
Palacios, M., García-Fanjul, J., Tuya, J. & Spanoudakis, G. (2012). Identifying Test Requirements

by Analyzing SLA Guarantee Terms. In: C. A. Goble, P. P. Chen & J. Zhang (Eds.), 2012 IEEE 19th

International Conference on Web Services (ICWS). (pp. 351-358). IEEE. ISBN 978-1-4673-2131-0

City Research Online

Original citation: Palacios, M., García-Fanjul, J., Tuya, J. & Spanoudakis, G. (2012). Identifying

Test Requirements by Analyzing SLA Guarantee Terms. In: C. A. Goble, P. P. Chen & J. Zhang

(Eds.), 2012 IEEE 19th International Conference on Web Services (ICWS). (pp. 351-358). IEEE.

ISBN 978-1-4673-2131-0

Permanent City Research Online URL: http://openaccess.city.ac.uk/4664/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/42627303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Identifying Test Requirements by Analyzing SLA Guarantee Terms

M. Palacios, J. García-Fanjul, J. Tuya

Department of Computer Science

University of Oviedo

Campus de Viesques, Asturias, Spain

{palaciosmarcos, jgfanjul, tuya}@uniovi.es

George Spanoudakis

School of Informatics

City University London

London, UK

G.E.Spanoudakis@ city.ac.uk

Abstract—Service Level Agreements (SLAs) are used to

specify the negotiated conditions between the provider and

the consumer of services. In this paper we present a stepwise

method to identify and categorize a set of test requirements

that represent the potential situations that can be exercised

regarding the specification of each isolated guarantee term

of an SLA. This identification is addressed by means of

devising a set of coverage levels that allow grading the

thoroughness of the tests. The utilization of these test

requirements would focus on twofold objectives: (1) the

generation of a test suite that allows exercising the situations

described in the test requirements and (2) the support for

the derivation of a monitoring plan that checks the

compliance of these requirements at runtime. The approach

is illustrated over an eHealth case study.

Keywords - Service Level Agreements; Test Requirements;

Software Testing; Service Monitoring.

I. INTRODUCTION AND MOTIVATION

In the context of service-oriented architectures, Service
Level Agreements (SLAs) are technical documents that
contain the negotiated conditions between service
providers and consumers. These agreements act as a
guarantee where the set of terms that govern the
executions of the constituent services of an application are
specified. They also state the penalties to be applied upon
the violation of such terms. It is therefore important for
both stakeholders to avoid or minimize the consequences
derived from SLA violations.

Currently, most research uses monitoring techniques in
order to detect SLA violations in service based
applications (SBAs) at runtime [17]. In complex and
critical scenarios, these approaches require spending a
considerable amount of effort and cost with the aim of
deriving a suitable plan to observe the potential error-
prone situations and check the compliance of services with
the SLA. In addition, these reactive approaches are useful
in detecting problems in SBAs although such problems are
detected after they have already occurred and, therefore,
any further consequences that they might have cannot be
avoided. Thus, proactive approaches that are aimed at
forecasting SLA violations or even preventing them are
also being proposed [12].

In previous work [18], we presented a general method
to test SLA-aware service based applications, exploiting
the benefits of both proactive and reactive approaches in
order to detect problems in SBAs. Aligned with this

testing method, in this paper we focus on the identification
of test requirements with the aim of: (1) generating a test
suite that exercises such requirements (proactive
approaches) and (2) deriving a monitoring plan that allows
checking whether these requirements are exercised at
runtime (reactive approaches). Both approaches present
different characteristics that make them complementary to
increase the confidence in the correct behavior of the
application.

On the one hand, some of the identified test
requirements can be exercised in a pre-production or
controlled testing environment. To achieve this, a set of
test cases must be designed trying to cover as many test
requirements as possible. With the execution of these test
cases, we can anticipate problems in the SBA and take
proactive measures to avoid or mitigate SLA violations
and their corresponding consequences. On the other hand,
test requirements may also be used to guide the monitoring
plan in order to decide the specific situations that have to
be observed at runtime, when the services are already
deployed in the operational environment.

In this paper we address the identification of test
requirements in service based applications using the
information represented in SLAs. The contributions of this
paper are summarized as follows.

(a) We devise a set of coverage levels regarding the
SLA that allow grading the thoroughness of the
tests.

(b) Focusing on the first of these levels, we define a
test criterion in order to identify and categorize a
set of test requirements, which represent different
situations that are interesting to test or monitor for
the given SLA. The categorization allows
establishing a prioritization according to the
testing objective.

(c) The identification and categorization of these test
requirements are illustrated over a case study.

