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Abstract: This paper uses problem decomposition to show that optimal dynamic émmengy prices can be used to
reduce the cost of supplying energy, while at the same timeingahe cost of energy for the home users.
The paper makes no specific recommendations on the naturergy enieing, but shows that energy prices
can normally be found that not only result in optimal energgsamption schedules for the energy
provider’s problem and are economically viable for the energy provider, but also reduce total users energy
costs. Following this, the paper presents a heuristic real-time algoigthaemand management using
home appliance schedulin@he presented algorithm ensures users’ privacy by requiring users to only
communicate their aggregate energy consumption schedules tcetigg provider at each iteration of the
algorithm. The performance of the algorithm is evaluated usimgngrehensive probabilistic user demand
model which is based on real user data from energy provider E.ONsimbkation results show potential
reduction of up to 17% of the mean pealaverage power estimate, reducing the user daily energyorost f
up to 14%.

1 INTRODUCTION by providing an optimal distributed algorithm for
home appliance scheduling without the need for

The emergence ofmart homes enables energy sharing detailed information on daily use of home

providers to develop sophisticated energy aPPliances. L
management solutions, in attempt to optimise energy | N€ Process of resource optimisation in home
production while providing home users with €neray networks has been generating research

increased comfort and potential cost reduction. The INterest for several decades now, and in the recent
future smart homes will be equipped with a range of years it has been accelerated by the technological

control devices and sensing/actuating systems2dvances in sensor networks, smart meters and
capable of working together in automatic way to actuator systems. In an ideal smart home model, the

perform some pre-defined functions. Over the past Nistorical consumption ~ data, real-time
decade, the majority of technical challenges for the Méasurements, pricing, ambient and social aspects

home hardware and software solutions have been?'® all used as inputs to optimisation algorithms

solved, and a range of commercial products is which calc;ulate the optimal _hpme appliance energy
available. For energy providers, the greatest consumption schedule. Traditionally, the problem of
remaining challenges lie in: (1) development of OPtimal use of home energy has been approached in
intelligent resource management algorithms to WO Ways: (1) reducing consumption, or (2) shifting

optimise the energy consumption, both at the Sing|e_consumpti0n. The process of consumption shifting,

household level and at the large-scale level; (2)@is0 called demand management, or load
establishing increased level of trust with the user by Management, has been practices by the industry for
ensuring that the users’ energy consumption data is several decades, using different forms of load

kept secret. This paper addresses both of these issug@ntrol (Fahrioglu, 2000, Palenskg01], Siano



