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Abstract: Security is an important concern for service based systems, i.e., systems that are composed of autonomous 

and distributed software services. This is because the overall security of such systems depends on the 

security of the individual services they deploy and, hence, it is difficult to assess especially in cases where 

the latter services must be discovered and composed dynamically. This paper presents a novel approach for 

discovering secure compositions of software services. This approach is based on secure service 

orchestration patterns, which have been proven to provide certain security properties and can, therefore, be 

used to generate service compositions that are guaranteed to satisfy these properties by construction. The 

paper lays the foundations of the secure service orchestration patterns, and presents an algorithm that uses 

the patterns to generate secure service compositions and a tool realising our entire approach. 

1 INTRODUCTION 

The security of service based systems (SBS), i.e., 

systems that make use of distributed and possibly 

dynamically assembled software services, has been a 

critical concern for both the users and providers of 

such systems (Raman et al., 2002; Majithia et al., 

2004; Anisetti et al., 2013). This is because the 

security of an SBS depends on the security of the 

individual services that it deploys, in complex ways 

that depend not only on the particular security 

properties of concern but also on the exact way in 

which these services are composed to form the SBS. 

Consider, for example, the case where the 

property required of an SBS is that the integrity of 

any data D, which are passed to it by an external 

client, will not be compromised by any of its 

constituent services that receive D. The assessment 

of this property requires knowledge of the exact 

services that constitute the SBS, the exact form of 

the composition of these services and the data flows 

between them, and a guarantee that each of the 

constituent services of SBS that receives D will 

preserve its integrity. Such assessments of security 

are required both during the design of an SBS and at 

runtime in cases where one of its constituent 

services S needs to be replaced and, due to the 

absence of any individual service matching it, a 

composition of services must be built to replace S. 

Whilst the construction of service compositions that 

satisfy functional and quality properties has received 

considerable attention in the literature (e.g., 

Aggarwal et al., 2004; Dustdar et al., 2005; Tan et 

al. 2009; Alrifai et al., 2012)., the construction of 

secure service compositions is not adequately 

supported by existing research. 

In this paper, we present an approach for 

discovering compositions of services, which are 

guaranteed to satisfy certain security properties. Our 

approach is based on the application of SEcure 

Service Orchestration patterns (SESO patterns). 

SESO patterns specify primitive service 

orchestrations, which are proven to have particular 

security properties, if the constituent services of the 

orchestration satisfy other security properties. A 

SESO pattern specifies the order of the execution of 
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its constituent services (e.g., sequential, parallel 

execution) and the data flows between them. It also 

specifies rules, which dictate the security properties 

that the constituent services of the orchestration 

must have for the orchestration to satisfy another 

security property as a whole. These rules express 

security property relations of the form IF P THEN 

∧i=1,…,nPi  where P is a security property that is 

required of the service orchestration as a whole and 

Pi are security properties of the constituent services, 

which must be satisfied for P to be guaranteed. The 

security property relations expressed by the rules are 

formally proven. The constituent services of a SESO 

pattern are abstract “placeholder” services that need 

to be instantiated by concrete services when the 

pattern is instantiated.  

When a constituent service S of an SBS needs to 

be replaced at runtime and no single alternative 

service S’ satisfying exactly the same security 

properties as S can be found, SESO patterns can be 

applied to discover compositions of other services 

that have exactly the same security properties as S 

and could replace it within SBS. SESO patterns 

determine the criteria (security, interface and 

functional) that should be satisfied by the services 

that could instantiate the orchestration specified by 

them. These criteria are used to drive a discovery 

process whose goal is to instantiate the pattern. If 

this discovery/pattern instantiation process is 

successful, i.e., different combinations of services 

that satisfy the required criteria and fit with the 

orchestration structure of the pattern can be 

discovered, any composition of services which is 

built from the pattern is guaranteed to have the 

required overall security property by-construction. 

An earlier account of our approach has been 

given in (Pino and Spanoudakis 2012a; Pino and 

Spanoudakis 2012b). In this paper, we present the 

method that underpins the proof of security 

properties in SESO patterns, show examples of 

concrete proofs of security properties for specific 

SESO patterns, and present an amended version of 

the original composition algorithm that makes use of 

coarse-grained service workflows in the composition 

process in order to find service compositions that are 

not only secure but also functionally relevant to the 

service that is needed. In addition, we describe a tool 

that implements our approach.  

The rest of this paper is organized as follows. 

Section 2 presents an overview of our approach. 

Section 3 discusses the validation of the security of 

primitive service orchestration patterns and provides 

examples of proofs of security properties for some 

of these patterns. Section 4 discusses the encoding of 

secure service orchestration patterns. Section 5 

presents the new pattern driven secure service 

composition algorithm. Section 6 provides an 

overview of the tool that we have developed to 

implement our approach. Finally, Section 7 

overviews related work and Section 8 provides 

conclusions and directions for future work.  

2 OVERVIEW 

The service composition approach that we present in 

this paper is part of a general framework developed 

at City University to support runtime service 

discovery (Zisman et al., 2013). This framework 

supports service discovery driven by queries 

expressed in an XML based query language, called 

SerDiQueL, which supports the specification of 

interface, behavioural and quality discovery criteria. 

