-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by City Research Online

Li, S., Fairbank, M., Wunsch, D. C. & Alonso, E. (2012). Vector Control of a Grid-Connected
Rectifier/Inverter Using an Artificial Neural Network. Paper presented at the IEEE International
Joint Conference on Neural Networks (IEEE IJCNN 2012), 1783-1789, 10-15-2012, Brisbane,

Australia.

>, CITY UNIVERSITY City Research Online
LONDON

EST 1894

Original citation: Li, S., Fairbank, M., Wunsch, D. C. & Alonso, E. (2012). Vector Control of a Grid-
Connected Rectifier/Inverter Using an Artificial Neural Network. Paper presented at the IEEE
International Joint Conference on Neural Networks (IEEE IJCNN 2012), 1783-1789, 10-15-2012,

Brisbane, Australia.

Permanent City Research Online URL.: http://openaccess.city.ac.uk/5206/

Copyright & reuse

City University London has developed City Research Online so that its users may access the
research outputs of City University London's staff. Copyright © and Moral Rights for this paper are
retained by the individual author(s) and/ or other copyright holders. All material in City Research
Online is checked for eligibility for copyright before being made available in the live archive. URLs
from City Research Online may be freely distributed and linked to from other web pages.

Versions of research
The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries
If you have any enquiries about any aspect of City Research Online, or if you wish to make contact
with the author(s) of this paper, please email the team at publications@city.ac.uk.


https://core.ac.uk/display/42627384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Vector Control of a Grid-Connected Rectifier/Inverter Using
an Artificial Neural Network

Shuhui Li, Michael Fairbank, Donald C. Wunsch, &athardo Alonso

Abstract -- Three-phase grid-connected converters are widely
used in renewable and electric power system applications.
Traditionally, grid-connected converters are controlled with
standard decoupled d-q vector control mechanisms. However,
recent studies indicate that such mechanisms show limitations.
This paper investigates how to mitigate such problems using a
neural network to control a grid-connected rectifier/inverter. The
neural network implements a dynamic programming (DP)
algorithm and is trained using backpropagation through time.
The performance of the DP-based neural controller is studied for
typical vector control conditions and compared with conventional
vector control methods. The paper also investigates how varying
grid and power converter system parameters may affect the
performance and stability of the neural control system. Future
research issues regarding the control of grid-connected
convertersusing DP-based neural networks ar e analyzed.

Index Terms — grid-connected rectifier/inverter, decoupled vector
control, renewable energy conversion systems, neural controller,
dynamic programming, backpropagation through time

I. INTRODUCTION

N renewable and electric power system applications,

three-phase grid-connected dc/ac voltage-source PW
converter is usually employed interface between the dc and
ac systems. Typical converter configurations containing tl
include: 1) a dc/dc/e
converter for solar, battery and fuel cell applications [1, 2],
a dc/ac converter for STATCOM applications [3, 4], and 3) an

grid-connected converter (GCC)

[5, 12, 13] show that wind farms periodically experience a
high degree of imbalance and harmonic distortions, which
have resulted in numerous trips. Additionally, in [3], it is
noted that tuning Pl parameters for the standard control
method in a STATCOM application is difficult

To overcome such deficiencies, an adaptive control
approach was proposed recently that employs a direct-current
control (DCC) strategyl4, 15] However, a major challenge
of the direct-current-based vector control mechanism isithat
well-established systematical approach to tuning the PI
controller gains exists, so that optimal DCC is extremely hard
to obtain. This difficulty motivates the development of neural-
network-based optimal control techniques for the vector
control application, as presented in this paper
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Fig. 1. Application of grid-connected rectifier/@nter in a microgrid

ac/dc/ac converter for wind power and HVDC applications [4- In recent years, significant research has been conducted in
8]. Figure 1 demonstrates the grid-connected dc/ac convetter area of dynamic programming (DP) for optimal control of
used in a microgrid to connect distributed energy resourcaenlinear systems [1B6]. Classical DP methods discretize
Conventionally, this type of converters is controlled using titee state space and didgccompare the costs associated with

standard decoupled d-q vector control approach [5-8].