20149). The existing solutions use variable pricing to modelled through cost, and optimality of the
generate incentives to home users to shift their scheduling is based on the process of cost
consumption from peak periods, thus reducing the minimisation. The mechanism of costing allows the
need to start additional generators, which presents ausers to react, in their own interest. Dynamic pricing
major cost factor for energy providers. and its drawbacks are analysed in great detail in the
There is a number of research works that take onpast research, e.g. in (Borenstein, 2002) and
this challenge, and develop algorithms and network (Roozbehani, 2010). In a response to this, (Wijaya,
protocols for optimal demand management. For 2013) proposes an interesting approach to cut the
example, Li, Chen and Low (Li, 2011) show that peak to average energy ratio explicitly from the
there exist time-varying prices that can align supply side. The resulting load cuts are then
individual optimality with social optimality. In their  distributed among consumers by the means of a
model, the utility company collects forecasts of total multiunit auction which is done by an intelligent
demands from all customers, and then sets the pricesagent on behalf of the consumer.
to the marginal cost. Each customer updates its In this paper, we decompose the provider and the
demand and charging schedule. Similarly, Pedrasauser optimization problem to prove that, if energy
Spooner and MacGill (Pedrasa, 2010) present aprices are set as optimal consistency prices, the
solution which enables end-users to assign values toenergy provider’s revenue at optimal energy
desired energy services, and then schedule theconsumption levels is greater than the variable cost
resairces to maximise the users’ benefits. They of supplying energy. This motivates the design of a
propose the use of particle swarm optimisation, heuristic real-time algorithm where at every timeslot
because of simple implementation. They do not, each appliance energy consumption is updated
however, test their solution on large-scale systemsaccording to the real-time energy price and
and do not prove the optimality of the solution. estimated price of operating each appliancEhe
Zakariazadeh, Jadid and Siano (Zakariazadeh, 2014home can then use this to calculate the optimal
propose a multi-objective framework, based on energy consumption schedule. The paper makes no
augmented e-constraint method, to minimize the specific recommendations on the nature of energy
total operational costs and emissions and to generatericing, but shows that energy prices can normally
Pareto-optimal solutions for the energy and reservebe found that not only result in optimal energy
scheduling problemin the work of Ramchurn et al  consumption schedules for the energy provider’s
(Ramchurn, 2011, Vytelingum, 2010) decentralised problem and are economically viable for the energy
demand side management is realised through theprovider, but also reduce total users energy costs.
process of cooperation between the smart metersThe paper shows that optimal dynamic energy prices
(‘agents’). The meters receive the costs of can be used to pass on the reduction in the cost of
generating electricity to the consumers, and usesupplying energy to the users, when sufficiently
learning mechanisms to gradually adapt the agents’ scaled down. This provides financial incentives to
deferrable energy load based on the predicted marketisers to subscribe to the smart home scheme. The
prices for the next day. Similar approach is also presented algorithm ensures users’ privacy by
taken by (Mohsenian-Rad, 2010), (Ganu, 2012), andrequiring users to only communicate their aggregate
(Ibars, 2010) . In these solutions the end-users areenergy consumption schedules to the energy
somehow made to voluntarily adjust their provider ateachiteration of algorithm.
consumption. (Mohsenian-Rad, 2010) formulates an  To evaluate the performance of the optimisation
energy consumption scheduling game, where thealgorithm, we use a comprehensive consumer
players are the users and their strategies are the dailgemand model to compute the quantitative benefits
schedules of their household appliances and loadsof the algorithm. The model is described in section
Similarly, (Ibars, 2010) bases the solution on a 4; it is based on appliance definition, user profile
network congestion game, which can be generation and daily appliance use determination,
demonstrated to converge in a finite number of stepsand is based on real user data from energy provider
to a pure Nash equilibrium solution. (Jain, 2013) E.ON and the UK Government Report on home
goes one step further, by applying the concept of energy use (Zimmermann, 2012). The performance
bargaining / auctioning of energy resources on the evaluation of the new algorithms is done using

smart grid including electric vehicles. simulation, the details of which are given in section
It is important to stress that most of these works, 5.
including ours, rely on consumer’s willingness to The simulation results show that applying the

act. In other words, the end-user benefit is always new optimisation algorithm, it is possible to reduce



the mean power peak to average ratio (PAR) consumption schedule vector for appliance 4,,
between 0.16 and 0.35 with 99% probability. That is and x, 2 (x,4,a € 4,) be the energy consumption
between 7.83% and 17.02% of the original time schedules for all appliances. We also denote the
series mean PAR estimate. Furthermore, cardinality of sets by capital letters, elj.= |N|
optimisation reduces average user daily energy costandT = |T|. We assume that each appliance A,
between 3.54% and 14.72% of its original time requires a total energy &, , during the scheduling

series mean estimate with 99% probability. horizon, i.e.

It is worth noting that reading and understanding y,_ xt  =E,, Va € 4, 1)
the simulation results for the large-scale home - ]
energy networks is very difficult, as averaging the  In addition, we assume that each applianee
benefits of optimal energy supply gives only a part 4, Can use a minimum power level y,,, -~ and a
of the full picture. It is for this reason that we Maximum power level of,, attimeslote T , i.e.
believe that the best practical use of the researchyézznin <xb, SV vteT,a €A, )

results presented in this paper is to integrate them in . _ _
the development of energy consumption  Clearly, if appliance € A, is non-controllable
visualisation tools for the individual users and for theny,o™" =¥y 2 Vaa, Vt €T andY er Vo =
the energy supplier. Visualisation of energy Ena-

consumption (Goodwin, 2013) will enable better imisation Problent: he unit ori
understanding of the pattern of energy use and theUser Optimisation Problert.et p,be the unit price

f optimisati d optimal i of energy at timg € T, which is set by the energy
ggﬂ:gﬂ:fsnce O optmisation and optimal appliance ., ijer. We assume that users cannot sell their

excess generated energy to the energy provider.
Given the energy price vectqr = (p.,t € T), the
objective of usem € N is to then choose feasibl

