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Abstract

A fully automatic segmentation and morphological analysis algorithm for the analy-

sis of microvessels from CD31 immunostained histological tumour sections is presented.

The algorithm exploited the distinctive hues of stained vascular endothelial cells, cell

nuclei and background, which provided the seeds for a region-growing algorithm in the

3D Hue, Saturation, Value (HSV ) colour model. The segmented objects, identified as

microvessels by CD31 immunostaining, were post-processed with three morphological

tasks: joining separate objects that were likely to belong to a single vessel, closing ob-

jects that had a narrow gap around their periphery, and splitting objects with multiple

lumina into individual vessels. Keywords: vessel segmentation and morphology, IHC.

1 Introduction

The immunohistochemistry (IHC) for staining of tissue sections for different proteins is a

standard method for diagnostic and research purposes. Staining for platelet endothelial cell

(EC) adhesion molecule (PECAM-1 / CD31) with tagged antibodies is an effective method

for identifying and localising the ECs that line blood vessels, as CD31 is expressed consti-

tutively on the surface of adult, embryonic and tumour ECs. In oncology, the expression

of CD31 by endothelial cells in angiogenic vessels has gained considerable attention as the

tumour vasculature is emerging as an important therapeutic target for cancer. Despite the

popularity of the use of IHC to stain for different proteins and the growth and power of com-

puter and image analysis algorithms, manual procedures are still the most common method

for assessing the presence, absence, distribution or intensity of staining[1, 2].

Numerous algorithms for IHC image analysis have been developed for different specific

tasks: counting objects such as nuclei, cells or microvessels, quantifying optical density,

measuring the abundance of a stain, or extracting morphometric measurements such as area,

perimeter, ratio or perimeter and area and angle of microvessels [3, 4, 5]. Many of these

algorithms are semi-automated, but most require a certain degree of user interaction, either

for (a) pre-processing tasks such as adjustments of brightness and contrast or selection of

window sizes, counting of vessels or demarcation of regions of interest or vessels, (b) post-

processing tasks such as delineation of lumina for segmented objects, inclusion/exclusion of

regions of interest, elimination of artefacts or (c) training of classifiers with supervised data.

c© 2010. The copyright of this document resides with its authors.
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Most of these algorithms use either the Red, Green and Blue (RGB) channels, a subset

of these or the grey level intesity equivalent from the colour images, and few exploit the

higher discrimination that can be achieved when the RGB channels are transformed to the

Hue, Saturation and Value (HSV ) channels. Post-processing of the segmented objects, as

presented in this paper, is desirable to introduce a higher reliability of any morphometric

measurements and therefore all the statistical measurements derived from these.

2 Segmentation Algorithm

The segmentation algorithm was based on a transformation from the RGB to the HSV colour

model. HSV describes perceptual colour relationships related to the artistic ideas of hue, tint

and shade [7] enabling a 3D chromatic histogram to be constructed from the HSV images.

In this work, we considered that a colour image Irgb had dimensions Nr ×Nc × 3 for

rows, columns and three colour channels that were quantised to Ni levels, which are usually

256. Let Lr = {1,2, ...,r, ...,Nr}, Lc = {1,2, ...,c, ...,Nc} be the spatial domains of the data,

x ∈ (Lr ×Lc) be a pixel of the image, and [R,G,B] =[{1,2, ...,r, ...,Ni} ,{1,2, ...,g, ...,Ni}
,{1,2, ...,b, ...,Ni}] a triplet of RGB values. An image was represented then as a function that

assigned a colour to each pair of co-ordinates: Lr ×Lc; Irgb : Lr ×Lc → [R,G,B].
The shading of an original unbiased image U , which was corrupted by a slowly-varying

shading S so that I = U +S, was corrected by estimating S as the envelope of the signal [6]

and removing it from the biased image Ĩrgb ≈U = I −S. Then, the mean value of the three

RGB unbiased channels was equalised to obtain a background with minimum saturation.
The unshaded and equalised image RGB was converted to an HSV colour model: Ihsv =

T
(

Ĩrgb

)

, Ihsv = [Ihue, Isat , Ival ]. The hue-saturation-value histogram mHSV (h,s,v) is a tri-
variate measurement of the occurrence of [H,S,V ] on Ihsv and it was defined as:

mHSV (h,s,v) =
#{x ∈ (Lr ×Lc) : Ihue(x) = h, Isat(x) = s, Ival(x) = v}

#{Lr ×Lc}
,

where # denoted the number of elements and h ∈ H, s ∈ S, v ∈ V . The 2D hue-value

mHV (h,v), hue-saturation mHS (h,s) or saturation-value mSV (s,v) histograms are marginal

distributions of mHSV (h,s,v). For this work, we introduced the maximum saturation pro-

file as measurement of the distribution of the highest value of saturation for every value of

hue, mathematically: pmaxS ={y ∈ (h× S) : max(s) so that mHS(y) > 0}, h ∈ H. While

the marginal distributions revealed the frequency of pixels within a certain hue or saturation,

pmaxS revealed the distribution of saturated regions. Fig. 1 shows a representative IHC image

and its final segmentation, mHSV as a cloud of coloured points and an RGB cloud to compare

the separability of the HSV model, mHS as a mesh overlaid on the 2D loci of constant value

and pmaxS together with the histogram mH .