all feasible trajectories that satisfy the principle of optimality,

Notwithstanding its merits, recent studies indicate that thegaranteeing the solution of the optimal control probl2j. [
conventional vector control strategy is inherently limited [$daptive critic designs constitute a class of approximate

10Q], particularly when facing uncertainti¢sl]. For instance,
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dynamic programming (ADP) methods that use incremental
optimization combined with parametric structures that
approximate the optimal cost and the conf&®, 23] Both
classical DP and ADP methods have been used to train neural
networks for a large number of nonlinear control applications,
such as steering and controlling the speedadfvo-axle
vehicle P4], interceptng an agile missile 45], performing
auto landing and control of an aircra®6f28], and controlling

a turbogenerator Z9]. However, no research has been
conducted regarding the vector control of grid-connected
power electronic converters using DP or ADP-based neural
networks



The purpose of this paper is to report preliminary researchIn terms of the steady-state conditiaf), =V, +j0 if the

in developing a neural-network-based optimal control strategy,is of the reference frame is aligned along the PCC voltage

for vector control ofg grid-connected rect-|f|er./|nverte.r 'nPosition. Assuming that,, =V, + v, and neglecting the
renewable and electric power system applications. First, the

transient and steady-state models of a GCC system in aq_id filter resistance, the current flowing between the PCC and
reference frame are presented in Sectlon Section I e GCC according to Eg. (3) is:
discusses the limitations associated with the conventional .

. =(V,-V X )V
standard GCC vector control method and a newer direct- % (Ve ‘ﬂ)/(l ') alX

current vector control mechanism. Section IV Proposes; Ayhich X, stands for the grid filter reactance.
neural network based vector control structure. Section VSupposing that passive sign convention is applied, i.e.

explains how to employ dynamic programming to achie\ﬁ%wer flowing toward the GC is positive, the power
optimal neural vector control for the GCC system. Thg,corped by the GCC at the PCC is:

performance of the proposdaP-based neural vector control

scheme is evaluated in Section VIFinally, the paper |:>Cm:_vdvql/xf,anvzvd(vd—vdl)/xf (7)
concludes with a summary of the main points.

(6)

[ll. LIMITATIONS OF CONVENTIONAL GCCVECTOR
Il. GCCTRANSIENTAND STEADY-STATE MODELS CONTROL TECHNIQUES

Figure 2 shows the schematic of the GCC, in which a d&-
. o Standard Vector Control
link capacitor is on the left, and a three-phase voltage source, )
representing the voltage at the Point of Common Coupling The conventional standard vector control method for the

(PCC) of the ac system, is on the right. GCC, widely used in renewable and electric power system
_ - applications, has a nested-loop structure consisting of a faster
e Yol cla ,R., 4‘%“ @) inner current loop and a slower outer loop, as shiovig. 3
A . vt [3, 4, 11]. In this figure, the d-axis loop is used for ahdcli
€ T Vae ’E;ﬂ_s Vor b ~wsr-—— 45y s voltage control, and the g-axis loop is used for reactive power
c , ; ve or grid voltage support control. The control strategy of the
e Mwm._._@ inner current loop is developed by rewriting Eq. (1) as:
Discrete
e Vg =—(Riy +L-diy/dt)+ e Li +v (8)
‘ _ Vg =—(Rig+L-di /dt)-wli, (9)
Fig. 2. Grid-connected converter schematic
In the d-q reference frame, the voltage balance across ith@hich the brackeditem in Egs. (8) and (9) is treated as the
grid filter is: transfer function between the input voltage and output current
{V"} rd} d Ed} | Vg for the d r_:md_q loops, and the_other terms are treated as
=R|. |[+L—]. +a>SL{ i q}{ } Q) compensation items [3, 4, 11]. This treatment assumesthat
Vo ' dt|i, lg Va in Eq. (8) has no major influenam i, and thatvy, in Eq. (9)

