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This paper introduces a new measure of travel time reliability, for implementation in the 

dynamic routing algorithm of an intelligent car navigation system. The measure is based on 

the log9normal distribution of travel time on a link and consists of two indices corresponding 

to the extreme values of the distribution, such that they reflect the shortest and longest travel 

times that may be experienced on the link. Through a series of mathematical manipulations, 

the indices are expressed in terms of the characteristic values of the speed distribution on the 

link. An expression relating the indices of a route and the indices of the individual links 

forming it is derived. The accuracy of the measure is then assessed through a field experiment 

and the results are presented. 

 

� '(��#�: Transportation, intelligent transportation systems, in9vehicle navigation systems, 

network reliability.  

 

)� ���	
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The field of in9vehicle navigation is currently quickly evolving, as navigation systems are, 

together with the traditional car radio, the most important source of information in the vehicle. 

Car navigation systems were initially treated as luxury goods and were only offered as 

premium accessories on high9priced cars. In recent years, however, the market has seen the 

introduction of portable navigation devices besides the embedded ones, which are available at 

affordable prices. Forecasts predict that in the next few years, a large number of cars will be 

equipped with a navigation device, which indicates that car navigation systems are rapidly 

becoming everyday consumer goods. 

 

The main objective of the routing function of a car navigation system is to compute the 

fastest route from the current position of the vehicle, established through satellite positioning, 

to the destination, input by the driver. Apart from the simple routing function, the so9called 

dynamic routing function, in which current and predicted traffic conditions are taken into 

account, is gaining importance and is gradually being incorporated in newer navigation 

systems.  

 

Dynamic routing can be provided by two system architectures, namely the autonomous (or 

decentralised) and the supported (or centralised) system architectures. In the former, a route 

based on default estimates of link travel times, complemented in Europe by traffic 

information about current incidents broadcast by the Traffic Message Channel (TMC), is 

suggested to the driver, while the entire computation takes place in the vehicle unit itself. The 

latter on the other hand involves a two9way data exchange between a subscribing guided 

vehicle and a Traffic Information Centre (TIC), increasing the range and accuracy of 

information available to subscribers; some of the computation takes place at the TIC and sub9
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routes are transmitted to the vehicle, for example at decision points. 

 

In recent research work (Chen and others, 2005a; 2005b; 2006; Kaparias and others, 2007a; 

2007b; Kaparias, 2008; Kaparias and others, 2008), a new dynamic routing algorithm was 

developed for the autonomous system architecture, aiming to take into account travel time 

reliability and use it as a second optimisation criterion for finding a set of feasible routes to 

be suggested to the driver. Reliability was defined as the probability of not encountering 

congestion along a link or a route and was expressed as a [0,1] continuum. Nonetheless, this 

definition is not suitable when it comes to implementing it in car navigation systems for two 

main reasons: firstly, it is not understandable by the driver and it cannot be translated into an 

expected delay value, which is what the driver is ultimately interested in, and secondly, when 

it comes to computing the reliability of a route, the measure is dependent on the number of 

links forming the route, as it expresses the probability of not encountering congestion on any 

link along the route, which means that the more links there are on the route the lower its 

reliability.  

 

The aim of this work is to define and implement a better reliability measure to be used in the 

new dynamic routing algorithm. The distribution of travel times is taken into account and a 

measure reflecting the maximum possible delay is formulated, based on the descriptive 

statistics of the distribution. Furthermore, as the distribution of travel times is usually not 

available, the new measure is re9formulated and expressed in terms of speed. An expression 

for calculating the reliability of a path based on the reliability of the individual links is also 

derived. Finally, the accuracy of the new measure is tested through a field experiment, in 

which the travel times estimated using the measure are compared with actual travel times. 

 

This paper is structured as follows: Section 2 reviews previous work on travel time variability 

and reliability, their importance to travellers and existing methods of measuring them. The 

new reliability measure of links is introduced and defined in Section 3, while the 

mathematical transformations carried out to express it in terms of speed are presented in 

Section 4. In Section 5 the reliability definition is extended from links to routes and an 

expression relating the two is derived. Finally, the field experiment carried out to demonstrate 

the accuracy of the measure is set out in Section 6 and its results are presented, while Section 

7 concludes the paper. 

 

 

+� ����	���	��	�
����

 

In this section existing literature on travel time reliability is reviewed. The importance of 

travel time uncertainty is examined first, followed by a review of studies looking at the 

distribution of travel times. Then, a discussion of measures of reliability adopted by different 

studies in the past is given.  

 

+")� �� ��,���-��� ��.�-��/ !�-�, �$�� �-���-'���#�� !��0�!�-'�

�

The importance of travel time uncertainty has been the objective of many research studies in 

the past and has therefore been extensively analysed from the traveller’s perspective. Many 

studies have concluded that although travel time is an important factor affecting the 

traveller’s route choice behaviour, travel time variability can be even more important. 