The content of the paper is organized as follows.
Section II presents a general overview of the approach.
Section III describes a logic that considers the potential
evaluation values of a Guarantee Term. Section IV
describes how test requirements can be identified and
categorized in the first coverage level. Section V illustrates
the application of the approach in a case study. Section VI
outlines the state of the research in the addressed topic.
Finally, Section VII summarizes the conclusions and the
future work.

II. GENERAL OVERVIEW

In the context of software testing, test requirements are
specific features and situations of the Software Under Test
(SUT) that must be satisfied or covered during testing
[14]. The task of identifying test requirements is usually
performed by means of the application of a test criterion.
The definition of coverage levels allow grading how
exhaustive the identification of test requirements can be. In
some scenarios it could be possible to design an in-depth
test suite which involves a high cost in terms of money or
effort. However, in other situations there may be
constraints that hinder the definition and execution of tests
and force the tester to select a less exhaustive coverage
level or prioritize the tests according to the coverage level.
The selection of a coverage level always tries to maximize
the trade-off among different criteria such as cost, benefit
or risks.

In SBAs, an SLA specifies a set of terms that are
logically combined into a hierarchical structure by means
of compositor elements. Hence, test requirements can be
identified based on different information represented in the
agreement. Thus, we have defined three different coverage
levels regarding the SLA:

• Guarantee Term Coverage Level

• Compositor Coverage Level

• SLA Coverage Level
Guarantee terms can be considered as the most

indivisible condition of an SLA so a first coverage level
named Guarantee Term Coverage Level is used to
represent all the potential test requirements regarding the
specification of each isolated guarantee term. In addition
to this information, more exhaustive test requirements can
be achieved applying a test criterion to the logical
conditions represented in the compositor elements. These
new test requirements belong to the Compositor Coverage
Level. Finally and considering the specification of the SLA
as a whole with all its atomic and logical conditions, a
global SLA Coverage Level can be defined, which
represents all the situations that are interesting to test
according to the content of such SLA.

In addition to this and disregarding whether the test
requirements have been identified according to one
coverage level or other, such test requirements are later
exercised through the derivation of a suitable test suite.
Typically, the extent to which a test criterion is satisfied by
a test suite is measured in terms of coverage which can be
defined as the percent of test requirements that are
exercised. The generation of test cases is performed with
the aim of obtaining the most cost effective set that fulfils
the expected coverage. Thus, typically a test case can
cover many test requirements. Currently, we are focusing
on the identification of test requirements so the derivation
of test cases is out of scope of this paper.

In order to define different test criteria with the aim of
identifying test requirements, we have devised a logic that
allows evaluating each of the internal elements of an SLA
Guarantee Term. Although these terms can be described
using any of the multiple languages that have been

previously proposed, our approach uses WS-Agreement
[1] because it is a well-accepted standard for the
management of SLAs. We tackle the description of this
logic in the following section and the criteria to identify
the test requirements in the remainder of the paper.

III. EVALUATION OF SLA GUARANTEE TERMS

One of the most important tasks in the management of
SLAs is the evaluation of the terms included in the
agreement. This evaluation requires checking the
specification of the terms and their internal elements and
making a decision about the fulfillment of such terms.

Specifically, in WS-Agreement a Guarantee Term
(GT) contains a Scope that specifies the list of the services
and, optionally, a substructure of a service (for example, a
particular method or end point) the term applies to, a
Qualifying Condition (QC) which is an assertion that
indicates whether the term is valid or not, and the Service
Level Objective (SLO) which is the guarantee that must be
met. Optionally, the penalty for not having satisfied the
guarantee can be specified in the Business Value List
(BVL) of the term.

Given the syntax of a Guarantee Term, after analyzing
the collected information from the service executions at
runtime a guarantee term can be evaluated as:

• Fulfilled if and only if the methods of the services
specified in the Scope have been executed, the
Qualifying Condition has been met and the
Service Level Objective has been satisfied.

• Violated if and only if the methods of the services
specified in the Scope have been executed, the
Qualifying Condition has been met and the
Service Level Objective has not been satisfied.

Typically, the evaluation of a guarantee terms is
performed using a binary logic that indicates whether the
term has been fulfilled or not. However, from a testing
point of view, this two-value logic may not be enough to
evaluate all the potential situations derived from the
guarantee term. For example, situations where the methods
of the services associated to a guarantee term have not
been executed should be analyzed as well within the
evaluation process. Considering such cases introduces the
need for an additional evaluation value, under which:

• A guarantee term is evaluated as Not Determined
if and only if the methods of the services specified
in the Scope have not been executed and the
Qualifying Condition is met.

