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A general closed-form spread option pricing formula

Abstract

We propose a new accurate method for pricing European spread options by extending the lower

bound approximation of Bjerksund and Stensland (2011) beyond the classical Black–Scholes

framework. This is possible via a procedure requiring a univariate Fourier inversion. In addi-

tion, we are also able to obtain a new tight upper bound. Our method provides also an exact closed

form solution via Fourier inversion of the exchange option price, generalizing the Margrabe (1978)

formula. The method is applicable to models in which the joint characteristic function of the under-

lying assets forming the spread is known analytically. We test the performance of these new pricing

algorithms performing numerical experiments on different stochastic dynamic models.1

Keywords: Spread option, exchange option, stochastic process, characteristic function, Fourier

inversion, control variate.

JEL: C63, G13

1. Introduction

A spread option is a contract written on the price difference of two underlying assets whose values

at time t are denoted by S 1(t) and S 2(t). We consider European-type options for which the buyer,

on the option exercise date T , has the right to receive the spread S 2(T ) − S 1(T ), by paying the

option’s strike price K.

Since spreads between indexes and financial variables are popular across different markets, options

1Acknowledgement: We would like to thank Laura Ballotta, Rossella Agliardi, Marco Airoldi, Stewart Hodges,

Ioannis Kyriakou, Andrea Roncoroni and an anonymous referee for providing valuable comments on earlier versions

of the paper. The paper was presented at XIV Workshop on Quantitative Finance, Rimini, and to the XXXVII Amases

Conference, Stresa. We thank all the participants for their helpful feedback.
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written on these spreads are also popular. They are used to speculate, mitigate basis risk, and even

evaluate real assets. For a detailed review of different spread option types we refer to Carmona

and Durrelman (2003b). We mention here just a few examples to stress how their applicability is

broader than pure option pricing.

• Girma and Paulson (1998, 1999) discuss the profitability of spread-based trading strategies

in petroleum markets, exploiting the fact that the spread between WTI and Brent futures

prices is stationary. Thus this spread can be used as an indicator for buy and sell trading

strategy using technical trading rules or via econometric techniques.

• Spread options can be used to mitigate the adverse movements of several indexes. An ex-

ample is the crack spread that reflects the cost of refining crude oil into petroleum products.

A refinery’s output varies according to the plant design, its crude slate, and its operational

and maintenance program, which can be related to seasonal product demand and changing

market conditions. Therefore refineries take positions in crack spread futures strategies ac-

cording to their physical and operational requirements and hedge against price fluctuations to

mitigate risk or secure a profit margin on the production output. A recent empirical analysis

on the crack spread is that of Dempster et al. (2008) and Duan and Pliska (2004).

• Spread options are also relevant in investment valuation problems. For example, in the en-

ergy industry a power generation unit can be priced using a real options approach. The spark

spread measures the difference between the costs of operating a gas-powered generation unit,

determined by the natural gas price, and the revenues from selling power at the market price.

Thus it determines the economic value of power plants that are used to transform gas into

electricity. In day-to-day operations, the plant operator generally consumes a particular gas

unit only if the electricity spot price is greater than the cost of generating that unit. If the

generation profit is negative, it would be unreasonable to burn a valuable commodity such

as gas to obtain a low-valued product such as electricity. One would instead sell gas in the

market, buy power, and stop running the plant. The flexibility of turning the plant on and
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off, based on market prices, represents a real option for the asset owner and the power plant

can be evaluated as a strip of European spark spread options. For an example of investment

valuation using spark spread options, see Fusai and Roncoroni (2008) and Luciano (2008).

• Eventually, the spread between the hourly day-ahead electricity prices of different countries

is another important spread in energy markets and a crucial quantity when evaluating an

interconnection capacity contract. An interconnector is an asset that gives the owner the

option to transmit electricity between two locations. In financial terms, the value of an

interconnector is the same as a strip of real options written on the spread between power

prices in two markets. The application of spread options in the modeling and valuation of

interconnector capacity contracts is discussed in Cartea and Pedraz (2012).

• Selling (buying) a country’s equity index in exchange for equity investments during a stock

market crash (boom) is analogous to exercising an option to exchange an underperforming

country (global benchmark) index for a global benchmark (country) index. This idea is

exploited in Miller (2013) to study how effects of a crisis might be hedged.

• Another example is due to Madan (2009) and Eberlein and Madan (2012). They describe

the balance sheet risks permitting random liabilities and assets on which they can perform

equity value computations. This leads them to price equity as a spread option, generalizing

the credit risk Merton model to stochastic debt.

The use of spread options is widespread despite the fact that pricing and hedging techniques are

still underdeveloped, because, depending on the stock model we consider, the pricing problem

is or is not solvable in closed form. In the Bachelier stock model, the price vector is assumed

to evolve according to a bivariate Brownian motion and the option price is easily computable in

closed form. If, instead, we assume prices that evolve according to a bivariate geometric Brownian

motion and a zero option strike, we obtain the celebrated Margrabe (1978) formula. The important

case in which the strike is not equal to zero does not have an explicit solution and few methods

have been developed, such as the numerical integration proposed in Ravindran (1993) and the
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popular approximation given by the formula of Kirk (1995), which is the current market standard.

Carmona and Durrelman (2003a) obtain an analytical approximation formula using a family of

lower bounds and propose as well an upper bound. The two bounds return a price range that is

very tight for certain parameter values. Deng et al. (2008) approximate the spread option price

and its Greeks as a sum of one-dimensional integrals following the method developed by Pearson

(1995). Venkatramana and Alexander (2011) propose a closed-form approximation expressing the

price of a spread option as the sum of the prices of two compound options. Deelstra et al. (2010)

develop approximation formulas based on comonotonicity theory and moment matching methods.

Finally, Bjerksund and Stensland (2011) propose a lower bound, showing that their formula is more

accurate than Kirk’s approximation. All these approximations strongly depend on the assumption

that prices evolve according to a bivariate log-normal process.

Very little is discussed in the literature about the pricing of spread options in a non-Gaussian setup.

Some asset classes, for example, energy price, require models with mean reversions and jumps and

pricing spread options in such situations can be challenging. A Fourier transform was originally

proposed by Dempster and Hong (2002), who implement a valuation method based on the fast

Fourier transform (FFT), applying the idea of Carr and Madan (2000). An FFT technique is also

applied by Hurd and Zhou (2010), who propose a pricing method based on an explicit formula for

the Fourier transform of the spread option payoff in terms of the gamma function. Their formula

requires a bivariate Fourier inversion. Cheang and Chiarella (2011) generalize Margrabe’s formula

to jump diffusion dynamics of the type originally introduced by Merton (1976) but do not discuss

the non-zero strike case and do not provide numerical examples. Closed form distribution free

bounds and optimal hedging strategies for spread options are derived in Laurence and Wang (2008).

However these bounds do not appear to be very tight.

The main contribution of the present work is the derivation of a lower bound, as in Bjerksund

and Stensland (2011), but for general processes. The only quantity we need to know explicitly is

the joint characteristic function of the log-returns of the two assets. In addition, the computation
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of our lower bound requires a univariate Fourier inversion, as opposed to the bivariate inversion

required by Dempster and Hong (2002) and Hurd and Zhou (2010). Finally, our bound turns out

to be extremely accurate and easily computable. Our lower approximation improves on the cur-

rently best available spread option pricing method we are aware of, i.e. Hurd and Zhou (2010),

on three issues: 1. It provides an exact formula for exchange options extending to non-Gaussian

models the celebrated Margrabe formula, whilst the Hurd and Zhou (2010) formula does not cope

with the zero-strike case; 2. It can deal with mean reverting models, an important class of mod-

els that cannot be captured by the Hurd and Zhou (2010) formula; 3. it requires an univariate

Fourier inversion, rather a bivariate one, and this implies that the computation is much faster. On

the other side, whilst the Hurd and Zhou (2010) formula is exact, our formula provides a lower

bound that is however very accurate (in general, at least four digits) across a variety of models and

parametrizations.

To this regard we apply it to different non-Gaussian models, such as jump diffusion models with

different jump size distributions, multivariate stochastic volatility models, mixtures of variance

gamma (VG), and a VG time changed model. Mean-reverting models with jumps are also consid-

ered. Numerical examples are discussed for all these cases and benchmarked against Monte Carlo

simulation. Our formula provides also a ready to use control variate estimate that allows us to

achieve a very high accuracy even in the Monte Carlo simulation. As addition, our approximation

becomes exact in the zero-strike case, extending to the non Gaussian case the Margrabe (1978)

formula.

The second contribution of this work is the derivation of a tight upper bound based on the price of

a new contract, the quadratic spread option. As for the lower bound, it can be computed for very

general processes, provided that the bivariate characteristic function is known in closed form.

The paper outline is as follows. Section 2 generalizes the lower bound of Bjerksund and Stensland

(2011) to non-Gaussian models. Section 3 compares the lower bound with the method of Hurd and

Zhou (2010). Section 4 derives a new general upper bound. Section 5 examines in more detail the
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bivariate geometric Brownian motion model, discussing two additional bounds: an improved lower

bound and a second upper bound, obtained following ideas used by Rogers and Shi (1995) and by

Nielsen and Sandmann (2003) for Asian options. The new lower bound represents an improvement

of the Bjerksund–Stensland (BS) bound, but from a practical point of view the improvement is

negligible. Section 6 briefly reviews several non-Gaussian stochastic dynamic models used in

financial applications. Section 7 presents numerical experiments based on these models and show

that an extended version of the BS lower bound and our new upper bound provide a very tight

interval for the spread option price. Section 8 concludes the paper.

2. The lower bound

Let S 1(t) and S 2(t) be two stock price processes. An European spread option pays at the maturity

date T the amount

CK(T ) = (S 1(T ) − S 2(T ) − K)+ .

The time 0 no-arbitrage fair price of the spread option is

CK(0) = e−rTE
[

(S 1(T ) − S 2(T ) − K)+
]

, (1)

where the expectation is with respect to a risk-neutral measure and r is the riskless interest rate.

Here, we have used the usual notation x+ for the positive part of x, that is, x+ = max{x, 0}. If K = 0

and S 1(t), S 2(t) are jointly log-normal, computation of (1) provides the so-called Margrabe (1978)

exchange option formula. Very little regarding non-zero strikes and non-Gaussian processes is

discussed in the literature, despite the relevance of a closed pricing formula in a number of financial

applications, such as those previously described.