where e is the angular frequency of the dsi®CC voltage, has no important effecnig.
andL andR are the inductance and resistance of the grid filter
respectively. Using space vectors, Eq. (1) is expressed by the
complex Eq. (2), in whiclyg, igq, andvgg, are instantaneous
space vectors of the PCC voltage, line current, and converter
output voltage, respectively. In the steady-state condition, Eq.
(2) becomes Eq. (3), wheréy, |4 and Vyq;, stand for the
steady-state space vectors of PCC voltage, grid current, and
converter output voltage, respectively.

Fig. 3. Conventional standard vector control stnectu

di ) Nevertheless, this assumption is inadequate [14, 15]
Vi =R T+ JoL 1V 4 3) Accordlng to F_lg. 3, the final control voltages; andvg ,
linearly proportional to the converter output voltagés,and
In the grids PCC voltage-oriented frame [3, 11], the instarMq:, include the d and q voltages, andvg, generated by the
active and reactive powers absorbed by the GCC from the didirent-loop controllers in addition to the compensation terms,
are proportional to the gril d- and g-axis currents @s shown by Eg. (10). Hence, this control configuration

-/

. d. . .
Vyg = Reiggt Lal atlobi g

respectively, as shown by Egs. (4) and (5). intends to regulate andi, usingvy andvy, respectively. On
. ] ) the other hand, according to Eqgs. (7), (4) and (5), the d-axis

P(t) = Vuig + Vil =V q (4) voltage is effective only for reactive power i, control, and

a(t) = v,iy =V =-Vi, 5) the g-axis voltage is effective only for active power,ipr

control. Thus, the conventional control method relies primarily



on the compensation terms rather than the Pl loops to regufate tuning the controller Pl gains, so an optimal DCC
the d- and g-axis currents via a competing control strateggntroller is extremely difficult to achieve.

However, those compensation terms are not included in the

feedback control principle, which could result in malfunctions V. STRUCTURE OFGCCVECTORCONTROL USING

of the overall system [14]. ARTIFICIAL NEURAL NETWORKS

To developa neural-network-based vector controller, the

*

V=V, +olji_ +v . . Do
d b @sEdq TV (10) integrated GCC and grid system model from Eq.i¢lfjrst
Vg =-V,—aol i, rearranged into the standard state-space representation as

shown by:

B. Direct-Current Vector Control ) R L !
i - i % v

The DCC vector control method [14, 15], developedg{d}:{ o/ % }{d}_i{ “1}ri{ "} (12)
recently to overcome the deficiencies of the conventionadt| q @, Rf/Lf o] Li[Va] Li[Vq

standgrd vector control techniques, is .considered. a pidere the system statageiy andig, grid PCC voltages, and
adaptive vector control strategyhe theoretical foundation of v, are normally constant, and converter output voltageand

the DCC is expressed in Egs. (4) and (5), i.e., the use of d- ghdyre proportional to the control voltage of the action neural
g-axis currents directly for active and reactive power Contrﬁltwork. The ratioof the converter output voltage to the

of the GCC systemUnlike the conventional approach that,nirol voltage is a gain ¢, i.€., the gain of the voltage
generates a d- or g-axis voltage from a GCC current-logg,rce dc/ac PWM converter OB For digital control
controller, the direct-current vector control structure OUtp”tﬁrﬁpIementation and the offline training of the neural network,
current signal at the d- or g-axis current-loop controller (Fighe giscrete equivalent of the continuous system state-space

4). In other words, the output of the controller is a d or 8,4el from Eq. (12) must be obtained as shown by:
tuning current, while the input error signal tells the controller .
|:| d(kT s)j|+G{V a(kT s)_v d

how much the tuning current should be adjusted during the iy (KT, +T,) (13)

dynamic control process. The development of the tuning |i, (KT +T,) i (KT ) V(KT )-v

current control strategy has adopted intelligent control . .