Actually, WS-Agreement identifies these three
situations as the potential runtime states of an SLA.
However, analyzing the internal elements of a Guarantee
Term and its interpretation according to the standard, we
have to consider a new situation where the term is not
evaluated with any of the three aforementioned values and
which has not been explicitly identified in WS-Agreement.
This situation arises when the Qualifying Condition of the
term is not met during the execution of services. In this
case, the Guarantee Term becomes invalid and it must not

be taken into account for the purpose of the evaluation of
the SLA so:

• A guarantee term is evaluated as Inapplicable if
and only if the Qualifying Condition has not been
satisfied.

Hence, a Guarantee Term denoted by t can be
evaluated using a function ev, which can provide four
different values as output:

ev(t) = { Fulfilled (F), Violated (V),
Not Determined (ND), Inapplicable (I)}

Guarantee Terms in WS-Agreement can be logically

combined into a hierarchical structure using the specific
compositor elements All, OneOrMore and ExactlyOne
(equivalent to AND, OR and XOR logical operators
respectively). However, the evaluation of these
compositors does not affect the identification of test
requirements within the Guarantee Term Coverage Level
so the remainder of this paper focuses on the evaluation of
individual Guarantee Terms.

At this point, we are assuming that the SBA is our SUT
and the evaluation process is performed once in a specific
point in time after the execution of the services and the
guarantee condition affects just one execution of the SUT
but not multiple executions.

IV. SLA TEST REQUIREMENTS

In this section, we are focusing on the identification
and categorization of a set of test requirements that
represent situations in the Guarantee Term Coverage
Level outlined in Section II. In order to obtain such test
requirements, we analyze the content of the Guarantee
Terms taking Section III into account so all the potential
evaluation values are exercised.

A. Identification of Test Requirements

According to the previous section, there are four
different values of evaluation for a guarantee term. This
implies that we would need to identify four different test
requirements with the aim of satisfying all the evaluation
values of a guarantee term with this logic. However, the
internal syntactic structure and the semantics of a
guarantee term in WS-Agreement requires a more
exhaustive coverage criterion to represent all the potential
situations that are interesting to observe or exercise from a
testing point of view. Consider Figure 1 where the internal
elements of a GT (Scope, Qualifying Condition and
Service Level Objective) are represented. At the top of the
figure, we check whether the methods of the services
specified in the Scope have been invoked or not so this
condition is evaluated with two potential values
(satisfied/unsatisfied). Moreover, the content of the
Qualifying Condition and the Service Level Objective
represent conditions that are also evaluated as satisfied or
unsatisfied. Hence, we apply all the combinations of these
three internal elements of each GT. As there are three
internal elements with their corresponding two truth
values, we obtain eight different situations but there are
two combinations that do not make sense due to the

semantic meaning of the internal elements of the guarantee
term. This pair of situations arises when the methods of the
services specified in the Scope have not been executed so
it is impossible to check whether the Service Level
Objective has been fulfilled or not (right branch of the
figure). Thus, we obtain a total number of six test
requirements for a Guarantee Term (identified by TR1-
TR6).

In detail, four of the total requirements are identified
when the methods of the services specified in the Scope
are invoked (left branch of Figure 1):

TR1 The methods of the services are invoked, the

Qualifying Condition is satisfied and the Service

Level Objective is satisfied (GT evaluated as

Fulfilled).

TR2 The methods of the services are invoked, the

Qualifying Condition is satisfied and the Service

Level Objective is unsatisfied (GT evaluated as

Violated).

TR3 The methods of the services are invoked, the

Qualifying Condition is unsatisfied and the Service

Level Objective is satisfied (GT evaluated as

Inapplicable).

TR4 The methods of the services are invoked, the

Qualifying Condition is unsatisfied and the Service

Level Objective is unsatisfied (GT evaluated as

Inapplicable).

In addition to these test requirements, we also consider

those situations where the methods of the services
specified in the Scope element have not been invoked at
the time of the evaluation (right branch of Figure 1).
Namely, we include what happens when the Qualifying
Condition is satisfied / unsatisfied while the methods of
the services are not executed. For each Guarantee Term,
other two test requirements are identified as well:
TR5 The methods of the services are not executed while

the Qualifying Condition is satisfied (GT evaluated

as Not Determined).

TR6 The methods of the services are not executed while

the Qualifying Condition is unsatisfied (GT

evaluated as Inapplicable).

Figure 1. Combination of internal elements of a Guarantee Term

The obtaining of these six test requirements for each
Guarantee Term represents the general case of the
identification process. However, there are also some usual
particular cases (PC) that we have to deal with.