Travellers are interested in how long it will take them to reach their destination, but are even 

more concerned with the reliability of their prediction of total travel time. A wrong travel 
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time prediction results in either an early arrival at the destination or in a delay. None of these 

situations is appreciated by the traveller, with delays usually having more severe 

consequences for him/her (e.g. late arrival at the workplace) and therefore not being tolerated. 

Hence, much research has focused on developing methods for modelling travel time 

reliability.  

 

Many empirical studies have identified the importance of travel time reliability. In a study by 

Jackson and Jucker (1981) it was found that there is a trade9off between travel time and 

reliability for travellers. In another study by Abdel9Aty and others (1995) it was demonstrated 

that a traveller’s route choice is influenced by reliability and also by traffic information, as 

this is a way to reduce travel time uncertainty. A later study by Lam and Small (2001) 

concluded that reliability is an important factor affecting route choice and distinguished 

between genders, showing that women tend to be more risk9averse than men and hence value 

reliability more. 

 

Acknowledging the importance of reliability, many studies have attempted to incorporate it 

into a model, such as the work of Noland and Small (1995), who identified that many 

travellers adopt a safety margin during their morning commute, so as to take uncertainty into 

account as much as possible, and applied penalties for early and late arrival. In another study 

by Bates and others (2002), travel time uncertainty was formulated as an additional “schedule 

disutility” in the traveller’s journey time valuation function, proportional to the standard 

deviation of the travel time distribution, while a study by Liu and others (2004), formulated 

travellers’ route choice as a mixed logit model, containing coefficients representing 

individual travellers’ preferences towards travel time, reliability and cost. 

 

More studies, aiming to model travel time reliability exist in the literature; comprehensive 

reviews of this topic have been carried out by Bates and others (2001) and Noland and Polak 

(2002). 

 

+"+� �� �#��-��0$-�����.�-��/ !�-�, ��

�

The distribution of travel times at the same demand level has been extensively investigated in 

the last decades, as it is a very important topic when it comes to modelling travel time 

variability and reliability. A large number of research studies are available in the literature, 

attempting to fit the distribution of travel times to one of the continuous probability 

distributions. 

 

Wardrop (1952) first identified that travel times follow a skewed distribution. This was 

subsequently verified by Herman and Lam (1974), who carried out an empirical study on 

travel time variability. The study concluded that travel times indeed follow a skewed 

distribution and that only the 60% lower values fit a normal distribution well, thus 

contradicting the assumption made at the time, that travel times were normally distributed. In 

order to fit the actual distribution of travel times, the log9normal or gamma distribution was 

suggested. 

 

In later studies, the above finding was further confirmed. Namely, in a small empirical study 

by Polus (1979), it was concluded that travel times best fit a gamma distribution. A log9

normal or gamma distribution was suggested by Dandy and McBean (1984), while studies by 

Mogridge and Fry (1984), Montgomery and May (1987), Rakha and others (2006) and Chen 

and others (2007) also derived a log9normal fit.  



 5

 

Despite more recent studies assuming a normal distribution for travel times for reasons of 

simplicity (Lomax and others, 2003), the skewness of the distribution remains an important 

characteristic that needs to be considered when analysing travel time variability and 

reliability. Therefore, it is assumed in this study that travel times follow a log9normal 

distribution; this assumption is used in Section 3, where the new measure of reliability is 

defined. 

�

+"1� �2��-��3�, ��$� ���.�� !��0�!�-'�

�

A considerable amount of research has focussed on defining adequate measures for 

quantifying travel time reliability. Most of them use various characteristics of the travel time 

distribution, such that two types of measures can be identified: measures indicating the 

probability that a certain link is unusable and measures attempting to quantify the amount of 

congestion that may be encountered on a link. 

 

The most widely used reliability measure so far belongs to the first category and is the one 

defined by Bell and Iida (1997), which is expressed as the probability of a link to be 

uncongested, based on the assumption that the condition of traffic flow on a link is binary, i.e. 

congested or uncongested. The range of values of this measure is a [0,1] continuum. While 

this measure is suitable for quantifying the reliability of a network, it has the disadvantage 

that it does not give any indication on the amount of congestion that may be encountered. 

Other measures of the first category, such as the ones by Al9Deek and Emam (2006), Chen 

and others (2007) and Eleftheriadou and Cui (2007), are limited in the same way. 

 

Thus, a number of studies have attempted to quantify the reliability of a link by using the 

travel time distribution directly, deriving measures of the second category. The first measure 

was adopted in a study by Polus (1979), where reliability was defined as the inverse of the 

standard deviation of the link’s travel time distribution. The main disadvantage of this 

measure, however, is the fact that it is not dimensionless. This is also the case of measures 

developed in further studies, such as Dandy and McBean (1984), who used the 95
th

 percentile 

travel time, and Lam and Small (2001), who quantified reliability as the difference between 

the 90
th

 percentile and the median of the travel time distribution.  

