
Comuzzi, M. & Spanoudakis, G. (2010). Dynamic set-up of monitoring infrastructures for service

based systems. In: S. Y. Shin, S. Ossowski, M. Schumacher, M. J. Palakal & C. Hung (Eds.),

Proceedings of the 2010 ACM Symposium on Applied Computing. (pp. 2414-2421). ACM. ISBN

978-1-60558-639-7

City Research Online

Original citation: Comuzzi, M. & Spanoudakis, G. (2010). Dynamic set-up of monitoring

infrastructures for service based systems. In: S. Y. Shin, S. Ossowski, M. Schumacher, M. J.

Palakal & C. Hung (Eds.), Proceedings of the 2010 ACM Symposium on Applied Computing. (pp.

2414-2421). ACM. ISBN 978-1-60558-639-7

Permanent City Research Online URL: http://openaccess.city.ac.uk/5166/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42627368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Dynamic set-up of Monitoring Infrastructures for Service
Based Systems

 Marco Comuzzi*
Eindhoven University of Technology

School of Industrial Engineering

Eindhoven, The Netherlands
+31 40 247 2183

m.comuzzi@tue.nl

George Spanoudakis

City University London

School of Informatics

London, UK
+44 20 740 8413

g.spanoudakis@soi.city.ac.uk

ABSTRACT

Service based systems are intrinsically dynamic as the services
deployed by them can be replaced at runtime. When this happens,
the Service Level Agreements (SLAs) that regulate the provision
of services may also need to change. Following such changes, the
monitoring infrastructure that is used to monitor SLAs may also

need to be modified to ensure the continuous provision of the
necessary runtime checks. This paper presents a framework that
supports the dynamic assessment of the monitorability of SLAs
terms and the dynamic setup of an appropriate infrastructure for
monitoring them following such changes. The monitorability
checks are based on comparisons between the SLA terms for
specific services and descriptions of the monitoring capabilities of
these services which are expressed in languages introduced in the

paper. The paper presents a prototype implementation of the
framework and the results of a preliminary evaluation of it.

Categories and Subject Descriptors

D.2.11 [Software Architectures]

General Terms

Algorithms, Design.

Keywords

Run-time SLA monitoring, SLA monitorability.

1. INTRODUCTION
The paradigm of Service Oriented Computing (SOC) is changing
the way of building IT-based systems. Initially, SOC was seen as
a way of restructuring the IT stack within an organization in the
form of services, and integrating previously non communicating

systems through invocations of such services. More recently,
however, SOC has evolved into a mechanism for cross-
organizational service deployment, in which the systems of an
organisation are realised by deploying services offered by other
organisations. In this business context, services need to be
provided to customers under well-defined conditions. The
common approach for specifying such conditions formally is to

specify and agree a Service Level Agreement (SLA) between the

provider and the customer of a service. An SLA provides a formal
specification of the exact conditions (functional and non-
functional) under which a service should be delivered to a specific
customer (or group of customers) and should be monitored at
runtime to ensure that the service provision fulfils it.

Over the last few years, several approaches have been
developed to support the monitoring of SLAs [1,4,5,10].
Typically, these approaches collect events during service

executions and use them to check whether the properties of
service provision as specified in an SLA are satisfied. Existing
approaches to service monitoring provide powerful mechanisms
for performing the basic checks of service compliance with SLAs
but fell short of providing adequate support when replacements of
the services deployed in a service based system (SBS) occur at
runtime and/or the terms of the SLA under which a service is
provided change dynamically. Such dynamic changes may render

the monitoring mechanisms which are used to monitor the terms
of an SLA no longer applicable. This can happen for different
reasons. A new replacement service, for example, might not able
to provide the runtime events required for monitoring some of the
terms in an SLA. Also, after changes in the deployment
infrastructure and composition of an existing service, it might no
longer be possible to provide the events and monitors for checking
the established SLAs for the service. For example, when the
deployment of a service is migrated to a new web server which

does not support the interception of SOAP messages sent to or by
the service, it will no longer be possible to execute SLA term
checks that are based on these messages.

To provide effective monitoring support when such changes
happen, it is necessary: (a) to check whether the monitorability of
the required SLA terms and conditions is affected by the changes,
and (b) possibly modify the deployed monitoring infrastructure in
order to ensure the continuous execution of the required runtime

checks. Monitorability in this context is the assessment of whether
particular SLA terms and conditions can be monitored given the
monitoring resources (i.e., event captors and monitors) that are
available in an SBS. The capabilities (a) and (b) above are not
offered by existing monitoring approaches

To address this gap, in this paper we introduce a framework
that we have developed to support (a) and (b), called “SLA
Management for Monitoring” framework or briefly SLAM4M.