We now present our lower bound, extending to a non Gaussian framework the idea of Bjerksund
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and Stensland (2011). Let us define the event A

A =






ω :
S 1 (T )

S α
2

(T )
>

ek

E
(

S α
2

(T )
)






(2)

and let us consider the following lower bound to the spread option payoff:

(S 1 (T ) − S 2 (T ) − K)+ ≥ (S 1 (T ) − S 2 (T ) − K) 1(A). (3)

Bjerksund and Stensland (2011) are able to explicitly compute

C
k,α

K
(0) = e−rTE

[
(S 1 (T ) − S 2 (T ) − K) 1(A)

]

(4)

in the log-normal case. They also show that C
k,α

K
(0) is a very good approximation to the exact

spread option price CK(0) for suitable choices of the parameters α and k. In particular, they show

that their formula in the log-normal setup is more accurate than Kirk’s approximation.

We now generalize their result to a general bivariate stock price dynamic, provided that the joint

characteristic function of (ln S 1(T ), ln S 2(T ))⊺ is available in closed form. A number of interesting

models for which this is true are presented in section 6. Let u = (u1, u2)⊺ ∈ R2 and X(t) =

(ln S 1(t), ln S 2(t))⊺ and consider the joint characteristic function

ΦT (u) = ΦT (u1, u2) = E
[

eiu1 ln S 1(T )+iu2 ln S 2(T )
]

= E
[

eiu⊺X(T )
]

.

Our main result is stated in the following proposition.

Proposition 1. The approximate spread option value C
k,α

K
(0) is given in terms of a Fourier inver-

sion formula as

C
k,α

K
(0) =

(

e−δk−rT

π

∫
+∞

0

e−iγk
ΨT (γ; δ, α)dγ

)+

, (5)
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where

ΨT (γ; δ, α) =
ei(γ−iδ) ln(ΦT (0,−iα))

i(γ − iδ)

[

ΦT ((γ − iδ) − i,−α(γ − iδ))

−ΦT (γ − iδ,−α(γ − iδ) − i)

−KΦT (γ − iδ,−α(γ − iδ))
]

and

α =
F2(0,T )

F2(0,T ) + K
, (6)

k = ln
(

F2(0,T ) + K
)

. (7)

Proof: See Appendix A.

A few remarks can be made about the above formula. First, the quantity F2(0,T ) = E[S 2(T )] in

formulas (7) and (8) is the forward price of the second asset at time 0 for delivery at future date T .

Using the characteristic function properties, we can write F2(0,T ) = ΦT (0,−i). The parameter δ

tunes an exponentially decaying term introduced to allow the integration in the Fourier space, as

in Carr and Madan (2000) and Dempster and Hong (2002).

Second, if the characteristic function ΦT (u) is known analytically, then the Fourier transform of

the lower bound can be expressed in closed form via the function ΨT (γ; δ, α) in (6). The integral

in (5) can be easily computed using standard numerical quadratures (NIntegrate in Mathematica

or quadgk in Matlab) or via the FFT algorithm.

The main point concerning the above formula is that the approximated option price is obtained

through a univariate Fourier inversion, while, for example, Hurd and Zhou (2010) propose an ana-

lytical formula based on the complex gamma function and requiring a bivariate Fourier inversion.

Indeed, these authors consider a double Fourier transform with respect to the log-price of the two

assets, while we use a Fourier transform with respect to the parameter k controlling the slope of the

frontier of the exercise set A, as discussed below. Although our formula is supposed to be a lower

bound to the exact price, our bound turns out to be so tight that in practice it provides an estimate

that is indistinguishable from the true price. This will be discussed in more detail via an extensive
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set of numerical examples on very different stochastic models, see section 7.

A fourth point relates to the choice of the free parameters, α and k. In theory, we could maxi-

mize the lower bound with respect to these parameters. Again, in practice, this is not necessary

because the educated guesses proposed by Bjerksund and Stensland (2011) for the log-normal set-

ting and generalized here to the non-Gaussian case, expressions (7) and (8), turn out to be very

effective.

The fifth remark relates to the positive part in formula (5). The positive part is necessary because

the original Bjerksund and Stensland (2011) formulation can give negative prices for deeply out-

of-the-money options. In this case, we adopt a practical approach and set the value of the spread

option to zero.

The approximation can also be applied to the Greeks. For example, assuming that interchange of

differentiation and integration is allowed, the formula for the first-order sensitivity to a change in a

risk factor Υ (such as underlying spot prices or model parameters) takes the form2

∂Ck,α

K
(0)

∂Υ
=

e−δk−rT

π
1(∫

+∞
0

e−iγkΨT (γ;δ,α)dγ≥0
)

∫
+∞

0

e−iγk∂ΨT (γ; δ, α)

∂Υ
dγ,

The computation of the option theta (sensitivity to the time-to-maturity) returns

∂Ck,α

K
(0)

∂T
=

e−δk−rT

π
1(

∫
+∞

0
e−iγk

(
∂ΨT (γ;δ,α)

∂T
−rΨT (γ;δ,α)

)

dγ≥0

)

∫
+∞

0

e−iγk

(

∂ΨT (γ; δ, α)

∂T
− rΨT (γ; δ, α)

)

dγ.

For a better understanding of the approximation, we can examine Figure 1. If we define the true

exercise set

B = {ω : S 1(T ) ≥ S 2(T ) + K} ,

2In writing the derivative, we assume that α and k in (7) and (8) are independent from the risk factor. This could

be a problem in computing the option Delta with respect to the second asset and the option Theta, but numerical tests

reveal that this approximation does not affect the accuracy of such Greeks, see section 7.
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Figure 1: The true exercise region B (red) and its approximation A (blue grid).

the approximation replaces the set B by the set A defined in (2). In particular, the set A can be

rewritten as

A =






ω : S 1(T ) ≥ ek
S α

2
(T )

E
[

S α
2
(T )

]






.

We can identify four regions in Figure 1. In region 1, sets A and B overlap and the true and

approximate payoffs are equal. In region 2, the true payoff is positive but small—indeed, S 1(T )

is only slightly greater than S 2(T ) + K—while the approximated payoff is zero. In regions 3 and

4, the option payoff is zero while the approximated payoff is slightly negative. In the remaining,

white region, both payoffs are zero. The role of the free parameters k is to control the slope of

the frontier of the approximating exercise region A, while the parameter α controls both slope and

curvature.

As final remark, we observe that if K = 0, it follows that α = 1 and k = ln(ΦT (0,−i)), so that

A ≡ B, i.e. the two exercise regions overlap, and the approximated formula (5) gives the exact fair

value of the exchange option. Therefore our approximation becomes exact in the zero-strike case,

providing an extension of the Margrabe (1978) formula to a non Gaussian setting:
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Proposition 2. The exchange option with payoff (S 1(T ) − S 2(T ))+ has price C0(0)

C0(0) = C
ln(F2(0,T )),1

0
(0).

3. A comparison with the Hurd and Zhou (2010) formula

Hurd and Zhou (2010) proposed an exact formula for spread options also based on Fourier trans-

forms, and nowadays it appears to be the best method we are aware of. They consider the option

payoff (ex1 −ex2 −1)+, that can be reconducted to the general case K , 0 by using scaling and inter-

change of S 1(T ) and S 2(T ). Their method is applicable to models in which the joint characteristic

function of the two underlyings is known analytically and, for any t > 0, the increment X(t)−X(0)

is independent of X(0). This implies that the characteristic function of XT must factorize as

ΦT (u) = eiu⊺X(0)ϕT (u), ϕT (u) := E
[

eiu⊺(X(T )−X(0))
]

, (8)

where ϕT (u) is independent of X(0). The value of the spread option can be then computed as a

bivariate integration in the complex plane

CHZ
K (0) =

1

(2π)2
e−rT

∫ ∫

R2+iǫ

eiu⊺X(0)ϕT (u)P̂(u)d2u, (9)

where

P̂(u) =
Γ(i(u1 + u2) − 1)Γ(−iu2)

Γ(iu1 + 1)
,

and Γ is the complex gamma function.

We identify the following merits of our lower bound formula C
k,α

K
(0) with respect to the exact one

CHZ
K (0):

1. The Hurd and Zhou (2010) formula cannot be applied when K = 0, while C
k,α

K
(0) provides

an exact solution to the exchange option value.

2. The assumption in formula (9) rules out mean-reverting processes that often arise in energy
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applications, e.g. the model discussed in section 6.4. Our lower bound does not have such a

limitation.

3. The computation of CHZ
K (0) requires a bivariate Fourier inversion while the approximated

option price C
k,α

K
(0) is obtained through a univariate Fourier inversion. Applying a Gauss–

Kronrod quadrature rule to solve formula (5), the spread option value is computed much

faster than using formula (10). We compare the performance of the two methods over differ-

ent asset price models in section 7.

4. The upper bound

In order to control the error of the approximation in (5), we are also able to provide here an estimate

of an upper bound of the spread option price. Consider the quadratic spread option payoff

Q(T ) =
1

2
(S 1(T ) − S 2(T ) − L)2 1(S 1(T )≥S 2(T )),

where L ∈ R and its choice will be discussed at the end of this section. Notice that the exercise

region is the same as for an exchange option, that is, a spread option with zero strike. The price of

this new contract is given in the following proposition.

Proposition 3. The no-arbitrage price Q(0) of the quadratic spread option is given by the formula

Q(0) =
e−rT

2
E

[

(S 1(T ) − S 2(T ) − L)21(S 1(T )≥S 2(T ))

]

(10)

= e−δk−rT 1

2π

∫
+∞

0

e−iγk
ΞT (γ; δ, α)dγ, (11)

where

ΞT (γ; δ, α) =
ei(γ−iδ) ln(ΦT (0,−iα))

i(γ − iδ)

[

ΦT ((γ − iδ) − 2i,−α(γ − iδ))

+ΦT (γ − iδ,−α(γ − iδ) − 2i)

+L2
ΦT (γ − iδ,−α(γ − iδ))

−2LΦT (γ − iδ − i,−α(γ − iδ))

+2LΦT (γ − iδ,−α(γ − iδ) − i)

− 2ΦT (γ − iδ − i,−α(γ − iδ) − i)
]
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Figure 2: Comparison of the payoff q(x) (red line) and the sub-replicating strategy π(x) (black line). Here x =

S 1(T ) − S 2(T ), ∆K = 1, N = 3 and L = −0.5.

and α = 1 and k = ln(F2(0,T )).

