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Abstract— This paper presents a prediction model for software 

services availability measured by the mean-time-to-repair 

(MTTR) and mean-time-to-failure (MTTF) of a service. The 

prediction model is based on the experimental identification of 

probabilistic prediction for variables that affect MTTR/MTTF, 

based on monitoring service data collected at runtime.  
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I.  INTRODUCTION 

Monitoring quality-of-service (QoS) properties of 
software services at runtime is necessary for verifying 
whether services deliver the levels promised to their 
consumers. Monitoring has, thus, been supported by several 
approaches, which, however, can only detect violations of 
QoS properties after they have occurred without being able 
to predict them. This is a significant limitation as that 
capability to predict violations of QoS service properties at 
runtime is important for the dynamic and proactive 
adaptation of service-based systems.  

In this paper, we present a runtime prediction model for 
a key QoS property of software services, namely software 
service availability. The model is based on the prediction of 
two measures of service availability: the mean-time-to-
failure (MTTF) and mean-time-to-repair (MTTR) of a 
software service, defined as the average up and the average 
down time in the operational life of a service, respectively. 

The rest of this paper is structured as follows. In Section 
II, we give an overview of the prediction model for software 
service MTTR and MTTF and in Section III, we present the 
results of an initial experimental evaluation of it. 
Subsequently, in Section IV and V, we discuss related work 
and provide conclusions and directions for future work, 
respectively. 

II. MTTR AND MTTF PREDICTION MODELS 

In our model, the MTTR of a software service is defined 
as the average time from a failure of a service to respond to 
an operation call until it restarts responding to operation 
calls again. MTTR needs to be bounded to ensure the timely 
reactivation of a service after periods of unavailability. 
Hence in a service level agreement (SLA), this would be 
typically specified as a constraint MTTR ≤ K where K is a 
constant time measure. 

The estimation of the probability of violating the 
constraint MTTR ≤ K at a future time point te is based on 

identifying the probability distribution functions of two 
variables: (1) the MTTR of the service, and (2) the time 
between non-served calls of service operations that occur in 
a period during which a service has been available (referred 
to as time-to-failure or “TTF”). MTTR and TTF values 
correspond to the periods shown in Figure 1. More 
specifically, MTTR is computed as the average of TTR 
values, i.e., the time difference between the first served call 
of a service following a period of unavailability and the 
initial non served call (NS Call) of the service that initiated 
this period. TTF is the difference between the timestamps of 
two NS calls of the service that initiate two distinct and 
successive periods of unavailability. 

 
Figure 1. TTR and TTF values 

The probability to violate the constraint MTTR ≤ K at 
the end of the time period p can be estimated approximately 
by the following formula: 
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The above formula distinguishes two cases: (a) the case 
where the last recorded MTTR value at the time when the 
prediction is requested violates the constraint (i.e., the case 
where MTTRc >K), and (b) the case where the last recorded 
MTTR value at the time when the prediction is requested 
does not violate the constraint (i.e., the case when MTTRc ≤ 
K). In the former case, the probability of violation is 
computed as the probability of not seeing a value of MTTR 
in period p (i.e., MTTRy) that is sufficiently small to restore 
the current violation. In the second case, the probability of 
the violation is computed as the probability of seeing a large 
enough MTTRy value (i.e., a value greater than MTTRcrit) 
that would violate the constraint.  

In the case of MTTF, the SLA constraint to be 

monitored and forecasted is MTTF ≥ K (the largest the 
MTTF the less frequent the failures of the given services) 
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and the probability of violating the constraint can be 
estimated approximately by the formula: 
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Details about the derivation of formulas (1) and (2) are 
omitted due to space restrictions but can be found in 0.  

III. EXPERIMENTAL RESULTS 

To evaluate the precision and recall of the MTTR and 
MTTF prediction models, we used monitoring data 
generated from the invocation of a web service of Yahoo 
allowing programmatic search of Internet pages 
(WebSearchService). Through this process, we collected a 
total of 5500 invocation and 5500 response events 

To evaluate our prediction model, we divided the total 
time range of the 5500 invocations in 9 equal sub-ranges 
and for each of them we computed the MTTRc and MTTFc 
values for the end of each sub-range. We also used five 
different QoS constraints for MTTR and MTTF, based on 
different K values. The K values were determined by the 
MTTR and MTTF values at the end time point tc of each of 

the nine sub-ranges as:  0.75×MTT*c, MTT*c–1, MTT*c, 

MTT*c+1, 1.25×MTT*c. For each K, we generated 
predictions using combinations of prediction windows of 1, 
10, 60 and 600 seconds, and history sizes of 100, 300 and 
500 data points. Hence, we performed 540 predictions in 
total for each of the MTTR and MTTF.  

The precision and recall of these predictions were 
measured using the following formulas: Precision ൌ ሺTP ൅ FNሻ/ሺTP ൅ FP ൅ TN ൅ FNሻRecall ൌ TP/ሺTP ൅ TNሻ 

In these formulas, TP is the number of correct positive 
predictions of QoS constraint violations; FP is the number 
of incorrect predictions of QoS constraint violations; TN is 
the number of correct predictions of QoS constraint 
satisfaction, and FN is the number of incorrect predictions 
of QoS constraint satisfaction. We also investigated the 
effect of the size of the historic event set (HS) used to 
generate the QoS prediction model, and the prediction 
window (PW) on precision and recall. Table 4 shows the 
recall and precision measures for MTTR and MTTF. 

TABLE 1. MTTR AND MTTF PRECISION AND RECALL 

  MTTR MTTF
  Precision Recall Precision Recall

Prediction 
window 
(secs) 

1 0.96 0.94 0.90 0.93

10 0.81 0.71 0.79 0.78

60 0.77 0.61 0.60 0.63

600 0.47 0.39 0.56 0.67

History 
size 

(events) 

100 0.74 0.67 0.65 0.61

300 0.75 0.60 0.72 0.83

500 0.76 0.58 0.77 0.83

Overall  0.75 0.64 0.71 0.750

 

As shown in the table, the overall precision and recall of 
predictions for all different combinations of HS and PW 
were 0.75, 0.63 for MTTR and 0.65, 0.7 for MTTF, 
respectively. As expected, precision and recall improved 
significantly for both models when considering shorter 
prediction periods, rising to 0.96 and 0.94 for MTTF and 
0.9, 0.94 for MTTR when the prediction window was set to 
1sec. The results also indicated that the history size had no 
consistent effect in the recall and precision of the two 
models.  

IV. RELATED WORK  

Existing techniques for predicting software system 
properties may be classified with respect to different 
criteria, including the property of the system that a 
technique aims to predict and its algorithmic approach 0.  

With respect to the former criterion, there have been 
techniques focusing on prediction of software systems 
failures 0, trends in different system parameters such as 
server workloads, or CPU loads and network throughput 0. 

With respect to the algorithmic approach, there are 
techniques using regression models 0, various mean time 
prediction models 0; and FSA based prediction 0. 

Our prediction approach for software services MTTR 
and MTTF is, to the best of our knowledge, novel both in 
terms of its algorithmic basis and its focus on prediction of 
threshold constraints for these availability properties.  

V. CONCLUSIONS 

In this paper, we have presented a black-box approach 
for predicting software service availability based on 
forecasts of the MTTR and MTTF of a service. In this 
approach, MTTR/MTTF measures computed from captured 
service invocations and responses at runtime are used for the 
generation of a probabilistic model for MTTR and MTTF. 

Currently, we are working on developing prediction 
models for other aggregate QoS properties of software 
services (e.g., service throughput), without relying on 
behavioural, compositional or usage service models since 
such models are not widely available.  
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