 

Some studies developed reliability measures, not only considering the width of the travel time 

distribution, but also its skewness. For instance, van Lint and van Zuylen (2005) proposed 

two reliability metrics, based on the 10
th

, the 50
th

 and the 90
th

 percentiles of the travel time 

distribution. However, the most important contribution to defining reliability measures has 

been made by Lomax and others (2001; 2003), who presented a series of measures of 

reliability and categorised them in three groups, as statistical range measures, buffer time 

measures and tardy trip indicators. Statistical range measures were defined as presenting 

information in a relatively “unprocessed format”, meaning that they are mainly based on 

concepts only familiar to statisticians and generally not understandable to ordinary travellers, 

while buffer time measures were defined as being intended to relate well to the way travellers 

make decisions, and are therefore understandable by them. They indicate how much extra 

time a traveller should allow for his/her journey to account for uncertainty in the travel 

conditions. Finally, tardy trip indicators were defined as representing the unreliability impacts 

in terms of the amount of late trips. Following the categorisation of the various reliability 

measures, three measures were recommended as the most appropriate to use, one from each 

category. These were, the percent variation, the buffer time index and the misery index, 
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defined as: 

 

Percent Variation = 
Standard Deviation

Average Travel Time
 ×100 

 

Buffer Time Index = 
95% Travel Rate – Average Travel Rate

Average Travel Rate
 ×100 

 

Misery Index = 
Av. Travel Rate for Worst 20% Trips – Av. Travel Rate

Av. Travel Rate
 

 

where the term “travel rate” represents travel time per distance unit. 

 

While the advantage of these measures is that they quantify the amount congestion to be 

encountered such that delay values can be obtained, their drawback is that the range of their 

values is not a [0,1] continuum, thus requiring major modifications of the new dynamic 

routing algorithm, for which a reliability measure is needed (Chen and others, 2005a; 2005b; 

2006; Kaparias and others, 2007a; 2007b; Kaparias, 2008; Kaparias and others, 2008). 

�

+"4� �$,,��'�

�

In summary, the findings and conclusions of the literature review are: 

 

•� Travel time variability is very important to travellers; many travellers are risk9averse 

and are therefore prepared to choose a longer route if it is more reliable, i.e. if they 

can be certain that they will arrive on time at their destination. Thus, incorporating 

this in in9vehicle navigation will be a very useful feature that will advance the current 

status of the car navigation systems technology. 

 

•� Travel times follow a right9skewed distribution, which is very close to the log9normal 

or the gamma distribution. It can be therefore safely assumed, that travel times are 

log9normally distributed. 

 

•� A number of reliability measures have been adopted by several studies; however, they 

all have some important drawbacks making them unsuitable for an in9vehicle 

navigation algorithm. A new measure therefore needs to be developed. 

 

 

1� 5����������������	�����������

 

Having reviewed previous work on measures of travel time reliability, this section presents a 

new measure, aimed at car navigation systems. This new measure should however, meet a 

number of requirements, ensuring its accuracy and simplicity. These are presented next, 

followed by the description of the measure. 

 

1")� 	 6$�� , �-���.���� (�� !��0�!�-'�, ��$� �

�

The first requirement that the new reliability measure needs to meet is the comprehensibility 

by the driver. Many of the measures that have been used in the literature so far have had the 

major drawback, that it was not possible to communicate to the driver the reliability of a 
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route, because it was in a non9understandable form. Taking into account the fact that the 

driver is often interested in how late or how early he/she will arrive at the destination, i.e. the 

amount of congestion that will be encountered rather than the probability of encountering 

congestion, the new measure should be designed to be easily convertible to a travel time. 

 

Furthermore, a dimensionless quantity should be chosen to ensure that the new reliability 

measure is independent of the units used. This would enable the comparison between links 

and routes, whose characteristics are given in different units. In addition, the new reliability 

measure should be independent of the length of the link, so that the division of a link into two 

without any physical changes leaves the reliability measure unaffected. The measure should 

also be expressed as a [0,1] continuum, such that it can be employed in the new dynamic 

routing algorithm without any major modifications of the latter (Chen and others, 2005a; 

2005b; 2006; Kaparias and others, 2007a; 2007b; Kaparias, 2008; Kaparias and others, 2008). 

When it comes to calculating the reliability of a route consisting of a series of links, it should 

be ensured that the measure used takes into account the statistical dependence between them, 

as it is very likely that congestion on one link will result in more links becoming congested 

too. 

 

The latter point is covered in Section 5, where a method for computing the reliability of a 

route is given. The next paragraphs describe the new measure and the way of computing the 

reliability of links. 

