual contains CM∗(s) and in which s is quasi-isolated, and G by M , the
above argument again gives the desired result (note that above we do not use that G is of
type E6 or E7, but only that Z has order 2 or 3 and that the rank of G is at most 7). �

8. Brauer’s height zero conjecture

In this section we give the arguments which are necessary to combine our results and
those obtained previously by various authors to prove (HZC1), that is, Theorem 1.1.

8.1. Groups not of Lie type.

Proposition 8.1. Let S be a perfect central extension of a sporadic simple group or the
Tits simple group 2F4(2)

′. Then (HZC1) holds for S.

Proof. It is well known that a Sylow p-subgroup of a covering group of a sporadic simple
group of order at least p3 is non-abelian unless S = J1 and p = 2, or S = ON and p = 3.
Since the block distribution of ordinary characters as well as the size of the respective
defect groups can easily be obtained using GAP, this deals with most blocks in question.
For the remaining blocks (i.e., non-principal blocks with defect group of order at least p3)
which are only in characteristic 2 or 3, either the structure of the defect group is given by
Landrock [32], or it can easily be shown to be of extra-special type (see Müller [40]). �

Proposition 8.2. Let S be an exceptional covering group of a finite simple group of Lie
type, or of A7. Then (HZC1) holds for S.

Proof. From the ordinary character tables in [16] it follows that all p-blocks of the groups
in question fall into three categories: either all characters in the block are of height zero,
or the block is principal and the Sylow p-subgroups are non-abelian, or p = 2, S = 3.O7(3)
or 6.O7(3).

Let S = 6.O7(3), let b be a 2-block of S and denote by b̄ the corresponding 2-block
of S̄ := 3.O7(3). By the modular atlas [17], the defect groups of b have order 210, 16, 4
or 2. In the first case, the defect groups of b (respectively b̄) are Sylow 2-subgroups of
S (respectively S̄) and hence non-abelian. If the defect groups of b are cyclic or Klein
4-groups, then all characters in b and b̄ are of height zero. So assume that the defect
groups of b have order 16, and hence that the defect groups of b̄ have order 8. From
ordinary character tables it follows that there exists an irreducible character in b̄ which
does not vanish on an element of S̄ of order 4. Thus, the defect groups of b̄ are not
elementary abelian. On the other hand, by [17], b̄ has two modular irreducible characters.
Since blocks with defect groups isomorphic to C4 × C2 or to C8 have a unique modular
irreducible character and since blocks with defect groups isomorphic to Q8 have either one
or three modular irreducible characters, it follows that the defect groups of b̄ are dihedral.
In particular, the defect groups of b̄ and of b are non-abelian. �
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8.2. Bad primes for exceptional type groups. We will need the following result of
Enguehard [20, §3.2], respectively Ward [48] and Malle [35]. Let G be connected reductive
with a Steinberg endomorphism F : G → G and let ℓ be a prime number different from
the defining characteristic of G. By [20, Thm. A], the assertions of Theorem 1.2 hold
for GF and ℓ for the case s = 1, and with the “quasi-central ℓ-defect” condition in (a3)
of Theorem 1.2 replaced by “central ℓ-defect”. For a unipotent e-cuspidal pair (L, λ) of
G such that λ is of central ℓ-defect and S = GF/Z for some central subgroup Z of GF

we denote by bS(L, λ) the ℓ-block of S corresponding to (L, λ), respectively its image in
GF/Z, and by WGF (L, λ) the relative Weyl group NGF (L, λ)/LF .

Proposition 8.3. Suppose that G is simple, simply connected of exceptional type and
that ℓ is a bad prime for G. Let S = GF/Z for some central subgroup Z of GF and
B = bS(L, λ) a unipotent ℓ-block of S with non-trivial abelian defect groups. Then B is as
in Table 10 or Ennola dual to an entry there. Moreover, WGF (L, λ) is an ℓ′-group, except
for the listed entries for E6(q) and E7(q) and their Ennola duals.

