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ABSTRACT

In this paper, we investigate the use of Music Language

Models (MLMs) for improving AutomaticMusic Transcrip-

tion performance. The MLMs are trained on sequences of

symbolic polyphonic music from the Nottingham dataset.

We train Recurrent Neural Network (RNN)-based models,

as they are capable of capturing complex temporal struc-

ture present in symbolic music data. Similar to the func-

tion of language models in automatic speech recognition,

we use the MLMs to generate a prior probability for the oc-

currence of a sequence. The acoustic AMT model is based

on probabilistic latent component analysis, and prior infor-

mation from the MLM is incorporated into the transcrip-

tion framework using Dirichlet priors. We test our hybrid

models on a dataset of multiple-instrument polyphonic mu-

sic and report a significant 3% improvement in terms of F-

measure, when compared to using an acoustic-only model.

1. INTRODUCTION

Automatic Music Transcription (AMT) involves automat-

ically generating a symbolic representation of an acoustic

musical signal [4]. AMT is considered to be a fundamental

topic in the field of music information retrieval (MIR) and

has numerous applications in related fields in music tech-

nology, such as interactive music applications and compu-

tational musicology. The majority of recent transcription

papers utilise and expand spectrogram factorisation tech-

niques, such as non-negative matrix factorisation (NMF)

[18] and its probabilistic counterpart, probabilistic latent

component analysis (PLCA) [25]. Spectrogram factori-

sation techniques decompose an input spectrogram of the

audio signal into a product of spectral templates (that typ-

ically correspond to musical notes) and component activa-

tions (that indicate whether each note is active at a given
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time frame). Spectrogram factorisation-based AMT sys-

tems include the work by Bertin et al. [7], who proposed a

Bayesian framework for NMF, which considers each pitch

as a model of Gaussian components in harmonic positions.

Benetos and Dixon [3] proposed a convolutive model based

on PLCA, which supports the transcription of multiple-

instrument music and supports tuning changes and frequency

modulations (modelled as shifts across log-frequency).

In terms of connectionist approaches for AMT, Nam et

al. [20] proposed a method where features suitable for tran-

scribing music are learned using a deep belief network con-

sisting of stacked restricted Boltzmann machines (RBMs).

The model performed classification using support vector

machines and was applied to piano music. Böck and Schedl

used recurrent neural networks (RNNs) with Long Short-

Term Memory units for performing polyphonic piano tran-

scription [8], with the system being particularly good at

recognising note onsets.

There is no doubt that a reliable acoustic model is im-

portant for generating accurate symbolic transcriptions of

a given music signal. However, since music exhibits a fair

amount of structural regularity much like language, it is

natural for one to think of the possibility of improving tran-

scription accuracy using a music language model (MLM)

in a manner akin to the use of a language model to improve

the performance of a speech recognizer [21]. In [9], the

predictions of a polyphonic MLM were used to this end,

which was further developed in [10], where an input/output

extension of the RNN-RBM was proposed that learned to

map input sequences to output sequences in the context of

AMT. Both in [9] and [10], evaluations were performed us-

ing synthesized MIDI data. In [22], Raczyński et al. utilise

chord and key information for improving an NMF-based

AMT system in a post-processing step. A major advantage

of using a hybrid acoustic + language model system is that

the two models can be trained independently using data

from different sources. This is particularly useful since an-

notated audio data is scarce while it is relatively easy to

find MIDI data for training robust language models.

In the present work, we integrate a MLM with an AMT

system, in order to improve transcription performance. Specif-

ically, we make use of the predictions made by a Recur-

rent Neural Network (RNN) and a RNN-Neural Autore-



gressive Distribution Estimator (RNN-NADE) based poly-

phonic MLM proposed in [9] to refine the transcriptions

of a PLCA-based AMT system [2, 3]. Information from

the MLM is incorporated into the PLCA-based acoustic

model as a prior for pitch activations during parameter es-

timation. It is observed that combining the two models

in this way boosts transcription accuracy by +3% on the

Bach10 dataset of multiple-instrument polyphonic music

[13], compared to using the acoustic AMT system only.