2 SYSTEM MODEL energy consumption schedules so as to minimize

total energy costs, i.e. to solve the following
We start by presenting a model for energy users OPtimization problem:
and energy provider. The user is modeled as an
operator of a set of home appliances which operate

over a finite scheduling time horizon. The user’s D}Cinz pr max Z X5, 0

objective is to choose feasible energy consumption " ter a€An

schedule so as to minimize the cost of energy. The

provider, on the other hand, benefits from selling s.t. (1) and (2) 3)

units of energy to the users. Critically, the objective  Evidently, optimal solution of (3) is dependent on
of the provider is to minimize the cost of supplying the energy prices set by the energy provider.
the energy consumed by the users by shifting the
total energy consumed during the time horizon. Energy Provider: The energy provider is
We consider a smart power network comprising characterized by its energy cost function and its
a set of N users served by an energy provider whooptimization objectives. The cost functiof} (X)
participates in the wholesale energy market. Eachepresents the cost for the energy provider to supply
user is equipped with a smart meter capable ofX = 0units of energy at time € T and is widely
scheduling energy consumption of appliances, andassumed to be increasing and strictly conysee
smart meters are connected to the energy providere-g. (Li, 2011) and (Mohsenian-Rad, 2010) As an
via a communication link. In the following sections, €xample, the energy cost function for thermal

we describe how users and the energy provider aregenerators is shown to be quadratic as follows
modeled. (Mohsenian-Rad, 2010):

Users:We assume each use€ N operates a set of C,(X)=aX*+bX+c teT (4)

A, appliances including photovoltaic (PV)

appliances, which are operated over a finite whereq,,b, > 0 andc, > 0.

scheduling time horizon (e.g. a day) divided into

timeslots (e.g. 15 minutes). We denotebyhe set  gptimisation Objectives:Since by constraint (1)
of timeslots in the scheduling time horizon. For each ygers® energy demands during the scheduling
user n €N, we denote by xrtla the energy  horizon arefixed, we define the energy provider’s
consumption scheduled for appliance 4, attime  opjective as to minimize the cost of supplying the

teT, vv_here negative values ef , represent power energy consumed by the users by shifting the total
generation. Letx, , = (xt, t € T)be the energy




energy consumption at each time slot, i.e. to solve

the following optimization problem where0 < 8, < 1,VteT.
minz c, Z max Z xt .0 We now focus on development of a distributed
X ' algorithm for step 1 of algorithrA at jth iteration.
rer el a€dn Note that optimization problem (6) is strictly convex
st.(l)and (2neN ®) when z is fixed. Introducing the auxiliary variable
where x = (x,,n € N). The optimization problem _ ¢
(5) is convex and can be solved by the energy Yt = ZmenXaean*na VEET (8)
provider in a centralized fashion, providing that The optimization problem becomes
users energy demand constraints are available to the
energy provider. Alternatively, (5) can be solved ,,;, "Z Ct(yt)JriZ z (xfla—z,ia(j))z
jointly by the energy provider and users using a ¥ et thnENaeAn ’ ’

distributed algorithm. In either way, appropriate
energy pricing schemes have to be designed to s.t. (1), (2)vn € N and (8) 9)
ensure user participation by providing financial

. - The Lagrangian after relaxation of constraint (8)
incentives.