Proof: See Appendix B.

Let us consider the function

π(x) = ∆K

N∑

j=1

max(x − ∆K( j − 0.5) − L, 0),

where ∆K > 0, N ∈ N+ and L ∈ R. We observe that the function π(x) and the payoff q(x) =

1
2
(x − L)21(x≥0) are tangent in N points, exactly in x j = L + j∆K. In addition q(x) ≥ π(x) if

∆K( j− 0.5)+ L ≥ 0 for j = 1, . . . ,N. This is shown in Figure 2. If we set x = S 1(T )− S 2(T ), π(x)

is nothing more than a portfolio of spread options with varying strikes K j = ∆K( j − 0.5) + L and

each option is held for an amount equal to ∆K. We also require K j ≥ 0 for j = 1, . . . ,N. The fair

value of this portfolio is

Π(0) = e−rTE [π(S 1(T ) − S 2(T ))] = ∆K

N∑

j=1

CK j
(0)

and clearly Q(0) ≥ Π(0), Q(0) being the fair value of the payoff q(S 1(T ) − S 2(T )).
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Suppose we are interested in pricing a spread option having strike K j̄ > 03, with K j̄ ∈ {K1, · · · ,KN}.

We can write

Q(0) ≥ Π(0) = ∆K





∑

j, j̄

CK j
(0) +CK j̄

(0)




≥ ∆K





∑

j, j̄

C
α j,k j

K j
(0) +CK j̄

(0)




,

where the true prices CK j
(0) of the spread options in the first sum are replaced by our lower bound

C
α j,k j

K j
(0) in the second sum and where α j =

ΦT (0,−i)

ΦT (0,−i)+K j
and k j = ln(ΦT (0,−i) + K j). Rearranging

terms, it follows that an upper bound for the spread option is given by

CK j̄
(0) ≤ Q(0)

∆K
−

∑

j, j̄

C
α j,k j

K j
(0) := U

N,∆K

K j̄
(0). (12)

The computation of the upper bound U
N,∆K

K
(0) requires the value of the deal Q(0), given in formula

(11), and the pricing of N−1 spread option contracts via the lower bound approximation in formula

(5). Numerical examples show that this upper bound is extremely accurate.

The choice of the parameter L is not unique. We must guarantee that K j̄ ∈ {K1, · · · ,KN} so every L

of the form K j̄−∆K( j−0.5) is a possible candidate for j = 1, . . . ,N. A second condition is K j ≥ 0

for j = 1, . . . ,N, that is verified if and only if K1 = L + ∆K/2 ≥ 0. It follows that

1 ≤ j ≤ min

(⌊

1 +
K j̄

∆K

⌋

,N

)

.

In our experiments we set j̄ = min
(⌊

1 +
K j̄

∆K

⌋

,N
)

and L = K j̄ − ∆K( j̄ − 0.5).

5. The geometric Brownian motion case

This section discusses in more detail the geometric Brownian motion case and presents a derivation

of the BS lower bound via the conditional expectation. More importantly, we also provide a stricter

3If the strike is strictly negative, the option is a put option written on S 2(T )− S 1(T ) and having strike −K. The put

price can be then obtained by the put-call parity. If the strike is equal to zero, the lower bound provides the exact value

of the exchange option.
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lower bound and two analytical upper bounds. The first is computed using the power spread

argument of the previous section and the second exploiting ideas used by Rogers and Shi (1995)

and by Nielsen and Sandmann (2003) for Asian options.

In the bivariate Black–Scholes model (see Black and Scholes (1973)), the stock price vector S(t)

has components

S j(t) = S j(t) exp
[(

r − δ j − σ2
j/2

)

t + σ jW j(t)
]

, j = 1, 2 (13)

where σ1, σ2 > 0, and W1,W2 are risk-neutral Brownian motions with instantaneous correlation

ρ, |ρ| < 1, r is the risk-free rate, and δ j is the dividend yield or the instantaneous convenience yield,

depending on the nature of the underlying asset. If we consider spread options on futures, we have

to set δ1 = δ2 = r. We denote the joint distribution of the bivariate random vector (S 1(T ), S 2(T ))

asMLN(m,V), where

m =





ln S 1(t) +
(

r − δ1 − σ2
1
/2

)

(T − t)

ln S 2(t) +
(

r − δ2 − σ2
2
/2

)

(T − t)





, V = T





σ2
1
ρσ1σ2

ρσ1σ2 σ2
2





,

With both S 1(t) and S 2(t) being log-normal, there is no known general formula for the spread op-

tion value except when K = 0, where the spread option collapses into an option to exchange one

asset for another. The option value in this case is given by the formula of Margrabe (1978). In

the general case, however, we must rely on either approximation formulas or numerical methods,

such as the Gaussian quadrature as in Ravindran (1993). Approximation formulas allow quick cal-

culations and facilitate analytical tractability, whereas numerical methods typically produce more

accurate results. Practitioners are very focused on simple calculations and real-time solutions;

hence a closed-form approximation formula is typically the preferred alternative. In this modeling

framework the standard market practice is given by the approximation of Kirk (1995). Bjerksund

and Stensland (2011) propose a new lower bound, showing their approximation is more accurate

than Kirk’s formula.
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Let us consider the dynamics in (14). We provide here a different derivation of the mentioned

lower bound via conditional expectation. Define

R(t) =
S 1(t)

S 2(t)α
=

S 1(0)

S 2(0)α
et(r−δ1−σ2

1
/2−α(r−δ2−σ2

2
/2))+σ1W1(t)−ασ2W2(t),

and set

√
tσRZ = σ1W1(t) − ασ2W2(t), σ2

R = σ
2
1 − 2ρασ1σ2 + α

2σ2
2, Z ∼ N(0, 1).

We can rewrite the set A as

A =






ω : R(T ) >
ek

E
[

S α
2
(T )

]






(14)

=






ω : Z ≥ d =
k − ln

(

R(0)E
[

S α
2
(T )

])

− T
(

r − δ1 − σ2
1
/2 − α

(

r − δ2 − σ2
2
/2

))

√
TσR






.

If we set U = S 1(T ) − S 2(T ) − K, the BS lower bound can be equivalently rewritten as

E
[

U+
] ≥ E

[

U1(A)

]+
= E

[

E [U |Z] 1(Z≥d)

]+
.

We observe that (W1(T ),W2(T )|Z)⊺ ∼ MN(µ,Σ), where

µ =
√

TZ





a1

a2





, Σ = T





1 − a2
1
ρ − a1a2

ρ − a1a2 1 − a2
2





, a1 =
σ1 − ρασ2

σR

, a2 =
σ1ρ − ασ2

σR

,

and therefore it follows that (S 1(T ), S 2(T )|Z)⊺ ∼ MLN
(

µ̂, Σ̂
)

, where

µ̂ =





ln S 1(0) +
(

r − δ1 − σ2
1
/2

)

T + σ1a1

√
TZ

ln S 2(0) +
(

r − δ2 − σ2
2
/2

)

T + σ2a2

√
TZ





,
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Σ̂ = T





σ2
1

(

1 − a2
1

)

σ1σ2 (ρ − a1a2)

σ1σ2 (ρ − a1a2) σ2
2

(

1 − a2
2

)





.

We can now compute the approximated payoff expectation

E
[

E [U |Z] 1(Z≥d)

]+

= E
[(

eln S 1(0)+(r−δ1−σ2
1
a2

1
/2)T+σ1a1

√
TZ − eln S 2(0)+(r−δ2−σ2

2
a2

2
/2)T+σ2a2

√
TZ − K

)

1(Z≥d)

]+

.

By using the partial expectation property of the log-normal distribution4 and discounting, the above

expectation gives us the BS lower bound

C
α,k

K
(0) = e−rT

(

S 1(0)e(r−δ1)T N
(

σ1a1

√
T − d

)

−S 2(0)e(r−δ2)T N
(

σ2a2

√
T − d

)

− KN(−d)
)+

, (15)

where N(·) is the cumulative density function of the standard Gaussian distribution and α and k,

appearing in the definition of a1, a2, and d, can be chosen to maximize the above formula or can

be set according to the guess of Bjerksund and Stensland (2011).

We now show how to improve this lower bound. We note that

E
[

U+
]

︸ ︷︷ ︸

True price

≥ E
[

E [U |Z]+ 1(Z≥d)

]

︸                 ︷︷                 ︸

Improved lower bound

≥ E
[

E [U |Z] 1(Z≥d)

]+

︸                 ︷︷                 ︸

BS lower bound

so a strengthened lower bound turns out to be

E
[

E [U |Z]+ 1(Z≥d)

]

= E

[(

eln S 1(0)+(r−δ1−σ2
1
a2

1
/2)T+σ1a1

√
TZ − eln S 2(0)+(r−δ2−σ2

2
a2

2
/2)T+σ2a2

√
TZ − K

)+

1(Z≥d)

]

= E
[(

eln S 1(0)+(r−δ1−σ2
1
a2

1
/2)T+σ1a1

√
TZ − eln S 2(0)+(r−δ2−σ2

2
a2

2
/2)T+σ2a2

√
TZ − K

)

1(D)

]

,

4This property states that for a lognormal random variable X with parameters µ and σ, we have E (X|X > k) =

e
µ+

1
2
σ2

N

(

µ+σ2−ln k

σ

)

.
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where the set D is defined as

D ≡
{

z : eln S 1(0)+(r−δ1−σ2
1
a2

1
/2)T+σ1a1

√
TZ − eln S 2(0)+(r−δ2−σ2

2
a2

2
/2)T+σ2a2

√
TZ − K ≥ 0

}

∩ {z ≥ d} .

The function appearing in the definition of the set D can have at most two real roots5 that can be

numerically calculated. One of the following three situations can occur:

(a) D = ∅;

(b) D = [d1, d2], where d1 ≤ d2 and d1, d2 ∈ R∗;

(c) D = [d1, d2] ∪ [d3, d4], where d1 ≤ d2 < d3 ≤ d4 and d1, d2, d3, d4 ∈ R∗.