PC1: The first particular case arises when the Guarantee

Term has no Qualifying Condition associated. We
have previously mentioned that the Qualifying
Condition determines whether a term is valid or not
so it must be considered during the evaluation
process. In this particular case, the term is always
valid so only three test requirements (TR1, TR2
and TR5) are identified. Furthermore, the
specification of the test requirements TR1 and TR2
must be adapted as “The methods of the services
are invoked and the Service Level Objective is
satisfied / unsatisfied” respectively and test
requirement TR5 as “The methods of the services
are not executed (GT evaluated as Not
Determined)”.

PC2: This particular case arises when the Qualifying
Condition of the Guarantee Term is an assertion
over service attributes. This case occurs because the
semantics of the Qualifying Condition also affect
the identification of the test requirements. WS-
Agreement states that the Qualifying Condition is
an assertion over service attributes and/or external
factors. For example, in the former this condition
may make reference to an input parameter or
condition of the service while in the latter it can
represent a specific state of the SUT. If this
particular case, the combinations performed in test
requirements TR5 and TR6 do not make sense
because it is impossible to check the fulfillment of
the QC if the methods of the services have not been
executed. In such case, test requirements TR5 and
TR6 are joined in only one as “The methods of the
services are not executed (GT evaluated as Not
Determined)” so we would obtain one test
requirement less than in the general case.

B. Categorization of Test Requirements

The decision about the depth of the test is pointed out
by the coverage level. However, once such coverage level
has been selected, different testing objectives regarding the
tests can be selected with the aim of leading to the
identification of test requirements. Thus, the utilization of
a coverage level can be refined through the definition of
different categories so as the tester has the capability to
prioritize which of these objectives are going to be
satisfied within that coverage level. In addition to this, the
categorization of test requirements can also be used to
establish monitoring objectives, making a decision about
the features of the SUT that are more interesting to be
observed at runtime. Hence, these categories can be used
to guide the identification of specific test requirements
instead of obtaining the whole set of situations from the
terms of the SLA.

TABLE I. TEST REQUIREMENTS CATEGORIES

Cat. Description Test Req.

1 Expected behavior of the SUT TR1

2 Test the behavior after a term violation TR2

3 Testing need indicator while monitoring TR3, TR4

3.1 Test the monitor to avoid false positives TR4

4 Test the effects of not executing a service TR5, TR6

Table I displays the categorization of test requirements

in the Guarantee Term Coverage Level according to their
meaning or testing objective. The first column of this table
shows the identifier of each category. The second column
outlines the description of the testing objective of the
category. Finally, last column lists the test requirements
that are included in such category.

Category 1 (C1) makes reference to the situations
where the execution of the SUT satisfies the conditions
specified in the guarantee term of the SLA so such term is
evaluated as Fulfilled. From a monitoring point of view,
these situations represent the expected behavior of the
SUT so they should be continuously exercised if no
problem arises during the period of time the system is
being observed. Test requirements TR1 identified from the
Guarantee Term are included in this category.

Category 2 (C2) represents those requirements that
involve a violation of any of the terms included in the SLA
so test requirements TR2 are included in this category.
Even when an SLA violation arises, the application must
deliver an expected behavior despite of any detected
problem. Thus, the application will have to manage the
violation according to the business values such as penalties
specified in the SLA. Furthermore, the monitoring system
must be able to detect the problem and report it in a proper
way as well as evaluating the term as Violated. These
situations are very interesting in both testing and
monitoring approaches because their detection allows
analyzing the information collected from the monitor and
making a decision about any corrective action in order to
solve the problem and avoid future consequences.

Category 3 (C3) includes those requirements that
represent executions where the services are invoked under
circumstances that do not satisfy the Qualifying Condition
so the terms become invalid and they must not be taken
into account when evaluating the SLA. While monitoring,
the systematic fulfillment of these requirements means that
the application is continuously being executed under the
same conditions specified in the QC so we do not have
evidences about how the application would behave when
the execution conditions change. Hence, they indicate the
need of designing tests with the aim of checking whether
the application is able to fulfill the GT in the future. Test
requirements TR3 and TR4 are included in this category.

Within this category, there is a subcategory 3.1 (C3.1)
of requirements that can be used to check the behavior of
the monitoring system that gathers information from the
executions of the services and makes a decision about the
evaluation of the SLA. More specifically, these
requirements aim at checking that this monitor does not
detect a false positive, that is to say, a violation in a term

when such term is not valid for the evaluation of the SLA.
Test requirements TR4 are included in this category. They
represent situations where both the Qualifying Condition
and the Service Level Objective are not satisfied so the
monitoring system must be aware that this term is
inapplicable and it cannot be evaluated as violated.