The key characteristic of this framework is the separation of the
actual service monitoring from the assessment of SLA
monitorability, and the dynamic set up of the monitoring
resources (i.e., event captors and monitors) for checking an SLA.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’10, March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03…$10.00.

* This research was conducted whilst the author was at City University

Figure 1 – Scenarios for dynamic setup of monitoring infrastructures

SLAM4M groups the activities related to monitorability
assessment and the dynamic set up of monitoring infrastructure
into a separate monitoring management layer and defines
interfaces for integrating this layer with different monitors and
event captors. The assessment of the monitorability of a given set
of SLA terms by SLAM4M is based on descriptions of the

monitoring capabilities of the services that are currently deployed
or are going to be deployed in an SBS. These descriptions are
represented according to an XML based schema that we introduce
in this paper. The schema enables the specification of the event
captors and monitors that a service might have and the event
emission and SLA term checks that these captors and monitors
offer, respectively. Furthermore, to achieve interoperability with
different types of monitors and event captors, SLAM4M adopts an
event-based monitoring architecture [1,4]. According to this

architecture, monitoring is performed through events captured in
the service execution environment by event captors. These events
are sent to one or more monitors, which check the satisfaction of
SLA terms based on them. In addition to the basic assessment of
SLA monitorability, SLAM4M supports the dynamic setup of the
service monitoring infrastructure, including the selection of
appropriate event captors and monitors, the initiation of
communication channels between them, and the delegation of

checks of different SLA terms to individual monitors.

The rest of the paper is organized as follows. Section 2
provides an overview of our approach, by introducing the
scenarios in which the dynamic setup of monitoring
infrastructures is required. Section 3 introduces the languages for
describing the monitoring capabilities of services and SLA
guarantee terms. Section 4 introduces the design of the framework
and the algorithms that it implements for the monitorability

checks and the dynamic setup of monitoring infrastructures.
Section 5 outlines the prototype implementation of the framework
and the results of an initial evaluation of it. Finally, Section 6
overviews related work, and Section 7 provides concluding
remarks and outlines current and future work.

2. OVERVIEW OF THE APPROACH
A key characteristic of the approach underpinning the design of
SLAM4M is the distinction between two key layers in service
provision, namely the SLA management and the Service

management layer (see Figure 1). In this distinction, the SLA
management layer is concerned with SLA management activities
(e.g. SLA specification, negotiation, modification) and the service
management layer is concerned with the software stack required

for making a service manageable according to an SLA. From a

monitoring perspective, the SLA management layer incorporates
the mechanisms required for performing the SLA monitorability
checks and the dynamic set up of monitoring infrastructures that
can enable the monitoring of an SLA whilst the service
management layer incorporates the Event Captors and Monitors
required for service event capturing and performing the actual
SLA checks, respectively. Given this distinction, SLAM4M

belongs to the SLA Management layer, as shown in Figure 1.

An instance of SLAM4M can, in general, manage one or
more atomic or composite services or the composition process
(i.e., the “customer” of services) of an SBS. SLAM4M can
interact with different event captors and monitors at the service
management layer. In general, a service may have different types
of event captors that are responsible for capturing and emitting
different types of service events. These captors may also have
different implementations. An event captor can, for instance, be

realized as an instrumentation of the SOAP container or an
instrumentation of the BPEL process that realizes a composite
service (as in [2]). Similarly, a service may be associated with
different monitors which are able to check different properties.
For instance, a service may have a general purpose monitor that
can check functional and non functional service properties (e.g.
the generation of specific outputs for given inputs and the average
service response time, respectively) as well as specialized

monitors that can provide information about the infrastructure in
which the service is deployed (e.g., server loads, number of
running service instances etc.).