Let us define a function F such that ∀d1 ≤ d2 and d1, d2 ∈ R∗, we have, ∀x ∈ R,

F(∅; x) = 0, F([d1, d2]; x) = N(x − d1) − N(x − d2),

and, ∀d1 ≤ d2 < d3 ≤ d4 and d1, d2, d3, d4 ∈ R∗,∀x ∈ R,

F([d1, d2] ∪ [d3, d4]; x) = F([d1, d2]; x) + F([d3, d4]; x).

We can write the following improved lower bound in terms of F as

Ĉ
α,k

K
(0) = e−rT

(

S 1(0)e(r−δ1)T F
(

D;σ1a1

√
T
)

− S 2(0)e(r−δ2)T F
(

D;σ2a2

√
T
)

− KF(D; 0)
)

.

Note that C
α,k

K
(0) = Ĉ

α,k

K
(0) when D = [d1, d2] and d1 = d and d2 = +∞. From a practical perspec-

tive, this is often, but not always, the case. So in general we expect only a small improvement from

adopting Ĉ
α,k

K
(0) rather than C

α,k

K
(0). Numerical experiments confirm this.

Let us discuss now how to explicitly compute an upper bound that we call URS (0), given that it

5An exponential polynomial with N + 1 nonzero terms, i.e. A(z) =
∑N+1

j=1 α je
λ jz with distinct λ j ∈ R and each

α j ∈ R∗, can have at most N real roots.
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Figure 3: The true exercise region B (red) and its approximation ARS (blue grid).

exploits ideas first proposed by Rogers and Shi (1995). Define the set

B = {ω : S 1(T ) ≥ S 2(T ) + K}

and the set ARS :

ARS
=






ω :
S 1(T )

S α
2
(T )
>

ek

E
[

S α
2
(T )

] , B ⊆ A






.

The shape of the set ARS is shown in Figure 3. Here ARS is constructed requiring tangency between

the function describing the exercise frontier of B, that is, b(x) = x−K, and the function describing

the exercise frontier of ARS , that is, a(x) =
(

x
E[S 2(T )α]

ek

)1/α
. We thus have U+ = U+1(ARS ) and the

following equality is satisfied:

E
[

U+
] − E

[

E
[

U1(ARS )|A
RS

]+
]

= E
[

U+1(ARS )

]

− E
[

E
[

U1(ARS )|A
RS

]+
]

.

Therefore, following Nielsen and Sandmann (2003), the error on the lower bound can be expressed
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as

0 ≤ E

[

E
[

U+1(ARS )|A
RS

]

− E
[

U1(ARS )|A
RS

]+
]

≤ 1

2
E

[

var(U |Z)1(Z>d)

]1/2
E

[

1(Z>d)

]1/2
,

where d is defined in (15). The conditional variance of U is

var(U |Z) = var(S 1(T )|Z) + var(S 2(T )|Z) − 2cov(S 1(T ), S 2(T )|Z).

The conditional covariance matrix between S 1(T ) and S 2(T ) is obtained exploiting properties of

the log-normal distribution so that

cov(S i(T ), S j(T )|Z) =
(

eTσiσ j(̺i j−aia j) − 1
)

exp
{

ln S i(0) + ln S j(0)+

T
(

2r − δi − δ j − σ2
i a2

i /2 − σ2
ja

2
j/2

)

+

√
T

(

σiai + σ ja j

)

Z
}

,

where ̺i j stands for the elements of the matrix

̺ =





1 ρ

ρ 1





.

The formula for the error ǫ is obtained applying again the partial expectation property of the log-

normal distribution and discounting. The upper bound is therefore

URS (0) := Ĉ
α,k

K
(0) + ǫα,k,

where

ǫα,k =
e−rT

2
N(−d)1/2





2∑

i=1

2∑

j=1

(−1)i+ j
(

eTσiσ j(̺i j−aia j) − 1
)

×

eln S i(0)+ln S j(0)+T (2r−δi−δ j+aia jσiσ j)N
(

−d +
√

T
(

σiai + σ ja j

)))1/2
.

This upper bound URS (0) depends on the parameters α and k appearing in the definition of d, a1,
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and a2 and can be minimized under the constraint B ⊆ ARS . In practice, we have verified that,

numerically, this upper bound is less tight than that obtained using the quadratic spread option

argument.

In this regard, in the bivariate geometric Brownian motion case, the quantity Q(0) in the upper

bound U
N,∆K

K
, given in formula (13), is equal to

Q(0) =
e−rT

2

{

S 1(0)2e(2r−2δ1+σ
2
1)T N

(

2σ1a1

√
T − d

)

− 2LS 1(0)e(r−δ1)T N
(

σ1a1

√
T − d

)

+

S 2(0)2e(2r−2δ2+σ
2
2)T N

(

2σ2a2

√
T − d

)

+ 2LS 2(0)e(r−δ2)T N
(

σ2a2

√
T − d

)

−

2S 1(0)S 2(0)e(2r−δ1−δ2−σ1a1/2−σ2a2/2+σ1σ2(ρ−a1a2))T N
(

(σ1a1 + σ2a2)
√

T − d
)

+

L2N(−d) }

In this case, we set α = 1 and k = ln(ΦT (0,−i)).

6. Non-Gaussian stock price models

This section presents several stock price models for which we can analyze the performance of

our novel bounds. The numerical results show that bounds C
α,k

K
(0) and U

N,∆K

K
(0) are very accurate

and that, from a practical point of view, the lower bound is indistinguishable from the true price,

estimated using Monte Carlo simulation. In addition our lower bound can also be used as control

variate in the Monte Carlo simulation, allowing a substantial reduction in the standard error of the

price estimate.

Let S(t) = (S 1(t), S 2(t))⊺ be the stock price vector and assume that the joint characteristic function

of X(t) = (ln S 1(t), ln S 2(t))⊺ has the functional form ΦT (u) = eiu⊺X(0)ϕT (u). In the following,

we set e = (1, 1)⊺. We recall at first the expression of the characteristic function in the case of

geometric Brownian motion and then we present the expression of the characteristic function for a

variety of non-Gaussian models.
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6.1. Geometric Brownian motion

In the well-known two-asset Black–Scholes model, the vector S(t) has components

S j(t) = S j(t) exp
[(

r − δ j − σ2
j/2

)

t + σ jW j(t)
]

, j = 1, 2,

where σ1, σ2 > 0, and W1,W2 are risk-neutral Brownian motions with instantaneous correlation

ρ, |ρ| < 1, r is the risk-free rate, and δ j is the continuous dividend yield paid by asset j. We

have

ϕT (u) = exp
[

iTu⊺
(

(r − δ) e − σ2/2
)

− u⊺
ΣuT/2

]

,

where Σ =
[

σ2
1
, ρσ1σ2; ρσ1σ2, σ

2
2

]

and σ2
= diag (Σ).

6.2. Jump diffusion model I (normally distributed jump size)

The second model we consider is the bidimensional jump diffusion model introduced by Cheang

and Chiarella (2011). It extends the above bidimensional geometric Brownian motion by adding

two jump components. The components of the stock price vector have the following functional

form:

S j(t) = S j(0) exp







r − δ j −
σ2

j

2
− λκ j − λ jκZ j



 t + σ jW j(t) +

N j(t)∑

m=1

Z j(m) +

N(t)∑

n=1

Y j(n)




, (16)

where σ1, σ2 > 0, and W1,W2 are risk-neutral Brownian motions with instantaneous correlation

ρ, |ρ| < 1. In addition,
∑N1(t)

m=1
Z1(m) and

∑N2(t)

m=1
Z2(m) are univariate compound Poisson processes,

driven, respectively, by the Poisson processes N1 and N2 with intensity rates λ1 and λ2. This

jump component is unique to each stock and describes the idiosyncratic shocks for that particular

asset only. The idiosyncratic jump sizes Z1 and Z2 are independently and identically distributed

according to a Gaussian distributionN
(

α j j, ξ
2
j j

)

. The model also allows for macroeconomic shocks
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in the expression
N(t)∑

n=1

Y(n) =





N(t)∑

n=1

Y1(n),

N(t)∑

n=1

Y2(n)





⊺

,

which is a bivariate compound Poisson process with intensity rate λ. Under the risk-neutral mea-

sure Q, the jump sizes Y are assumed to be independently and identically distributed according to

a multivariate normalMN(α,ΣY), where α = (α1, α2)⊺ and

ΣY =





ξ2
1

ρYξ1ξ2

ρYξ1ξ2 ξ2
2





.

Finally, the quantities κ j and κZ j
, j = 1, 2 in (17) are, respectively,

κ j =

∫

R2

[ey j − 1] mQ(dy) =

∫

R

[ey j − 1] mQ(dy j) = exp
(

α j + ξ
2
j/2

)

− 1,

κZ j
=

∫

R

[ez j − 1]mQ(dz j) = exp
(

α j j + ξ
2
j j/2

)

− 1.

The expression for the joint characteristic function is not provided in the Cheang and Chiarella

(2011) paper. The derivation is given, by using a conditioning argument, in Appendix C and it

turns out that it reads as ΦT (u) = eiu⊺X(0)ϕT (u), where

ϕT (u) = exp
[

T
(

iu⊺γ − u⊺
Σu/2 + λ1

(

eiu1α11−u2
1
ξ2

11
/2 − 1

)

+ λ2

(

eiu2α22−u2
2
ξ2

22
/2 − 1

)

+

λ
(

eiu⊺α−u⊺
ΣYu/2 − 1

))]

(17)

and Σ =
[

σ2
1
, ρσ1σ2; ρσ1σ2, σ

2
2

]

, γ j := r − δ j − σ2
j/2 − λκ j − λ jκZ j

, j = 1, 2.

6.3. Jump diffusion model II (asymmetric Laplace distributed jump size)

The third model is the bi-dimensional jump diffusion model studied by Huang and Kou (2006). The

difference from the previous jump diffusion model in (17) is that idiosyncratic jump sizes Z1 and

Z2 are independently and identically distributed according to an asymmetric Laplace distribution
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AL
(

α j j, ξ
2
j j

)

instead of being Gaussian. For a detailed description of the asymmetric Laplace

distribution and its properties, see Kotz et al. (2001). Macroeconomic shocks N follow a compound

Poisson process with intensity λ. Jump sizes Y are independently and identically distributed as a

multivariate asymmetric Laplace distributionMAL(α,ΣY), where α = (α1, α2)⊺ and

ΣY =





ξ2
1

ρYξ1ξ2

ρYξ1ξ2 ξ2
2





.