. 1
is L(p,y,X)= Xter (Ct(yt) + ;ZnEN Yaea, (xrtl,a -

3 OPTIMISATIONALGORITHM 0 (3, o (5 5y st 3)) wherep s

Since the objective function in the energy ,q vector of consistency prices. The dual problem is
provider’s optimisation problem (5) is not strictly

convex in X, computation of primal optimal then
solutions from the dual optimablutions may not be

possible (Boyd, 2004). As here we adopt a dual max, g(p) (10)
decomposition approach, we use the generalizationyhere

of proximal minimization algorithm proposed by g(p) =minL(p,y,x),

(Lin, 2006) that can be applied to the problems with y.x

similar form as (5). First, using the auxiliary vector st. (1) and (2¥n € N (11)
z2(z,neEN), where z,=2 (Zn‘a,a EAn), . . . .
Zna 2 (284t €T), we transform the optimization Since (9) is strictly convex, the dual function
problem (5) into the following equivalent form (11) is differentiable and its gradient is given by

(Bertsekas, 1999):

mmx.zz<a (Z D ) toe 2 2 (e = 2 ) Vg(P)e = Tnen Taca, ¥ha(P) —ye(p) VEET (12)

teT nEN a€Aly, nEN a€dy

1 meN where (y(p),x(p)) is the solution of (11) given
st (1) and (2p ©) p(j, k). The dual problem (10) can then be solved

wherec, > 0t € T. Letx be the optimal solution  USing gradient method as follows

of (5). Thenx=x" and z =x" is the optimal ) ]
solution of (6). The optimization problem (&an pe(ok +1) = p(j, k) +
?Iiienn 3(838)IYed using the algorithm as presented in +at(ZnENZa6An x4 .G, k) — .G, k)),Vt €T (13)
where (y(j, k), x(j,k)) denote the solution of (11)
Algorithm A: Fix K > 1. At jth iteration: given p(j, k). Let the primal-dual pair(z*, p*)
1. Fix z =12z(j) and estimate the solution of denote the stationary point of algorithm A defined
the dual problem of (6) by applying by

gradient method on dual variabte for K z* = argmax L(p*,z",y* X)
iterations. st. (1), (QvneN

2. Letp(j+1,0) =p(,K). Let x(j) be the
primal variable associated with the dual yi = Z Z Zrt{; VteT

variablep(j, K). Set
20U + 1) = zha () + e (xha() = 240 (1)
VteET,a€A,n€EN , (7

NneEN a€An



By KKT optimality conditions (Boyd, 2004) for
any stationary point(z*, p*) z*is the optimal
solution of (6). It is shown in (Lin, 2006) that when

1
— 3 t t
gz,n,a(p) - mlnxn,a ZtET (ptxn,a + Z_Q (xn,a -

2
a, in (13) is small enough, algorithfconverges to z,i,a(j)) ) s.t. (1), (2) (19)
a stationary poinz*, p*).
The dual functiorg(p) can be decomposed into Using dual decomposition, (19) can be
two subproblemg (p) = g,(p) + g.(p), where decoupled into appliance optimization problemn fo
each time slo_t. The Lagrangian after relaxation of
91(p) = miny, ¥er(C (V) — peye) (14) constraint (1) is )
1
and L(Un,arxn,u) = Z (ptxrtl,u + _(xrtl,a - Zfz,a(ll)) )
. t 1 t teT 2e
g2 (P) = min, ZtET ZnEN ZaeAn (ptxn,a + z_ct(xn,a -
—z,ﬁ,a(j))z), st. (1), QvneN (15) * Ona (EM - Z xfz.a)
tEThq

Subproblem (6) is an unconstrained convex
minimisation problem and due to the strict convexity
of C;,,t € T, has a unique solution. Let(p) be the
unique solution of (14). Then

whereo, , is the Lagrange variable associated with
constraint (1) or price of operating applianges
A,,. The dual problem is then

pe = Cl(v:(p)) VEET (16) MaXer,, hana(%na) (20)
Thus " where
yelp) = G (p) Ve €T A0 hyna(ona) = ming,, L(onaXna) St @ (D