SLAM4M assumes SLAs described in WS-Agreement [7] −

an XML standard schema for specifying SLAs. According to this
schema, an SLA may contain a set of Guarantee Terms specifying
the functional and non-functional properties that a service should

provide during its deployment. The guarantee terms of an SLA
may need to be monitored by service providers and customers
during service execution. Monitoring at the service provider side
is important in order to ensure that the provision is according to
the SLA and no liability to service customers will arise as a result
of deviations from it. At the service customer side, monitoring
might also be important to ensure the adherence of the provider to
the terms of the agreed SLA or some pre-conditions associated
with them related to the service customer. For example, the agreed

maximum response time for a service operation in an SLA may be
guaranteed only if the number of invocations of the particular
operation by the specific customer does not exceed a certain
threshold per second. Thus, SLAM4M may exist both at the side
of the service customer and the service provider offering
monitorability checks and support for the dynamic configuration
of monitoring infrastructure to either of these sides. It should also

be noted that since WS-Agreement does not provide a specific
language for specifying SLA guarantee terms, SLAM4M uses a
special language for defining such terms.

To support the monitorability checks and the dynamic setup
of the service monitoring infrastructures, SLAM4M extracts the

guarantee terms of an SLA and matches them with the known
monitoring capabilities of a service [9]. These capabilities include
the event reporting and the SLA checking capabilities of the
service. Event reporting capabilities describe the types of events
that can be provided by the event captor(s) associated with the
service. Examples of events types required for monitoring include
time stamped service operation calls and responses or records of
time stamped values of internal process variables for composite

services realized by service composition processes. The SLA
checking capabilities of a service are provided by the monitor(s)
associated with it. These capabilities are represented by the list of
SLA guarantee terms specification languages that the monitors of
a service support. A monitor is said to support an SLA guarantee
term specification language if it can directly monitor terms
expressed in this language or it incorporates a mechanism for
translating terms expressed in this language into some internal

operational monitoring specification. In our prototype, for
example, we have used the monitors presented in [4] and [1]
which use monitoring specifications expressed as Event Calculus
and RTML rules, respectively.

Hence, at the SLA Management layer, SLAM4M processes
SLAs in order to extract their Guarantee Terms, and orchestrates
the dynamic setup of the service monitoring infrastructure. To set
up a service monitoring infrastructure, SLAM4M retrieves the

capabilities of the Event Captor of the managed service and the
local and external Monitor engines. On the basis of such
capabilities, SLAM4M decides whether an SLA Guarantee Term
that is defined for a service can be monitored and, if it can,
whether the term will be checked by a local (Scenario 1) or an
external service Monitor (Scenario 2). In the latter case,
SLAM4M starts the engagement protocol between the local Event
Captor of the service and the External Monitor.

Figure 1 shows the two scenarios for dynamic service

monitoring setup in SLAM4M. In the first scenario (see Figure
1a), the managed service is provided with both Event Captor(s)
and a local Monitor and has, therefore, both event reporting and
SLA checking capabilities. Thus, when it receives an SLA,
SLAM4M checks if each guarantee term in it can be monitored
locally, according to the capabilities exposed by the Event Captor
and the Monitor. In particular, in order for a Guarantee Term to be
locally monitored, the Event Captor should be able to provide the

required events, while the Monitor should support the language
used for expressing the Guarantee Term. The second scenario (see
Figure 1b) applies to the following two cases:
(i) The Event captor provides the events required for monitoring

a Guarantee Term, but the Monitor does not support the
Guarantee Term language;

(ii) The managed service has only an Event Captor but no
associated local Monitor.

In the second scenario, SLAM4M first assesses if the required
events are available from the local event captor of the service and
then tries to identify an external monitor that can support the
Guarantee Term language. This identification takes place through
a monitor registry that is accessible to SLAM4M and, if an
appropriate external monitor can be found, SLAM4M submits the

guarantee term to the external monitor and instructs the event
captor of the service to provide events to this monitor. It should be
noted that the external monitor may be available at some URI on
the network and, therefore, an engagement protocol and an event
communication infrastructure are required for establishing and

realizing the communication of events between the service event
captor and the external monitor.

In the prototype implementation that we discuss in Section 5,
we use a “publish/subscribe” event communication infrastructure
designated as “Event Bus” in Figure 1b. More specifically, after
locating a Monitor, SLAM4M gets from it a token designating an
event channel of interest and uses this token to subscribe the
monitor to the Event Bus. The same token is passed to the Event

Captor to be used when it publishes events to the bus so that these
events can be forwarded to the appropriate monitor.

3. LANGUAGES FOR THE SLAM4M

FRAMEWORK
To support the assessment of SLA monitorability and the dynamic
setup of service monitoring infrastructures, we developed XML
schemas for describing: (i) event types, (ii) types of SLA
Guarantee Terms, and (iii) monitoring capabilities.