In this model the quantities κ j and κZ j
, j = 1, 2 are, respectively,

κ j =
1

1 − α j − ξ2
j
/2
− 1, κZ j

=
1

1 − α j j − ξ2
j j
/2
− 1.

As discussed by Huang and Kou (2006), the joint characteristic function have the functional form

ΦT (u) = eiu⊺X(0)ϕT (u), where

ϕT (u) = exp

(

T
(

iu⊺γ − u⊺
Σu/2 + λ1/

(

1 − iu1α11 + u2
1ξ

2
11/2

)

+λ2/
(

1 − iu2α22 + u2
2ξ

2
22/2

)

(18)

+λ/ (1 − iu⊺α + u⊺
ΣYu/2) (19)

−λ1 − λ2 − λ)
)

(20)

and Σ =
[

σ2
1
, ρσ1σ2; ρσ1σ2, σ

2
2

]

, γ j := r − δ j − σ2
j/2 − λκ j − λ jκZ j

, j = 1, 2.

6.4. Mean-reverting jump diffusion model

The fourth model is a mean-reverting jump diffusion model that generalizes the model proposed

by Hambly et al. (2009). For j = 1, 2, the spot price process S j(t) is defined as the exponential

of the sum of three components: a deterministic function f j(t), a Gaussian Ornstein–Uhlenbeck
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process X j(t), and a mean-reverting process with a jump component Y j(t):

S j(t) = exp
(

f j(t) + X j(t) + Y j(t)
)

,

dX j = −α jX j(t)dt + σ jdW j,

dY j = −α jY j(t−)dt + J+j dN+j − J−j dN−j .

The parameter σ j is strictly positive and W j is a risk-neutral Brownian motion. We assume a speed

of mean reversion α j > 0 for both the diffusion process X j(t) and the jump process Y j(t). The two

Brownian motions have instantaneous correlation ρ, |ρ| < 1 and N+j and N−j are Poisson processes

with intensity λ+j and λ−j , respectively, and describe the positive and negative jump arrivals sepa-

rately. The terms J+j and J−j are independent identically distributed random variables representing

the jump size and we assume they are exponentially distributed with parameters 0 < µ+j < 1 and

µ−j > 0, respectively. Assuming independence between the jump processes, we obtain the joint

characteristic function

ΦT (u) = exp

[

iu1

(

(X1(0) + Y1(0)) e−α1T
+ f1(T )

)

+iu2

(

(X2(0) + Y2(0)) e−α2T
+ f2(T )

)

−
u2

1
σ2

1

4α1

(

1 − e−2α1T
)

−
u2

2
σ2

2

4α2

(

1 − e−2α2T
)

− ρu1u2σ1σ2

α1 + α2

(

1 − e−(α1+α2)T
)

+
λ+

1

α1

ln

(
1 − iµ+

1
u1e−α1T

1 − iµ+
1
u1

)

+
λ+

2

α2

ln

(
1 − iµ+

2
u2e−α2T

1 − iµ+
2
u2

)

+
λ−

1

α1

ln

(
1 + iµ−

1
u1e−α1T

1 + iµ−
1
u1

)

+
λ−

2

α2

ln

(
1 + iµ−

2
u2e−α2T

1 + iµ−
2
u2

) ]

.
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6.5. Three-factor stochastic volatility model

The fifth model is the stochastic volatility model discussed by Dempster and Hong (2002) and

Hurd and Zhou (2010). The risk-neutral dynamics of the log-price vector are given by

dX1 = (r − δ1 − σ2
1
/2)dt + σ1

√
vdW1,

dX2 = (r − δ2 − σ2
2
/2)dt + σ2

√
vdW2,

dv = κ(µ − v)dt + σv

√
vdWv,

where

E[dW1dW2] = ρdt,

E[dW1dWv] = ρ1dt,

E[dW2dWv] = ρ2dt.

The characteristic function is ΦT (u) = eiu⊺X(0)ϕT (u), where

ϕT (u) = exp









2ζ
(

1 − e−θT
)

2θ − (θ − γ) (1 − e−θT )




v(0)+

iu⊺(re − δ)T − κµ
σ2

v




2 ln





2θ − (θ − γ)
(

1 − e−θT
)

2θ




+ (θ − γ)T









and

ζ := −1

2

[(

σ2
1u2

1 + σ
2
2u2

2 + 2ρσ1σ2u1u2

)

+ i
(

σ2
1u1 + σ

2
2u2

)]

,

γ := κ − i (ρ1σ1u1 + ρ2σ2u2)σv,

θ :=

√

γ2 − 2σ2
vζ.

6.6. VG mixture model

The sixth model is the exponential Lévy model described by Hurd and Zhou (2010). A univariate

VG process is a Lévy process with a Lévy characteristic triplet (0, 0, ν), where the Lévy measure

is ν = λ[e−a+x1x > 0 + e−a−x1x < 0]/|x| for λ, a± > 0. Here we consider a bivariate VG model
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driven by three independent univariate VG processes Y1,Y2,Y with parameters λ1, λ2, λY . Choosing

λ1 = λ2 = (1 − α)λ, λY = αλ, the bivariate log return process X(t) = (ln S 1(t), ln S 2(t))⊺ is given by

the mixture

X1(t) = X1(0) + Y1(t) + Y(t), X2(t) = X2(0) + Y2(t) + Y(t).

As discussed by Hurd and Zhou (2010), the joint characteristic function is given by ΦT (u) =

eiu⊺X(0)ϕT (u), where

ϕT (u) =

[

1 + i

(

1

a−
− 1

a+

)

(u1 + u2) +
(u1 + u2)2

a−a+

]−αλT

×
[

1 + i

(

1

a−
− 1

a+

)

u1 +
u2

1

a−a+

]−(1−α)λT [

1 + i

(

1

a−
− 1

a+

)

u2 +
u2

2

a−a+

]−(1−α)λT

.

6.7. VG time changed model

The last model we consider is a bivariate VG process with a time change by an independent inte-

grated CIR process. This model was introduced by Ballotta and Bonfiglioli (2012). The parame-

terization of the Lévy measure used by Ballotta and Bonfiglioli (2012) is

ν(x) =
1

κ|x| exp





θ

σ2
− |x|

√

θ2 + 2σ2/κ

σ2



 .

Given the parameterization above, the characteristic function of a VG process is

φ(u) = −1

κ
ln

(

1 − iuθκ + u2σ
2

2
κ

)

. (21)

If Y j(t), for j = 1, 2 are two independent VG processes with parameters σ j, θ j, κ j and Z(t) a third

independent VG process with parameters σZ, θZ , and κZ , the authors introduce asset correlations

considering the dynamics G j(t) = Y j(t) + a jZ(t), where a j ∈ R. The rate of time change of asset j
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is modeled by a CIR process v j(s) = b jv(t), where b j > 0 and

dv(t) = k(η − v(t))dt + λ
√

v(t)dW(t)

and W(t) is a Brownian motion common to the whole vector of time changes but independent of the

base process G(t) = (G1(t),G2(t))⊺. The clock of asset j is assumed to be the integrated variance

process V j(t) = b jV(t), that is,

V j(t) =

∫ t

0

v j(s)ds.

Considering B j(t) = G j(V j(t)), we define the stock price risk-neutral dynamics as

S j(t) = S j(0)e(r−δ j)t
eB j(t)

E
[

eB j(t)
] .

Assuming that b1 < b2, the joint characteristic function is given byΦT (u) = eiu⊺X(0)ϕT (u), where

ϕT (u) = φV
T (−ig(u1, u2; a1, a2, b1, b2))eiu⊺((re−δ)T−pT ),

with

g(u1, u2; a1, a2, b1, b2) = b1φ
Y1(u1) + b2φ

Y2(u2) + b1φ
Z(u1a1 + u2a2) + (b2 − b1)φZ(u2a2),

pT = (φV
T (−ig(−i, 0; a1, a2, b1, b2)), φV

T (−ig(0,−i; a1, a2, b1, b2)))⊺.

In the above expression the characteristic functions of Y1,Y2, and Z are, respectively, indicated

by φY1 , φY2 , and φZ and are given in equation (20), while φV
T

is the characteristic function of the
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integrated CIR process V that we recall here for completeness:

φV
t (u) = eA(u,t)+B(u,t)v(0)

A(u, t) =
2kη

λ2
ln





2ζ(u)e
ζ(u)+k

2
t

(ζ(u) + k)
(

eζ(u)t − 1
)

+ 2ζ(u)





B(u, t) =
2iu(eζ(u)t − 1)

(ζ(u) + k)(eζ(u)t − 1) + 2ζ(u)

ζ(u) =
√

k2 − 2λ2iu.

7. Numerical results

This section discusses numerical results with reference to the just presented models. Numerical

experiments were coded and implemented in Matlab version 7.9.0 on an Intel Core i5 2.40 GHz

machine running under Mac OS X with 4 GB physical memory. We compute the fair value of

spread option contracts, spanning different strike prices, for each model presented in section 6.

Numerical results are reported in Tables 1 to 7. Prices obtained via Monte Carlo simulation are

used as a benchmark. To reduce the simulation error, we use the lower bound as a control variate.

We rewrite equation (1) as

CK(0) = C
k,α

K
(0) + e−rTE

[

(S 1(T ) − S 2(T ) − K)+
]

− e−rTE
[

(S 1(T ) − S 2(T ) − K)1(A)

]+

.

We calculate C
k,α

K
(0) with formula (5) and use Monte Carlo simulation to compute the two expected

values, which are highly correlated. The simulation error can be reduced substantially.