Category 4 (C4) includes those requirements where a
service associated to a Guarantee Term is not executed so
the term must be evaluated as Not Determined. The
fulfillment of these requirements may represent a problem
during the evaluation process because there is a lack of
information to determine whether a term is being fulfilled
or not.. Due to this concern, these requirements are used to
test whether the monitoring system is able to perform the
evaluation process properly even when a service (method)
has not been executed. Furthermore, these tests may lead
to detect problems not in the application but in the SLA
specification itself so the agreement can be reviewed and
updated accordingly. Test requirements TR5 and TR6 are
included in this category.

C. Derivation of Test Cases

The selection of the coverage level allows the tester to
decide how thorough the SUT will be tested and, by means
of the identification and categorization of test
requirements, which situations are more interesting to test.
Focusing on the Guarantee Term Coverage Level, we
identify and categorize a set of test requirements for each
of the Guarantee Terms specified in the SLA so the union
of all of these requirements represents the final set of
situations that must be exercised. The fulfillment of such
test requirements is performed through the definition and
executions of test cases. The derivation of these test cases
aims at covering as many test requirements as possible
with the most affordable cost. This involves that many test
requirements can be covered using the same test case.

When deriving a test case, we are deciding which of
the test requirements is going to be exercised during the
execution of such test case. The same test case may
exercise other test requirements obtained from different
Guarantee Terms. Thus, bearing this fact in mind, the
tester must decide how test requirements are combined
with the aim of obtaining the smallest set of test cases that
achieve coverage as higher as possible in this level.

V. CASE STUDY

In this section, we will illustrate the identification and
categorization of test requirements over an eHealth service
based application, which is used as a case study. This
system was proposed within the context of the PLASTIC
European project [19] and has been used in previous
testing approaches [2][6]. The original example specifies
the set of conditions in an SLA that should be satisfied by
the constituent services of the eHealth system. We have
added new conditions regarding functional features of the
system in order to illustrate the identification of the test
requirements. Furthermore, we have deleted the conditions
that affect the availability of the services because we are
considering conditions that affect only one execution of

the SUT. The SLA we have used in this work can be
downloaded from [7].

The behavior of the SUT is represented in Figure 2.
Basically, the software under test is deployed as a
composite service (WSHealth) that receives an alarm from
a hospital and it must look for an available professional
(WSDoctor or WSSupervisor) who will take responsibility
for handling the incident. To do this, a service that
manages the list of professionals of the hospital is queried
(WSRegistry). This service provides a list of IP addresses
for the professionals who are available at that moment
depending on the type of the received alarm (Emergency
or Not Confirmation). These professionals may be
connected to the system through wired or mobile devices
so the conditions related to both connections are different.

The SLA that governs the execution of this system
contains 14 Guarantee Terms (GTs) related to 6 different
services and 9 service methods. Twelve of the GTs have
the whole general structure of a Guarantee Term, i.e., a
Scope, Qualifying Condition and Service Level Objective.
The other two GTs do not have a Qualifying Condition.
By applying the aforementioned identification procedure
to this case study, we have identified 66 test requirements.
All of these requirements have been classified according to
the five categories described in Section IV. The results of
the categorization are shown in Table II. In this table, the
services and methods that constitute the case study are
represented in the first two columns and their associated
guarantee terms are indicated in the third column. The
following columns show the number of test requirements
identified in each category. Finally, the last column shows
the total number of test requirements identified from each
guarantee term.