The execution of queries can be reactive or 

proactive. In reactive execution, the SBS submits a 

query to the framework and gets back any services 

matching the query that the latter can find. In 

proactive execution, the SBS submits to the 

framework queries that are executed in parallel, to 

find potential replacement services that could be 

used if needed, without the need to initiate and wait 

for the results of the discovery process at this point 

(Zisman et al., 2013). 

To take into account service security 

requirements as part of the service discovery 

process, we have extended the above framework in 

two ways: (i) we have extended SerDiQueL to 

enable the specification of the security properties 

that are required of individual services, as querying 

conditions, and (ii) we have developed a 

composition module supporting the construction of 

possible compositions of services that could replace 

a given service in an SBS in cases where a query 

cannot find any single replacement service, based on 

the approach that we present in this paper. A 

detailed description of the extended version of 

SerDiQueL (called A-SerDiQueL) that is used for (i) 

and (ii) is beyond the scope of this paper and can be 

found in (Spanoudakis et al., 2011). In this paper, we 

focus on the process of searching for and 

constructing secure service compositions. The key 

problems during the composition process are to 

ensure that the constructed composition of services: 

(a) provides the functionality of the service that it 

should replace, and (b) satisfies the security 

properties required of this service. 

To address (a), our approach uses abstract 

service workflows. These workflows express service 
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coordination processes that realize known business 

processes through the use of software services with 

fixed interfaces. Such workflows are available for 

specific application domains such as telecom 

services (IBM BPM Industry Packs), logistics 

(RosettaNet), and are often available as part of SOA 

architecting and realization platforms (e.g., IBM 

WebSphere). Service workflows are encoded in an 

XML based language that represents the interfaces, 

and the control and data flow between the 

workflow's composing activities. 

To address (b), we are using the SESO patterns. 

These patterns are based on primitive service 

orchestrations that have been proposed in the 

literature (e.g., sequential and parallel service 

execution) but augment them by specifying concrete 

security properties P1, ..., Pn that must be provided 

by the individual services that instantiate the pattern 

for the overall orchestration to satisfy a required 

security property P0. The derivation of these security 

properties is based on rules that encode formally 

proven relations between the security properties of 

the individual placeholder services of the pattern and 

the security property required of the entire service 

orchestration represented by the pattern. Once 

derived through the application of rules, the security 

properties required of the individual partner services 

of the orchestration are expressed as queries in A-

SerDiQueL. These queries are then executed to 

identify concrete services with the required security 

properties, which could instantiate the placeholder 

services of the pattern. If such services are found the 

pattern is instantiated. The pattern instantiation 

process is gradual and, if it is completed 

successfully, a new concrete and executable service 

composition that satisfies the overall security 

property guaranteed by the pattern is generated. 

A key element of our approach is the formal 

validation of the relations between the security 

properties of the individual placeholder services of a 

SESO pattern and the security property of the entire 

composition expressed by the pattern. The validation 

of such relations is discussed in the next section. 

3 VALIDATING SECURE 

SERVICE COMPOSITIONS 

The task of formally validating the security of a 

service composition requires a three-step approach. 

It starts with a formal model of the service to be 

replaced and the formal models of the services to be 

composed. Firstly, the service composition is 

represented in terms of a formal model derived from 

the models of the individual services by applying a 

set of formal construction rules. These rules project 

the respective security properties of each of the 

composed services as well as the targeted property 

of the service to be replaced into the composed 

system. Secondly, additional properties are added to 

the composed system regarding the behaviour of the 

orchestration engine, i.e., the primitive service 

orchestration pattern. Finally, the desired property is 

verified using the properties of the composed 

services and the orchestrator. 

For the formal system representation and 

validation of security properties we utilize the 

Security Modeling Framework SeMF developed by 

Fraunhofer SIT (Gürgens et al., 2005b). In SeMF, a 

system specification is composed of a set ℙ of 

agents and a set ∑ of actions, ∑/P denoting the 

actions of agent P, and other system specifics that 

are not needed in this paper and are thus omitted. 

The behaviour B of a discrete system Sys can then 

be formally described by the set of its possible 

sequences of actions. Security properties are defined 

in terms of such a system specification. Relations 

between different formal models of systems are 

partially ordered with respect to different levels of 

abstraction. Formally, abstractions are described by 

so called alphabetic language homomorphisms that 

map action sequences of a finer abstraction level to 

action sequences of a more abstract level while 

respecting concatenation of actions. Language 

homomorphisms satisfying specific conditions are 

proven to preserve specific security properties, the 

conditions depending on the respective security 

property. A detailed account of SeMF is beyond the 

scope of this paper can be found in (Fuchs and 

Gürgens, 2011; Fuchs et al., 2011; Gürgens et al., 

2005a; Gürgens et al., 2002) for.  

Based on the representations of each of the 

service systems in the composition, we present a 

general construction rule using homomorphisms that 

map the service composition onto the individual 

services by preserving the individual services' 

security properties. This allows us to deduce the 

respective security properties to be satisfied by the 

composition. The different SESO patterns are 

translated into behaviour of the orchestrator 

regarding the invocation of the respective services. 