 

1"+� * .���-�����.�-� �� !��0�!�-'���#�� ��

�

As travel times on a link have been assumed to be log9normally distributed, the distribution 

of the travel time t(l) of a link l is t(l) ~ Log'N(�(l),[σ(l)]2
), where �(l) and σ(l) are the mean 

and standard deviation of the natural logarithm of travel time respectively. They are 

connected to the mean t‾ (l) and variance var[t(l)] of the travel time distribution by the 

following expressions: 

 

�(l) = ln( )t‾ (l)  – 
1

2
 ln







1 + 
var[t(l)]
 [ t‾ (l)]2  

 

 

σ(l) = ln






1 + 
var[t(l)]
 [ t‾ (l)]2   

 

Defining the dimensionless travel time variation logarithm as 

 

Tlog(l) = ln






1 + 
var[t(l)]
 [ t‾ (l)]2  (1) 

 

the expressions become: 

  

�(l) = ln( )t‾ (l)  – 
1

2
 Tlog(l) (2) 

 

σ(l) = Tlog(l) (3) 

 

The standard deviation of the distribution indicates the spread of the travel time values 
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around the mean. Hence, large σ,(l) values mean that the spread of the logarithms of the travel 

times around the mean of the logarithms of the travel times �,(l) is great, and so is the spread 

of the actual travel times around the mean travel time t‾ (l), resulting in a greater uncertainty 

regarding the travel time that is to be experienced on link l. Because travel times are log9

normally distributed, a confidence interval of the travel time to be experienced on the link is 

given by {�geo(l) / [σgeo(l)]
zα/2

, �geo(l).[σgeo(l)]
zα/2

}, where �geo(l) = e�,,,(l)
 and σgeo(l) = eσ(l)

 are 

the geometric mean and standard deviation of the travel time distribution respectively, and 

zα/2 is the standard normal distribution tail probability for a confidence coefficient α, 

corresponding to a confidence level of 1'α. More specifically, for confidence coefficients α = 

0.1, α = 0.05 and α = 0.001, corresponding to confidence levels of 90%, 95% and 99% 

respectively, the tail probabilities are z0.05 = 1.65, z0.025 = 1.96 and z0.0005 = 2.58. 

 

Thus, based on these definitions, the confidence interval of the travel time experienced on 

link l can be expressed as {e�,,,,(l) 9 zα/2 σ(l)
, e�,,,(l) + zα/2 σ(l)

} = {t(l)α/2, t(l)19α/2}. This is an 

asymmetrical interval around t‾ (l) giving an indication of what the maximum possible travel 

time (upped bound) and the minimum possible travel time (lower bound) on the link can be. 

However, for a link to be characterised as “reliable” or “unreliable”, the scale of the 

maximum and minimum possible travel times with respect to the mean travel time needs to 

be known, as the same maximum and minimum travel time values can have different effects 

on different mean values. For example, if the link has a mean travel time of 5 minutes, a 

maximum time of 35 minutes is very large; however, if the link’s mean travel time is 30 

minutes, the same maximum additional travel time of 35 minutes is fairly small. Additionally, 

a dimensionless length9neutral measure of the reliability of the links is required, so as to be 

able to compare links with each other.  

 

Thus, two reliability indices, namely the lateness index and the earliness index, are defined. 

The lateness reliability index, defined as   

 

rL(l) = 
t‾ (l)

 t(l)19α/2
 = 

t‾ (l)

 exp[� (l) + zα/2 σ (l)]
 = exp[ln( )t‾ (l)  – �,(l) – zα/2

.σ(l)] (4) 

 

is proposed as a measure of the reliability of links regarding their lateness, i.e. how much 

later than the expected arrival time the actual arrival may occur (latest possible arrival time). 

On the other hand, the earliness reliability index, defined as 

 

rE(l) = 
t(l)α/2

t‾ (l)
 = 

exp[� (l) – zα/2 σ (l)]
t‾ (l)

 = exp[– ln( )t‾ (l)  + �,(l) – zα/2
.σ(l)] (5) 

 

is proposed as a measure of the reliability of links regarding their earliness, i.e. how much 

earlier than the expected arrival time the actual arrival may occur (earliest possible arrival 

time). 

 

Using equations (2) and (3), both reliability indices can be expressed in terms of the mean 

and variance of the travel time distributions. Thus 

 

rL(l) = exp[ln( )t‾ (l)  – �,(l) – zα/2
.σ(l)] ⇔ 

rL(l) = exp[ln( )t‾ (l)  – ( )ln( )t‾ (l)  – ½⋅Tlog(l)  – zα/2
. Tlog(l)] ⇔ 

rL(l) = exp[½.Tlog(l) – zα/2
. Tlog(l)] (6) 
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and 

 

rE(l) = exp[– ln( t‾ (l)) + �,(l) – zα/2
.σ(l)] ⇔ 

rE(l) = exp[– ln( )t‾ (l)  + ( )ln( )t‾ (l)  – ½⋅Tlog(l)  – zα/2
. Tlog(l)] ⇔ 

rE(l) = exp[– ½.Tlog(l) – zα/2
. Tlog(l)] (7) 

 

rL(l) takes values ranging from 0 to 1, as the minimum value that the denominator in equation 

(4) may take is t‾ (l). Lower values indicate low lateness reliability and high values show that 

the link is reliable. In the extreme cases, when rL(l) is close to 0, the maximum possible travel 

time is much longer than the mean travel time and hence the link is extremely unreliable in 

terms of lateness; on the other hand, when rL(l) is close to 1, the maximum travel time is 

approximately equal to the mean travel time, which means that almost no deviation from the 

mean travel time is to be expected, making the link very reliable in terms of lateness.   