The number of simulations is chosen depending on the model, as indicated in each Table. The

columns labeled C.I. length give the length of the 95% mean-centered Monte Carlo confidence

interval. In all cases the confidence interval of the control variate estimate is so small that it allows

us to appreciate the accuracy of our lower bound. The lower bound is computed using the formula

(5) and is displayed in the column labeled C
α,k

K
(0). The integral is computed by a Gauss–Kronrod

quadrature rule using Matlab’s built-in function quadgk. Values obtained maximizing the lower
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bound with respect to α and k are presented in the column labeled C
α∗,k∗

K
(0). However, we can

see that the optimized lower bound does not significantly improve the approximation provided

by formula C
α,k

K
(0). Therefore we strongly suggest to use formula (5) with default values for α

and k as in (7) and (8). We also provide the numbers CHZ
K (0) computed with the method of

Hurd and Zhou (2010), where parameters NHZ , ū and ǫ are set as indicated in each Table,

to guarantee the same accuracy as the Monte Carlo benchmark. Notice that CHZ
K (0) cannot

be computed (N.A.) when K = 0 or when we consider the mean-reverting jump diffusion

model (Table 4). In principle, we could price the exchange option using the Hurd and Zhou

(2010) formula setting the strike equal to a very small number, but unfortunately this ap-

proximation produces very inaccurate results due to numerical instabilities, depending on

the characteristic function specification. For example, given results in Table 1 and Table 7,

in the geometric Brownian motion we can estimate the price of the exchange option setting

K = 10−6 in the Hurd and Zhou (2010) method. However, for the VG time changed model,

the method becomes unstable for small strikes. If we limit ourselves to the choice K = 10−2

then CHZ
K (0) = 6.285187, when the exact price obtained via our approach turns out to be

C
α,k

K
(0) = 6.292223.

The upper bound is given in the column labeled U
N,∆K

K
(0) and is computed by setting N and ∆K as

indicated in each table. Our numerical experiments show that the upper bound is quite good in all

cases, albeit it does not achieve the same tightness as the lower bound, even when minimized with

respect to N and ∆K. The strike price of the quadratic spread option involved in the computation

of U
N,∆K

K
(0) is displayed in the column labeled L. The solution C

α,k

K
(0) is exact in the zero-strike

case, so U
N,∆K

K
(0) and L are not given in this case.

For the geometric Brownian motion case, in Table 1, we also present Kirk’s approximation for-

mula, the improved lower bound Ĉ
α∗,k∗

K
(0), and the Rogers–Shi-type upper bound URS (0). As noted

in the previous section, the lower bound Ĉ
α∗,k∗

K
(0) does not significantly improve with respect to

the approximation C
k,α

K
(0). In addition, the upper bound URS (0), although developed ad hoc for
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the geometric Brownian motion case, seems to work worse than the more general upper bound

U
N,∆K

K
(0).

Table 8 compares the Gauss–Kronrod quadrature rule in C
α,k

K
(0) and the bivariate Fourier inversion

in CHZ
K (0) in terms of computational cost across a variety of models, using the same parameters

setting as in Tables 1 to 7. Here the option strike price is set at K = 2. The Table gives the

computational times for computing the spread option price using the two formulae and we observe

that the computation of C
α,k

K
(0) is considerably faster than CHZ

K (0) for every model by a factor

varying between 130 (model 3FSV) and 190 (model JD1). However, for the love of true, we have

to remark that the bivariate FFT implementation of the Hurd and Zhou (2010) formula provides a

matrix of spread option prices. Using such a matrix, interpolation can be used to price a spread

option price for K∗ , K, with a additional small computational cost. Therefore, it makes a little

difference in terms of computing times if we evaluate a single option or a large panel of contracts

with the method of Hurd and Zhou (2010). On the other hand the computational cost of our lower

bound increases linearly in the number of evaluated spread options, so the advantage in using

formula (5) decreases as the number of contracts to be priced increases.

Table 9 compares the first order Greeks computed as discussed in Section 2 with the ones in Hurd

and Zhou (2010). The two estimates are comparable, so our lower bound also provides accurate

Greeks.

Finally, Table 10 compares the control variate (MC) and the crude (MCcr ) Monte Carlo for each

model. The model parameters are set as in Tables 1 to 7 and the option strike price is K = 2

for every model. The confidence interval length of each Monte Carlo simulation is also provided.

Using our lower bound as a control variate in the simulation, the standard error and therefore

the confidence interval of the crude Monte Carlo estimate are significantly reduced. For example

the length of the confidence interval in the geometric Brownian motion model is reduced from

1.4 × 10−2 to 3.1 × 10−7. A substantial reduction is also obtained in the other models. For example

in the time changed VG model the confidence interval length is reduced from 2.2 × 10−2 to 1.7 ×
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10−5.

8. Conclusions

This paper extends the lower bound approximation for the spread option price in Bjerksund and

Stensland (2011) from the geometric Brownian motion case to more general processes, allowing

for jumps, stochastic volatility and mean reversion. The only quantity we need to know explicitly

is the joint characteristic function of the log-returns of the two assets. The computation of our

lower bound requires a univariate Fourier inversion, as opposed to the bivariate inversion required

by Hurd and Zhou (2010) and Dempster and Hong (2002). Our bound is extremely accurate and

easily computable. In addition it can be used as control variate in Monte Carlo simulations. This

allows us to obtain very tight confidence intervals as well. An exact formula for the zero strike case

as well as a tight upper bound on the estimation error are also obtained. The upper bound is based

on the price of a new contract, the quadratic spread option. Many important processes in finance

have a well known explicit characteristic function and can be included in the pricing method with

little difficulty. A topic for further research is the extension to spread options with an early exercise

feature.

Appendix A. Proof of Proposition 1

We observe that E
[

S α
2

(T )
]

= ΦT (0,−iα), so we can rewrite the set A defined in (2) as

A = {ω : ln S 1 (T ) − α ln S 2 (T ) > k − lnΦT (0,−iα)}

= {ω : X1(T ) − αX2(T ) + lnΦT (0,−iα) > k} .

Following Carr and Madan (2000) and Dempster and Hong (2002), we multiply the expected value

of the option approximation (4) by an exponentially decaying term, tuned by a parameter δ, so that

it is square integrable in k over the negative axis. Then we apply the Fourier transform to this
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modified lower bound price:

ΨT (γ; δ, α) =

∫

R

eiγk+δkE
[
(S 1 (T ) − S 2 (T ) − K) 1(A)

]

dk

=

∫

R

eiγk+δk

[∫

R

∫
+∞

k−lnΦT (0,−iα)+αX2(T )

(

eX1(T ) − eX2(T ) − K
)

f (X1, X2) dX1dX2

]

dk

=

∫

R

∫

R

[∫ X1(T )+lnΦT (0,−iα)−αX2(T )

−∞
eiγk+δkdk

]
(

eX1(T ) − eX2(T ) − K
)

f (X1, X2) dX1dX2

=
1

iγ + δ

∫

R

∫

R

ei(γ−iδ)(X1(T )−αX2(T )+lnΦT (0,−iα))
(

eX1(T ) − eX2(T ) − K
)

f (X1, X2) dX1dX2

=
ei(γ−iδ) ln(ΦT (0,−iα))

i(γ − iδ)

[

E
[

ei(γ−iδ−i)X1(T )−iα(γ−iδ)X2(T )
]

− E
[

ei(γ−iδ)X1(T )+i(−αγ+iαδ−i)X2(T )
]

−KE
[

ei(γ−iδ)(X1(T )−αX2(T ))
]]

=
ei(γ−iδ) ln(ΦT (0,−iα))

i(γ − iδ)

[

ΦT (γ − i(δ + 1),−α(γ − iδ)) − ΦT (γ − iδ,−αγ + iαδ − i)

−KΦT (γ − iδ,−(γ − iδ)α)
]

.

The lower bound is given by an inverse transform and depends on the parameters α and k. The

optimal lower bound is achieved using the maximization

max
k,α

e−δk−rT 1

π

∫
+∞

0

e−iγk
ΨT (γ; δ, α)dγ.

In practice, the optimization can be replaced by an educated guess, as suggested by Bjerksund and

Stensland (2011), setting

α =
F2(0,T )

F2(0,T ) + K
, k = ln(F2(0,T ) + K),

where F2(0,T ) is the forward price of the second asset at time 0 for delivery at a future date

T .
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Appendix B. Proof of Proposition 3

Using the same arguments as in Appendix A, we have

ΞT (γ; δ, α) =

∫

R

eiγk+δkE
[

(S 1 (T ) − S 2 (T ) − L)2 1(A)

]

dk

=

∫

R

eiγk+δk

[∫

R

∫
+∞

k−lnΦT (0,−iα)+αX2(T )

(

eX1(T ) − eX2(T ) − L
)2

f (X1, X2) dX1dX2

]

dk

=

∫

R

∫

R

[∫ X1(T )+lnΦT (0,−iα)−αX2(T )

−∞
eiγk+δkdk

]
(

e2X1(T )
+ e2X2(T )

+ L2 − 2LeX1(T )

−2eX1(T )+X2(T )
+ 2LeX2(T )

)

f (X1, X2) dX1dX2

=
1

iγ + δ

∫

R

∫

R

ei(γ−iδ)(X1(T )−αX2(T )+lnΦT (0,−iα))
(

e2X1(T )
+ e2X2(T )

+ L2 − 2LeX1(T )

−2eX1(T )+X2(T )
+ 2LeX2(T )

)

f (X1, X2) dX1dX2

=
ei(γ−iδ) ln(ΦT (0,−iα))

i(γ − iδ)

[

E
[

ei(γ−iδ−2i)X1(T )−iα(γ−iδ)X2(T )
]

− E
[

ei(γ−iδ)X1(T )+i(−αγ+iαδ−2i)X2(T )
]

+L2E
[

ei(γ−iδ)(X1(T )−αX2(T ))
]

− 2LE
[

ei(γ−iδ−i)X1(T )−iα(γ−iδ)X2(T )
]

+

2LE
[

ei(γ−iδ)X1(T )+i(−αγ+iαδ−i)X2(T )
]

− 2E
[

ei(γ−iδ−i)X1(T )+i(−αγ+iαδ−i)X2(T )
] ]

=
ei(γ−iδ) ln(ΦT (0,−iα))

i(γ − iδ)

[

ΦT ((γ − iδ) − 2i,−α(γ − iδ))

+ΦT (γ − iδ,−α(γ − iδ) − 2i) + L2
ΦT (γ − iδ,−α(γ − iδ))

−2LΦT (γ − iδ − i,−α(γ − iδ)) + 2LΦT (γ − iδ,−α(γ − iδ) − i)

−2ΦT (γ − iδ − i,−α(γ − iδ) − i)
]

.