This includes functional and security related 

property statements. Based on this information it is 

possible to deduce the overall security properties of 

the composition system and validate whether they 

meet the expected results. In the next three sections, 

we illustrate our approach by exemplarily proving a 
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specific data integrity property. The formal 

representation of services, composition and security 

properties is given in terms of generic agents and 

actions that are later used by the SESO patterns for 

instantiation towards concrete services and security 

properties. While our example is a very simple one, 

our approach can handle more complex service 

models, e.g. involving global agents (unique to all 

services), or service specific agents (e.g. backend 

storage) as well as various different orchestrations 

patterns, proving different instantiations of various 

security properties regarding integrity and 

confidentiality (Pino et al., 2012). 

3.1 Formal Representation of Generic 
Service Composition 

In the following, we denote the system model of the 

service S
0
 to be replaced by a composition by Sys

0
, 

the system models of the services S
1
 and S

2
 to be 

composed by Sys
1
 and Sys

2
, respectively, and the 

composition system by Sys
c
. The sets of agents and 

actions are denoted analogously (i.e. by ℙ!, ∑
i
, for 

i=0, 1, 2). We then view the systems Sys
0
, Sys

1
 and 

Sys
2
 as homomorphic images of the composed 

system Sys
c
.  

 

Figure 1: Service Composition. 

The principal idea of substituting a service by a 

service composition is depicted in Figure 1: we 

assume services S
1
 and S

2
 to act independently of 

(i.e., not to invoke) each other. Thus we utilize an 

orchestration engine O for their composition that 

takes the role of both the clients C
1
 and C

2
 of Sys

1
 

and Sys
2
 respectively, as well as the role of the 

service S
0
 in Sys

0
 to be replaced. We formalize this 

by using a generic renaming function !!→!: ∑ →

∑!!→! that replaces all occurrences of agent P in an 

action by Q. Based on this function, we define 

functions r
i
 : ∑

i
 → ∑

c
  (i = 0, 1, 2) as follows: 

 

!
!(!) ∶=   !

!
!
→!
(!) if ! ∈  ∑/!!

!
∪ ∑/!!

!

!
!(!) ∶=   !

!
!
→!
(!) if ! ∈  ∑

/!!
!

∪ ∑
/!!
!  

 

(j = 1, 2). The resulting set ∑
c
 of actions of the 

composed system is then as follows:  

 

∑! = !
!(∑

/!!
!

∪ ∑
/!!
!
) ∪ !!(∑!) ∪ !!(∑!) ∪ ∑/!

!  

 

∑/!
!  represents additional actions taken by the 

orchestration engine beyond the communication 

with  client and services. These actions depend on 

the specific orchestration pattern used and will be 

discussed in the next section. Since the functions r
i
 

are injective we can now use their inverse image in 

order to define the homomorphisms that map the 

composition system onto the abstract systems: each 

homomorphism h
i
 abstracts ∑

c
 to ∑

i
. Regarding the 

actions corresponding to those in ∑
i
, h

i
 is simply the 

inverse of r
i
, and all other actions are mapped onto 

the empty word. Hence for i = 0, 1, 2, we define h
i
 : 

∑
c
 → ∑

i
 as follows:  

 

ℎ
!(!) =

!′ if ∃!′ ∈ ∑!: !!(!′) = !

! else
 

 

These homomorphisms serve as a means to relate 

not only the models of the individual systems to the 

composition model but also to relate - under certain 

conditions - their security properties. A 

homomorphism that fulfils certain conditions 

“transports” a security property from an abstract 

system to the concrete one, i.e. if the conditions are 

satisfied and the property holds in the abstract 

system, the corresponding property will also hold in 

the concrete system. Thus, the homomorphism 

preserves the property. The conditions that must be 

satisfied depend on the property in question; see 

(Gürgens et al., 2005a; Gürgens et al., 2002) for 

example. We use this approach to prove specific 

security properties for a composition of services 

based on the security properties of these services. 

3.2 Formally Representing Sequential 
Composition 

The actions of the systems are constructed from the 

service operations op0, op1, and op2 as prefix, 

followed by one of the suffixes IS, IR, OS, OR to 

represent InputSend, InputReceive, OutputSend, 

OutputReceive, respectively.  This results in the 

following agent and action sets:  

 

S0

C0

⇔

S1 S2

O

C0
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ℙ
!
⊇ {!! , !!},∑! ⊇

!"!– !" !
! , !! ,!"#"! ,

!"!– !" !
! ,!! ,!"#"! ,

!"!–!"(!
! ,!! , !!(!"#"!)),

!"!–!"(!
! , !! , !!(!"#"!))

 

 

In our simple example of a sequential 

composition pattern, the orchestrator forwards data0 

received from C
0
 to S

1
 which returns f1(data0). These 

data are then forwarded by the orchestrator to S
2
 

who returns f2(f1(data0)) which  the orchestrator 

finally returns to the client. In a more complex 

scenario the orchestrator can for example alter (e.g., 

split) the client data and combine the output of S
1
 

with some data resulting from the client's input and 

send this to S
2
.  A proof for this more complex 

construction is achievable analogously to the one 

presented below.   