The outline of this paper is as follows. The PLCA-based

transcription system is presented in Section 2. The RNN-

based polyphonic music prediction system that is used as a

music language model is described in Section 3. The com-

bination of the two aforementioned systems is presented in

Section 4. The employed dataset, evaluation metrics, and

experimental results are shown in Section 5; finally, con-

clusions are drawn in Section 6.

2. AUTOMATIC MUSIC TRANSCRIPTION

SYSTEM

For combining acoustic and music language information in

an AMT context, we employ the model of [3], which sup-

ports the transcription of multiple-instrument polyphonic

music and also supports pitch deviations and frequency

modulations. The model of [3] is based on PLCA, which is

a latent variable analysis method which has been used for

decomposing spectrograms. For computational efficiency

purposes, we employ the fast implementation from [2],

which utilized pre-extracted note templates that are also

pre-shifted across log-frequency, in order to account for

frequency modulations or tuning changes. In addition, as

was shown in [24], PLCA-based models can utilise priors

for estimating unknown model parameters, which will be

useful in this paper for informing the acoustic transcription

system with symbolic information.

The transcription model takes as input a normalised log-

frequency spectrogram Vω,t (ω is the log-frequency index

and t is the time index) and approximates it as a bivariate

probability distribution P (ω, t). P (ω, t) is decomposed

into a series of log-frequency spectral templates per pitch,

instrument, and log-frequency shifting (which indicates de-

viation with respect to the ideal tuning), as well as proba-

bility distributions for pitch, instrument, and tuning.

The model is formulated as:

P (ω, t) = P (t)
∑

p,f,s

P (ω|s, p, f)Pt(f |p)Pt(s|p)Pt(p)

(1)

where p denotes pitch, s denotes the musical instrument

source, and f denotes log-frequency shifting. P (t) is the
energy of the log-spectrogram, which is a known quantity.

P (ω|s, p, f) denotes pre-extracted log-spectral templates

per pitch p and instrument s, which are also pre-shifted

across log-frequency. The pre-shifting operation is made

in order to account for pitch deviations, without needing to

formulate a convolutive model across log-frequency. Pt(f |p)
is the time-varying log-frequency shifting distribution per

pitch, Pt(s|p) is the time-varying source contribution per

pitch, and finally, Pt(p) is the pitch activation, which es-

sentially is the resulting music transcription. As a time-

frequency representation in the log-frequency domain we

use the constant-Q transform (CQT) with a log-spectral

resolution of 60 bins/octave [23].

The unknown model parameters (Pt(f |p), Pt(s|p), and
Pt(p)) can be iteratively estimated using the expectation-

maximisation (EM) algorithm [12]. For the Expectation

step, the following posterior is computed:

Pt(p, f, s|ω) =
P (ω|s, p, f)Pt(f |p)Pt(s|p)Pt(p)∑

p,f,s P (ω|s, p, f)Pt(f |p)Pt(s|p)Pt(p)
(2)

For the Maximization step (without using any priors)

unknown model parameters are updated using the posterior

computed from the Expectation step:

Pt(f |p) ∝
∑

ω,s

Pt(p, f, s|ω)Vω,t (3)

Pt(s|p) ∝
∑

ω,f

Pt(p, f, s|ω)Vω,t (4)

Pt(p) ∝
∑

ω,f,s

Pt(p, f, s|ω)Vω,t (5)

We consider the sound state templates to be fixed, so no

update rule for P (ω|s, p, f) is applied. Using fixed tem-

plates, 20-30 iterations using the update rules presented in

the present section are sufficient for convergence. The out-

put of the system is a pitch activation which is scaled by

the energy of the log-spectrogram:

P (p, t) = P (t)Pt(p) (6)

After performing 5-sample median filtering for note smooth-

ing, thresholding is performed on P (p, t) followed by min-

imum note duration pruning set to 40ms in order to convert

P (p, t) into a binary piano-roll representation, which is the
output of the transcription system, and is also used for eval-

uation purposes.