 

Similarly, the value of rE(l) also ranges between 0 and 1, as t‾ (l) is the maximum value the 

nominator in equation (5) can take. Small values indicate that the minimum possible travel 

time is much smaller than the mean, implying hence a low reliability in terms of earliness, as 

a much earlier arrival than the one predicted is possible. Conversely, values close to 1 

indicate that there is small variation of travel times and hence the link is reliable in terms of 

earliness. 

 

Of course, the accuracy and reliability of both reliability indices strongly depends on the 

confidence level chosen. If a very high confidence level is chosen, the estimates are very 

reliable and one can be certain that the travel time will lie between the calculated maximum 

and minimum travel times; however, the confidence interval will be large and, in order to 

account for even the extreme values, the indices will not be representative of the non9extreme 

travel time values. On the other hand, if a lower confidence level is chosen, the indices will 

reflect the non9extreme travel times very well; however, most of the abnormally occurring 

long and short travel times will not be considered. 

 

Since neither early nor late arrival at the destination are tolerated, both indices have to be 

taken into account when providing route guidance; however, due to the asymmetry of the 

interval, one of the two travel time bounds, maximum and minimum, is more critical, because 

it deviates more from the mean and implies therefore a greater level of uncertainty and hence, 

a lower reliability index. As the distribution in question is log9normal, and hence right9

skewed, the maximum possible deviation from the mean is the upper bound of the interval, i.e. 

t(l)19α/2, and the critical index is thus rL(l).  
 

The tolerance level of early and late arrivals, though, is most likely going to be different for 

the two cases and, depending on their socioeconomic situation, drivers will be less tolerant to 

the one than to the other. This needs to be reflected in the implementation of the reliability 

indices in the routing function of a navigation system by applying appropriate weights to the 

indices, such that early or late arrivals are avoided more. This, however, extends beyond the 

scope of this work and therefore it is assumed in this paper that early and late arrivals are 

equally not tolerated.     

 

It should be noted here, that travel time, and hence the mean and variance of its distribution, 

are not constant but time9dependent, which means that they vary between different times of 
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the day, days of the week and times of the year, according to the varying demand levels on 

the road network. A procedure along the lines the so9called ‘Flow Speed Model’ method, 

introduced by Sung and others (2000) and modified by Kaparias and others (2007a) for 

deriving time9dependent travel times, has been developed for the calculation of time9

dependent earliness and lateness indices (Kaparias, 2008). Nevertheless, a detailed 

description is beyond the scope of this paper and the reader is referred to the appropriate 

references for further information. 

�

�

4� �����������������	������������	
��������7��*�

 

Although in a theoretical framework one usually works with travel time distributions, this 

data is rarely available in this form and is usually expressed as speed measurements. 

Although the conversion of a speed measurement to a travel time measurement is simple, 

given that the link’s length is constant, carrying out this procedure can be very inefficient, as 

a large number of measurements will need to be converted. Besides that, it is possible that the 

actual speed measurements will not be given, and only descriptive speed statistics will be 

provided. Thus, working with the speed distribution and attempting to relate the reliability of 

speed with the reliability of travel time, the relationship of the travel time and speed variances 

needs to be investigated. 

 

Namely, for link l of length λ(l), normally distributed speed �(l) and log9normally distributed 

travel time t(l), it is t(l) = λ(l) / �(l); when it comes to the mean travel time, t‾ (l) = λ(l) / �s‾ (l), 
where �s‾ (l) represents space9mean speed, which is defined as the harmonic mean of the speed 

distribution. The travel time variation logarithm is thus affected, such that 

 

Tlog(l) = ln







1 + 

var






λ(l)
 �(l)

 






λ(l)
 �s‾ (l)

2

 
 

= ln







1 + 

[λ(l)]2
⋅var





1

 �(l)

 [λ(l)]2
⋅



1

 �s‾ (l)

2

 
 

 ⇔ 

 

Tlog(l) = ln






1 + [�s‾ (l)]2
⋅var





1

 �(l)
 

(8) 

 

In order to evaluate Tlog(l), the variance of the distribution of the inverse of speed needs to be 

known. Performing a first degree Taylor series expansion of the 1/�(l) term around E[�(l)] 
(the expected value of the speed distribution, which is the time9mean speed �‾ (l)), the 

following expression is obtained:      

 
1

�(l)
 ≅ 

1

 E[�(l)]
 – (�(l) – E[�(l)]) .  