The agent and action sets of the composition are 

constructed as specified in the previous section, 

using the functions r
0
, r

1
 and r

2
. Function r

0
 for 

example maps action op0-IS(C
0
, S

0
, data0) onto op0-

IS(C
0
, O, data0), hence h

0
(op0-IS(C

0
, O, data0)) = 

op0-IS(C
0
, S

0
, data0), while h

0
(op2-OR(O, S

2
, 

f2(data2))) = h
0
(r

2
(op2-OR(C

2
, S

2
, f2(data2)))) = !., 

with data1 := data0 and data2 := f1(data1). 

3.3 Validation of Integrity Preserving 
Compositions 

Exemplarily, we will now prove that a specific data 

integrity property of S
0
 is provided by the 

orchestration specified above. The definition of 

(data) integrity that we assume in our example is 

taken from RFC4949: “The property that data has 

not been changed, destroyed, or lost in an 

unauthorized or accidental manner.” (Shirey, 2007). 

In SeMF, this property is expressed by the concept 

of precedence:  pre(a,b) holds if all sequences of 

actions ω ∈ B that contain action b also contain 

action a. Obviously, precedence is transitive (we 

omit the trivial proof). Further, precedence is 

preserved by any homomorphism (Fuchs and 

Gürgens, 2011). 

 Let us now assume that service S
0
 provides the 

integrity property that whenever the client receives 

f0(data0) from the service, the client has sent data0 to 

this service before: 

P1’ pre(op0-IS(C
0
, S

0
, data0), op0-OR(C

0
, S

0
, 

f0(data0))) 

As explained above, precedence is preserved by 

h
0 

(as constructed in Section 3.1). Hence the 

corresponding property of the composition is 

(assuming f0 = f2°f1): 

P1 pre(op0-IS(C
0
, O, data0), op0-OR(C

0
, O, 

f2(f1(data0)))) 

For our proof, we assume that the services Sys
1
 

and Sys
2
 provide the properties:  

P2’ pre(op1-IS(C
1
, S

1
, data1), op1-OR(C

1
, S

1
, 

f1(data1))) 
P3’ pre(op2-IS(C

2
, S

2
, data2), op2-OR(C

2
, S

2
, 

f2(data2))) 

The homomorphisms h
1 

and h
2
 as constructed in 

Section 3.1 preserve these precedence properties. 

Accordingly, the corresponding properties in Sys
c
 

are: 

P2 pre(op1-IS(O, S
1
, data0), op1-OR(O, S

1
, 

f1(data0))) 
P3 pre(op2-IS(O, S

2
, f1(data0)), op2-OR(O, S

2
, 

f2(f1(data0)))) 

In addition, the orchestrator must act according 

to the pattern (as specified in Section 3.2), i.e., 

satisfy the following properties:  

P4 pre(op0-IS(C
0
, O, data), op1-IS(O, S

1
, data)) 

P5 pre(op1-OR(O, S
1
, data), op2-IS(O, S

2
, data)) 

P6 pre(op2-OS(O, C
0
, f2(f1(data0))), op2-OR(C

0
, 

O, f2(f1(data0)))) 

Proof. By transitivity of precedence, from properties 

P2 to P6 we can conclude that property P1 holds.  

The above proof is almost trivial but shows the 

principle of our approach. In (Pino et al., 2012) we 

have proven more complex integrity properties 

involving actions of global agents being invoked by 

either S
1
 or S

2
, as well as several confidentiality 

properties. All proofs use the approach presented in 

this paper: (i) deriving the formal model of the 

service composition from the formal models of the 

individual services, (ii) relating these models by 

using property preserving homomorphisms and thus 

representing the individual services' security 

properties in terms of the composition model, and 

(iii) using appropriate security properties to be 

satisfied by the orchestrator. Whilst we assume the 

orchestrator to behave correctly and hence to satisfy 

these additional properties, the security properties 

we assume for the individual services of the 

composition are translated into inference rules, 

which are then used in order to construct a service 

composition. It should also be noted that the proofs 

of security properties for specific SESO patterns 

need to be constructed offline and encoded in the 

patterns as rules, as we discuss in Sect. 4 below. At 

runtime, the rules encoded in specific pattern are 
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used to deduce the security properties that need to be 

satisfied by the candidate services that can 

instantiate the pattern. 

4 SECURE SERVICE 

ORCHESTRATION PATTERNS 

Proofs of security properties, like the one that we 

discussed in Section 3, form the basis of SESO 

patterns in our approach. More specifically, an 

SESO pattern encodes: (a) a primitive orchestration 

describing the order of the execution and the data 

flow between placeholder services, and (b) the 

implications between the security properties of these 

services and the security property of the whole 

orchestration. The placeholder services within a 

primitive orchestration can be atomic activities (i.e., 

abstract partner services) or other patterns. The 

implications in (b) are of the form: 

“IF P is a primitive orchestration with 
placeholders S1, …, Sn and ρ

P
 is a 

security property required for P THEN ρ
P
 

can be guaranteed if each Si in P 

satisfies a set of security properties 

ρj (j =1, …, mi)”. 