The XML schema for describing Event Types is used to
specify the required event types for monitoring a Guarantee Term

type and the available event types in the Monitoring capability of
an Event Captor. This schema is shown in Figure 2a. According to
it, an Event Type is described by a context (ETContext) and a list
of required fields (ReqFieldList). The context is described by a
name (ETname), a unique identifier (ETid), a textual description
(ETDescription), and the URI of the XML schema for describing
event instances (EventSchemaURI). Each event type may be
expressed according to a different schema. Each required field is

then described by a name, a type (FieldClass), and a value. Events
representing time stamped service operation calls and responses,
for example, are required for monitoring a guarantee term about
the completion time of a synchronous service operation. The
fields required for describing a time stamped web service
operation call are the service name, operation name, and
timestamp. Besides these, a time stamped operation response
requires also a field reporting the identifier (Id) of the matching
operation call.

The XML schema for describing Guarantee Term Types is
shown in Figure 2b. According to it, a Guarantee Term type is
described by a name (GTermTypeName), a unique identifier
(GTermTypeId), and a reference to the URI at which the guarantee
term type specification schema is available
(GTermTypeLanguage). A guarantee term type is also described
by a list of instantiation fields (InstantiationFieldList), a
Qualifying Condition, and a Service Level Objective. The

instantiation fields contain information required for instantiating a
guarantee term type into an actual guarantee term in an SLA. The
value of the attribute target, in particular, is set to
“qualCondition” or “slo” for instantiating the Qualifying
Condition and the Service Level Objective (SLO) in an SLA,
respectively (according to WS-Agreement, a guarantee term is
specified as a condition of the type: IF Qualifying Condition
THEN Service Level Objective). Qualifying conditions and

service level objectives are expressed as binary predicates in the
current implementation.

Figure 2 – Schemas for describing (a) Event Types and (b) types of Guarantee Terms

Finally, the definition of a guarantee term type includes a list of
the event types required for monitoring it. As discussed above,

event types are described by a list of required fields. In the
specification of guarantee term types, the fields in required event
types do not have a value. The value for these fields is specified in
the actual guarantee term in an SLA as we show later. In
particular, an SLA specifies the value of the fields for which the
attribute forInstantiation is true in the event type description.
Field values are used by SLAM4M to match the guarantee term
type description with the event reporting capability of the event

captor of a service (see Section 5 for examples).

<wsag:GuaranteeTerm
wsag:Name="CompletionTime_GetProductInformation_Gterm"

wsag:Obligated="ServiceProvider"xmlns:terms=http://completion-time-uri.org>
<terms:GTermTypeName="CompletionTime"/>

<terms:GTermTypeId="556678"/>
 <terms:InstantiationFieldList>
 <terms:GTermField target=”eventInstantiation”>

 <terms:FieldName>serviceName</terms:FieldName>

<terms:FieldValue>InventoryService</terms:FieldValue>
 </terms:GTermField>
 <terms:GTermField target=”eventInstantiation”>
 <terms:FieldName>operationName</terms:FieldName>

<terms:FieldValue>GetProductInformation</terms:FieldValue>
 </terms:GTermField>
 <terms:GTermField target=”slo”>

<terms:FieldName>threshold</terms:FieldName>

<terms:FieldValue>20</terms:FieldValue>
 </terms:GTermField>
 <terms:GTermField target=”slo”>

<terms:FieldName>percentile</terms:FieldName>

<terms:FieldValue>0.95</terms:FieldValue>
 </terms:GTermField>

 </terms:InstantiationFieldList>
</wsag:GuaranteeTerm>

Figure 3 – Example of an SLA Guarantee Term

Figure 4 – Monitoring Capability Type (MCType) Description schema

Figure 5 – The architecture of prototype

Figure 3 shows an example of guarantee term in an actual SLA.
This example is a fragment of a SLA expressed in WS-Agreement
that is used in our prototype implementation. In this example, the
namespace wsag refers to the WS-Agreement specification while
the namespace terms refers to the language for expressing
guarantee term types. In the example, the guarantee term type
refers to the average completion time of a generic service
operation call. A Guarantee Term in an SLA can be defined only

in terms of the name and id of the corresponding Guarantee Term
Type, the fields needed for the instantiation of events, the
qualifying condition, and the service level objective. In our
example, the events are instantiated with the name of the service
and operation which the guarantee term refers to. Also, the
guarantee term involves one service level objective about the
average completion time of operation invocation (this time should
be less than 20ms in 95% of invocations). Using the guarantee

term id, SLAM4M can retrieve the guarantee term type
description and, then by using the instantiation fields, it can obtain
the actual list of events required for monitoring the term.