3. POLYPHONIC MUSIC PREDICTION SYSTEM

Taking inspiration from speech recognition, it has been

shown that a good statistical model of symbolic music can

help the transcription process [11]. However there are 2

main reasons for the use of MLMs in AMT not being more

common.

1. Training models that capture the temporal structure

and complexity of symbolic polyphonic music is not

an easy task. In speech recognition, often simple

language models like n-grams work extremely well.

However, music has a more complex structure and

simple statistical models like n-grams and HMMs

fail to model these characteristics accurately even for

music with simple structure [9].

2. There is no consensus on how to incorporate this

prior information within the transcription system. How-

ever, recently there have been some successful at-

tempts at using this prior information to improve the

accuracy on AMT tasks [9, 10].



In this section we discuss the details of the music pre-

diction system and the models used. In the next section

we discuss how we incorporate the predictions from these

models in a PLCA-based music transcription system.

3.1 Recurrent Neural Networks

A recurrent neural network (RNN) is a powerful model for

time-series data which can account for long-term temporal

dependencies, over multiple time-scales when trained ef-

fectively. Given a sequence of inputs v1, v2, . . . , vT each

in R
n, the network computes a sequence of hidden states

ĥ1, ĥ2, . . . , ĥT each in R
m, and a sequence of predictions

ŷ1, ŷ2, . . . , ŷT each in Rk by iterating the equations

ĥt = e(W
ĥx
vt +W

ĥĥ
ĥt−1 + b

ĥ
) (7)

ŷt = g(W
yĥ
) (8)

where W
yĥ
, W

ĥx
, W

ĥĥ
are the weight matrices, b

ĥ
is the

bias and e and g are activation functions which are typi-

cally non-linear and applied element-wise.

An RNN can be trained using the gradient-based Back-

Propagation Through Time algorithm [27] using the ex-

actly computable error gradients in the network. However,

1st order gradient methods fail to correctly train RNNs for

many real-world problems. This difficulty has been associ-

ated with what is known as the vanishing/exploding gradi-

ents phenomenon [6], where the errors exhibit exponential

decay/growth as they are back-propagated through time.

years [15, 16, 19].

However, recent work in the field of neural networks

and deep learning has led to several improvements in gra-

dient based optimization methods that make training of

RNNs possible. Most notably, the Hessian Free (HF) opti-

mization algorithm has been used to train RNNs success-

fully on several real world datasets, including symbolic

polyphonic music data [19]. Apart from second order meth-

ods like HF, several modifications to first-order gradient

based methods exist that currently form the state of the art

in training RNNs [5].

3.2 Recurrent Neural Network-based models

One of the drawbacks of using RNNs to predict polyphonic

symbolic music is that any output of the network, ŷi at time

step t, is conditionally independent of ŷj , ∀j 6= i given

the sequence of input vectors v1, v2, . . . , vT . This is a se-

vere constraint when used for modelling polyphonic mu-

sic, where notes often appear in very correlated patterns

within a frame. In order to overcome this limitation, mod-

els derived from RNNs have been proposed which are bet-

ter at modelling high-dimensional sequences [9, 26].

The first RNN-based model that tried to model high-

dimensional sequences is the Recurrent Temporal Restricted

Boltzmann Machine (RTRBM) [26]. This model was ex-

tended to the more general RNN-RBM model, where the

hidden states for the RBM and RNN were not constrained

to be the same. For our prediction system, we make use of

a variant of the RNN-RBM, called the RNN-NADE. The

only difference is that the conditional distributions at each

step are modelled by a Neural Autoregressive Distribution

Estimator (NADE) [17] as opposed to an RBM. As dis-

cussed in the next section, to combine the predictions with

the transcription system, we need individual pitch activa-

tion probabilities at each time-step. Obtaining these proba-

bilities from an RBM is intractable as it requires summing

over all possible hidden states. However the NADE is a

tractable distribution estimator and we can easily obtain

these probabilities from the NADE. The NADE models the

probability of occurrence of a vector p as:

P (p) =
D∏

i=1

P (pi|p<i) (9)

where p ∈ R
D,pi is the pitch activation and p<i is the

vector containing all the pitch activations pj such that j <

i.