Table 10. Unipotent ℓ-blocks of quasi-simple exceptional groups with non-
trivial abelian defect group, ℓ bad

S (ℓ, e) LF λ conditions
2G2(q

2) (2, 1) Φ1Φ2 1
F4(q) (3, 1) Φ2

1.B2(q) B2[1]
E6(q) (3, 1) Φ2

1.D4(q) D4[1] 3||q − 1, Z(S) = 1
2E6(q) (3, 1) Φ1.

2A5(q) φ321

E7(q) (2, 1) Φ1.E6(q) E6[θ
±1] 4||q − 1, Z(S) = 1

E8(q) (3, 1) Φ1.E7(q) E7[±ξ]
(5, 1) Φ4

1.D4(q) D4[1]
(5, 1) Φ2

1.E6(q) E6[θ
±1]

(5, 1) Φ1.E7(q) E7[±ξ]
(5, 4) Φ2

4.D4(q) ξ1, . . . , ξ4

For a prime ℓ, by a minimal counterexample to (HZC1) we will mean a pair (χ, S),
such that S is a finite group, χ ∈ Irr(S) is an irreducible character lying in an ℓ-block of
S with abelian defect such that χ has positive height and such that (χ(1), |S|) is minimal
with respect to the lexicographical ordering on such pairs.

Proposition 8.4. Suppose that G is simple, simply connected of exceptional type and
that ℓ is a bad prime for G. Let S = GF/Z for some central subgroup Z of GF and
B = bS(L, λ) a unipotent ℓ-block of S. Then (χ, S) is not a minimal counterexample to
(HZC1) for any χ ∈ Irr(B).

Proof. For 2G2(q
2) the validity of (HZC1) follows from the results in [48]. Note that it

is also known to hold for blocks with cyclic defect group. So now let B = bS(L, λ), for
(L, λ) a unipotent e-cuspidal pair of central ℓ-defect and suppose that B has non-cyclic
abelian defect groups.
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Assume that G is of type F4 or E8. Then S = GF . Further, by Proposition 8.3,
WGF (L, λ) is an ℓ′-group. We claim that Z(L)Fℓ is a Sylow ℓ-subgroup of C◦

G([L, L])
F .

Indeed, since L = CG(Z
◦(L)Φe

) and since by [13, Prop. 1.7(ii)], Z◦(L)Φe
is a Sylow e-

torus of C◦
G([L, L]), by the argument before [13, Lemma 4.5], NGF (L) contains a Sylow

ℓ-subgroup, say D of C◦
G([L, L])

F . Since D centralises [L, L]F , and λ is determined by
its restriction to [L, L]F , D ≤ NGF (L, λ). But WGF (L, λ) being an ℓ′-group means that
D ≤ L, and hence D ≤ Z(L).

Since G is self-dual, we may and will identify G∗ with G in such a way that the resulting
correspondence between unipotent e-cuspidal pairs of G and G∗ is the correspondence of
[20, Prop. 15]. Let t ∈ G∗ be an ℓ-element such that χ ∈ E(GF , t). Let H = CG(t) and
ψ ∈ E(HF , 1) be the Jordan correspondent of χ in CG∗(t). Since G has trivial centre, by
[20, Thm. B, Prop. 17], there is a unipotent e-cuspidal pair (Lt, λt) for H , with central

ℓ-defect such that ([L, L],ResL
F

[L,L]Fλ) and ([Lt, Lt],Res
LF
t

[Lt,Lt]F
λt) are GF -conjugate, and

such that ψ is in the block bHF (Lt, λt). Further, (Lt, λt) is uniquely determined up to
HF -conjugacy.

Since t commutes with [Lt, Lt], some GF -conjugate of t commutes with [L, L], and so
by the claim above, we may assume that t ∈ Z(L)Fℓ , and hence that (Lt, λt) = (L, λ). By
[20, Prop. 8, 8.bis], L = C◦

G(Z(L)
F
ℓ ) and LF = CGF (Z(L)Fℓ ) (in fact, L = CG(Z(L)

F
ℓ )),

hence, also L = C◦
H(Z(L)

F
ℓ ) and L

F = CHF (Z(L)Fℓ ). Since WHF (L, λ) ≤ WGF (L, λ) are
ℓ′-groups, Z(L)Fℓ is a defect group of bHF (Lt, λt) and of B by Proposition 2.7.