The XML Schema for describing monitoring capabilities is
shown in Figure 4. The schema allows the description of a list of
available Event Types and a list of supported Guarantee Term
Types languages. The former is used to describe the capabilities
of Event Captors, and the latter is used for the description of the

capabilities of service monitors.

4. THE FRAMEWORK FOR SLA

MONITORING MANAGEMENT

4.1 Overall Design
The architecture of our prototype is shown in Figure 5. Before

discussing the details of the modules within SLAM4M, we
introduce the interfaces that must be implemented by the event
captor(s) and the monitor(s) of a managed service to allow the
dynamic setup of the service monitoring infrastructure.

More specifically, event captors expose the following
methods:
• getInstrumentationCapability(): This method is called by

SLAM4M to retrieve the monitoring capability of the Event

Captor;
• instruct(): This method is called by SLAM4M to set the end

point reference of the Monitor to which events will need to be
sent. In case of local monitors, the Event Captor can directly
start sending events at the Monitor end point reference; in
case of external monitors, the end point reference is required
by the Event Captor to start the engagement of the external
monitor;

• engageExternalMonitor():This method is called to obtain the

settings for connecting to the Event Bus and the name of the
channel to which send events during the engagement of an
External Monitor.

Also, monitors expose the following methods:

• getMonitorCapability(): This method is called by SLAM4M
to retrieve the Monitor capability;

• submitGuaranteeTerm():This method is called by SLAM4M
to submit a Guarantee Term to be monitored; the invocation
of the monitor triggers the generation of monitoring properties
by the monitor engine, i.e. Event Calculus or RTML rules in
our prototype implementation;

• getConnectionSettings():This method is called by event
captors to get the settings for connecting to the Event Bus
during the engagement protocol;

• getListeningChannel():This method is called by event captors
during the engagement protocol to get the name of the channel
on which to send events.

SLAM4M and its internal modules are shown on the right
part of Figure 5. The Manager represents the outer layer of

SLAM4M and exposes the operation setupMonitoring(). This
operation is invoked by external components to dynamically setup
the monitoring infrastructure and receives an SLA expressed in
WS-Agreement as argument. The Manager stores also the
decision taken during the setup of the monitoring infrastructure,
for each Guarantee Term in an SLA. For a specific SLA
Guarantee Term, this decision can be that: (a) the term can be
monitored and its monitoring is delegated to the local monitor of

the service that should adhere to the term, (b) the term can be
monitored and its monitoring is delegated to an external monitor,
or (c) the term cannot be monitored. The SLAManager exposes
functionality for parsing SLAs expressed in WS-Agreement and
extracting their guarantee terms. The CapabilityManager retrieves
the capabilities of service monitors and event captors and the
description of guarantee term types. The monitoring capabilities
are matched to detect whether the list of required events to

monitor a guarantee term is available from a given event captor
and whether the guarantee term language is supported by a given
monitor. Note that the list of required events for a guarantee term
is derived according to the instantiation of required fields
described in Section 3.

4.2 Algorithm for dynamic monitoring setup
The algorithm for checking the monitorability of SLA terms and
setting up a service monitoring infrastructure for a given SLA is
shown in Figure 6 (the algorithm constitutes the internal
implementation of the operation startMonitoring() of SLAM4M
Manager in Figure 5).

1. Extract the list of Guarantee Terms gTermList from the SLA

2. Get the capabilities of the monitor (languageList) and event captor

(availEventList) of the service

3. FOR EACH Guarantee Term gTerm (gTerm ∈ gTermList)

 3.1. Get the list of required Events (requiredEventTypeList) of

the term
 3.2. Get the required language (GTermTypeLanguage) of the term

 3.3. IF requiredEventTypeList⊆ availEventList AND
GTermTypeLanguage ∈ languageList

 3.3.1. Select monitor for the term and submit gTerm to it

 3.3.2. Instruct Event Captor with reference to Monitor
 3.3.3. Record that gTerm is delegated to INT_MONITOR

3.4. IFrequiredEventTypeList ⊆ availEventList AND
GTermTypeLanguage ⊄ languageList

 3.4.1. Look for suitable External Monitor and submit gTerm
 3.4.2. IF External Monitor NOT found
 3.4.2.1. Record that gTerm is not monitorable