These implications reflect proofs of security 

properties, developed based on the approach 

discussed in Sect. 3. They are encoded as inference 

rules and used during the composition process to 

infer the security properties that would be required 

of the placeholders of a pattern P for it to satisfy ρ
P
. 

The benefit of encoding proven implications as 

inference rules is that there is no need to reason from 

first-principles when attempting to construct 

compositions of services, based on SESO patterns. 

To be more specific, SESO patterns and 

implications of the above form are encoded as 

Drools production rules (Drools). Drools is a rule-

based reasoning system supporting reasoning driven 

by production rules. Production rules in Drools are 

used to derive information from data facts stored in a 

Knowledge Base (KB). A production rule in Drools 

has the general form: when <conditions> then 

<actions>. When a rule is applied, the rule engine 

of Drools checks, through pattern matching, whether 

the conditions of the rule match with the facts in the 

KB and, if they do, it executes actions of the rule. 

This execution can update the contents of the KB by 

adding or deleting facts in it. The reasoning process 

of Drools is based on the Rete algorithm a pattern-

matching algorithm that is known to scale well for 

large sets of data facts and rules (Forgy, 1982);. The 

latter property of Drools is the main reason for 

selecting it to represent and reason with SESO 

patterns in our approach. 

Table 1 shows the encoding of integrity in the 

sequential orchestration pattern that was presented in 

Section 3.3 as a Drools rule. In particular our rule 

uses the following definition of integrity: 

Definition 2. Integrity(S, x, y) = pre(op0-IS(C
0
, S, x), 

op0-OR(0
0
, S, y)) 

Using such more abstract security properties in 

the rules avoids the need to encode in the rule the 

formalism that the proof is based on. This makes it 

also possible to use SESO patterns proven through 

different formalisms in our approach. 

Returning to the rule in Table 1, Lines 3-5 

describe the primitive orchestration that the security 

property refers to. More specifically, the rule can be 

applied when a sequential pattern ($P) with two 

placeholders, i.e., activity $S1 followed by activity 

$S2, is encountered. The rule defines the parameters 

of these activities: $S1 has an input parameter $d 

and an output parameter $f1d, and $S2 has an 

input parameter $f1d and an output parameter 

$f2f1d, as shown in Table 1. Line 6 describes the 

original security requirement requested on the 

composition pattern $rhoP, i.e. integrity on the 

pattern $P of its data $d and $f2f1d. This 

requirement is equivalent to the precedence property 

P1 presented in Section 3.3. Lines 8-9 (i.e., the 

Table 1: Integrity Rule for Sequential SESO Pattern. 

1:  rule "Integrity - Sequential Orchestration" 

2:   when 

3:     $S1 := Activity($d := inputs, $f1d := outputs) 

4:     $S2 := Activity($f1d := inputs, $f2f1d := outputs) 

5:     $P := Sequential($S1 := activ1, $S2 := activ2) 

 

6:     $rhoP : Integrity($P := subject, $d := inputs, $f2f1d := outputs) 

7:   then 

8:     insert(new Integrity($S1, $d, $f1d)); 

9:     insert(new Integrity($S2, $f1d, $f2f1d)); 

10:    retract($rhoP); 

11: end 
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then part of the rule) specify the security properties 

that are required of the activities of the pattern in 

order to guarantee $rhoP, namely: (i) integrity on 

the input ($d) and output ($f1d) of $S1, as stated 

by the precedence property P2, and (ii) integrity on 

the input ($f1d) and output ($f2f1d) of $S2, as 

required from P3. Additionally, we assume the 

framework executing the orchestration to satisfy 

properties P4–P6, hence these need not be 

mentioned in the rule. Finally, according to the rule, 

once the original requirement $rhoP is guaranteed 

by the new ones, it can be removed from the KB. 

Similar encodings of other SESO patterns have 

been expressed using this approach but cannot be 

discussed due to space limitations. SESO pattern 

encoding rules, like the one presented above, are 

used during the composition process to infer the 

security properties that are required of the concrete 

services that may instantiate the placeholder services 

in a workflow. This process is discussed next.  

5 SESO PATTERN DRIVEN 

SERVICE COMPOSITION 

The service composition process is carried out 

according to the algorithm shown in Table 2. This 

algorithm is invoked when an SBS service needs to 

be replaced but the service discovery query specified 

for it cannot identify any single service matching its 

conditions. 

In such cases, the structural part of the query, 

which defines the operations that a service should 

have and the data types of the parameters of these 

operations, is used to retrieve from the repository of 

the discovery framework abstract workflows that 

can provide the required service functionality. An 

abstract workflow represents a coarse grained 

orchestration of activities, which collectively offer a 

specific functionality, and is exposed as a composite 

service. Such workflows are fairly common 

(Carminati et al., 2006; Medjahed et al., 2003) and 

result from the generation of reference process 

models in specific domains as in (RosettaNet; IBM 

BPM Industry Packs). The activities of an abstract 

workflow are orchestrated through a process 

consisting of the primitive orchestrations that 

underpin the security patterns, as discussed in 

Section 4. If such workflows are found the 

generation of a service composition is attempted by 

trying to instantiate each abstract workflow.  

