
Pino, L., Mahbub, K. & Spanoudakis, G. (2014). Designing Secure Service Workflows in BPEL.

Lecture Notes in Computer Science, 8831, pp. 551-559. doi: 10.1007/978-3-662-45391-9_48

City Research Online

Original citation: Pino, L., Mahbub, K. & Spanoudakis, G. (2014). Designing Secure Service

Workflows in BPEL. Lecture Notes in Computer Science, 8831, pp. 551-559. doi: 10.1007/978-3-

662-45391-9_48

Permanent City Research Online URL: http://openaccess.city.ac.uk/5148/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42627364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Designing Secure Service Workflows in BPEL

Luca Pino, Khaled Mahbub and George Spanoudakis

Department of Computer Science
City University London

London, United Kingdom

Abstract. This paper presents an approach that we have developed to support
the design of secure service based applications in BPEL. The approach is based
on the use of secure service composition patterns, which are proven to preserve
composition level security properties if the services that are composed accord-
ing to the pattern satisfy other properties individually. The secure service com-
position patterns are used for two purposes: (a) to analyse whether a given
workflow fragment satisfies a given security property, and (b) to generate com-
positions of services that could substitute for individual services within the
workflow that cause the violation of the security properties. Our approach has
been implemented in a tool that is based on Eclipse BPEL Designer.

1 Introduction

An important concern in the development of a service-based application (SBA) is the
ability to assure that the application will have certain security properties. Assuring
security is important for any application but acutely so in the case of SBAs. Such
applications, in fact, are based on services which might not be under the control of the
SBA provider and can compromise critical security properties (e.g., the integrity and
confidentiality of data passed to, stored or produced, or the availability).
An increasingly accepted view on how to best assure security is that security proper-
ties should be achieved by design rather than be dealt with as an aftermath concern.
Despite being increasingly adopted in the design of normal software applications
security-by-design is not so well supported in the case of SBAs. SBA design is typi-
cally iterative focusing on the development of an orchestration model to coordinate
the services that will constitute the SBA [3]. During it, it is necessary to discover
services that can fit with the orchestration model that is being designed or, where this
is not possible, to change the orchestration model in a systematic manner in order to
make it fit with the available services whilst preserving required properties.
Existing approaches are effective in discovering individual services (e.g., [1][2][3])
and service compositions that have functionality and quality properties that are com-
patible with SBA designs (e.g., [4][5][6]). However, they do not support effectively
the discovery of individual services and service compositions with required security
properties, and the validation of the overall security of a service orchestration process
when the discovered individual services are composed into it. This paper presents an
approach that we have developed to address this problem.

Our approach supports the design of secure SBAs. It is based on the use of Secure
Service Composition patterns (SSC patterns), which are proven to preserve certain
composition level security properties if the services that are composed according to
the pattern satisfy other properties individually. SSC patterns are used for two pur-
poses: (a) to analyse whether a given workflow fragment satisfies a given security
property, and (b) to generate service compositions that could substitute for individual
services within a workflow that cause the violation of the security properties required
of it. Our approach supports also the replacement of individual services, which violate
given security properties, by other individual services or compositions that are dis-
covered based on properties identified by the patterns. The satisfaction of security
properties at the service level is determined by digital service security certificates. We
implemented our approach in a tool that extends Eclipse BPEL Designer [7].
The paper is structured as follows. Section 2 presents scenarios of secure SBA proc-
ess design. Section 3 introduces the SSC patterns. Section 4 presents the validation
and adaptation supported by the SSC patterns. Finally, Section 5 reviews related work
and Section 6 summarizes our approach and outlines directions for future work.

2 Scenarios for Secure Workflow Design

To exemplify our approach, assume an SBA, called StockBroker allowing stock in-
vestors to buy and/or sell stocks in different stock exchanges. Upon receiving a re-
quest from an investor, StockBroker retrieves the investor’s portfolio of stocks, and
fetches the trading values of a selected stock and index of the relevant stock market
(e.g. NASDAQ, Dow Jones). It then matches these values with the preferences of the
investor and contacts different services to carry out the trade and to pay for it.