 3.4.2. ELSE Run the engagement protocol between instrumentation
and External Monitor

 3.4.3. Record that gTerm is delegated to EXT_MONITOR

 3.5. IF requiredEventTypeList ⊄ availEventList

 3.5.1. Record that gTerm is not monitorable

Figure 6 –Monitoring infrastructure set up algorithm

The algorithm gets as input an SLA and the service that it
refers to and outputs a list of decisions on how the different
guarantee terms of the SLA will be monitored. The algorithm first
extracts the Guarantee Terms of the SLA, through the
SLAManager, and then retrieves the capabilities of the service

event captor and monitor (i.e. the list of available events and the
list of supported Guarantee Term languages, respectively) through
the CapabilityManager (lines 1-2). Then, for each Guarantee
Term, it first gets the required event list and the required language
by matching the Guarantee Term type description with the actual
Guarantee Term extracted from the SLA (3.1–3.2). Then, the
algorithm assesses whether the monitoring of the term can be
performed locally (Case 1, line 3.3) or delegated to a suitable

external monitor (Case 2, line 3.4). If the local event captor does
not provide the required event, then the monitoring of the term is
not possible (line 3.5).

In Case 1, the SLAM4M Manager can choose to delegate the
monitoring of the term to the local monitor or search for a suitable
external monitor. This decision can be taken by a running a
selection algorithm (line 3.3.1), which determines the best suitable
(local or external) monitor (this corresponds to the operation

runOptimsation() of the Manager). In the current implementation,
this selection always returns the local monitor. In future
implementations, however, we are planning to investigate and
implement more sophisticated selection methods taking into
account factors such as the current workloads of different
monitors, their efficiency for the given term type or their
trustworthiness (e.g. monitor reliability, availability etc).

In Case 2, the Manager looks for a suitable external monitor

that could support the language. The searchExternalMonitor()
method performs an exhaustive search of the monitors that are
listed in the external monitor registry until a monitor that supports
the language is found. If a suitable monitor cannot be found, then
the guarantee term monitoring is recorded as non monitorable.
When a suitable external monitor is found, the Manager triggers
the engagement protocol between the local event captor and the
external monitor by calling the engageExternalMonitor() method
exposed by the event captor. The protocol realized by this method

is shown in Figure 7. More specifically, the event captor sets a
reference to the external monitor and then, it retrieves the settings
for connecting to the Event Bus from this monitor and the unique
name of the channel (token) on which the external monitor will be
listening for events. Finally, the event captor connects to the
Event Bus and publishes events to the channel. Before sending the
channel name to the event captor, the external monitor registers
the new channel on the Event Bus.

1. Set a reference to the External Monitor
2. Get Event Bus connection settings from External Monitor
3. Get channel name channel from External Monitor

4. Connect to Event Bus and subscribe to channel channel

Figure 7 – Engagement protocol

Figure 8 shows examples of: (i) a required event in the list of
required events in a guarantee term type description (e.g. the time
stamped service operation call), (ii) an event reporting capability
(i.e., an available event representing time stamped calls of the
operation GetProductInformation of the service
InventoryService), and (iii) a monitoring capability. Note that the
available event type can be positively matched against the

required events in the guarantee term type only after the latter has
been instantiated with the values of serviceName and
operationName fields as in the actual guarantee term shown in

Figure 3. Also, the monitoring capability can be positively
matched with the language for expressing the guarantee term type
declared in the guarantee term of Figure 3.

5. IMPLEMENTATION AND

EVALUATION
A prototype of our framework has been implemented in Java,

using an instance of the EVEREST toolkit for service monitoring
presented in [4] as the local Monitor. The list of external monitors
includes additional instances of the EVEREST toolkit as well as

instances of the ASTRO monitoring engine [1]. Both these
monitors have been already used and evaluated in the context of
event-based service and composite service process monitoring. To
become compliant with SLAM4M, EVEREST and ASTRO have
been extended so as to provide implementations of the Monitor
and Event Captor interfaces described in Section 4.1. Our
prototype uses also the open source implementation wsag4j

1 (WS-
Agreement for Java) to parse WS-Agreement SLAs and the open
source Openfire2 implementation of the XMPP PubSub3

specifications to realise its Event Bus.