As shown in Table 2, initially, the algorithm 

identifies the abstract workflows that could be 

potentially used to generate a composition that can 

provide the operations of the required service (see 

STRUCTURALMATCH function in line 3). This is based 

on the execution of the query associated with the 

Table 2: Service Composition Algorithm. 

Require: QS - query for the required service 

Ensure: ResultSet - set of instantiated workflows 

1:  procedure SERVICECOMPOSITION(QS) 

2:    for all abstract workflows AW in the repository do 

3:      if STRUCTURALMATCH(QS, AW) == true then 

4:        Put a copy of AW in WStack 

5:      end if 

6:    end for 

7:    while there are more workflows in WStack do 

8:      Get the first workflow W in the WStack 

9:      Pop the first unassigned activity A from W 

10:     Extract the structural query QA for A from W 

11:     SecCond := SECURITYCONDITIONS(QS, W) 

12:     Add to QA the security conditions SecCond 

13:     Res := SERVICEDISCOVERY(QA) 

14:     for all services S* in Res do 

15:       WS* := W[A/S*]               //i.e. substitute S* for A in W 
16:       if exists an unassigned activity in WS* then 

17:         Push WS* in WStack 

18:       else 

19:         Add WS* to ResultSet 

20:       end if 

21:     end for 

22:   end while 

23:   return ResultSet 

24: end procedure 
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service to be replaced (QS). If such workflows are 

found, the algorithm continues by starting a process 

of instantiating the activities of each of the found 

workflows with services.  

The activities of the workflows are instantiated 

progressively, by investigating each workflow W in a 

depth-first manner. More specifically, the algorithm 

takes the first unassigned activity A in W (in the 

control flow order) and builds a query QA based on 

the workflow specification and the discovery query 

QS. In particular, the structural part of QA is taken 

from the description of A in the abstract workflow. 

The security conditions in QA are generated through 

the procedure SECURITYCONDITIONS(QS,W). This 

procedure infers the security conditions for A based 

on the Drools rules that encode the SESO patterns 

detected within the current workflow. More 

specifically, all the information about the workflow, 

its patterns, activities, security properties and 

requirements are put into the KB. Then the rules that 

represent the detected SESO patterns are fired (i.e. 

applied), propagating the requirements through the 

workflow. The generated requirements for the 

unassigned activity are then retrieved and converted 

to query conditions. The propagation of security 

requirements is possible thanks to the fact that each 

workflow can be seen as a recursive application of 

primitive orchestrations.  

Figure 2 shows the order of propagation through 

the use of the rules, on a workflow shown in (c). A 

security requirement ρ
S
 is initially given for a service 

S (Figure 2 (a)). The first rule that will be fired by 

Drools is the one for the outermost pattern of the 

workflow: a choice pattern (i.e., the if-then-else 

primitive orchestration in Figure 2 (b)). The security 

requirement is then propagated by the relevant rule 

(if such a rule exists) to the placeholders A and B 

returning the requirements ρ
A1

, …, ρ
An

 and ρ
B1

, …, 

ρ
Bm

 (with n, m ≥ 0 and n+m ≥ 1). For each security 

requirement ρ
Ai

 (with i=1, …, n), a rule is fired to 

propagate the requirement to the sequential pattern 

that instantiates A (Figure 2 (c)). This process 

generates the security requirements for placeholders 

C and D. 

If a security requirement cannot be propagated to 

the atomic activity level (e.g., no rules are defined 

for the given pattern or security property) then 

Drools returns an error state to point out that a 

security requirement cannot be guaranteed by the 

existing set of rules. This ensures that no security 

requirements are ignored.  

After constructing QA, the query is executed by 

the runtime discovery framework in (Zisman et al., 

2012) to identify a list of candidate services for QA. 

The candidate services in this list (if any) are then 

used to instantiate the activity A in W. Note that the 

composition algorithm implements a depth-first 

search in the composition process in order to explore 

fully the instantiation of a particular activity within a 

pattern before considering other activities, as this is 

expected to spot dead-ends sooner than a breadth-

first search. 

Figure 2: Recursive application of secure service 

orchestration patterns. 

5.1 Example 

As an example of applying the algorithm in Table 2, 

consider a Stock Broker SBS that uses an operation 

GetStockQuote from a service StockQuote to obtain 

price quotations for given stocks. GetStockQuote 

takes as input a string Symbol identifying a stock and 

returns the current value of that stock in USD. 

Suppose that the Stock Broker SBS has a 

security requirement regarding integrity of the input 

and output data of this operation, and would 

consider replacement services that can offer the 

same operation only if they have certificates 

confirming the satisfaction of this particular security 

requirement by the service. To deal with potential 

problems with StockQuote at runtime (e.g., 

unavailability), Stock Broker can subscribe a service 

discovery query QSQ for replacing StockQuote to the 

discovery framework and request its execution of 

proactive mode. QSQ should specify the functional 

and security properties that the potential replacement 

services of StockQuote must have. If the execution 

of QSQ results in discovering no single service 

matching it (i.e., when single service discovery 

fails), the service composition process is carried out. 