In our system we utilise each of the conditional proba-

bilities p(pi|p<i) as probabilities of the pitch activations.

Although the pitch activation probabilities are only con-

ditioned on p<i, we hypothesize that this will be a better

model than the RNN, where the pitch activation probabil-

ities are completely independent. Another motivation for

using the NADE is that the gradients can be computed ex-

actly, and therefore we can employ HF optimization for

training the RNN-NADE.

4. COMBINING TRANSCRIPTION AND

PREDICTION

In this section, we describe the process for combining the

acoustic model with the music language model for deriving

an improved transcription. Firstly, the input music signal is

transcribed using the process described in Section 2. The

resulting piano-roll representation of the transcription sys-

tem is considered to be a sequence p1, p2, . . . , pT that is

placed as input to the MLM presented in Section 3. For

the RNN-NADE, we compute the probability P (pi|p<i)
for all time frames, and use that as prior information for

the combined model, with the prior information denoted

as PMLM (p, t), where PMLM (p = i, t) = P (pi|p<i).
For the RNN, the prediction output is directly denoted as

PMLM (p, t), since pitch probabilities are independent.

As shown in [24], PLCA-based models use multinomial

distributions; since the Dirichlet distribution is conjugate

to the multinomial, a Dirichlet prior can be used to en-

force structure on the pitch activation distribution Pt(p).
Following the procedure of [24], we define the Dirichlet

hyperparameter for the pitch activation as:

αt(p) ∝ Pt(p)PMLM (p, t) (10)

where αt(p) essentially is a pitch activation probability

which is filtered through a pitch indicator function com-

puted from the symbolic prediction step (the denominator

is simply for normalisation purposes).

The recording is then re-transcribed, using as additional

information the prior computed from the transcription step.

The modified update for the pitch activation which replaces



(5) is given by:

Pt(p) ∝
∑

ω,f,s

Pt(p, f, s|ω)Vω,t + καt(p) (11)

where κ is a weight parameter expressing how much the

prior should be imposed; as in [24], the weight decreases

from 1 to 0 throughout the iterations. To summarize, the

transcription creates a symbolic prediction, which in turn

improves the subsequent re-transcription of the music sig-

nal. An overview of the complete transcription-prediction

system architecture can be seen in Fig. 1.

5. EVALUATION

5.1 Dataset

For testing the transcription system, we employ the Bach10

dataset [13], which is a freely available multi-track collec-

tion of multiple-instrument polyphonic music. It consists

of ten recordings of J.S. Bach chorales, performed by vi-

olin, clarinet, saxophone, and bassoon. Pitch ground truth

for each instrument is also provided. Due to the tonal and

homogeneous content of the dataset (single composer, sin-

gle music language), it is suitable for testing the incorpo-

ration of music language models in a multiple-instrument

transcription system. For training the transcription sys-

tem, pre-extracted and pre-shifted spectral templates are

extracted for the instruments present in the dataset, using

isolated note samples from the RWC database [14].

For training theMLMswe use the Nottingham dataset 1 ,

a collection of 1200 music pieces in symbolic ABC format,

which contain simple chord combinations and tunes. We

trained the RNN and the RNN-NADE models using both

Stochastic Gradient Descent (SGD) and HF to compare

performance. The inputs to both the models are sequences

of length 200 where each frame of the sequence is a binary

vector of length 88 which covers the full piano note range.

We train both the RNN and the RNN-NADE to predict the

next vector given a sequence of input vectors. We train

the models by minimizing the negative log-likelihood of

the sequences using the cross-entropy
∑

i ti log pi + (1 −
ti) log(1− pi) where i sums over all the dimensions of the

binary vector and ti is the pitch target.

5.2 Metrics

For evaluating the performance of the proposed system for

multi-pitch detection, we employ the precision (Pre), re-

call (Rec), and F-measure (F ) metrics, which are com-

monly used in transcription evaluations [1]. As in the pub-

lic evaluations on multi-pitch detection carried out through

the MIREX framework [1], a detected note is considered

correct if its pitch is the same as the ground truth pitch and

its onset is within a 50ms tolerance interval of the ground-

truth onset.