concepts [15]e.g., a control goal to minimize the absolute JYNere Ts represents the sampling period is the system

root-mean-square (RMS) error between the desired and acflfx, andG is the input matrixin this papera zero-order-

d- and g-axis currents through an adaptive tuning strategy. hold_dlscrete equivalent mechanisgi][is used to convert the
continuous state-space model of the system from Eq. (12) to

the discrete state-space model in Eq. (13). We used

Vic i
Q»‘—.L%—D Lo Ts=0.001sec in all experiments
+ _ PI e p :

Hence, the overall neural-network-based vector control
structure of the GCC current-loop is shown in Fig. 5. In the
figure, the action neural network contains four inputs, of
which two represent the measurements of GCC d- and g-axis
currents, and the other two are the error signals between the

Vbus iq
- + . . P PR
Vb i, ‘_.g desired and actual d- and g-axis currents (jeiyq andiq -ig).
C’)_rlfid w Uz i‘d
Fig. 4. GCC direct-current vector control structure Action . var +‘ GCC and

] + Neural v grid model
Dueto the nature of a voltage-source converter, the d- a i‘d—Q Network 4- | (13 i
g-axis tuning current signalsy and i,, generated by the = )
current-loop controllers must be transferred to d- and g-a» \T T
voltage signalsvs; and vy to control the GCC. This is
realized through Eq11), which is equivalent to the transient

d-q equation, Eqg. (1), after being processed by a low pass filter )
in order to reduce the high oscillation of d and q reference 1h€ neural network, known here as thetion network

s

Fig. 5.Neural vector control structure of GCC cutieonp

voltages applied directly to the converter. was a multi-layer perceptron [32] with 4 input nodes, 2 hidden
. ‘ layers of 6 nodes each, and 2 output nodes. Hyperbolic tangent
Vg =Ry ol +v, 1) functions were used as the activation function at all nodes. The
V;l =-R, i'q _a,SLfi'd first two input nodes receive an input tﬁnf{idq/looq , and

he second two input nodes receive an input of

o t
The initial values of the DCC PI current-loop controllers o Th f th | K
are tunedby minimizing the RMS error between the referencéam{('dq _'dq)/ 100@' € output of the neural network was

and measured values. Nonetheless, a major challenge ofrifagtiplied by kewy to form the dq control voltage applied to
DCC is thatno well-established systematical approach exisfge GCC system.



V. TRAINING NEURAL NETWORK FOROPTIMAL VECTOR G (K =V, (K)-V. =K. AT (k).W)-V 15
CONTROLOF A GCC i ()= Ve (1) Ve = Ko™ AlTadK):9) ¥ o (15)
where w is the weight vector of the action network, and)A(

A. Dynamic Programming in GCC Vector Control stands for the action network, as described in section IV

Dynamic programming employs the principle of optimality The DP cost function associated with the vector-controlled
and is a very useful tool for solving optimization and optimalstem is:

control problems. According to2Q], the principle of - © -

optimality is expressed as: “An optimal policy has the J(idq(j),\fv)=27/k"-u (idq(k),l]dq(k)) (16)
property that whatever the initial state and initial decision are, k=]

the remaining decisions must constitute an optimal policy witthere y is the discounffactor with 0 < y < 1, and U§) is
regard to the state resulting from the first decision.” The defined as

typical structure of the discrete-time DP includes a discrete:, /- . ; N2/ 2

time system model and a performance index or cost associated('dq(k)’udQ(k)) :\/('d(k)_I d) +(I k)i Q) ' (17)
with the systemZ3]. The functionJ(e), dependent on the initial timjeand the