At this stage, according to the algorithm of Table 2, 

the framework will query the abstract workflow 

repository to locate workflows matching QSQ. 
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Suppose that this identifies an abstract workflow 

WSQ shown in Figure 3 that matches the query. WSQ 

contains three activities connected by two sequential 

patterns (see two dashed areas of workflow). The 

first placeholder of the outer sequence contains the 

activity GetISIN, which converts the Symbol 

identifying the Stock into the ISIN (another unique 

stock identifier). The second placeholder 

corresponds to the inner sequence. Within this inner 

sequence, the first placeholder is the activity 

GetEURQuote that returns the current stock value in 

EUR given the Stock ISIN. The second placeholder 

is the activity EURtoUSD, which converts a given 

amount from EUR to USD. 

Figure 3: Abstract Workflow WSQ. 

The framework then infers the security properties 

required for each of the services that could 

instantiate the activities and uses them to query for 

such services. Initially, the rule shown in Table 1 is 

fired given the property required for the external 

sequential pattern, i.e. integrity on inputs and 

outputs of the workflow (i.e. Symbol and USD 

value). From the required security property, the rule 

derives two more properties: (1) integrity on inputs 

and outputs of GetISIN (i.e. Symbol and ISIN), and 

(2) integrity on inputs and outputs of the sequential 

inner pattern representing the second activity (i.e. 

ISIN and USD value). The second property fires 

again the rule and this propagates the requirement 

for integrity of the ISIN and USD value, resulting in 

the two properties: integrity on GetEURQuote of 

ISIN and EUR value, and integrity on EURtoUSD of 

EUR value and USD value.  

After the application of the rules, we derive the 

required property for the first unassigned activity 

GetISIN, namely integrity of the input Symbol and 

the output ISIN. A query consisting of the interface 

and the security property required for GetISIN is 

then executed and the discovered services are used 

to instantiate the workflow. Note that in the 

discovery process, services are considered to satisfy 

the required security properties only if they have 

appropriate certificates asserting these properties. In 

a similar way, a query specifying the required 

interface and security property of integrity is created 

for the second (GetEURQuote) and the last activity 

(EURtoUSD). Each query is executed, and the 

workflow gets instantiated by the results.  After the 

replacement service is fully composed, the service 

composition is published in a BPEL execution 

engine and its WSDL is sent to the Stock Broker 

SBS in order to update its bindings. 

6 TOOL SUPPORT & 

EXPERIMENTS 

To implement and test our approach, we have 

developed a prototype realizing the composition 

process and integrated it with the runtime service 

discovery tool described in Section 2. The prototype 

gives the possibility to select a service discovery 

query and execute it to find potential candidate 

services and service compositions. If alternative 

service compositions can be built, the alternatives 

are presented to the user who can select and explore 

the services in each of them. Figure 4 shows the 

results of an execution in the case of the example in 

Section 5.1. These include two alternative service 

compositions; see GetUSDStockQuote-Wf1-0 and 

GetUSDStockQuote-Wf1-1 in the Ranking-1 panel 

(the appearance of the two compositions in the same 

line in the panel indicates that there is no ranking 

between these two compositions). If one of these 

compositions is selected, details about the service 

operations that have instantiated the abstract 

workflow activities are shown in the Composition 

Details panel. In this case, the abstract workflow 

with the two nested sequences of activities has been 

instantiated by sequential(GetISIN, 

sequential(GetEURQuote, EURtoUSD)).  

 

Figure 4: Screenshot of Composition tool. 



CLOSER 2014
 

Then, by selecting an activity in the workflow, 

the details of the service instantiating the selected 

activity are shown. These can be the WSDL 

description, the required security properties that the 

patterns generated for the query that was used to 

identify the service, and the certificates that 

demonstrated the satisfaction of these properties 

during the composition process. The bottom part of 

Figure 4 shows the required security properties that 

were used in the query for the service 

GetEURQuote. 

Early performance tests of our approach have 

been carried out using service registries of different 

sizes. Table 3 shows average execution times for 

single service and service composition discovery 

obtained from using our tool on an Intel Core i3 

CPU (3.06 GHz) with 4 GB RAM. The reported 

times are average times taken over 30 executions of 

a discovery query. In the experiments, we used 

service registries of four sizes (150, 300, 600 and 

1200), 25 abstract workflows and 3 patterns.  

Table 3: Execution times (in milliseconds) w.r.t. service 

registry size and number of generated compositions. 

Registry size 150 300 600 1200 

Single Service 

Discovery Time 

194 275 355 642 

Composition 

Discovery Time 

777 2214 4943 12660 

No. of generated 

Compositions 

4 12 24 40 

 

As shown in the table, the time required for 

building service compositions is considerably higher 

than the time required for single service discovery. 

The main part of this cost comes from the process of 

discovering the individual services to instantiate the 

partner links of the composition. 

Although the overall composition time is high, 

its impact is not as significant, since as we discussed 

in Sect. 2 our framework can apply discovery and 

service composition in a proactive manner, i.e., 

discover possible service compositions in parallel 

with the operation of an SBS and use them when a 

service needs to be replaced. Furthermore, the cost 

of compositions can be reduced or kept under a 

given threshold by controlling the number of 

alternative compositions that the algorithm in Table 

2 builds. 