Fig. 1. The StockBroker BPEL workflow

Fig. 1 shows the workflow that realises StockBroker. This workflow receives a stock
symbol and a stock market index ID; invokes a stock information service (cf. activity
GetStockDetails) to get the details for the given stock in the particular market;
matches these details with preferences (cf. activity AnalysisByPreferences); and, if a
trade order is to be placed, it invokes in parallel the payment service (cf. activity
ProcessPayment) and the trading service (cf. activity TradeStocks)1. Finally, a report
of all results is produced by the reporting service (cf. activity WriteReport).

1 Carrying trading in parallel with payment is possible as clearing of payment transactions can

be completed after the trade transaction has taken place.

GetStock
Details

symbol,

indexID

AnalysisBy
Preferences

stockValues,

indexValues

currentAccount,

paymOrder,

tradingAccount,

stocksOrder

Order?

Process
Payment

Trade
Stocks

currentAccount,

paymOrder

tradingAccount,

stocksOrder tradeResult

paymResult

Write
Report

report

yes

Sequence “ProcessOrder”

In designing secure service workflows, we have identified two scenarios. In the first
scenario (Scenario 1), an SBA designer wants to verify if an external service opera-
tion, used in the workflow through an invoke activity, satisfies a required security
property. In this scenario, if the service that is currently bound to the activity does not
satisfy the property, support is offered to discover alternative services that would
satisfy the required property and, if no such individual services can be found, to ex-
plore if it is possible to build a composition of other services that satisfies the security
property and could, therefore, be used as a substitute for the original service. An ex-
ample of a composition is shown in Fig. 2. The composition ParallelStockDetails
shown calls two service operations in parallel, namely GetStockValues and Get-
StockMarketIndex.GetStockValues returns the trading value for a stock, identified by
its symbol, and GetStockMarketIndex returns the value of a stock market index.

Fig. 2. Service composition ParallelStockDetails to be substituted for GetStockDetails

The second scenario arises in cases where the SBA designer wishes to verify that a
part of a workflow (as opposed to an individual activity of it) satisfies a given security
property. Workflow fragments are identified (delimited) by a control flow activity. In
the Stock Broker workflow, for instance, a designer might wish to verify whether the
sub sequence of activities designated as ProcessOrder in Fig. 1 preserves the confi-
dentiality of the personal current account information of Stock Investor.

3 Secure Service Composition Patterns

SSC patterns are used to specify how security properties of whole abstract workflows
(i.e., composition level security properties) can be guaranteed via security properties
of the individual services used in the workflow. The causal relation between work-
flow and activity level properties specified in such patterns is formally proven.
An SSC pattern is composed of: (a) an abstract workflow structure (Pattern.WF),
called workflow specification, that indicates how services are to be composed and the
data flows between them; (b) the composition level security property that the pattern
guarantees (Pattern.CSP); and (c) the security properties required of the partner ser-
vices that may be bound to the workflow specification (i.e., to the abstract invoke
activities of the workflow) to guarantee the security property specified in (b) (Pat-
tern.ASP). SSC patterns are expressed as rules of the production system Drools [9], to
enable their application for workflow security validation and adaptation.
In the following, we present an example of an SSC pattern that we have encoded
specifying the effect of composition on the security property of separability. Separa-
bility is a security property introduced in [20] and has been defined as complete inde-
pendence between high (confidential) and low level (public) sequences of actions. For

GetStock
Values

GetStock
MarketIndex

symb

index indexV

stockV

stockV,

indexV
symb,

index

this property to hold there should be no interaction between confidential and public
sequences of actions (e.g., running these actions as two separate processes without
any communication between them). The composition of separability, proven in
[20][21], is used for specification of the SSC pattern in Drools as given in Sect. 4.1.