Now by the degree formula for Jordan decomposition, ψ and χ have the same defect and
thus the same height, whence (ψ,HF ) is a counterexample to (HZC1). Since ψ(1) ≤ χ(1),
(χ, S) is a minimal counterexample only if t is central, so 1, and hence only if χ is a
unipotent character. But it is easy to check from the decomposition of Lusztig induction
of the relevant unipotent e-cuspidal pairs that all unipotent characters in B are of zero
height.

Now suppose that G is of type E6. If S is as in line 4 of the table, then the defect groups
of B are cyclic. So, we assume that S is as in line 5 of the table. By Proposition 8.3,
ℓ = 3, 3||(q − 1), Z 6= 1, and S may be assumed to be the commutator subgroup of ĜF ,

where Ĝ = (E6)ad. Denote by B̂ the unipotent block of ĜF covering B. Let χ̂ ∈ Irr(B̂)

cover χ and let t ∈ Ĝ∗F be such that χ̂ ∈ E(ĜF , t). Since Ĝ has connected centre, again
by [20, Thm. B, Prop. 17], (and using the canonical correspondences between unipotent
e-cuspidal pairs for groups of the same type), CĜ∗(t) contains a unipotent e-cuspidal
pair (Lt, λt) such that [Lt, Lt] ∼= [L, L]. There are only three classes of centralisers of

semisimple elements of Ĝ∗F = E6(q)sc containing Levi subgroups of type D4: one of type

Φ2
1.D4(q), one of type Φ1.D5(q), and Ĝ

∗F itself. For t ∈ Z(Ĝ∗), the elements of E(ĜF , t)
have the same restrictions to S as the unipotent characters. Since 3 divides q−1 precisely
once, there are no 3-elements with centraliser Φ1.D5(q). Finally, there is exactly one class
of elements of order 3 with centraliser H = Φ2

1.D4(q). The Jordan correspondent of
χ̂ is therefore the unique (cuspidal) character D4[1] in E(H, 1), χ̂ is the only possible

non-unipotent character in B̂, and it has height 1. Since the image of t in the adjoint
type group Ĝ∗/Z(Ĝ∗) has disconnected centraliser, the restriction of χ̂ to S has three
irreducible constituents, which are thus of height zero. In particular, (HZC1) is satisfied
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for B̂. Exactly the same reasoning applies to the Ennola dual case, and a slight variation
is valid for G of type E7. �

Next we show that no other quasi-isolated block provides a minimal counterexample to
(HCZ1).

Lemma 8.5. Let G be connected reductive such that G and G∗ have connected centre. Let
s ∈ G∗F be a semisimple ℓ′-element such that G and s satisfy the assertions of Theorem 1.4
and that all e-cuspidal pairs (L, λ) of G below E(GF , s) satisfy

C◦
G(Z(L)

F
ℓ ) = L, CGF (Z(L)Fℓ ) = LF ,

and λ is of central ℓ-defect. Let t ∈ G∗F be an ℓ-element commuting with s and suppose
that there exists a proper F -stable Levi subgroup M of G such that the following holds.

(1) CG∗(st) ≤M .
(2) M is e-split.
(3) One of the following holds.

(a) For all e-cuspidal pairs (L, λ) of G below E(GF , s), WGF (L, λ) is an ℓ′-group and
there exists an F -stable Levi subgroup M0 of M such that CM∗(s) ≤M0 and such
that ℓ is good for M0.

(b) ℓ ≥ 5 and ℓ is good for M .

Then (χ,GF ) is not a minimal counterexample to (HZC1) for any χ ∈ E(GF , st).