Figure 2. eHealth Behavior Example

TABLE II. SLA TRACEABILITY SUMMARY

Service Method GT
Categories

Test Req.
C1 C2 C3 C3.1 C4

WSHealth reportAlarm
GT1 1 1 2 1 1 5

GT2 1 1 2 1 1 5

WSRegistry

getResidentialGateway - -

getConnectedDeviceIP

GT3 1 1 2 1 1 5

GT4 1 1 2 1 1 5

GT5 1 1 - - 1 3

GT6 1 1 2 1 1 5

GT7 1 1 2 1 1 5

WSDoctor receiveAlarm
GT8 1 1 2 1 1 5

GT9 1 1 2 1 1 5

WSSupervisor receiveAlarm
GT10 1 1 2 1 1 5

GT11 1 1 2 1 1 5

WSMedicalDevice

getMedicalDevices GT12 1 1 - - 1 3

getMeasure
GT13 1 1 2 1 1 5

GT14 1 1 2 1 1 5

WSCalendar
getAppointmentByMonth - - - - - - -

getAppointment - - - - - - -

TOTAL 14 14 24 12 14 66

In this case study, 14 requirements are included in
category C1 (one for each guarantee term which are
evaluated as Fulfilled), 14 requirements are included in
category C2 (one for each guarantee term which are
evaluated as Violated), 24 requirements are included in
category C3 (two for each guarantee term that contains
qualifying condition, which are evaluated as Inapplicable),
12 requirements are included in category C3.1 (one for
each guarantee term where both the qualifying condition
and the service level objective are not satisfied and, thus,
the term is evaluated as Inapplicable) and, finally, 14
requirements are included in category C4 (one for each
guarantee term where the methods of the services are not
executed so as the term is evaluated as Not Determined). It
is worthy mention that test requirements classified within
C3.1 are also included in category C3 so the number of
test requirements showed in the last column is exactly the
addition of the numbers represented in the columns C1, C2
and C3 and C4.

Below we detail the identification of test requirements
from two of the Guarantee Terms specified in the SLA
(Figure 3). This pair of terms is related to the same service,
which is in charge of providing the list of available
professionals at the time of the alarm arrival. The first GT
specifies the temporal threshold for the service to give the
response when the alarm type is an Emergency whereas
the second one indicates that it is mandatory to find at least
one available professional to manage the incident. The
specification of the test requirements for these two
Guarantee Terms is presented in Table III. The first
column shows the guarantee term from whom the test
requirements have been identified. The second and third
columns list the services and methods each guarantee term
applies to. The fourth column numbers unequivocally the
test requirement. The fifth and sixth columns specify the

identifiers of the generic test requirement and the category.
The seventh column specifies the content of the test
requirement. The last two columns represent the expected
behavior of the SUT regarding the SLA, including
evaluation value of each guarantee term and the
consequences derived from such evaluation.

Regarding the Guarantee Term GT3 of the SLA and
according to the procedure described in Section IV, four
test requirements represent the potential situations where
the fulfillment/violation of the Qualifying Condition and
the Service Level Objective of GT3 are combined (TR1-
TR4). These test requirements are identified with numbers
11-14. In this GT3, particular case PC2 is applied so,
instead of identifying TR5 and TR6, just one test
requirement is identified (number 15) and it represents that
the method of the service specified in the Scope is not
executed.

Figure 3. Excerpt of the SLA

TABLE III. EXCERPT OF THE TEST REQUIREMENT SPECIFICATION

GT Service Method N ID Cat Test Requirement
Expected Behavior

Ev. Value Consequences

…

GT3 WSRegistry getConnectedDeviceIP

11 TR1 C1 alarmType == Emergency & responseTime < 3 Fulfilled

12 TR2 C2 alarmType == Emergency & responseTime 3 Violated Penalty = 3$

13 TR3 C3 alarmType != Emergency & responseTime < 3 Inapplicable

14 TR4 C3 – C3.1 alarmType != Emergency & responseTime 3 Inapplicable

15 TR5 C4
The method getConnectedDeviceIP of

WSRegistry is not executed
Not Determined

…

GT5 WSRegistry getConnectedDeviceIP

21 TR1 C1 count (list_of_professionals) > 0 Fulfilled

22 TR2 C2 count (list_of_professionals) 0 Violated Penalty = 5$

23 TR5 C4
The method getConnectedDeviceIP of

WSRegistry is not executed
Not Determined

…

Regarding GT5, particular case PC1 is applied. On the
one hand, this involves the identification of test
requirements numbers 21-22 because the term does not
include Qualifying Condition. On the other hand, it allows
joining TR5 and TR6 into the test requirement number 23.
The fulfillment of the first of these test requirements
(number 21) aims at checking whether the application is
able to find an available professional at the time of
receiving an alarm. The fulfillment of test requirement
number 22 tests the behavior of both the application and
the monitoring system when there is not any professional
available to manage the alarm. On the other hand, test
requirement number 23 tests the behavior of the system
when the invocation of the registry is not performed.

As can be seen, this procedure may identify test
requirements that represent equivalent situations (see test
requirements numbers 15 and 23). However, this fact will
be considered when deriving the test suite because both
test requirements will be exercised through the design and
execution of a unique test case.

Finally, in the last column of Table III we have only
represented the consequences derived from the test
requirements numbers 12 and 22 according to the
specification of the Guarantee Terms. When deriving the
test cases, the tester will describe the full expected output
of such test case bearing in mind the information about the
behavior of the SUT.