4 Application of SSC patterns

SSC patterns are used to infer the security properties that the individual services
should have for the workflow to have another security property as a whole. This al-
lows to: (a) analyse whether a given workflow (or a fragment of it) satisfies a given
security property (security validation); and (b) generate compositions of services that
could substitute for individual services, which prevent the satisfaction of the security
properties required (security driven workflow adaptation). In the following, we pre-
sent the approaches that enable these forms of applications.

4.1 Inferring security properties of workflow activities

SSC patterns are used to infer the security properties, which have to be satisfied by
the individual activities (services) of a composition, for the whole composition to
satisfy a given security property. In general, there can be zero, one or several alterna-
tive combinations of activity level properties, called security solutions, that can guar-
antee the security property required of the composition. The algorithm that applies
SSC patterns for this purpose is given in Table 1.

Table 1. Algorithm to infer security properties for activities within a composition

Algorithm: INFERSECPROPERTY(WF, RSP, InSolutions): OutSolutions
Inputs: WF – /* workflow specification of a service composition process */

RSP – /* security property requested for WF */
InSolutions– /* list of security solutions used for recursion. Base case: {RSP} */

Output: OutSolutions – /* list of security solutions for the activities in WF */

For each pattern Patt such that Patt.CSP matches RSP do
If Patt.WF /* i.e. the workflow specification of Patt */ matches WF then

For each element E /* i.e. individual activity or a sub-workflow */ of WF do
Properties[E] := security properties for WF.E identified by Patt.ASP

For each security solution S in InSolutions do
S’ := replace RSP by Properties in S
SolutionListPatt := ADD(SolutionListPatt, S’)

For each element E in WF that is a sub-workflow specification do
SolutionListPatt := INFERSECPROPERTY(E, Properties[E], SolutionListPatt)

OutSolutions := ADDALL(OutSolutions, SolutionListPatt)
Endif

Return OutSolutions

As shown in the table, given an input service workflow WF and a required security
property RSP, the algorithm (INFERSECPROPERTIES) tries to apply all the SSC pat-
terns that would be able to guarantee the requested security property RSP. A pattern is
applied if the workflow specification of the pattern (Pattern.WF) matches with WF. If
a pattern matches the workflow, then the security solutions computed up to that point
are updated to replace the requested security property RSP with the security proper-

ties for the matched elements in WF (these can be individual activities or sub-
workflows). If a matched element E of WF is an atomic activity, the process ends
w.r.t it. If E is a sub-workflow, the algorithm is applied recursively for it.

Fig. 3. The workflow patterns of sequence ProcessOrder

As an example of applying INFERSECPROPERTIES consider the case where an SBA
designer wishes to verify that the subprocess ProcessOrder (PO) within the Stock-
Broker process of Fig. 1 preserves the confidentiality of the Stock Investor current
account. This security property can be expressed as separability, with currentAccount
being confidential. ProcessOrder can be seen as a sequential workflow consisting of a
sub-workflow WF’ and the atomic activity WriteReport that follows it (see Fig. 3).
WF’ itself is a parallel workflow involving two atomic activities: ProcessPayment
and TradeStocks.

Table 2. Specification of a pattern in Drools

rule "Separability on Parallel Workflow"
 when
 $wf : Parallel($A1 : act1, $A2 : act2)
 $csp : Property(propertyName == "Separability", subject == $wf, $cspAttr : attributes)
 $solution : Solution(properties contains $csp)
 then
 Solution newSolution = (new Solution($solution).removeProperty($csp);