Equation (17) can be computed by the energy  The dual function (21) can be decoupled into
provider for each timeslott € T independently,  appliance optimization problems for each time slot:
given the  associated consistency  price
pr- Subproblem (15) can be decomposed into hona(0na) = Seer Moma (Ona) + OnaEna,  Where
optimisation problems for individual users: Y ' w ' o

hg,n,a(an,a) = minx,fl,a(Pr - O-n,a)xrg,a +

92(p) = Xnen 92n (p), Where

1 )2
) o (Hhe = 20 ) 1) (22)
gz,n(P) = minxn Yter ZaeAn (Ptxrtl,a + ;(xrtl,a -
t
Z,ia(j))z) ot (). @) (18) Letx. 4(0,4) be the solution of (22). Then
It can be noted that at the stationary point of _; _ _ R 5
algorithm A the quadratic term in the objective *na(9na) = [¢t(ona = p t)+Z"’“(’)]y£‘,Tl" (23)

function of (18) is zero and (18) is equivalent to the
user optimization problem (3) with = p*. Hence,

optimal consistency prices can be interpreted as
energy prices that encourage users to opt for optimal
energy consumption schedules for the energy
provider’s problem (5), in order to minimise their

energy costs under these prices. We will show later
in the next section that reduction in the cost of

We consider two measures of performance,
namely, peakio-average ratio (PAR) and average
user daily energy cost, to evaluate the benefits of
optimization to the energy provider and users,
respectively. PAR is defined as the ratio of daily
peak to average load, and used here as a measure of
variation of aggregate daily energy consumption. It

. is defined by
energy supply as a result of solving (5) can be
passed on to the users, if energy pripesre based AR = T maxer(Znen Sacan Xha) (24)
on adequately scaled down optimal consistency EnenZaean Ena

pricesp™.

The user optimization problem (18) can be The average user daily energy cost is defined as
further decomposed into optimisation problems for the daily cost of supplying energy divided by the
individual appliances as number of users, and used to measure the minimum

possible daily energy cost that can be passed an to
920(P) = Zaca, Gzna(p), Where user on average:



Ster Ce(Znen max(Taeay, *5,0.0)) (25) provider’s problem (5) can be attained if energy
N prices are set as optimal consistency priggsi.e.
settingp = p*, energy consumption schedules that
Considering this solution, the proposed approach are minimizers of the users optimization problem (3)

for solving the energy provider’s optimization are also minimizers of the energyprovider’s
problem §) can then be summarized as the problem (5). Moreover, as stated in the following
following distributed algorithm: theorem, the energprovider’s revenue based on
energy pricep” is greater than the variable cost of
Algorithm A: Fix K > 1. At j*" iteration: supplying energy, at optimal energy consumption
1. Fix z=2z() and run algorithmS for K levels.
iterations.

Theorem 1. If energy prices are set as optimal
consistency pricep”, the energyrovider’s revenue

at optimal energy consumption levels is greater than
the variable cost of supplying energy, i.e.

2. Let p(j+1,0) = p(j,K). Let x(j) be the
primal variable associated with the dual
variablep(j, K). Set

zhaG + 1) = 250D + B (x50 () — 25,0 ()

Vt €T, a €EAp,nEN (26) p*y: > C(yf) — C.(0),VtEeT 27)
Proof. Since we assumed thét is increasing and
strictly convex, it follows from the first order
condition for strict convexity (Boyd, 2004) that

Where0 < 8, < 1,Vt €T.

Algorithm S: At k" iteration:

1. Given the consistency prices(j, k), each ClyDys > C(yi) —C.(0) VteT (28)
usern € N ; . . . .
computes: replacing (16) in the above inequality then yields

e the price of operating each appliance
ona(, k), a € A, by solving (20) However, we are interested in energy pricing

o appliance energy consumption schedule igziumrﬁpttirc])?]t S”C%tegunlg’s r?ost?ltts in optima.ld energy
t G EA  tET ina (2 n et energy provider’s
Xnal k), @ € An, t € Ta, USING (23), and problem (5) and covers the variable cost of
communicates its aggregate  energy

. , supplying energy, but also reduces or ideally
t
consumption  schedule Yqea, Xn,a U, k), minimizes users energy costs, in order to ensure

t € Tyq, to the energy provider. users participation in the smart home scheme.
2. Given the consistency pricep(j, k), the

energy provider computes:
e the auxiliary variabley.(j, k), t € T , using

To examine the existence of such scheme note
that by the mean value theorem (Bertsekas, 1999)
there existy, € [0,y;) for all t € T such that