Proof. The hypotheses on G (and our results in Section 2) imply that for any e-split Levi
subgroup H of G and for any HF -conjugacy class of e-cuspidal pairs (L, λ) of G below
E(HF , s) there is an ℓ-block bHF (L, λ) of HF in Eℓ(HF , s) such that all constituents of
RH

L (λ) lie in Irr(bHF (L, λ)∩E(HF , s), and such that (Z(L)F , bLF (λ)) is a centric bHF (L, λ)-
Brauer pair. Moreover, any ℓ-block of HF in Eℓ(HF , s) is of the form bHF (L, λ) for some
e-cuspidal pair (L, λ) of G below E(HF , s).

Let χ ∈ E(GF , st). By (1), there exists φ ∈ E(MF , st) such that χ = ±RG
M (φ). Let

b := bMF (L, λ) be the ℓ-block ofMF containing φ and set c := bGF (L, λ). SinceWMF (L, λ)
is a subgroup of WGF (L, λ), by Proposition 2.7(e),(f) if c has abelian defect groups, then
b has abelian defect groups, and Z(L)F is a defect group of both b and c. So, since
φ(1) < χ(1) and φ and χ have the same ℓ-defect, it suffices to prove that c contains χ, or

equivalently that d1,G
F

(χ) ∈ c.
We claim that for any ψ ∈ Irr(b)∩E(MF , s), all constituents of RG

M (ψ) lie in c. Indeed,
note that by Proposition 2.10 in order to prove the claim, it suffices to prove that Irr(b)∩
E(MF , s) is precisely the set of constituents of RM

L (λ). If (3b) holds then this follows from
the main theorem of [14]. Suppose that (3a) holds. Then for any e-split Levi subgroup

H of G and any e-cuspidal pair (L̃, λ̃) of G below E(HF , s), (Z(L̃F ), bL̃F (λ̃)) is a maximal

bHF (L̃, λ̃)-Brauer pair. Consequently, the map

(L̃, λ̃)→ bHF (L̃, λ̃)

induces a bijection between the HF -conjugacy classes of e-cuspidal pairs of G below
E(HF , s) and the set of ℓ-blocks in E(HF , s), and Irr(bHF (L̃, λ̃)) ∩ E(HF , s) is precisely
the set of constituents of RH

L (λ).
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Now,

d1,G
F

(χ) = ±d1,GF

(RG
M(φ)) = RG

M(d1,M
F

(φ)).

Hence, by the claim above, it suffices to prove that Irr(b) ∩ E(MF , s) is an ℓ-basic set
for b. Suppose first that (3a) holds. Since G has connected centre, so does M and by
hypothesis, ℓ is good for M . So, by [24, Thm. A], Irr(b)∩E(MF , s) is an ℓ-basic set for b.
In case (3b), let b0 be the Bonnafé–Rouquier correspondent of b in MF

0 . By the previous
argument, applied to M0 instead of M , Irr(b0) ∩ E(MF

0 , s) is an ℓ-basic set for b0. The
result follows as the Bonnafé–Rouquier Morita equivalence preserves basic sets. �

The next two results will allow us to verify the conditions of the previous Lemma for
certain situations in E8.

Proposition 8.6. Let H be connected reductive with Steinberg endomorphism F . Let
ℓ be a prime different from the defining characteristic of H, good for H, not dividing
|Z(H)/Z◦(H)|, and not a torsion prime, and set e = eℓ(q). Assume that one of the
following holds:

(1) e is the unique integer such that ℓ|Φe(q) and Φe(q)
∣

∣|HF |; or
(2) e ∈ {1, 2} and a Sylow e-torus of H is a maximal torus.

Then the centraliser of any ℓ-element 1 6= t ∈ HF lies in the centraliser of a non-trivial
e-torus.

Proof. Clearly it suffices to prove the assertion for t of order ℓ. Let t be of order ℓ and set
C := C◦

H(t). Then C is a Levi subgroup of H , and t ∈ C (see [38, Prop. 14.1]). Moreover,
t ∈ Z(C), and as |Z(C)/Z◦(C)| divides |Z(H)/Z◦(H)| by [21, Prop. 1.1.2(b)], we even
have t ∈ Z◦(C). Thus Z◦(C) is a torus with |Z◦(C)F | divisible by ℓ. Under assumption (1)
this implies that Z◦(C) contains a non-trivial e-torus T , and thus C ≤ CH(T ).