 Property asp1 = new Property ($csp, "Separability", $A1);
 asp1.getAttributes().put("public", new Subset($cspAttr.get("public")));
 asp1.getAttributes ().put("confidential", new Subset(new Complement($cspAttr.get("public"))));
 newSolution.getProperties().add(asp1);
 insert(asp1);
 Property asp2 = new Property ($csp, "Separability", $A2);
 asp2.getAttributes().put("public", new Subset($cspAttr.get("public")));
 asp2.getAttributes ().put("confidential", new Subset(new Complement($cspAttr.get("public"))));
 newSolution.getProperties().add(asp2);
 insert(asp2);

 insert(newSolution);
end
Hence, when INFERSECPROPERTIES is applied on to it, in the first iteration an SSC
pattern for the sequential flow can be applied on WF, returning two security proper-
ties: one for WF’ requiring confidentiality for currentAccount, paymResult and trad-
eResult, and another for WriteReport, requiring confidentiality for paymResult and
tradeResult. The second iteration of the algorithm applies another SSC pattern, but for
the parallel flow, to WF’. In particular INFERSECPROPERTIES applies SSC patterns

Write
Report

currentAccount,

paymOrder,

tradingAccount,

stocksOrder

Process
Payment

Trade
Stocks

currentAccount,

paymOrder

tradingAccount,

stocksOrder tradeResult

paymResult

paymResult,

tradeResult report

WF’
WF

WF’

specified as rules of the Drools production system [9]. Table 2 shows the specification
of the SSC pattern about separability on parallel flow (see [21]) as a Drools rule.
More specifically, the rule defines that if the workflow ($wf) is a parallel composition
of activities and the composition level security property is separability ($csp) then the
security property of separability is required of the individual activities $A1 and $A2 of
the composition (this is expressed by the property asp1 and asp2). Hence, by applying
the rule of the SP pattern to WF’, the algorithm creates and adds two security proper-
ties to the final solution, i.e., asp1 (separability) for currentAccount and paymResult
of ProcessPayment and asp2 (separability) for tradeResult of TradeStocks.

4.2 Validation of Security of Individual Services and Workflow Fragments

In order to validate whether a security property is satisfied by a fragment of a work-
flow, we assume that a fragment consists of a BPEL scope or a control flow (i.e.,
sequence, flow, if-then-else or pick) activity that can contain multiple service invoca-
tions (in the form of invoke activities) and further control flow activities.
Given a request to verify whether a workflow fragment (WF) satisfies a required se-
curity property (RSP), the algorithm INFERSECPROPERTY is applied to identify the list
of alternative security solutions (i.e., combinations of security properties of the indi-
vidual services in the fragment) that would guarantee RSP. As explained earlier
INFERSECPROPERTY tries to apply different SSC patterns in order to identify these
alternative solutions. If such solutions exist, each of them is analysed further to check
if the security properties required by it are provided by the services in the fragment.
To validate whether an individual service satisfies the security property required of it
by a security solution, we express the property as a service discovery query and then
use the discovery algorithm described in [8] to match the specification of the individ-
ual service with the query and establish if it satisfies the query or not. In applying the
service discovery process, we assume the existence of machine-readable security
certificates that indicate the security properties that a service S has [8]. If the individ-
ual service validation succeeds for all the services of the fragment by even one of the
identified security solution, then the fragment is validated. Otherwise, if no security
solution can be found, or if none of the found security solution can be satisfied by the
services in the fragment, the fragment is reported as not validated.

4.3 Workflow Adaptation

In certain cases, it might be possible to adapt a workflow in order to make it satisfy a
required security property. In our approach, this adaptation can take two forms, by:
(a) replacing individual services in it by other individual services, or (b) replacing
individual services in it by service compositions that are constructed in a way that
guarantees the security property required of the service to be replaced. When a work-
flow fragment is not validated, the SBA designer can compare and select the security
solutions for the workflow fragment found by the validation algorithm. This allows to
replace the security property over the fragment with security properties over the in-

voke activities within it. Once a specific security solution is selected, the service adap-
tation mechanism is triggered to adapt the workflow.