17),
e updates the consistency pricg;(j, k), Ci)yi = C(yi) —C(0) VteT (29)
given the aggregate energy It follows from (28) that there exists 0 < t < 1,

5 énnsumgtigpk?chegulzg kf;Jr all ;sers foralle T , such that
nen iaean Xna(, k) ANAY(J, k) , t €T, PP
according to the gradient algorith3j. YeCi(yi) = Ci(y) VEET (30)
. Let Vinax = maxeer{y:}. Then,
Note that the proposed algorithm ensures users’ - - N
privacy by requiring users to only communicate their Ct(Ve) > YmaxCi(ye) 2 Cc(Fe) VE €T (31)
aggregate energy consumption schedules to the gq
energy provider at every iteration of algorith®n

Note also that, with the exception of computatidn Z Cldy: > ymaxz CliyD)ye
0n,aG, k), a€A,, al the computations can be

further decoupled across individual timeslots. This cer ter

motivates the heuristic real-time algorithm presented

in the following sections where at every timeslot . th'(}?t)%*

each appliance energy consumption is updated ter

according to the real-time energy price and

estimated price of operating each appliance = Yeer C:(¥{) — C(0) (32)

0na(, k), a € A,.
As discussed in the previous section, optimal The term on the right side of the above equality
energy consumption schedules for the energyis the minimum daily cost of supplying energy and



hence is the lower bound on the viable total userswhich appliances can be found in a household); (2)

energy costs at optimal energy consumption levels.computing the daily use of each appliance (i.e. how

U + Mmany times is an appliance used on a certain day);
Note that users optimization problem (3) with (3) calculating the exact energy demand of each

energy pricep = ymqxp" is €quivalent to the case  gipjiance (i.e. at what time is the appliance used on
when p = p*and thus resultin optimal energy  a certain day)

consumption schedules fohet energy provider’s The different steps of the consumer energy

problem (5). The above inequality states that there gemand model are based on probabilistic approaches
exist energy prices that lead to optimal energy using basic appliance definitions for the generation
consumption schedules fohet energy provider’s of the consumption data. The general model
problem (5), economically viable for the energy structure uses some basic appliance definitions to

. . . generate the synthetic consumption data in three
provider and result in lower viable total users energy main steps: (1) Basic appliance definition; (2) User

costs than with energy prices, but not necessarily  profile generation; (3) Daily appliance use
the minimum viable level. This implies that, unless determination.

the current energy cons_umption scheduleg are very  The most common household appliances can be
close the levels that optimizactenergy provider’s classified according to a reduced number of
problem (5), energy prices can normally be found si_mplified power level patterns (Yao, 2012,

that not only result in optimal energy consumption Richardson, 2010, Carpaneto, 2007). In the proposed

schedules for the energy provider’s problem (5) and model three dferent power level patterns for the

. i . approximation of the demand curve have been
are economically viable for the energy provider, but .,nsidered (Figure 2). Pattern 1 represents

also reduce total users energy costs. In the case ofontinuously running appliances with a constant
quadratic cost function (4), it follows from (29) that power level, such as fridges or freezers. Pattern 2
allows the approximation of occasionally operated
appliances with  possible non-zero  energy
1 , for allt € T . Thus, in this case energy prices consumption in standby operation such as washing
2 ) S machines or TVs. Finally, pattern 3 is used to
p= Ep* results in minimum total users energy costs approximate the power curve

at optimal energy consumption levels, while still The three simplified power level patterns were
ecaomically viable for the energy provider. used in the development of a classification scheme
) i . . based on diierent usage types. These usage types
Notice that if the objective function in the energy (516 into account factors such as frequency, duration
provider’s problem (5) is scaled by a positive 54 time of use of the considered appliances and

constant y > 0, the resulting optimization problem o\ a classification closely related to the customer
is equivalent to (5) and hence the minimum cost of papits.

supplying energy, and by (16), optimadnsistency
pricesp™ are also scaled by > 0. Appliance aaT General energy demand model sch