— . . initial stateiy(j), is referred to as the costgo of state
[Inltlallze action network welghtj

k <~ 0, W« Gaussian randomizatic

igg (1) in the dynamic programming problem. The objective
of the DP problem is to choose a vector control sequence,
Uy, (), k=], j+1, ..., so that the functiod(e) in Eq. (L6) is

(' Generate initial GCC system statgs

> minimized.
Forward pass _ B. Backpropagation Through Time Algorithm
Unroll the trajectories based on Fig. 5 . . L
while not terminated,, (k) do The action ljetwork was trained tq minimize th(=T DP cost of
o N Eqg. (16) by using the backpropagation through time (BPTT)
G () = Ko+ Algq (k) ) -V algorithm [33]. BPTT is gradientescent orJ (i, ( j),w) with
log (k +1) = f (' g (€)1 gq () respect to the weight vector of the action netw®&RTT can
I 347U (T (K), Uy (K)) be applied to an arbitrary trajectory with an initial stag),
kK« k+1 and thus be used to optimize the vector control strategy. In
end while general, the BPTT algorithm consists of two steps: a forward
v pass which unrolls a trajectory, followed by a backward pass
(R_k, p<0, dJ dW—bj along the whole trajectory which accumulates the gradient
T descent derivative. Figure 6 shows the block diagram and
Backward pass pseudoco_de for thls vyhole process. In this figure, the vector
. . . . and matrix notation is such that all vectors are columns;
Update action network weights by applying gradient agcg . o .
on J(iad(j), W) through BPTT dl_fferentl_atpn of a scalar by a vector gives a colu_mn.
for k=F —1to Ostep- o D|fferept|at|on of a vector function by a vector argum_ent gives
oA ((au a a matrix, sych that fqr examp(dew)ij:dA/dm. Ir_1 Fig. 6,
dJ/ diwe— dJ dine M(ﬁj ((auj +y[%j "a the subscriptedk variables on parentheses indicate that a
k K k quantity is to be evaluated at time step k.
p&[‘?] +y[3__f] P ko {QAJ [[a{) +7(ij TDJ The BPTT pseudocode requires the derivatives of the
Oy ) \Oaq), A j N AT ATy functions fe) and Ue), which were found directly by
kek+1 differentiating equations 14 and 17, respectively. Hence we
end for were using the exact models of the plarihere was no need
W< W—a-dJ/ dw for a separate system identification process or separate model
network. For the termination condition of a trajectory, we used
)<z a fixed trajectory length corresponding to a real time of 1
No Yes second (i.e. a trajectory had 1/Ts=1000 time steps in it). We
End usedy=1 for the discount factor.
Fig. 6. DP based BPTT algorithm for GCC Vector control C. Training the Neural Controller

To train the neural controller, the system data of the
ntegrated GCC and grid system is specified for typical GCCs
n renewable energy conversion system applications [6, 7, 14].
= . - - - These include 1) a three-phase 60Hz, 690V voltage source

i (kK +1) = f (' aak) oK) = F ik ) +G 1 o k). (14) signifying the grid, 2) a reference voltage of 1200V for the dc
Under a constant dq reference currethie control action link, and 3) a resistance of 0.022nd an inductance of 2mH
applied to the system is expresssd standing for the grid filter.

For the neural-network-based vector control structfre .
the GCC, as showin Fig. 5, the discrete system model of Eq
(13) can be rewritten in the following simplified way:



The training procedure includes 1) randomly generatingqaickly regulates the d- and g-axis currents to the reference
sample initial stateqy(j), 2) randomly generating a samplevalues. When the reference dq current changes to new values
referencedq current, 3) unrolling the trajectory of the GCGat t=0.5s and t=1s, the neural controller restores d- and g-axis
system from the initial state, 4) training the action netwodurrent to the reference currents immediately. The
based on the DP cost function in Eq. (16) and the BPEXperiments show that the neural controller can be applied
training algorithm, and 5) repeating the process for all tkeccessfully in GCC vector control problem
sample initial states and reference dq currents until a stop ,q,