We can obtain Q(0) by an inverse Fourier transform, discounting and setting parameters α = 1 and

k = ln(F2(0,T )).
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Appendix C. Derivation of formula (18)

The characteristic function is

E
[

eiu⊺X(T )
]

= eiu⊺(X(0)+γT )E




exp





iu1




σ1W1(T ) +

N1(T )∑

m=1

Z1(m) +

N(T )∑

n=1

Y1(n)





+iu2




σ2W2(T ) +

N2(T )∑

m=1

Z2(m) +

N(T )∑

n=1

Y2(n)














= eiu⊺(X(0)+γT )

∞∑

n=0

∞∑

n1=0

∞∑

n2=0

e−λT (λT )n

n!

e−λ1T (λ1T )n1

n1!

e−λ2T (λ2T )n2

n2!
β(n, n1, n2),

where

β(n, n1, n2) = E




exp





iu1




σ1W1(T ) +

N1(T )∑

m=1

Z1(m) +

N(T )∑

n=1

Y1(n)




+ iu2 (σ2W2(T )+

N2(T )∑

m=1

Z2(m) +

N(T )∑

n=1

Y2(n)










∣
∣
∣
∣
∣
∣
N(T ) = n,N1(T ) = n1,N2(T ) = n2




.

Conditioning to the event {N(T ) = n,N1(T ) = n1,N2(T ) = n2}, β(n, n1, n2) is the characteristic

function of a bivariate normal variable B(n, n1, n2), where

B(n, n1, n2) ∼ MN









n1α11 + nα1

n2α22 + nα2





,





n1ξ
2
11
+ nξ2

1
+ σ2

1
T nρYξ1ξ2 + σ1σ2ρT

nρYξ1ξ2 + σ1σ2ρT n2ξ
2
22
+ nξ2

2
+ σ2

2
T









.

We therefore obtain

β(n, n1, n2) = exp
{

iu1(n1α11 + nα1) + iu2(n2α22 + nα2) − u2
1(n1ξ

2
11 + nξ2

1 + σ1T )/2 −

u2
2(n2ξ

2
22 + nξ2

2 + σ2T )/2 − u1u2(nρYξ1ξ2 + σ1σ2ρT )
}

,
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which results in

E[eiu⊺X(T )] = eiu⊺(X(0)+γT )−T (λ+λ1+λ2+u2
1
σ2

1
/2+u2

2
σ2

2
/2+u1u2σ1σ2)

∞∑

n1=0

en1(ln(λ1T )+iu1α11−u2
1
ξ2

11
/2)

n1!

∞∑

n2=0

en2(ln(λ2T )+iu2α22−u2
2
ξ2

22
/2)

n2!

∞∑

n=0

en(ln(λT )+iu1α1+iu2α2−u2
1
ξ2

1
/2−u2

2
ξ2

2
/2−u1u2ξ1ξ2ρY )

n!
.

Straightforward calculations lead to the formula (18).
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K C
α,k
K

(0) C
α∗ ,k∗
K

(0) Ĉ
α∗ ,k∗
K

(0) CKirk
K

(0) CHZ
K

(0) MC C.I. length U
N,∆K
K

(0) L URS (0)

0.0 8.513225 8.513225 8.5132251 8.513225 N.A. 8.513225 2.004 × 10−9 N.A. N.A. N.A.

0.4 8.312461 8.312461 8.312461 8.312461 8.312461 8.312461 4.466 × 10−8 8.330482 0.15 8.867626

0.8 8.114993 8.114993 8.114993 8.114993 8.114994 8.114994 9.217 × 10−8 8.133036 0.05 8.633288

1.2 7.920819 7.920819 7.920819 7.920819 7.920820 7.920820 1.640 × 10−7 7.938902 −0.05 8.410323

1.6 7.729931 7.729931 7.729931 7.729931 7.729932 7.729933 2.140 × 10−7 7.748035 −0.15 8.195125

2.0 7.542322 7.542322 7.542322 7.542322 7.542324 7.542324 3.088 × 10−7 7.560385 −0.25 7.986151

2.4 7.357982 7.357982 7.357982 7.357982 7.357984 7.357984 3.907 × 10−7 7.376003 0.15 7.782577

2.8 7.176899 7.176899 7.176899 7.176899 7.176902 7.176903 4.861 × 10−7 7.194941 0.05 7.583903

3.2 6.999060 6.999060 6.999060 6.999060 6.999065 6.999065 5.632 × 10−7 7.017144 −0.05 7.389794

3.6 6.824452 6.824452 6.824452 6.824452 6.824458 6.824458 7.138 × 10−7 6.842556 −0.15 7.200013

4.0 6.653058 6.653058 6.653058 6.653058 6.653065 6.653065 7.838 × 10−7 6.671121 −0.25 7.014377

Table 1: Prices of the spread option computed for strike K in the geometric Brownian motion model of section 5. The

parameter values are S 1(0) = 100, S 2(0) = 96, ρ = 0.5, σ1 = 0.2, σ2 = 0.1, δ1 = 0.05, δ2 = 0.05, r = 0.1, T = 1.0,

M = 106, N = 1000, and ∆K = 0.5. Hurd and Zhou parameters are NHZ
= 512, ū = 40 and ǫ = [−3, 1]⊺. Column

C
k,α
K

(0) contains the lower bound in formula (5). Values in C
α∗,k∗

K
are obtained maximizing the lower bound with respect

to α and k. The improved lower bound of the Rogers–Shi-type is in column Ĉ
α∗,k∗

K
(0) while column CKirk

K
(0) presents

values obtained by Kirk’s approximation formula. Results of Hurd and Zhou (2010) are shown in column CHZ
K

(0).

Columns MC and C.I. length contains respectively the Monte Carlo prices and confidence intervals. The upper bound

computed using the power spread option argument is displayed in column U
N,∆K
K

while L shows the chosen strike of

the power spread option. Finally the Rogers–Shi-type upper bound is given in column URS (0).

K C
α,k

K
(0) C

α∗,k∗

K
(0) CHZ

K (0) MC C.I. length U
N,∆K

K
(0) L

0.0 8.792318 8.792318 N.A. 8.792318 2.384 × 10−9 N.A. N.A.

0.4 8.561005 8.561005 8.561005 8.561005 8.856 × 10−8 8.585020 0.15

0.8 8.333472 8.333472 8.333472 8.333472 1.975 × 10−7 8.357510 0.05

1.2 8.109743 8.109743 8.109744 8.109744 7.078 × 10−7 8.133828 −0.05

1.6 7.889839 7.889839 7.889840 7.889840 8.442 × 10−7 7.913947 −0.15

2.0 7.673778 7.673778 7.673781 7.673781 1.366 × 10−6 7.697839 −0.25

2.4 7.461575 7.461575 7.461579 7.461580 1.905 × 10−6 7.485589 0.15

2.8 7.253242 7.253242 7.253248 7.253247 1.690 × 10−6 7.277280 0.05

3.2 7.048788 7.048788 7.048796 7.048797 2.580 × 10−6 7.072873 −0.05

3.6 6.848219 6.848219 6.848228 6.848227 2.717 × 10−6 6.872327 −0.15

4.0 6.651536 6.651536 6.651548 6.651546 2.709 × 10−6 6.675598 −0.25

Table 2: Prices of the spread option computed for strike K in the jump diffusion model I of subsection 6.2. The

parameter values are S 1(0) = 100, S 2(0) = 96, δ1 = 0.03, δ2 = 0.05, σ1 = 0.15, σ2 = 0.1, ρ = 0.5, r = 0.1, λ = 0.2,

α1 = 0.06, α2 = 0.03, ξ1 = 0.03, ξ2 = 0.09, ρy = −0.8, λ1 = 0.2, α11 = 0.02, ξ11 = 0.06, λ2 = 0.1, α22 = −0.07,

ξ22 = 0.01, M = 106, N = 1000, and ∆K = 0.5. Hurd and Zhou parameters are NHZ
= 512, ū = 40 and ǫ = [−3, 1]⊺.

Column labels are as in Table 1.
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K C
α,k

K
(0) C

α∗,k∗

K
(0) CHZ

K (0) MC C.I. length U
N,∆K

K
(0) L

0.0 8.815578 8.815578 N.A. 8.815578 2.019 × 10−8 N.A. N.A.

0.4 8.585660 8.585660 8.585661 8.585661 8.677 × 10−8 8.622451 0.15

0.8 8.359561 8.359561 8.359561 8.359561 5.559 × 10−7 8.396375 0.05

1.2 8.137301 8.137301 8.137302 8.137303 1.989 × 10−6 8.174163 −0.05

1.6 7.918901 7.918901 7.918903 7.918903 1.268 × 10−6 7.955786 −0.15

2.0 7.704377 7.704377 7.704380 7.704381 1.862 × 10−6 7.741215 −0.25

2.4 7.493741 7.493741 7.493746 7.493747 3.560 × 10−6 7.530532 0.15

2.8 7.287004 7.287004 7.287010 7.287011 2.913 × 10−6 7.323818 0.05

3.2 7.084171 7.084172 7.084180 7.084179 2.658 × 10−6 7.121033 −0.05

3.6 6.885247 6.885247 6.885257 6.885257 3.056 × 10−6 6.922132 −0.15

4.0 6.690231 6.690231 6.690244 6.690244 4.336 × 10−6 6.727069 −0.25

Table 3: Prices of the spread option computed for strike K in the jump diffusion model II of subsection 6.3. The

parameter values are S 1(0) = 100, S 2(0) = 96, δ1 = 0.03, δ2 = 0.05, σ1 = 0.15, σ2 = 0.1, ρ = 0.5, r = 0.1, λ = 0.2,

α1 = 0.06, α2 = 0.03, ξ1 = 0.03, ξ2 = 0.09, ρy = −0.8, λ1 = 0.2, α11 = 0.02, ξ11 = 0.06, λ2 = 0.1, α22 = −0.07,

ξ22 = 0.01, M = 106, N = 1000, and ∆K = 0.5. Hurd and Zhou parameters are NHZ
= 512, ū = 40 and ǫ = [−3, 1]⊺.

Column labels are as in Table 1.

K C
α,k

K
(0) C

α∗,k∗

K
(0) CHZ

K (0) MC C.I. length U
N,∆K

K
(0) L

0.0 3.863711 3.863711 N.A. 3.863711 2.373 × 10−8 N.A. N.A.