Step 1 Step 2 Step 3
Creating Calculating Calculating
artificial da:y us:e Tor exact energy
“| household B % ﬁ‘:ﬁ;ﬂﬂw | demand of the
configuration foseho appliances

Fe=yi tET . Ifb=0in (4), theny, = Ve, =

Statistical
appliance data

4 CONSUMER DEMAND MODEL e

External data

Modular functions

power
power

To evaluate the algorithm performance in detail, Figure 1. General structure of the developed
it is necessary to use a comprehensive householdconsumer energy demand model
consumer energy demand model. The model
developed specifically for this project - genesat
artificial consumption data, both for a single ;

household and an entire neighbourhood. The model2 LlleLLle

has been developed on the basis of real home user

data generated at the E.ON testbed facility in the UK po— po— po—

n 2012. Figure 2. Classification of household appliances by
The model generates the consumption data of thepower level patterns
households in the following three main steps (Figure
1): (1) determining the household configuration (i.e.



The consumer energy demand model determinesenergy consumption schedules are computed
in the first step the configuration of one or several using the algorithm described in Section 3. Finally,
households. For most appliance types, the number ofdaily estimates of mean performance measures are
devices is computed using a probabilistic approach.computed for the original energy consumption time
However, exceptions have been considered for a fewseries and its optimisation, given the values ahd
appliances. The computation of the number of x*, respectively.
devices of a certain appliance type is based on a
binomial distribution in order to obtain certain
variation around a desired average value.

The simulation experiment involved generation
of energy consumption time series and its
optimization for 100 users for 12 independent weeks

Finally, an important aspect of the model is during a typical winter season. For each week,
consideration of exceptions. In our case, special careenergy consumption time series and its optimized
was taken: (1) to accurately represent lighting, (2) to version were generated separately for every
exclude appliances which exist with gas and weekday with sampling time of 15 minutes. The
electricity connections; (3) to limit the sum of Peak to Average Ratio (PAR) and the average user
electric and gas space heaters to one device pedaily energy cost were subsequently measured for
household (This limitation is also used in the case of each weekday and used to estimate their mean
water heating appliances). For a detailed descriptionvalues for the week. In the optimisation model, the
of the developed usage types and a complete list ofoperation time of washing appliances were assumed
the considered appliancesetheader is referred to to be flexible throughout the day and hence treated
(Gruber, 2012). as a control variable.

The household consumer energy demand model
is used in the remainder of the paper to simulate th

representative households in order to evaluate th /corsumerdemandmodel Aggregated demand optimisation
performance of the optimal algorithms presented ir I v
section 3. Figure 3 shows the link between | mescomioe | cowon | | Computeapplince 717

consumer demand model and aggregated demar
optimisation  algorithm, at each simulation
replication. The appliance total daily energy

requirements B (E, 4, a € A,,n € N) is computed Comput diy enery | | | et g ] St
from the da”y energy Consumptlon time series series | consumption optimisation problem
generated by the proposed consumer demand mode \‘

|
v

| Compute performance \

5 IMPLEMENTATION AND
SIMULATION RESULTS ,
Figure 3. Interface between consumer demand

Having defined the model and the theoretical model and aggregated demand optimization results

optimisation algorithm in the previous sections, in

this section we focus on the actual implementation Table 1: PAR Values.

of the algorithm. PAR values weekday weekend
Using the controllability and power level data on_gnpal 2.16 1.78
. . - . optimised 2.05 1.65
from the basic appliance definition, minimum and
maximum power levelg™" & (yi7" g € A,,n €
N,teT) and, y™™* 2 (yyi a € A,neN,t€ Furthermore, the power level of heating and cold

T) are set equal to the energy consumptionetim appliances were assumed to be adjustable within the
series for non-controllable appliances, and to the range of 10% of their original time series values and

minimum and maximum power level for fully treated as additional control variables. The daily

controllable appliances. Here, we refer to appliancesenergy requirement of these types of appliances was
with no operational timing constraints as fully assumed to be fixed and equal to their daily usage
controllable appliances. For partially controllable generated by the consumer demand model. Power
appliances the values of these parameters are sdevels and operation times of the remaining

according to their specific constraints, as will be appliances were set equal to their original time series
explained later in the simulation results. Given the values. The energy cost function was assumed to be
values of parameters,y™",y™%*  the optimal



of the form (4) with parameters, = 0.1, b, =
0,c, =0, forallt €T.