criterion associated with the DP cost is reached (Fig. 6). The {— Id ==mmene Id* Ig ====== Ig*
weights were initially all randomized using Gaussian 150
distribution with zero mean and 0.1 variance. Training useg 100 e
RPROP [34] to accelerate learning, and we allowed RPROP &
act on 10 trajectories simultaneously (each with a differeng 50
start po4|nt andyq ). o p B—
10 I
.50 1 5
% s 0 0.25 0.5 0.75 1 1.25 1.5
§ 105 Time (sec)
< r Fig. 8. Performancefmeural vector controller to the trace referenceanir
o 2
~ 10 4 . . .
o R B. Comparison of Neural Controller with Conventional
s 10" "N Standard and DCC Vector Control Mechanisms
= % = — i )
< == For the comparison study, the current-loop PI controller is
10° ' designed by using the conventional standard vector control
° 50 10 ey 0 20 3% technique and the direct-current vector control approach,
Fig. 7. Average total DP cost per trajectory time $tefraining GCC vector respectively, as shown in Section Ill. For the conventional

controller standard vector control structure (Fig. 3), the gains of the PI
Figure 7 shows the average DP cost per trajectory time s¢gptroller is designed based on the transfer function, as shown
for training the action neural network, in which both the initidh Eds. (8) and (9) [7]For the direct-current vector control
states and reference dq currents are generated randotHiycture (Fig. 4), the gains of the PI controller is tuned until
around using Gaussian distribution. Regarding the Gaussia@ controller performance is acceptable [14]. The parameters
distribution of the initial states, the mean for d-axis current@§the GCC system are the same as those used in Sec@on V-
100A, the mean for g-axis current is OA, and the variance for 200

both d and g-axis currents is 10Regarding the Gaussian _ g9 A
distribution of the reference dq currents, the means for the§l 160 X
and g-axis currents are the same but the variance is 50A. Eaich e ,’ e
trajectory duration was unrolled during training for a duratior8 140 : 1 neural
of 1 second, and the referendg current was changed every % 120 I reference |1
0.1 seconds. As the figure indicates, the overall average B¥ 100 i’ o E‘gée”“o”a' E
cost dropped to around zero very quickly, demonstrating the g ' ;
strong learning ability of the optimal neural controller for the ~ 0-45 0.5 Timz-f:ec) 0.6 0.65
vector control application. &) d-axis current
V1. PERFORMANCEEVALUATION OF TRAINED NEURAL o0 neural
VECTORCONTROLLER < 40 A reference
= ! ) '.‘ conventional
A. Ability of the Neural Controller to Trace the Rederce £ 20 A ) bcc
Current 2 -
To assess the performance of the vector control approac@ 0 e ! H '."
using artificial neural networkghe integrated controller and 5
the dc/ac converter system are tested for the system 2.5 05 0.55 0.6 065
configuration, as showim Fig. 5 In the figure, initial system Time (sec)
states can be generated randomly and are far away from the b) g-axis current

primary population of the training trajectories and the Fig. 9. Comparison of conventional, DCC and neural vectotrotiers
reference dq currents can change to random values that are ndtigure 9 presents a comparison study for conventional,
used in the training of the neural networkigure 8 DCC, and neural vector controllers under the same conslition
demonstrates the behavior of the neural controlled GGEin Fig. 8 The figure indicates that among the three vector
system. At the beginning, both GCC d- and g-axis currents aomtrol strategies, the neural controller has the fastest response
zero, and the d and g-axis reference currents are 100A andtiiAe, low overshoot, and best performance. For many other
respectively. After the start of the system, the neural controlteference current conditions, the comparison study



demonstrates that the neural vector controller performs betterlt is necessary to indicate that the training of the neural
than both conventional and DCC vector control mechanismscontroller does not consider variable system parameters. This

C. Performance Evaluation under Variable Pararsaiér is an issue that will be addressed in the future research.
GCC System 200