Three criteria defined the brown colour of the endothelial cells, low value (v < Īval),

high saturation (s > 0.25) and an adaptive hue range. The colour variations inherent to

IHC [8] resulted in images where the colour of stained nuclei was either blue or light purple

and the ECs were brown to light beige. To compensate for this variation, the amount of

brown (0◦,67◦) was measured and used to determine the range of hues that were selected as

brown. For those images with a strong component of brown, ranges of brown, background

and blue were approximately (10◦,50◦), (60◦,200◦), (220◦,310◦) while for those with a low

component it was (350◦,90◦), (90◦,190◦), (200◦,290◦) respectively.

The segmented ECs were used as seeds in a region growing algorithm, with the following

criteria of similarity: (a) a combination of the s and v, distances in (b) position and (c)
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hues from the pixels to the seeds. Stop criterion was minimal change (10 pixels) between

iterations. Small (1 or 2 pixels) and isolated regions were discarded. Unassigned pixels were

considered as background.

Three morphological conditions were used to assign objects as vessels: (a) join objects

which could form part of a single vessel (Fig. 2a). Solid objects close to each other were

considered to be joined. A skeleton of the individual objects was compared with one of the

joined ones and only when the combined had lower number of branching points the objects

were joined. (b) Close the open objects (Fig. 2b), Small gaps were closed by using the

combination of the external edge of the object with the watersheds of a distance map of

the background. (c) Split joined objects, e.g. a single vessel that turned in the up-down

dimension (Fig. 2c). The larger holes of the lumina were used to generate a distance map

that was split with the watershed transform to partition the original object into smaller ones.

3 Morphological Analysis

The segmentation algorithm described above provided a series of objects that described the

endothelial cells of a tumour that were stained for CD31 and as such the objects described

closely the shape of the microvessels of the tumour, as they appear in 2-dimensions. The last

stage of the segmentation algorithm was to obtain a series of measurements that provided

morphological information about the vasculature of the tumour. The following measure-

ments were extracted from each individual vessel (segmented objects):

(1) SA - Area of segmented object excluding lumen (Stained Area [µm2]) (2) VA - Area

of segmented object including lumen (Vascular Area [µm2]), (3) lu/VA - Ratio of lumen to

vascular area, (4) e - Eccentricity of the vessel: e =
√

1− ma2

MA2 where (MA, ma) are the major

and minor axes of an equivalent ellipse, (5) ro -Roundness of the external boundary of the

vessel: ro = P/
√

4πVA where P is the actual perimeter of the object and VA is the vessel

area, (6) rVA - relative Vascular Area as the ratio of the total Vascular Area (sum of the areas

of all objects in the image) relative to the total area of the image. This metric indicates the

extent of vascularisation of the tumour.

4 Results and Discussion

The robustness of the segmentation algorithm lies with the chromatic characteristics of the

immunostained vessels of the tumours and the intrinsic difference with the haematoxylin-

stained nuclei of tumour cells. Although there are differences in the shades obtained from

the IHC process, the endothelial cells can be better discriminated in the HSV channels than

in the traditional RGB channels.

Fig. 4 shows the histograms of the following morphometric measurements: (a) VA, (b)

lu/VA, (c) e, (d) ro, and (e) rVA. Forty-four images were acquired from the three different

tumours and 6,163 vessels were segmented in total. The data for each tumour are shown

separately, as indicated in the legend. Some differences in the vascular morphology of the

three tumours are apparent in the histograms. For instance, a higher proportion of larger-

sized vessels (as measured by VA) are shown in tumour 2 compared with tumours 1 and 3

(Fig. 4a). The larger vessels in tumour 2 were also associated with larger lumina relative

to VA (Fig 4b) and combined with the density of the vessels, the rVA i.e. the extent of

vascularisation was also larger in tumour 2 than in tumours 1 and 3 (Fig 4e). In the future
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we expect to use this algorithm to compare the measurements in different populations, for

instance, tumours treated with a certain drug against a control or regional variation according

to the position within the tumour.

The strength of the algorithm resides with the large number of microvessels that can be

analysed by a fully automatic segmentation. The automatic segmentation also ensures con-

sistent criteria for object identification and allows the process to be run on a set of images in

the background. In addition, the algorithm provides morphometric analysis of microvessels

from which general population statistics can be calculated and has general applicability for

a range of different tissues and therapeutic interventions.

This work was funded by Cancer Research UK.

(a)

(d)

(c)(b)

(e) (f)

Figure 1: (a) Immunostained tumour section, nuclei appear blue-purple, ECs brown-beige

and background in white-grey (bar = 80 µm). (b) A cloud of coloured points describes the

chromatic distribution of (a) in the RGB domain. (c) A cloud describing mHSV within the

HSV domain. Notice the discrimination between hues in (c) that is not visible in (b).(d) Final

segmentation of (a). (e) mHS overlaid on the loci of constant value. (f) pmaxS and mH .

(a)

(c)

(b)

Figure 2: Morphological analysis: (a) joining 2 separate objects, skeleton (yellow) and

branching points (brown) of individual objects (blue). (b) Closing of open objects, watershed

transformation (blue lines), external boundaries of the original object (white) and the new

object (blue) (c) Splitting of objects that may correspond to more than one vessel.
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(a) (c)(b)

Figure 3: (a) IHC image with the boundaries of the segmented vessels overlaid with a green

line. (b) Segmented objects. The region of interest denoted by the white box is shown in

detail in (c).
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Figure 4: Histograms for the morphometric measurements of microvessels from 3 tumours.

(a) VA, (b) lu/VA, (c) e, (d) ro, and (e) rVA. Solid blue, dashed red line and dash-dot black

lines correspond to tumours 1-3 respectively. Parameters in (a-d) are acquired per object

from 12-17 images per tumour, whereas a single value per image is acquired for rVA in (e).
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