~

X 10000
[
v~

Time Series

The simulation results indicate that the original ~
time series peak loads during the late afternoon/early s <~
night at weekday are significantly higher than \\‘\

ek . . g .
weekend as indicated by their respective PAR values & ! --R

= = == Optimised

of 2.16 and 1.78. In these examples, optimisation 3 ===

reduces the load variation resulting in PAR values of \ )

2.05 and 1.65 for the example weekday and ? T~

weekend, respectively (Table 1). NSO
. . 1 21 41 61 81
Figure 4 shows the resulting aggregate energy Time (15 mins intervals)

consumption time series and its optimisation for a

typical weekday (similar results for weekend exist, Figure 5. Load Duration Curve for aggregate energy
the figure is omitted because of the space consumption for 100 users on a typical weekday
constraints) Figure 5 gives a better visualization of

the benefit of optimization, using the load duration As it was mentioned in the Introduction section,
curve to show the gains made in the peak demandayeraging the benefits of optimal energy supply
using out optimization algorithm. Thg load duration rarely gives the full picture. The optimisation
curve shows the energy consumption data by 15-presented in this paper can be used in the design and
minute intervals, sorted in descending order. Resultsgevelopment of user visualisation tools. These tools
presented in Figures 4 and 5 show average values fogan be used by home users to understand better the
100 households, with individual household gains penefits of optimal appliance schedule at their home.

greatly depending on the household model. For more details about the potential use of data
visualisation in energy networks the reader is
&7 referred to (Goodwin, 2013).
§ s T Series
6 T 6 CONCLUSION

----- Optimised
This paper looks into the problem of optimal use of
energy in homes.The paper uses problem
decomposition to show that optimal dynamic home
energy prices can be used to reduce the cost of
3 oA AL supplying energy, while at the same time reducing
ANV the cost of energy for the home users. We provide a
2 proof that if energy prices are set as optimal
consistency prices, the energy provider’s revenue at
1 optimal energy consumption levels is greater than
1 21 - (“115min inteﬁéus) 81 the variable cost of supplying energy. This is then
used to design a heuristic real-time algorithm for

Figure 4. Aggregate energy consumption time seriesdemand ~management using home appliance
and its optimisation for 100 users for a typical Scheduling. The performance of the algorithm is

Power
&5

weekday evaluated using simulation, where a comprehensive
) ) o model of home energy consumption is used.
The overall simulation results indicate that In terms of the future Work, the focus will be on

optimisation reduces mean PAR between 0.16 andio issues: (1) the detailed performance evaluation
0.35 with 99% probability. That is between 7.83% of the presented algorithm, using concrete pricing
and 17.02% of the Original time series mean PAR idea, a |arger Variety of Objective functions,
estimate. Notice that this is despite the fact that theincluding peak minimisation and optimisation of
optimisation objective was to minimise the quadratic yser comfort/discomfort, and realistic models of user
energy cost function, rather than to minimise the reaction (2) utilising the linear time complexity
PAR explicitly. Furthermore, optimisation reduces (O(n)) of our algorithm, which makes it suitable for
average user daily energy cost between 3.54% andherforming simulation on very large sets of data
14.72% of its Original time series mean estimate (entire C|ty or Country) using cluster/cloud
with 99% probability, for all y>0 multiples of  computing in a very short time for interactive energy
parameters,,t € T. data analysis and visualisation. In our future work,
we will aim to experiment with the efficiency of the



algorithm for large-scale optimisation and Energy, Computing and Communication Meet, ser.
visualisation of household energy use, to understand ~ &£nergy '12. New York, NY, USA: ACM, , pp.

better the nature of the energy price from the user 30:1-30:10. . . -y

int of view Ibars C, Navarro M. Giupponi ,L2010, Distributed
point ot view. Demand Management in Smart Grid with a
Congestion Game,Smart Grid Communications
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