Whilst the benefits of the proactive approach 

have been shown in (Zisman et al., 2013) for the 

case of single service discovery, further 

experimentation is required to explore the same for 

the composition and assess the effect on 

performance of controls over the number of 

generated compositions. 

7 RELATED WORK 

The main focus of existing work in service 

composition is to address the problem of creating 

compositions that have certain functional and quality 

of service (QoS) property (Raman et al., 2002; 

Ponnekanti et al., 2002; Fujii et al., 2004; Majithia et 

al., 2004; Jaeger et al., 2004; Aggarwal et al., 2004; 

Dustdar et al., 2005; Tan et al. 2009; Alrifai et al., 

2012). This work provides a foundation for 

functional and QoS properties but provides only 

basic support for addressing security properties in 

service composition, which is the main focus of our 

approach. 

The problem of supporting security requirements 

(properties) in service composition has been a focus 

of work in the area of model based service 

composition. In this area, service compositions are 

modeled using formal languages and their required 

properties are expressed as properties on the model 

(Deubler et al., 2004; Dong et al., 2010; Bartoletti et 

al., 2005). Our approach to composition is also 

model based but uses model based property proofs 

to identify how overall security properties of 

compositions can be guaranteed through propagation 

to properties on the individual components 

(services) of the composition. Works in this field, 

however, provide proofs of additional security 

properties that could be used to extend the patterns 

used in our approach, even if they use different 

formalisms. An example of such proofs is given in 

(Mantel, 2002), which presents compositionality 

results related to information flows (e.g. non-

interference) and that can be easily converted into 

SESO patterns and inference rules in our framework. 

Another strand of work on automatic service 

composition focuses on discovering services that can 

guarantee given security properties (Carminati et al., 

2006; Medjahed et al., 2003; Lelarge et al., 2006; 

Anisetti et al., 2013; Khan et al., 2012). Some of 

these approaches focus on specific types of security 

properties (Medjahed et al., 2003; Lelarge et al., 

2006), whilst others (Carminati et al., 2006; Anisetti 

et al., 2013; Khan et al., 2012) focus on how to 

express and check security properties only for single 

partner services of a composition. In contrast, our 

approach can support arbitrary security properties 

and properties of entire service compositions. 
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The approaches in (Medjahed et al., 2003) and in 

(Khan et al., 2012) describe two ontology-based 

frameworks for automatic composition. The former 

work defines a set of metrics for selecting amongst 

different compositions but provides limited support 

for security. The latter work introduces hierarchies 

of security properties and mentions the possibility of 

using rules to reason about them but does not 

support the construction of secure service 

compositions. Lelarge et al., (2006) use planning 

techniques to build sequential compositions that 

guarantee the adoption of access control models. 

Carminati et al., (2006) introduce an approach to 

security aware service composition that matches 

security requirements with the external service 

properties. The approach presented in (Anisetti et 

al., 2013) focuses on the generation of test-based 

virtual security certificates for service compositions 

derived from the test-based security certificates of 

the external services part of the composition. The 

service compositions are based on templates that 

allow expressing security requirements on the 

external services. The ideas underlining this 

approach can be used to extend the one presented in 

this paper to support the generation of virtual 

certificates for compositions.  

The secure orchestration patterns that we use in 

our framework are similar to the workflow patterns 

in (Van Der Aalst et al., 2003), as they specify 

elementary workflows used to build compositions. 

Our patterns, however, include information not only 

about the control flow within the pattern but also 

about the data flow. They also extend these patterns 

with information regarding security properties to 

hold for the individual services in order to guarantee 

that their composition satisfies a required security 

property. 

8 CONCLUSION 

In this paper, we have presented an approach 

supporting the discovery of secure service 

compositions. Our approach is based on secure 

service orchestration (SESO) patterns. These 

patterns comprise specifications of primitive 

orchestrations describing the order of the execution 

and the data flow between placeholder services, and 

rules reflecting formally proven implications 

between the security properties of the individual 

placeholders and the security property of the 

orchestration as a whole. The formal proofs (and 

patterns) achieved so far cover different integrity 

and confidentiality properties for various forms of 

primitive orchestrations. The extension of our 

approach to cover other security properties (e.g., 

availability) is subject of ongoing work. During the 

composition process, the proven implications are 

used to deduce the actual properties that should be 

required of the individual services that may 

instantiate an orchestration for the orchestration as a 

whole to satisfy specific security properties. 

In order to facilitate reasoning, SESO patterns 

are encoded as Drools rules. This enables the use of 

the Drools rule based system for inferring the 

required service security properties when trying to 

generate a service composition. 

Our approach has been implemented and 

integrated with a generic framework supporting 

runtime service discovery that has been described in 

(Zisman et al., 2012). We are currently investigating 

the validity of our approach through a series of focus 

group evaluations. We are also conducting further 

performance and scalability analysis of our 

prototype, focusing on exploring the effect of a 

proactive composition generation approach and 

setting heuristic controls over the number of 

compositions generated by the algorithm.  
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