In case (2), let T denote a Sylow e-torus of H . Then t is H-conjugate to some element
of T , by [38, Cor. 6.11]. As ℓ|Φe(q) we see that all elements of order ℓ of T are F -stable,
so lie in T F . But the centraliser of t is connected by [38, Ex. 20.16], hence t is even
HF -conjugate to an element of T F by [38, Thm. 26.7]. We may assume that actually
t ∈ T F . Then in particular C contains the maximal torus T , whence Z◦(C) ≤ T is a
non-trivial e-torus. �

Lemma 8.7. Assume that GF = E8(q) with q ≡ 1 (mod 3). Let s ∈ GF be a quasi-isolated
5-element such that F induces a nonsplit Steinberg endomorphism on H := CG(s). Then
for any non-trivial 3-element t ∈ HF , CG(st) is contained in a Levi subgroup M0 of G of
classical type, which itself lies in a proper 1-split Levi subgroup M of G.

Proof. According to Table 1 (or Table 6) we have HF of type either 2A4(q
2) or 2A4(q)

2. It
is easy (using Jordan normal forms) to work out the types of 3-elements in HF and the
isomorphism types of their centralisers; the result is given in Table 11.

Clearly, M0 := CG(Z
◦(CH(t))) and M := CG(Z

◦(CH(t))Φ1
) are Levi subgroups of G

containing CG(st), M0 ≤ M , and M is 1-split and proper. Further, M0 has semisimple
rank at most 8− dim(Z◦(CH(t))), hence it is of classical type unless dim(Z◦(CH(t)) ≤ 2,
which happens precisely for the last two centralisers for H = 2A4(q)

2. But there, CH(t)
is of type A4 + A2, A4 + 2A1 respectively, and these do not embed into a group of type
E6, by the Borel–de Siebenthal algorithm (see [38, Thm. 13.12]). Hence in these cases as
well, M0 is of classical type. �
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Table 11. Centralisers of 3-elements in HF

HF = 2A4(q)
2 HF = 2A4(q

2)
CHF (t) Z◦(CHF (t)) CHF (t) Z◦(CHF (t))

GL2(q
2)2 Φ2

1Φ
2
2 GL2(q

4) Φ1Φ2Φ4

Φ1.GL2(q
2)GU3(q) Φ2

1Φ
2
2 Φ1Φ2.GU3(q

2) Φ1Φ2Φ4

Φ2
1.GU3(q)

2 Φ2
1Φ

2
2

GL2(q
2)SU5(q) Φ2

1

Φ1.GU3(q)SU5(q) Φ1Φ2

Proposition 8.8. Suppose that G is simple, simply connected of exceptional type F4,
E6, E7 or E8 and that ℓ is a bad prime for G. Let S = GF/Z for Z a central subgroup of
GF and let B be an ℓ-block of S such that the block of GF lifting B is a quasi-isolated,
non-unipotent block of abelian defect as in Tables 2–8 or their Ennola duals. Then (χ, S)
is not a minimal counterexample to (HZC1) for any χ ∈ Irr(B).

Proof. For F4(q), by Proposition 3.5, B is one of the blocks numbered 3, 5 or 7 or their
Ennola duals. Now note that in all three cases, the ℓ-power in the degrees of characters
in Irr(B)∩E(GF , s) is maximal among all elements of Eℓ(GF , s), while on the other hand,
they are of height zero in B. Hence, no character in Irr(B) ⊆ Eℓ(GF , s) can have positive
height.

If S is of type E6(q), then we note by Table 3 that B has abelian defect groups only
if the block of GF lifting B has abelian defect groups (note that in Lines 13 and 14 of
the table the action of the relative Weyl group does not become trivial on passing to
GF/Z(GF )). Hence, only the block numbered 15 has to be considered. Here, either we
can apply the same argument as for F4(q), or alternatively observe that the defect groups
are cyclic. The same arguments apply to the unique quasi-isolated block with abelian
defect group of 2E6(q).