VI. RELATED WORK

In the scope of Service Oriented Architectures, much
effort is being focused on the detection of SLA violations
using different approaches. Basically, these works may be
categorized in two main groups: in the first group we
include such works which aim at detecting these violations
at runtime when the SUT is already deployed in its
operational environment; the second category includes the
group of approaches that try to anticipate the detection of
problems or event the prevention of them, before these
problems lead to consequences for the stakeholders.

Regarding the first group, several works have
addressed the testing of SLAs using monitoring

approaches to detect SLA violations. Mahbub and
Spanoudakis [13] propose to model and monitor the
conditions specified in WS-Agreement using an Event
Calculus (EC) based approach. Raimondi et al. [20]
proposed a system that automatically monitors SLAs,
translating timeliness constraints into timed automata,
which is used to verify traces of services executions.
Comuzzi et al. [4] tackles the relation between the
establishment and monitoring of SLAs in the scope of
SLA@SOI European Project. In addition to these works,
other different systems have been developed to monitor
service based applications with the aim of detecting SLA
violations, for example, SALMon [15], SLAMonitor [8] or
CLAM [3].

Monitoring techniques have also been used to recollect
information of the SUT in order to prevent SLA violations.
Leitner et al. [10] propose a framework that allows
monitoring and predicting SLA violations before they
have occurred using machine learning techniques.
Ivanovic et al. [9] propose a constraint based approach to
monitor and analyze the QoS metrics included in the SLA
for the purpose of anticipating the detection of potential
SLA violations. Schmieders et al. [21] combined
monitoring and prediction techniques in order to prevent
SLA violations. Lorenzoli and Spanoudakis [11] presented
EVEREST+ framework which supports the monitoring
and prediction of potential violations of the QoS metrics
specified in the SLA.

Finally, few approaches have addressed the
identification of tests from the SLA specification with the
aim of anticipating the detection of violations. Di Penta et
al. [5] perform black-box and white-box testing using
Genetic Algorithms to detect SLA violations in service
compositions and Palacios et al. [16] propose to test the
conditions of the SLA specified in WSAG using a well
known testing technique, the Category Partition Method.
Furthermore, Bertolino et al. [2] propose the PUPPET
framework, which allows generating stubs from the
WSAG, WSDL and BPEL specification of the services to
test SLA-aware service compositions.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we tackle the testing of SLA-aware
service-based applications with three main contributions.
We have devised different coverage levels regarding the
SLA that allow deciding or establishing the thoroughness
of the tests. Focusing on the first of these levels
(Guarantee Term Coverage Level), we have proposed a
way to evaluate Guarantee Terms of SLAs taken the
syntactic and semantic structure of such terms into
account. Using this logic as a foundation, we have
proposed a systematic procedure to identify a set of test
requirements for SLA Guarantee Terms achieving a full
coverage within the GT Coverage Level. These test
requirements may be exercised through the generation of a
suitable set of test cases or used to support the derivation
of a monitoring plan to observe and check the SLA
Guarantee Terms at runtime. The identification method
has been applied to a case study of an e-Health system that
was originally proposed by the European project
PLASTIC.

In our future work, we will focus on improving the
coverage criteria, using the information represented in the
logical and hierarchical structure of the SLA (Compositor
and SLA Coverage Levels). From the final set of test
requirements, we will have to evaluate the testability of
such test requirements in order to determine which of the
requirements can be exercised through the execution of
tests and which of them should be checked at runtime. For
those executable test requirements, we will be able to
provide the tester with guidelines that allow deriving a
suitable test suite which aims at exercising as many test
requirements as possible maximizing the trade-off cost-
benefit.

Finally, the task of obtaining the test situation is
currently performed manually by the tester. As WS-
Agreement is an XML-based language, the identification
of these situations can be performed automatically so we
will study the feasibility of developing a tool that
automates this process in the future.

ACKNOWLEDGMENT

This work has been partially funded by the Department
of Science and Innovation (Spain) and ERDF funds within
the National Program for Research, Development and
Innovation, project Test4DBS (TIN2010-20057-C03-01)
and FICYT (Government of the Principality of Asturias)
Grant BP09-075.

REFERENCES

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T.
Nakata, J. Pruyne, J. Rofrano, S. Tuecke, M. Xu, “Web Services
Agreement Specification”, 2007.

[2] A. Bertolino, G. De Angelis, L. Frantzen, A. Polini, “Model-based
generation of testbeds for web services,” Proc of Testcom/FATES,
Lecture Notes In Computer Science, vol. 5047. Springer-Verlag,
Berlin, Heidelberg, 2008, pp. 266-282.