4.4 Implementation of the approach

Our approach has been implemented in a tool called A-BPEL Designer. This tool is an
extension of BPEL Designer, i.e., an Eclipse plugin [7] that offers comprehensive
support for the editing and deployment of WS-BPEL processes through Eclipse IDE.
In A-BPEL Designer, we have extended BPEL by allowing the specification of secu-
rity properties for invoke or control flow BPEL. A-BPEL Designer offers also support
for validating security properties of individual partner services or workflow fragments
and adapting BPEL processes to ensure security as described. To offer these function-
alities, A-BPEL designer has been integrated with the service discovery engine de-
scribed in [3] and the service composition tool described in [8].

5 Related work

Research related to the security of service based applications focuses on making se-
cure an SBA, or verifying its security.
A common approach underpinning research in the former area is to secure SBAs by
using additional security services that can enforce the required security properties
[12][13][14]. More specifically, an aspect-oriented version of BPEL, called
AO4BPEL [12], allows the integration of security specifications in a BPEL process.
These specifications are then used to indicate security functionalities that are offered
by a special Security Service, and integrate them in the AO4BPEL process.
Sectet [13] is a framework for the implementation of security patterns from design to
the implementation of an orchestration. Sectet enables the design of orchestrations as
UML message flow diagrams, which are converted into workflows and used to gener-
ate stubs for actual orchestrations. In orchestrations, services are wrapped by Policy
Enforcement Points, whose purpose is to provide the required security properties.
PWSSec [14] describes a set of complementary stages to be added to the SBAs devel-
opment phases in order to support security. In particular the WSSecArch is a design
phase that takes care of the indications about which security requirements are
achieved and where they are in the architecture. The approach makes usage of secu-
rity architectural patterns to convert the security requirements into architecture speci-
fications, with external security services providing the security functionalities.
Unlike the above approaches, our approach does not use special types of security
components or services but supports the discovery of normal services and service
compositions that themselves have the security properties required of an SBA.
Attention has been given also to the model based verification of security properties
during the design of orchestrations [15][16][17]. These works usually require a UML
specification of the system, the security threats associated with it and the description
of required properties in order to verify the satisfiability of the latter. Our approach
does not require the specification of threats. Furthermore, it does not perform exhaus-

tive verification since its analysis is driven by specific SSC patterns. This is important
as it makes security analysis more scalable at the expense of loss of completeness.
Some model based approaches [18][19] support also the transformation of from secu-
rity requirements into security policies and architectures. This usually happens in an
early design phase that must be followed by a subsequent phase where details about
the implementation have to be worked out. Our approach offers the possibility to add
and address security properties during the workflow design phase, without requiring
designer to have a security background.
The METEOR-S project [10] allows annotation of abstract BPEL process to specify
semantic-aware QoS properties, including security. The annotations are then used to
discover appropriate services for the BPEL process, using an annotated registry. The
Sec-MoSC (Security for Model-oriented Service Composition) tool [11] is an exten-
sion of the Eclipse BPMN Modeller that allows to design BPMN business processes
and to add security properties to them. These two approaches focus only on the vali-
dation single service of security properties, while our approach allows the validation
of workflow fragments and the substitution of services with service compositions.

6 Conclusion

In this paper we have presented an approach supporting the validation of security
properties of BPEL workflows and the security based adaptation of such workflows
during their design. A-BPEL Designer implements this approach in the Eclipse plat-
form through the usage of a service discovery engine.
Our approach is based on Secure Service Composition (SSC) patterns, which encode
formally proven causal relations between individual service level security properties
and composition level security properties. The validation of workflow security is
based on identifying (through the SSC patterns) the security properties that the indi-
vidual partner services need to have for the workflow to have composition level prop-
erties. The identified service level properties are used to check if existing partner
services satisfy them, discover alternative services for them in case they do not, and
discover service compositions satisfying the services if necessary. Our approach sup-
ports also the automatic replacement of security non-compliant services.
Our current implementation supports workflows with sequential, parallel and choice
control activities (i.e., BPEL sequence, flow, if-then-else and pick activities), and the
replacement of individual service invocations. Hence, in its current form, its applica-
tion is restricted to non-transactional and stateless services.
Our on-going work focuses on supporting transactional services. We are also conduct-
ing performance and scalability tests, in order to compare our results with competing
approaches (especially approaches based on full verification of security).