According to Proposition 5.3 and Table 4, for E7(q) again the defect groups of B are
abelian if and only if the defect groups of the block of GF lifting B are abelian and
this occurs only for the blocks 4, 7, 11, 13, 16 and 18. In all cases, the characters in
Irr(B) ∩ Eℓ(GF , s) have the maximal possible ℓ-part in their degree, so we conclude as
before.

For E8(q) the blocks with abelian defect were described in Propositions 6.4, 6.7 and 6.10.
In particular, there are no cases when ℓ = 2. For ℓ = 3, we need to treat blocks 5, 11,
and 13–17. Here, the cases 5 and 11 follow by the standard argument on maximal ℓ-
power in the degrees. In the remaining cases, that is, when s is a quasi-isolated 5-element
with non-split centraliser, the conditions (1)–(3a) of Lemma 8.5 were shown to hold in
Lemma 8.7, whence the claim.

Finally assume that ℓ = 5. We conclude as before when E5(GF , s) is a single 5-block.
It is straightforward to check that all other centralisers H of quasi-isolated elements s in
Table 8 satisfy condition (1) of Proposition 8.6, and those in Table 7 satisfy either (1)
or (2). Thus there is a non-trivial e-torus T contained in the centre of CG∗F (st), and we
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let M ≤ G be a Levi subgroup in duality with CG∗F (T ). So M is proper in G and (1),
(2) and (3b) of Lemma 8.5 hold, which gives the claim. This completes the proof. �

8.3. Proof of (HZC1).

Theorem 8.9. The ’if part’ (HCZ1) of Brauer’s height zero conjecture holds.

Proof. We investigate minimal counterexamples to the assertion. For this let S be a finite
group, p a prime, B a p-block of S with abelian defect group D and χ ∈ Irr(B) an
irreducible character of B of positive height, such that (χ(1), |S|) is minimal with respect
to the lexicographic ordering on such pairs.

Then by the principal result of [3], S is quasi-simple, with simple central factor group
X , say. We may assume that X is not alternating, by Olsson’s result [44], respectively
by Proposition 8.2 for the exceptional covering groups of A6 and A7. (Note that for the
double cover of An Olsson only treats the odd primes but the abelian defect groups of
2-blocks of alternating groups are of order at most 4, and (HCZ1) is known for such blocks
by results of Brauer.) Furthermore, X is not sporadic by Proposition 8.1, nor a special
linear or unitary group by the theorem of Blau and Ellers [4, Thm. 5], respectively by
Proposition 8.2 for their exceptional covering groups. Thus by the classification of finite
simple groups, X is a simple group of Lie type not of type An or 2An.

There is a simple algebraic group G of simply connected type with a Steinberg en-
domorphism F : G → G such that X ∼= GF/Z(G)F (recall that we consider 2F4(2)

′ as
a sporadic group). Moreover, by Proposition 8.2 we may assume that S = GF/Z for
some central subgroup Z ≤ Z(G)F . Now first assume that p is the defining prime for X .
Then gcd(p, |Z|) = 1, so any p-block of S is also a p-block of GF , with the same defect
group. By the theorem of Humphreys [29] the p-blocks of GF are either of defect zero or
of full defect. But the Sylow p-subgroup of GF is non-abelian unless G = SL2, which was
excluded before.

Thus, p is not the defining prime for G. Let G∗ be a group in duality with G, thus of
adjoint type, with compatible Steinberg morphism F : G∗ → G∗. Let B0 be the p-block
of GF containing the lift, say χ0, of χ to GF and let s ∈ G∗F be a semisimple p′-element
such that B0 ⊆ Ep(G, s).