1 ifdo.ca/∼seymour/nottingham/nottingham.html

Model Pre

RNN (SGD) 67.89%

RNN (HF) 69.61%

RNN-NADE (SGD) 68.89%

RNN-NADE (HF) 70.61%

Table 1. Validation results for MLMs

5.3 Results

To validate the performance of the MLMs, we calculate the

prediction precision on unseen sequences of music from

the Nottingham dataset of folk melodies. We utilise 694

tracks for training, 173 tracks for validation and 170 for

testing 2 . For both the RNN and RNN-NADE models we

sample 10 vectors from the conditional distribution at each

time-step and calculate the expected precision against the

ground truth. The reported precision is found by find-

ing the mean over the predictions of every frame. Table

1 shows the results of the validation experiments. These

results are of the same order as the prediction accuracies

reported in [9]. We found that for both the models, HF op-

timization gave better precision than SGD. Training with

HF was also easier as there were less hyper parameters

to be tuned when compared to SGD, where learning rate

needs to be updated to make sure training is effective. The

RNN models had a hidden layer of size 150, while the

RNN-NADE models had a hidden layer of size 100 and

the NADE consisted of a hidden layer of size 150.

Multi-pitch detection experiments are performed using

the proposed system, with various configurations. A first

configuration only considers the transcription system from

Section 2. A second configuration takes the output of the

transcription system and gives it as input to the prediction

system of Section 3, where the final piano-roll is the out-

put of the prediction step. A third configuration (presented

in Section 4), re-transcribes the recording, having the pre-

diction as a prior information for estimating the pitch acti-

vations. For the prediction system, experiments were per-

formed using both the RNN-NADE and the RNN.

Results using the various system configurations are dis-

played in Table 2. It can be seen that the best perfor-

mance is achieved by the 3rd configuration when using

the NADE-HF model for prediction, which surpasses the

acoustic-only transcription system by more than 3%. In

general, it can be seen that using the prediction system as

a post-processing step (2nd configuration) always leads to

an improvement over the acoustic-only model (1st config-

uration). A similar trend can be observed when integrat-

ing the prediction information as a prior in the transcrip-

tion system (configuration 3) compared to just using the

prediction system as post-processing (configuration 2); an

improvement is always reported. Another observation can

be made when comparing the RNN-NADE with the RNN,

with the former providing a clear improvement. For com-

parative purposes, we also trained MLMs using 500 MIDI

files of J.S. Bach chorales 3 and tested the models on the

2 http://www-etud.iro.umontreal.ca/∼boulanni/icml2012
3 http://www.jsbchorales.net/sets.shtml
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Figure 1. Proposed system diagram.

Configuration F Pre Rec

Configuration 1 62.02% 58.51% 66.12%

Configuration 2 - NADE 62.62% 59.70% 65.92%

Configuration 3 - NADE 64.08% 61.96% 66.44%

Configuration 2 - RNN 62.29% 59.08% 65.98%

Configuration 3 - RNN 63.85% 61.14% 66.90%

Configuration 2 - NADE-HF 62.20% 59.14% 65.68%

Configuration 3 - NADE-HF 65.16% 62.80% 67.78%

Configuration 2 - RNN-HF 62.44% 59.28% 66.07%

Configuration 3 - RNN-HF 62.87% 60.03% 66.11%

Table 2. Transcription results using various system con-

figurations.

Bach10 recordings. Using the Bach MLMs, the system

reached F = 63.58%, which is an improvement over the

acoustic-only system, but is outperformed by the Notting-

ham language model.