[3] K. Bratanis, D. Dranidis, A. J. H. Simons, “SLAs for cross-layer
adaptation and monitoring of service-based applications: a case
study,” In Proceedings of the International Workshop on Quality
Assurance for Service-Based Applications (QASBA), 2011.

[4] M. Comuzzi, C. Kotsokalis, G. Spanoudakis, R. Yahyapour,
“Establishing and Monitoring SLAs in Complex Service Based
Systems,” Proc. IEEE International Conference on Web Services
(ICWS), 2009, Los Angeles, CA.

[5] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, M. Bruno,
“Search-based testing of service level agreements,” Proc. 9th
Annual Conference on Genetic and Evolutionary Computation GECCO 7 , London, ACM, New York, 7, pp. 9 - 97.

[6] L. Frantzen, M. N. Huerta, Z. G. Kiss, T. Wallet, “On-The-Fly
Model-Based Testing of Web Services with Jambition,” in 5th Int.
Workshop on Web Services and Formal Methods (WS-FM 2008),
ser. LNCS, no. 5387. Springer, 2009, pp. 143-157.

[7] Software Engineering Research Group (GIIS) homepage:
http://giis.uniovi.es/testing/downloads/?lang=en (accessed
February 2012)

[8] N. Goel, N.V.N. Kumar, R.K. Shyamasundar, "SLA Monitor: A
System for Dynamic Monitoring of Adaptive Web Services," Proc.
9th IEEE European Conference on Web Services (ECOWS), 2011,
pp.109-116.

[9] D. Ivanovic, M. Carro, M. Hermenegildo, “Constraint-Based
Runtime Prediction of SLA Violations in Service Orchestrations,”
Proc. International Conference on Service Oriented Computing
(ICSOC), 2011, pp. 62-76.

[10] P. Leitner, A. Michlmayr, F. Rosenberg, S. Dustdar, “Monitoring,
prediction and prevention of SLA violations in composite
services,” Proc. IEEE International Conference on Web Services
(ICWS) Industry and Applications Track, 2010, pp.369-376.

[11] D. Lorenzoli, G. Spanoudakis, “EVEREST+: Runtime SLA
Violations Prediction,” 5th Middleware for Service-oriented
Computing Workshop, in conjunction with the 11th
ACM/IFIP/USENIX International Middleware Conference, 2010.

[12] D. Lorenzoli, G. Spanoudakis, “Runtime Prediction of Software
Service Availability,” Int. Conference on Software Engineering
Research and Practice (SERP'11), July 18-21, 2011, USA.

[13] K. Mahbub, G. Spanoudakis, “Monitoring WS-Agreements: an
event calculus based approach,” in Test and Analysis of Service
Oriented Systems, Springer V., 2007, pp. 265-306.

[14] J. Offut, L. Nan, P. Ammann, X. Wuzhi, “Using abstraction and
Web applications to teach criteria-based test design," 24th IEEE-
CS Conference on Software Engineering Education and Training
(CSEE&T), 2011, pp.227-236.

[15] M. Oriol, J. Marco, X. Franch, D. Ameller, “Monitoring Adaptable
SOA System using SALMon,” Workshop of Service Monitoring,
Adaptation and Beyond (MONA+), ServiceWave Conf., 2008.

[16] M. Palacios, J. García-Fanjul, J. Tuya, C. de la Riva, “A proactive
approach to test service level agreements,” Proc. Fifth International
Conference on Software Engineering Advances (ICSEA), 2010,
pp. 453-458.

[17] M. Palacios, J. García-Fanjul, J. Tuya, “Testing in service oriented
architectures with dynamic binding: A mapping study,”
Information and Software Technology, vol. 53 (3), March 2011,
pp. 171-189.

[18] M. Palacios, “Defining an SLA-aware method to test service-
oriented systems,” Proc. 9th International Conference on Service
Oriented Computing (ICSOC), PhD Symposium, Dec. 2011.

[19] PLASTIC European Project homepage: http://www.ist-plastic.org/
(accessed February 2012).

[20] F. Raimondi, J. Skene, W. Emmerich, “Efficient Online
Monitoring of Web-Service SLAs,” Proceedings of the 16th ACM
SIGSOFT Int. Symposium on Foundations of Software
Engineering (SIGSOFT'08/FSE-16), 2008.

[21] E. Schmieders, A. Micsik, M. Oriol, K. Mahbub, R. Kazhamiakin,
“Combining SLA prediction and cross layer adaptation for
preventing SLA violations,” Proc. 2nd Workshop on Software
Services: Cloud Computing and Applications based on Software
Services, 2011, Timisoara, Romania.