Now assume first that p is a good prime for G, and p 6= 3 if F is a triality automorphism.
Since G is not of type An and p is good for G, p does not divide |Z(GF )|, hence B0 and
B have isomorphic defect groups. So, χ and χ0 have equal degree and equal height. In
particular, χ0 is not of zero height. Again since p is good for G and p 6= 3 if F is a
triality automorphism, by the theorem of Enguehard [21, Thm. 1.6], there is a reductive
algebraic group G(s) with a Steinberg endomorphism F : G(s)→ G(s), such that G(s)◦ is
in duality with C◦

G∗(s), a p-block b of G(s)F with isomorphic defect group D and a height
preserving bijection Ξ : Irr(B0) → Irr(b). Moreover, Ξ(ψ)(1)|ψ(1) for all ψ ∈ Irr(B0).
Thus, if |G(s)F | < |S|, then (Ξ(χ), G(s)F ) cannot be a counterexample, so neither can
(χ, S). Hence, in this case we must have |G(s)F | ≥ |S|, so s ∈ Z(G∗) = 1 (since G∗ is
adjoint). So B0 is unipotent.

Since G is not of type An, p is good and p 6= 3 when F induces triality, p is even
(G,F )-excellent in the sense of Broué–Michel [11, Def. 1.11]. Thus, by [11, Thm. 3.1]
there is an isotypie between the unipotent block B0 and a block b of the normaliser of



50 R. Kessar and G. Malle

some non-trivial p-subgroup; in particular Brauer’s height zero conjecture holds for B0

and hence for B, contradicting our choice.
Thus, either p is a bad prime for G, or p = 3 and F induces triality. Let M be an

F -stable Levi-subgroup of G such that CG∗(s) ≤ M∗ and s is quasi-isolated in M∗. Let
C0 be the Bonnafé–Rouquier correspondent of B0 in MF . Then, ψ 7→ ǫGǫMR

G
M(ψ) is a

height preserving bijection between Irr(C0) and Irr(B0). For ψ ∈ Irr(C0) and z ∈ GF ,
z ∈ ker(ψ) if and only if z ∈ ker(ǫGǫMR

G
M(ψ)). Hence, the character of C0 corresponding

to χ0 via the above bijection is the lift of a character, say τ , of MF/Z to MF . Let C be
the ℓ-block of MF /Z containing τ . By Theorem 7.16 the defect groups of C are abelian
and of the same size as the defect groups of B (note that Theorem 7.16 applies to the
Sylow p-subgroup of Z and defect groups remain unchanged on passing to quotients by
p′-groups). Now τ and χ have equal heights, and τ(1) ≤ χ(1). So, MF /Z = GF/Z,
M = G and s is quasi-isolated in G∗.

Assume first that p = 2 and GF is of classical type different from An or 2An. The
quasi-isolated elements of G∗ are 2-elements, hence s = 1. But then by [21, Prop. 1.5], B
is the principal block of S, and in particular has non-abelian defect groups. Thus, S is of
exceptional type. For the groups 2B2(q

2) the only bad prime is the defining one, so this
case does not occur here. The height zero conjecture for the groups 2G2(q

2), G2(q),
3D4(q)

and 2F4(q
2) has been checked by Ward [48], Hiß [27], Deriziotis–Michler [18] and Malle

[35] respectively. So s is quasi-isolated in a quasi-simple exceptional group of Lie type of
rank at least 4 and p is a bad prime. In this case the claim is contained in Propositions 8.4
and 8.8.

This completes the proof of Theorem 8.9. �

9. Blocks with equal height zero degrees

Here, we complete the proof of Theorem 1.5. According to the result in [37, Thm. 6.1]
the only blocks left to consider are spin blocks (i.e., faithful blocks) of the double cover
of alternating groups, and quasi-isolated blocks of exceptional groups of Lie type of rank
at least 4. The validity of Theorem 1.5 for spin blocks of alternating groups has recently
been shown by Gramain [26, Thm. 4.1 and Cor. 4.2].

So we may assume that S is quasi-simple of exceptional Lie type in characteristic p,
and B is a quasi-isolated ℓ-block of S with ℓ 6= p. It is immediate from our explicit
description of such blocks in Sections 3–6 and the degree formula resulting from Lusztig’s
Jordan decomposition of characters that the only quasi-isolated ℓ-blocks with all height
zero characters of the same degree are those consisting of a single cuspidal character. In
those cases, the defect groups are central, and in particular abelian. Together with the
criterion in [37, Thm. 4.1], the claim follows.
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