Figure 8 – Examples of Guarantee Term Type and capabilities

specification

For a preliminary experimentation with the prototype, we
used a retail SBS for selling products in a supermarket. This SBS
involves an atomic service, for inventory management, and a
composed service (BPEL process) for managing the payment of
purchased goods. In the tests, SLAM4M run on an Intel Core Duo

(2.33GHz) machine with 2GB of RAM. We run some
experimental tests using sample WS-Agreement SLAs for the
inventory and the payment service having two Guarantee Terms
each. To test the ability of SLAM4M to deal with different

1 http://packcs-e0.scai.fraunhofer.de/wsag4j/index.html
2 http://www.igniterealtime.org/projects/openfire/index.jsp
3 http://xmpp.org/extensions/xep-0060.html

monitor instances, in our experimental setup we used an instance
of EVEREST as the local monitor for the Guarantee Terms in the
inventory service SLA and an instance of the ASTRO toolkit as
external monitor for guarantee terms of the payment service. In
the experiments, the external monitor registry was populated with

10 different monitor instances (5 instances of EVEREST, 5
instances of ASTRO).

Table 1 shows the average completion time of the whole
monitoring infrastructure setup process and the main individual
phases of the algorithm in Figure 7. For each of the two cases
handled by the algorithm in Section 4.2 (i.e., the selection of local
and external monitors), the average completion time has been
computed over 300 different invocations of the setupMonitoring()

method in the SLAM4M Manager. On average, the whole process
starting from the submission of the SLA to SLAM4M to the
creation of monitorable rules in the monitor and the engagement
of event captors, took from 0.9 to 2.9 seconds. The time required
for setting up the monitoring infrastructure, i.e., searching for a
Monitor and engaging (if necessary) the external Monitor, is
comparable with the time required by the Monitor to generate
Event Calculus or RTML rules, i.e. the time required to execute

the submitGuaranteeTerm() method. This demonstrates that the
overhead introduced by the dynamic setup of the monitoring
infrastructure is in the same order of magnitude as the time
required for setting up the monitor statically (i.e., the time
required by a monitor to create monitoring rules from the terms of
the SLA). Moreover, our preliminary tests show that future work
should investigate methods for reducing the time required for
searching and engaging the external monitor, which now

represents the largest share of the overhead introduced by the
dynamic setup of the monitoring infrastructure.

Table 1 – Average Times for processing a Guarantee Term

6. RELATED WORK
Work on runtime monitoring of service based systems has
developed different types of monitors. These monitors realise
either intrusive or event-based monitoring.

Intrusive monitoring relies on weaving the execution of
monitoring activities at runtime within the code that realises the
service itself or the orchestration process of an SBS. In the case of
composite services, this can be done directly in the BPEL engine,
by interleaving monitoring code with the process executable code

as in [2,8,10,13]. The assessment of the monitorability of service
properties required by SLAs can not be easily achieved through
this paradigm, since the properties to be monitored and the actions
required for monitoring must be interleaved with service
execution code and, therefore, known a priori by the system
designer. Event-based (aka non-intrusive) monitoring [4,5,11]
requires the establishment of mechanisms for capturing runtime
information on service execution, e.g. service operation calls and

responses. In this way, the business logic of the SBS and the
monitoring logic remain separate. The approaches cited above for

non-intrusive monitoring, however, take for granted the
availability of events required for monitoring and cannot cope
with dynamic changes in SLAs and/or the constitution of an SBS.
The work in [12] presents an approach to SBS monitoring based
on diagnosis models, where the behaviour of the SBS is checked

at runtime in order to discover the reasons of faults that may occur
in the system. Even in this case, however, the service diagnosis
infrastructure is statically defined and cannot be modified
dynamically during service execution.

Several projects have also focused on SLA definition,
establishment, and provisioning in the context of both Web and
Grid services. Adaptive Services Grid (ASG), for example, has
designed architecture for establishing and monitoring SLAs in

Grid environments [14]. In this architecture, the monitoring rules
and parameters as well as the architecture for SLA monitoring are
statically defined and cannot be updated at runtime. The
TrustCOM project has also produced a reference implementation
for SLA establishment and monitoring [15]. This implementation,
however, does not involve the dynamic setup of monitoring
infrastructures. The SLA Monitoring and Evaluation architecture
presented within the Gridipedia project [16] has several

similarities with the approach presented in this paper, such as the
need to separate SLA from service management and the adoption
of a publish-subscribe infrastructure for connecting managed
services to remote monitors. The binding between services and
monitors, however, is statically defined and cannot be established
or altered dynamically. Moreover, the dynamic assessment of
SLA monitorability is not supported.