2.0 2.230264 2.230267 N.A. 2.230270 8.027 × 10−7 2.295558 −0.50

2.2 2.083929 2.083933 N.A. 2.083937 1.241 × 10−6 2.149442 −0.30

2.4 1.942230 1.942235 N.A. 1.942240 1.162 × 10−6 2.007675 −0.10

2.6 1.805556 1.805562 N.A. 1.805568 1.373 × 10−6 1.870806 0.10

2.8 1.674271 1.674278 N.A. 1.674285 1.949 × 10−6 1.739391 0.30

3.0 1.548706 1.548715 N.A. 1.548722 1.983 × 10−6 1.614000 −0.50

3.2 1.429154 1.429164 N.A. 1.429172 1.826 × 10−6 1.494667 −0.30

3.4 1.315855 1.315867 N.A. 1.315876 2.254 × 10−6 1.381300 −0.10

3.6 1.208999 1.209012 N.A. 1.209022 2.112 × 10−6 1.274248 0.10

3.8 1.108713 1.108727 N.A. 1.108739 2.324 × 10−6 1.173832 0.30

4.0 1.015062 1.015077 N.A. 1.015089 2.723 × 10−6 1.080355 −0.50

Table 4: Prices of the spread option computed for strike K in the mean-reverting jump diffusion model of subsection

6.4. The parameter values are f1(T ) = ln(30), f2(T ) = ln(26), X1(0) = 0, X2(0) = 0, Y1(0) = 0, Y2(0) = 0, σ1 = 0.1,

σ2 = 0.08, ρ = 0.5, r = 0.1, α1 = 0.6, α2 = 0.6, λ+
1
= 0.025, λ−

1
= 0.02, λ+

2
= 0.03, λ−

2
= 0.025, µ+

1
= 0.3, µ−

1
= 0.35,

µ+
2
= 0.3, µ−

2
= 0.37, M = 106, N = 1500, and ∆K = 1. Column labels are as in Table 1.
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K C
α,k

K
(0) C

α∗,k∗

K
(0) CHZ

K (0) MC C.I. length U
N,∆K

K
(0) L

0.0 8.542801 8.542801 N.A. 8.542802 1.684 × 10−7 N.A. N.A.

2.0 7.548500 7.548500 7.548502 7.548502 8.730 × 10−7 7.565996 −0.25

2.2 7.453534 7.453534 7.453536 7.453537 1.133 × 10−6 7.471050 −0.05

2.4 7.359379 7.359379 7.359381 7.359382 1.275 × 10−6 7.376834 0.15

2.6 7.266033 7.266033 7.266037 7.266037 1.451 × 10−6 7.283569 −0.15

2.8 7.173498 7.173498 7.173501 7.173501 1.561 × 10−6 7.190973 0.05

3.0 7.081771 7.081771 7.081775 7.081775 1.447 × 10−6 7.099266 −0.25

3.2 6.990852 6.990852 6.990857 6.990857 2.095 × 10−6 7.008368 −0.05

3.4 6.900740 6.900740 6.900745 6.900745 1.995 × 10−6 6.918195 0.15

3.6 6.811434 6.811434 6.811440 6.811440 2.281 × 10−6 6.828970 −0.15

3.8 6.722932 6.722932 6.722939 6.722939 2.099 × 10−6 6.740408 0.05

4.0 6.635234 6.635234 6.635242 6.635241 2.214 × 10−6 6.652730 −0.25

Table 5: Prices of the spread option computed for strike K in the three-factor stochastic volatility model of subsection

6.5. The parameter values are S 1(0) = 100, S 2(0) = 96, ρ = 0.5, σ1 = 1.0, σ2 = 0.5, ρ1 = −0.5, ρ2 = 0.25, δ1 = 0.05,

δ2 = 0.05, v0 = 0.04, κ = 1.0, µ = 0.04, σv = 0.05, r = 0.1, T = 1.0. M = 106, N = 1000, and ∆K = 0.5. Hurd and

Zhou parameters are NHZ
= 512, ū = 40 and ǫ = [−3, 1]⊺. Column labels are as in Table 1.

K C
α,k

K
(0) C

α∗,k∗

K
(0) CHZ

K (0) MC C.I. length U
N,∆K

K
(0) L

0.0 10.737350 10.737350 N.A. 10.737351 3.873 × 10−8 N.A. N.A.

2.0 9.727443 9.727444 9.727458 9.727458 1.385 × 10−6 9.913266 −0.25

2.2 9.629988 9.629990 9.630006 9.630006 1.558 × 10−6 9.815825 −0.05

2.4 9.533178 9.533180 9.533200 9.533200 1.811 × 10−6 9.718963 0.15

2.6 9.437015 9.437017 9.437040 9.437040 2.005 × 10−6 9.622871 −0.15

2.8 9.341499 9.341501 9.341528 9.341527 2.240 × 10−6 9.527299 0.05

3.0 9.246629 9.246632 9.246662 9.246664 2.575 × 10−6 9.432452 −0.25

3.2 9.152407 9.152410 9.152445 9.152445 2.638 × 10−6 9.338245 −0.05

3.4 9.058833 9.058837 9.058875 9.058876 2.924 × 10−6 9.244618 0.15

3.6 8.965907 8.965911 8.965954 8.965955 3.262 × 10−6 9.151762 −0.15

3.8 8.873628 8.873633 8.873681 8.873681 3.535 × 10−6 9.059429 0.05

4.0 8.781998 8.782003 8.782057 8.782057 3.735 × 10−6 8.967821 −0.25

Table 6: Prices of the spread option computed for strike K in the VG mixture model of subsection 6.6. The parameter

values are S 1(0) = 100, S 2(0) = 96, ρ = 0.5, a+ = 20.4499, a− = 24.4499, α = 0.4, λ = 10, r = 0.1, T = 1.0.

M = 107, N = 1000, and ∆K = 0.5. Hurd and Zhou parameters are NHZ
= 512, ū = 40 and ǫ = [−3, 1]⊺. Column

labels are as in Table 1.
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K C
α,k

K
(0) C

α∗,k∗

K
(0) CHZ

K (0) MC C.I. length U
N,∆K

K
(0) L

0.0 6.292223 6.292223 N.A. 6.292224 1.222 × 10−7 N.A. N.A.

2.0 4.946084 4.946121 4.946198 4.946192 1.697 × 10−5 5.159785 −0.25

2.2 4.818943 4.818990 4.819082 4.819087 2.051 × 10−5 5.032506 −0.05

2.4 4.693307 4.693365 4.693474 4.693483 2.481 × 10−5 4.906937 0.15

2.6 4.569215 4.569286 4.569415 4.569428 2.852 × 10−5 4.782801 −0.15

2.8 4.446705 4.446791 4.446946 4.446950 2.977 × 10−5 4.659357 0.05

3.0 4.325819 4.325922 4.326108 4.326106 3.317 × 10−5 4.539521 −0.25

3.2 4.206597 4.206720 4.206943 4.206952 3.922 × 10−5 4.420160 −0.05

3.4 4.089081 4.089225 4.089492 4.089508 4.530 × 10−5 4.302711 0.15

3.6 3.973312 3.973481 3.973796 3.973802 5.102 × 10−5 4.186898 −0.15

3.8 3.859334 3.859530 3.859897 3.859885 5.517 × 10−5 4.071985 0.05

4.0 3.747190 3.747416 3.747838 3.747834 6.101 × 10−5 3.960891 −0.25

Table 7: Prices of the spread option computed for strike K in the VG time changed model of subsection 6.7. The

parameter values are S 1(0) = 51, S 2(0) = 47, M = 106, T = 1.0, v(0) = 1.0, r = 0.1, a1 = 0.5971, a2 = 0.7801

σ1 = 0.2824, σ2 = 0.1849, σZ = 0.3497, δ1 = 0.018, δ2 = 0.03, ν1 = 0.1726, ν2 = 2.2360, νZ = 0.2, θ1 = −0.1144,

θ2 = 0.0962, θZ = −1.0417, λ = 0.8332, k = 1.0992, η = 1.1275, b1 = 0.2219, b2 = 0.2351, N = 1000, and ∆K = 0.5.

Hurd and Zhou parameters are NHZ
= 1024, ū = 160 and ǫ = [−3, 1]⊺. Column labels are as in Table 1.

Model C
α,k

K
(0) CHZ

K (0)

Geometric Brownian motion 0.004440 0.655636

Jump diffusion I 0.003709 0.713311

Jump diffusion II 0.004350 0.740647

Mean-reverting jump diffusion 0.005154 N.A.

3-factor stochastic volatility 0.006818 0.898995

VG mixture 0.006341 0.876933

VG time changed 0.037638 6.021662

Table 8: The Gauss–Kronrod quadrature rule in C
α,k
K

(0) and the bivariate Fourier inversion in CHZ
K

(0) are compared

in terms of computational cost. The computing times for the spread option value are given for each model. The

simulation settings and the model parameters are set as in Tables 1 to 7. The option strike price is always K = 2.

Delta(S 1(0)) Delta(S 2(0)) Theta(T ) Vega(σ1) Vega(σ2) Rho(ρ)

C
α,k

K
(0) 0.512705 -0.447078 3.023768 33.114873 -0.799270 -4.193731

CHZ
K (0) 0.512705 -0.447079 3.023777 33.114834 -0.798972 -4.193728

Table 9: The Greeks for the GBM model compared between the lower bound C
α,k
K

(0) and the Hurd and Zhou (2010)

solution CHZ
K

(0). The Greeks for CHZ
K

(0) use N = 210 and ū = 40. Model parameters are as in Table 1 and the strike

price is set to K = 4.
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Model MC C.I. length MCcr C.I. lengthcr

Geometric Brownian motion 7.542324 3.088 × 10−7 7.547870 1.415 × 10−2

Jump diffusion I 7.673781 1.366 × 10−6 7.684104 4.013 × 10−2

Jump diffusion II 7.704381 1.862 × 10−6 7.693970 4.149 × 10−2

Mean-reverting jump diffusion 2.230270 8.027 × 10−7 2.231747 1.149 × 10−2

3-factor stochastic volatility 7.548502 8.730 × 10−7 7.577023 4.297 × 10−2

VG mixture 9.727458 1.385 × 10−6 9.722541 1.744 × 10−2

VG time changed 4.946192 1.697 × 10−5 4.929361 2.219 × 10−2

Table 10: The control variate (MC) and the crude (MCcr ) Monte Carlo are compared for each model. The simulation

settings and the model parameters are set as in Tables 1 to 7. The option strike price is always K = 2. The confidence

interval length of the Monte Carlo simulation is also provided.
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