Qualitatively, the MLMs are able to improve transcrip-

tion performance by providing a rough estimate of which

pitches are expected to appear in the recording (and which

pitches are not expected to appear). The language mod-

els were trained using simple chord sequences (from the

Nottingham dataset) that are representative of simple tonal

music and are applicable as language models to the more

complex Bach chorales. We believe that the reason for the

J.S. Bach MLMs not performing as well as the Notting-

ham MLMs is due to the fact that predicting Bach’s music

is a complex task (many exceptions, key changes, modula-

tions), whereas a simple tonal model like the Nottingham

dataset can work as a general-purpose language model in

many types of music (this is also verified in [9]).

By comparing with the method of [13] (where the Bach10

dataset was first introduced), the proposed method using

the frame-based accuracy metric reaches 74.3% for the NADE-

HF using the 3rd configuration, whereas the method of [13]

reaches 69.7% (with unknown polyphony). As an exam-

ple of the proposed system’s performance, the spectrogram

and raw output of the system using the 3rd configuration is

displayed for a Bach10 recording Fig. 2, whereas the post-

processed transcription output along with the ground truth

for the same recording is shown in Fig. 3.

6. CONCLUSIONS

In this paper, we proposed a system for automatic music

transcription which incorporated prior information from

a polyphonic music prediction model based on recurrent

p
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Figure 2. (a) The spectrogram Vω,t for recording “Ach

Lieben Christen” from the Bach10 dataset. (b) The pitch

activation P (p, t) using the transcription-prediction system
using the 3rd configuration, with the NADE-HF.

neural networks. The acoustic transcription model was

based on probabilistic latent component analysis, and in-

formation from the prediction system was incorporated us-

ing Dirichlet priors. Experimental results using the multiple-

instrument Bach10 dataset showed that there is a clear and

significant improvement (3% in terms of F-measure) by

combining a music language model with an acoustic model

for improving the performance of the latter. These results

also demonstrate that the MLM can be trained on symbolic

music data from a different source as the acoustic data, thus

eliminating the need to acquire collections of symbolic and

corresponding acoustic data (which are scarce).

In the current system, the language models are trained

on only one dataset. In the future, we would like to eval-

uate the proposed system using language models trained

from different sources to see if this helps the MLMs gener-

alize better. We will also investigate different system con-

figurations, to test whether iterating the transcription and

prediction steps leads to improved performance. We will

also investigate the effect of using different RNN archi-

tectures like Long Short Term Memory (LSTM) and bi-

directional RNNs and LSTMs. Finally, we would like to

extend the current models for high-dimensional sequences

to better fit the requirements for music language modelling.
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Figure 3. Transcription example for recording “Ach

Lieben Christen” from the Bach10 dataset. (a) The post-

processed output of the transcription-predicton system us-

ing the 3rd configuration, with the NADE-HF. (b) The

pitch ground truth of the recording.

7. ACKNOWLEDGEMENT

SS is supported by a City University London Pump-Priming

Grant and the Queen Mary University of London Postgrad-

uate Research Fund. EB is supported by a City University

London Research Fellowship. SC is supported by a City

University London Research Studentship.

8. REFERENCES

[1] Music Information Retrieval Evaluation eXchange (MIREX).
http://music-ir.org/mirexwiki/.

[2] E. Benetos, S. Cherla, and T. Weyde. An effcient shiftinvari-
ant model for polyphonic music transcription. In 6th Interna-
tional Workshop on Machine Learning and Music, 2013.

[3] E. Benetos and S. Dixon. A shift-invariant latent variable
model for automatic music transcription. Computer Music
Journal, 36(4):81–94, 2012.

[4] E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff, and
A. Klapuri. Automatic music transcription: challenges and
future directions. Journal of Intelligent Information Systems,
41(3):407–434, December 2013.

[5] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu. Ad-
vances in optimizing recurrent networks. In ICASSP, pages
8624–8628, May 2013.

[6] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term
dependencies with gradient descent is difficult. IEEE Trans.
Neural Networks, 5(2):157–166, 1994.

[7] N. Bertin, R. Badeau, and E. Vincent. Enforcing harmonicity
and smoothness in Bayesian non-negative matrix factoriza-
tion applied to polyphonic music transcription. IEEE Trans.
Audio, Speech, and Language Processing, 18(3):538–549,
March 2010.
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