Acknowledgment

The work presented in this paper has been partially funded by the EU F7 project
ASSERT4SOA (grant no.257351).

References

1. Pawar P. and Tokmakoff A. "Ontology-based Context-aware service discovery for
pervasive environments." IEEE Int. Work. On Service Integration in Pervasive
Environment. June 2006

2. Mikhaiel R. and Stroulia E. "Interface- and Usage-aware Service Discovery." In Proc. Of
4th Int. Conf. on Service Oriented Computing. 2006.

3. Spanoudakis G., Zisman A. "Discovering Services During Service Based Systems Design
Using UML, ", IEEE Transactions on Software Engineering, 36(3): 371-389, 2010

4. Fujii K. and Suda T. "Semantics-Based Dynamic Web Service Composition." IEEE
Journal on Selected Areas in Communications, 23(12): 2361- 2372. Dec. 2005.

5. Silva E., Pires L.F. and van Sinderen M. "Supporting Dynamic Service Composition at
Runtime based on End-user Requirements." User Generated Services Workshop,
International Conference on Service Oriented Computing (ICSOC) 2009.

6. Pino L., Spanoudakis G.: Constructing Secure Service Compositions with Patterns, 8th
IEEE World Congress on Services, June 2012, Hawaii, USA

7. BPEL Designer Project, http://www.eclipse.org/bpel/
8. ASSERT4SOA Consortium, ASSERTs Aware Service Based Systems Adaptation,

ASSERT4SOA Project, Deliverable D2.3, Sep 2012.
9. Drools – Jboss Community, http://drools.jboss.org

10. Aggarwal R. et al, “Constraint Driven Web Service Composition in METEOR-S”, in Proc.
of the 2004 IEEE Int. Conf. on Services Computing (SCC 2004), Sep 2004 , pp. 23-30.

11. Andre R. Souza, et al. “Incorporating Security Requirements into Service Composition:
From Modelling to Execution”, in ICSOC-ServiceWave '09, 2009.

12. Charfi, Anis, and Mira Mezini. "Using aspects for security engineering of web service
compositions." In Proc. of 2005 IEEE Int. Conf. on Web Services, 2005.

13. Hafner, Michael, et al. "SECTET: an extensible framework for the realization of secure in-
ter-organizational workflows." Internet Research 16 (5): 491-506. (2006):

14. Gutiérrez, Carlos et al. "Towards a Process for Web Services Security." Journal of Re-
search & Practice in Information Technology, 38(1) (2006).

15. Bartoletti M, et al. "Semantics-based design for secure web services." Software Engineer-
ing, IEEE Transactions on 34.1 (2008): 33-49.

16. Deubler M., et al. "Sound development of secure service-based systems." In Proc. of the
2nd Int. Conf. on Service oriented computing. ACM, 2004.

17. Geor G., et al. "Verification and trade-off analysis of security properties in UML system
models." IEEE Transactions on Software Engineering, 36(3): 338-356, 2010

18. Menzel M., Warschofsky R., and Meinel C. "A pattern-driven generation of security pol i-
cies for service-oriented architectures." In Proc. of IEEE Int. Conf. on Web Services 2010.

19. Séguran M, Hébert C, and Frankova G. "Secure workflow development from early re-
quirements analysis." In Proc. of IEEE 6th European Conf. on Web Services. 2008.

20. McLean J. "A general theory of composition for trace sets closed under selective interleav-
ing functions." In Proc. of IEEE CS Symposium on Research in Sec. and Privacy, 1994.

21. Mantel H. "On the composition of secure systems." In Proc. of 2002 IEEE Computer Soci-
ety Symposium on Research in Security and Privacy, 2002