1

 ( )E[�(l)] 2 (9) 

 

Taking the expected values of both sides of the expression: 

 

E



1

�(l)
 ≅ 

1

 E[�(l)]
 – E[(�(l) – E[�(l)])] .  

1

 ( )E[�(l)] 2 = 
1

 E[�(l)]
 (10) 

 

Subtracting equation (9) from (10): 
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1

�(l)
 – 

1

 E[�(l)]
 ≅ – (�(l) – E[�(l)]) .

1

 ( )E[�(l)] 2 ⇔ 







 
1

�(l)
 – 

1

 E[�(l)]
 

2

 
 ≅ (�(l) – E[�(l)])2

 .
1

 ( )E[�(l)] 4 ⇔ 

E












 
1

�(l)
 – 

1

 E[�(l)]
 

2

 
  ≅ E( )(�(l) – E[�(l)])2

 .
1

 ( )E[�(l)] 4 ⇔ 

 

var






 
1

�(l)
  ≅ 

var[�(l)]
 [�‾(l)] 4

 
 (11) 

 

Hence, substituting the variance term in (8) with the result derived in (11): 

 

Tlog(l) ≅ ln





1 + [�s‾ (l)]2 
⋅ 

var[�(l)]
 [�‾(l)] 4

  = ln








1 + 
[ω(l)]2

⋅var[�(l)]

 [�‾(l)] 2
 

 (12) 

 

where ω(l) = vs‾(l)/ v‾(l) is the ratio of the space mean speed over the time mean speed. Since 

the time mean speed is always greater than or equal to the space mean speed, ω(l) only takes 

values in the range 0 to 1. Using the finding of Rakha and Wang (2005), resulting from 

Wardrop’s (1952) formula relating time9mean speed and space9mean speed under the 

assumption of homogeneous traffic, i.e. 

 

�s‾ (l) ≅ �‾(l) – 
var[�(l)]
�‾(l)

 
 

 

equation (12) can be reformulated as 

 

Tlog(l) ≅ ln





1 + 
var[�(l)]
 [�‾(l)] 2

 
⋅





1 – 
var[�(l)]
 [�‾(l)] 2

 
2

 (13) 

 

which can be useful when the actual speed measurements are not given and only the time9

mean speed and variance of the distribution are provided. 

 

Expression (12) or (13) can then be substituted into equations (6) and (7), so as to calculate 

the earliness and lateness indices in terms of the speed distribution. Using equation (11), it 

can also be found that: 

 

var[t(l)] = var







 
λ(l)
�(l)

  = [λ(l)]2.var





 
1

�(l)
  ≅ [λ(l)]2 .  

var[�(l)]
 [�‾(l)] 4

 
 (14) 

 

 

8� ������������	
����	�����������

 

So far, the definition of the reliability indices of individual links is fairly simple; however, the 

problem becomes slightly more complicated when it comes to computing the reliability 

indices of a route consisting of a series of links. Namely, the lateness and earliness indices of 

route p, consisting of n links are: 
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rL(p) = 
t‾ (p)

 t(p)19α/2
 = exp[½.Tlog(p) – zα/2

. Tlog(p)] (15) 

 

and 

 

rE(p) = 
t(p)α/2

t‾ (p)
 = exp[– ½.Tlog(p) – zα/2

. Tlog(p)] (16) 

 

respectively, where the path travel time variation logarithm is 

 

Tlog(p) = ln





1 + 
var[t(p)]

 [ t‾ (p)]
2 . 

 

While the mean travel time of the path can be easily calculated, simply by adding up the 

mean travel times of the elements forming the path, such that 

 

t‾ (p) = ∑ 
i=1
 
n

 t‾ (li) (17) 

 

the issue that arises is the calculation of the total travel time variance. As empirically 

demonstrated by Rakha and others (2006), the most accurate method for computing the travel 

time variance of a route is to compute the expected coefficient of variation as the conditional 

expectation over all realisations of the various links that make up the route and thus assume 

that the route’s coefficient of variation is the mean coefficient of variation over all links, such 

that 

 

var[t(p)] = 
[ t‾ (p)]

2

n2  .  








∑ 
i=1
 
n

 
var[t(li)]

 t‾ (li)
 

2

 
 (18) 

 

The reason for the method being accurate is the fact that it seems to empirically compensate 

for the losses in accuracy caused by the existence of covariances between successive links on 

a path, resulting from phenomena such as “blocking back”. Using equation (18), the route 

travel time variation logarithm becomes 

 

Tlog(p) = ln







1 + 

[ t‾ (p)]
2

n2  ⋅ 








∑ 
i=1
 
n

 
var[t(li)]

 t‾ (li)
 

2

 

 [ t‾ (p)]
2  ⇔ 

Tlog(p) = ln








1 + 






1

n
 ⋅ ∑ 

i=1
 
n

 
var[t(li)]

 t‾ (li)
 

2

 
 ⇔ 

 

Tlog(p) = ln








1 + 






1

n
 ⋅ ∑ 

i=1
 
n

 
var[t(li)]

 [ t‾ (li)]
2  

2

 
 (19) 

 

Reformulating equation (1) for the link travel time variation logarithm: 

 

Tlog(l) = ln





1 + 
var[t(l)]
 [ t‾ (l)]2  ⇔ 
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exp[Tlog(l)] = 1 + 
var[t(l)]
 [ t‾ (l)]2  ⇔ 

exp[Tlog(l)] – 1 =  
var[t(l)]
 [ t‾ (l)]2 . 