GCC stability has been one of the main issues to bg -,
investigatedin conventional GCC vector control. In general, € _
such studies primarily focus on the GCC performance undeg 100 ‘ S S
system parameter changes or for variable ac system voItage ‘ ; |
conditions. For instance, in [1], a small-signal model is useg ° 1 ‘

for a sensitivity study of the GCC under variable system o { 095 /1 =77 1.05 morere Reference
parameter conditions. In [33], a control strategy is developed 0 0.25 0.5 0.75 1 1.25 1.5
to improve the GCC performance under variable system Time (sec)
conditions a) d-axis current
' 40
f f f
. 200 ¢ : .
< s L=1.4mH g 20
§ 150~ - prew— crmnnes E:ngHH 5 oI T
e Y S 1 =2.6m ‘5
g 1 ===uen reference o -20 0.5 1 [SEAEs T, -
2 100 ; < 1
§ 75 R & .40 === 1.05
© 50 S S B LR Reference
_60 P P
0.25 0.5 Ti O'(75 ) 1 125 15 0 0.25 0.5 0.75 1 1.25 1.5
Ime (sec

Time (sec)

a) d-axis current b) g-axis current

T i F Fig. 11 Performance of neural vector controllers under variBQl€ voltage
25 | conditions(1—rated voltage, 0.9595% of the rated voltage, 1.05105% of

< the rated voltage)

§ O‘ [y —— e p

3 VII. CONCLUSIONS

@0 25 L=td4mH . . - . o

3 L=2mH Three-phase grid-connected rectifier/inverters are used

Y widely in renewable, microgrid and electric power system
o 0.25 05 0.75 1 125 15 applications. This paper investigates conventional vector

Time (sec) control approaches for the grid-connected converters and
b) g-axis current analyzes the limitations associated with conventional vector
Fig. 10. Performance of neural vector controllers under vagigbd-filter control methods. Then. a neural-network-based vector control
inductance conditions . ’ . .
method is presented. The paper describes how dynamic-
In this paper, the neural vector control technique jgogramming (DI methods are employed to train the neural
evaluated for two variable GCC system conditions, namely, rdgtwork through a backpropagation through time algorithm.
variation of grid-filter resistance and inductance, and 2) One of the main results is that the associated cost drops
variable PCC voltage. Figur#0 compares how the neuralvery quickly as training progresses, demonstrating the strong
control strategies are affected when there is an increasdearning capability of the neural network for the vector control
decrease of R and L values B®% from the initial values. application. The performance evaluation skdwat the neural
Figure 11 compares how the neural vector control approacheatroller can trace the reference d and g-axis currents
are affected by a 5% voltage fluctuation away from the rateffectively even for testing trajectories and reference currents
ac power supply system voltage. The study shows that that are far away from the training data. €&vmpared to the
neural controller is affected very little by the change of gridonventional standard vector control method and a recently
filter resistance. However, for a change of grid-filteleveloped direct-current vector control technigie neural
inductance, the neural controller may be unable to trace tRtor control approach produces the fastest response time,
reference dg current effectively (Fig. 10). In general, lew overshoot, and, in general, the best performance.
deviation of the grid-filter inductance above its initial value However, if the GCC system parameters are not constant
causes the controlled d and g currents stabilizing at a vajhe performance of the GCC system could be affected. This is
that is higher than the reference value while a deviation of fharticularly evident for variable grid-filter inductance and
grid-filter inductance below its initial value causes the d andflgctuating PCC voltage conditions, which normally resder
currents stabilizing at a value that is smaller than the referemige neural controller unable to trace the reference dq current
value. Similar to the situation for the grid-filter inductance, theffectively. To improve the performance of the neural vector
fluctuation of PCC voltage also causes the controlled dantroller for more practical vector control conditions, it is
current unable to stabilize at the reference value, as showiniportant to research and develop enhanced neural vector
Fig. 11. control architectures and training strategies.
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