The novelty of SLAM4M with respect to the above

approaches is the introduction of a distributed monitoring
architecture that can support the dynamic execution of
monitorability checks and setup of monitoring infrastructures that
may incorporate different types of monitors and event captors. A
preliminary investigation of the specification of service
monitoring capabilities has been presented by the authors in [9].

7. CONCLUDING REMARKS
In this paper, we have introduced a framework supporting the
dynamic assessment of the monitorability of the terms in a given
SLA following changes in the services deployed by an service
based system and the dynamic establishment of monitoring
infrastructures to support SLA monitoring. A prototype
implementation of this framework has been developed and
presented in the paper along with a preliminary evaluation of the

framework using the implemented prototype. Whilst in the paper,
we have assumed that monitorability assessment and the dynamic
set up of monitoring infrastructures supported by the framework
occur at the same time, in principle the two activities can be
separated and SLA monitorability could be assessed in
conjunction with service discovery and/or SLA negotiation.

Currently, we are developing an algorithm to select the best
available monitor in cases where more than one monitor that can
support the monitoring of SLA guarantee terms can be found
whilst setting up monitoring infrastructures. We are also planning
a further evaluation of our approach, focusing on its scalability

with respect to the size of the SLAs that need to be monitored
(number of guarantee terms) and the number of available
monitors. Finally, we are extending our framework to support
scenarios of SBSs organised in complex hierarchies of business,
software and infrastructure services with hierarchical SLAs.

8. ACKNOWLEDGMENTS
We express our thanks to Michele Trainotti and Miguel Angel

Rojas Gonzalez for their support on the ASTRO toolkit and the
wsag4j library, respectively. This research has been supported by
the EU Commission under the Framework 7 project SLA@SOI
(grant n. 216556).

9. REFERENCES
[1] F. Barbon, P. Traverso, M. Pistore, M. Trainotti, Run-Time

Monitoring of Instances and Classes of Web Service
Compositions, Proc. IEEE ICWS 2006.

[2] L. Baresi and S. Guinea. Towards Dynamic Monitoring of
WS-BPEL Processes, Proc. ICSOC 2005.

[3] O. Moser, F. Rosenberg, and S. Dustdar, Non-intrusive
monitoring and service adaptation for WS-BPEL, Proc.
WWW 2008.

[4] G. Spanoudakis, K.Mahbub, Non Intrusive Monitoring of
Service Based Systems, Int. J. of Cooperative Information
Systems, 15(3):325–358, 2006.

[5] W.M.P. Van der Aalst, M. Dumas, C. Ouyang, A. Rozinat,
and E. Verbeek, Conformance checking of Service Behavior,
ACM TOIT, 8 (3), May 2008.

[6] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
Service-Oriented Computing: State of the art and research
challenges. IEEE Computer, 11:38–45, 2007.

[7] Web Services Agreement Specification (WS-Agreement),
http://www.gridforum.org/Meetings/GGF11/Documents/draf
t-ggf-graap-agreement.pdf.

[8] D. Bianculli and C. Ghezzi. Monitoring Conversational Web
Services. Proc. IW-SOSWE’07, 15–21, 2007.

[9] M. Comuzzi and G. Spanoudakis, Describing and Verifying
Monitoring capabilities for SLA-driven Service-Based
Systems, Proc. CAiSE Forum 2009.

[10] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea and P.
Spoletini. Validation of web service compositions. IET
Software, 1(6):219–232, 2007.

[11] K. Mahbub and G. Spanoudakis, Run-time Monitoring of
Requirements for Systems Composed of Web Services:
Initial Implementation and Evaluation Experience, Proc. of
ICWS 2005, 257–265, 2005.

[12] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M.
Segnan, Fault Tolerant Web Service Orchestration by Means
of Diagnosis, 3rd Eur. Work. on Software Architecture, 2006.

[13] A. Lazovik, M. Aiello and M. Papazoglou, “Planning and
monitoring the execution of web service requests”, Int. J. of
Digital Libraries 2006

[14] K. Jank, Reference Architecture. Adaptive Services Grid
Deliverable D6.V-1, 2005.

[15] The TrustCOM project. Deliverable 64: Final TrustCoM
Reference implementation and associated tools and user
manual. June 2007 (v3.0).

[16] Gridipedia, SLA Monitoring and Evaluation Technology
Solution http://www.gridipedia.eu/sla-monitoring-
evaluation.html