 

Hence, equation (19) becomes: 

 

Tlog(p) = ln






1 + 




1

n
 ⋅ ∑ 

i=1
 
n

 exp[Tlog(li)] – 1
2

 
 (20) 

 

Substituting expression (20) into equations (15) and (16) enables the calculation of the 

earliness and lateness indices for route p. 

 

A point that should be mentioned here is the fact that time9dependence is considered in 

equation (20), by calculating Tlog(li) for each link li of route p using the mean and variance 

values of the travel time at the time of arrival at li rather than at the start of the trip. Time9

dependent link mean travel time and variance values are calculated, as was mentioned in 

Section 3, using the method by Kaparias (2008) and are then input into equation (20). 

 

 

9� �:7�	��������	�������

 

In order to assess the accuracy of the reliability measure developed here, a field experiment is 

carried out. This involves finding a route for each one of a number of different origin9

destination pairs in a specified test network for given departure times and estimating the 

expected time of arrival (ETA), the earliness and lateness indices and hence the so9called 

reliable time of arrival (RTA), which represents a time window, during which the arrival time 

is expected to lie. A vehicle is then driven along each route and the actual arrival time is 

recorded and compared to the RTA. 

 

The test network is the London Congestion Charging zone, which is approximately 7km long 

and 5km wide and covers most of the Central London area. Link speed data is provided 

through floating vehicles in the form of individual measurements for the main arteries of the 

network over a three9month period in 2006 and is then aggregated to derive link speed 

distributions. For the links for which data is not available, values are simulated based on the 

available values, following the procedure used in the study by Kaparias and others (2008). 

Weekdays are aggregated into 159minute intervals and the mean and standard deviation is 

calculated for each interval. Using the formulae of Section 4 earliness and lateness values are 

computed for each link, using a confidence level of 90%. 

 

Using ARIAdNE, successor of ICNavS (Kaparias and others, 2007b), a purpose9developed 

software tool for implementing the new dynamic routing algorithm (Chen and others, 2005a; 

2005b; 2006; Kaparias and others, 2007a; 2007b; Kaparias, 2008), the fastest route is 

generated for each of 72 selected origin9destination pairs and their ETA and RTA are 

computed. For comparison purposes, the same origin9destination pair is input into a 

conventional navigation system and its ETA is recorded. Thus, the following times are 

recorded: departure time (DT), conventional ETA (CETA), ARIAdNE ETA (AETA), 

ARIAdNE earliest RTA (AERTA) and ARIAdNE latest RTA (ALRTA). A vehicle is then 

driven along each route and the actual time of arrival (ATA) is compared with the expected 

ones from ARIAdNE and from the conventional system.  
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From the arrival times, the following travel times are deduced: the conventional expected 

travel time (CETT = CETA – DT), the ARIAdNE expected travel time (AETT = AETA – 

DT), the ARIAdNE earliest and latest reliable travel times (AERTT = AERTA – DT and 

ALRTT = ALRTA – DT) and the actual travel time (ATT = ATA – DT). In order to make the 

derived travel times over all measurements comparable with each other, the fractions of those 

to the ATT are calculated. For each of the resulting ratios a distribution is obtained from the 

total of the runs of the experiment; by ranking the distribution and by dividing the rank of 

each value by the total number of runs, cumulative probabilities are obtained, which result in 

a cumulative distribution. Then, plotting the cumulative distributions of all four travel times 

in a single graph, a visual comparison between them becomes possible. 

 

The complete table of measured arrival times and the resulting table of travel times for each 

individual run are not included in the paper due to their size. For more detailed descriptions 

of the experimental conduct procedure and analysis method, and a presentation of the 

complete table of results, the reader is referred to the study by Kaparias (2008). Here, a table 

displaying the mean, standard deviation and extreme values of the CETT/ATT, the 

AERTT/ATT, the AETT/ATT and the ALRTT/ATT distributions is shown (Table 1), as well 

as the cumulative distribution plots of those obtained by ranking them and dividing by the 

total number of observations (Figure 1). 

 

[Table 1 goes here] 

 

[Figure 1 goes here] 

 

From the distributions it can be seen that the mean AETT/ATT value is approximately 0.95, 

which shows that, on average, the AETT is only 5% shorter than the ATT. As expected, the 

AERTT always underestimates the ATT by being on average approximately 47% shorter than 

it (average AERTT/ATT value of 0.53); however, in unexpectedly short trips without any 

unpredictable delays resulting in early arrivals, the ATT becomes close to the AERTT, with a 

maximum observed AERTT/ATT value of approximately 0.82 (i.e. the AERTT is 18% 

shorter than the ATT) in the experiment. On the other hand, as expected, the ALRTT always 

overestimates the ATT by being on average approximately 53% longer. However, in trips 

where a combination of unpredictable delays arise, the ALRTT nears the ATT; in the 

experiment, the lowest ALRTT/ATT value is exactly 1, which shows that in one observation, 

the ATT is equal to the ALRTT. 

 

The above results suggest that ARIAdNE’s output, employing the reliability measure 

introduced in this paper, is fairly accurate, as not only the AETT is a good estimate to the 

ATT, but also the AERTT and the ALRTT are accurate lower and upper bound estimates to 

it. It is important to note that the bounds are not exceeded in any run of the experiment. 

Another feature to note is the fact that the curve of the AETT/ATT cumulative distribution is 

S9shaped, indicating a high concentration of values around the mean rather than around the 

extremes (also indicated by the low standard deviation value). More specifically, the curve 

shows that around 75% of the values are equal to or lower than the ATT, while around 70% 

are +/920% of it. As opposed to these observations the results obtained by the conventional 

system do not seem to exhibit the same level of accuracy. Namely, the mean CETT/ATT 

value is approximately 0.49, while the maximum and minimum values are 0.28 and 0.79. 

This implies that the CETT constantly underestimates the ATT, on average being 51% 

shorter than it. It is interesting to note that in none of the runs of the experiment did the CETT 
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estimate the ATT correctly, with the closest observed value being around 79% of the ATT. 

The CETT/ATT distribution is thus significantly biased. 

 

It could be argued, that the bias of the CETT/ATT distribution is a result of the conventional 

system using less accurate data than ARIAdNE. While ARIAdNE makes use of floating 

vehicle data records, reflecting actual measured speeds, the conventional system uses default 

estimates of travel times based on the speed limits provided in the map database. An 

approximate method to eliminate the bias would be to multiply the distribution by a specific 

factor, so as to shift the cumulative distribution curve to the right and bring it around the ATT 

line. Thus, by multiplying the CETT/ATT distribution by 2, the unbiased CETT/ATT 

(UCETT/ATT) distribution is obtained and is added to the plot (Figure 2). 

 

[Figure 2 goes here] 

 

With the bias eliminated, the UCETT/ATT distribution can be directly compared to the 

AETT/ATT distribution. The most important observation that can be made by examining the 

graph is that the AETT/ATT curve is S9shaped, as mentioned above, while the UCETT/ATT 

curve is more straight9shaped, with the exception of the upper extreme. This means that while 

the AETT/ATT distribution has a high concentration of values around the mean, this is not 

the case for the UCETT/ATT distribution, which again implies that the estimates calculated 

by ARIAdNE are more accurate than the ones calculated by the conventional system, 

suggesting that the reliability measure defined here is accurate. 

�

�

;� �
������
���

 

In this paper, a new reliability measure, consisting of two reliability indices based on the log9

normal distribution, was defined, meeting a number of imposed requirements, such as 

comprehensibility by the traveller and “dimensionlessness”. It was then expressed in terms of 

the distribution of speeds, such that it could be possible to evaluate it when the given data 

consists of speed measurements rather than travel time measurements. A method for 

calculating the reliability of a route using the reliabilities of the links forming the route was 

also derived. With the help of a field experiment, the measure was tested against real traffic 

conditions and the results suggested that it reflects the delays and early arrivals that may be 

encountered fairly accurately. 

 

As reliability was found to be an important factor affecting a driver’s route choice, its 

incorporation into a car navigation system will offer significant advantages, not only to the 

individual user of the system, but also implicitly to all users of the road network. The 

proposed reliability indices will enable navigation systems to provide more accurate 

information about arrival times to the drivers, as well as to identify locations with potential 

adverse traffic conditions and avoid them. Besides the direct benefit of travel time savings 

that the new measure will offer to the users of navigation systems, its use will also reduce the 

total travel time lost in the entire road network, thus resulting in a decrease in fuel 

consumption, vehicle wear and tear and CO2 emissions. 

 

Future research will concentrate on further testing of the new measure in routing applications 

for car navigation systems. Together with ongoing research on routing algorithms, a 

prototype reliable vehicle navigation system is to be developed and tested further. More field 

trials are scheduled to be carried out, so that the advantages of the new system can be 
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demonstrated and validated. 
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��0! �)? Mean, standard deviation and extreme values of travel time ratio distributions 

 

 ���/"� �	��#���

����@���� ��	��@���� ����@���� ��	��@����

� ��� 0.4922 0.5325 0.9492 1.5254 

�-#"�* /"� 0.1228 0.1164 0.1815 0.2764 

����,$,� 0.2778 0.2813 0.5625 1.0000 

��2�,$,� 0.7895 0.8182 1.3636 2.0455 

 

 

 


