
Pino, L., Spanoudakis, G., Fuchs, A. & Gürgens, S. (2014). Discovering secure service

compositions. CLOSER 2014 - Proceedings of the 4th International Conference on Cloud

Computing and Services Science,

City Research Online

Original citation: Pino, L., Spanoudakis, G., Fuchs, A. & Gürgens, S. (2014). Discovering secure

service compositions. CLOSER 2014 - Proceedings of the 4th International Conference on Cloud

Computing and Services Science,

Permanent City Research Online URL: http://openaccess.city.ac.uk/4064/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by City Research Online

https://core.ac.uk/display/42627246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

CLOSER 2014

Discovering Secure Service Compositions

Luca Pino
1
, George Spanoudakis

1
, Andreas Fuchs

2
, and Sigrid Gürgens

2

1
 School of Informatics, City University London, London, United Kingdom

2
 Fraunhofer Institute for Secure Information Technology, Darmstadt, Germany

{luca.pino.1 | g.e.spanoudakis}@city.ac.uk, {andreas.fuchs | sigrid.guergens}@sit.fraunhofer.de

Keywords: Software services, secure service compositions, security certificates.

Abstract: Security is an important concern for service based systems, i.e., systems that are composed of autonomous

and distributed software services. This is because the overall security of such systems depends on the

security of the individual services they deploy and, hence, it is difficult to assess especially in cases where

the latter services must be discovered and composed dynamically. This paper presents a novel approach for

discovering secure compositions of software services. This approach is based on secure service

orchestration patterns, which have been proven to provide certain security properties and can, therefore, be

used to generate service compositions that are guaranteed to satisfy these properties by construction. The

paper lays the foundations of the secure service orchestration patterns, and presents an algorithm that uses

the patterns to generate secure service compositions and a tool realising our entire approach.

1 INTRODUCTION

The security of service based systems (SBS), i.e.,

systems that make use of distributed and possibly

dynamically assembled software services, has been a

critical concern for both the users and providers of

such systems (Raman et al., 2002; Majithia et al.,

2004; Anisetti et al., 2013). This is because the

security of an SBS depends on the security of the

individual services that it deploys, in complex ways

that depend not only on the particular security

properties of concern but also on the exact way in

which these services are composed to form the SBS.

Consider, for example, the case where the

property required of an SBS is that the integrity of

any data D, which are passed to it by an external

client, will not be compromised by any of its

constituent services that receive D. The assessment

of this property requires knowledge of the exact

services that constitute the SBS, the exact form of

the composition of these services and the data flows

between them, and a guarantee that each of the

constituent services of SBS that receives D will

preserve its integrity. Such assessments of security

are required both during the design of an SBS and at

runtime in cases where one of its constituent

services S needs to be replaced and, due to the

absence of any individual service matching it, a

composition of services must be built to replace S.

Whilst the construction of service compositions that

satisfy functional and quality properties has received

considerable attention in the literature (e.g.,

Aggarwal et al., 2004; Dustdar et al., 2005; Tan et

al. 2009; Alrifai et al., 2012)., the construction of

secure service compositions is not adequately

supported by existing research.

In this paper, we present an approach for

discovering compositions of services, which are

guaranteed to satisfy certain security properties. Our

approach is based on the application of SEcure

Service Orchestration patterns (SESO patterns).

SESO patterns specify primitive service

orchestrations, which are proven to have particular

security properties, if the constituent services of the

orchestration satisfy other security properties. A

SESO pattern specifies the order of the execution of

CLOSER 2014

its constituent services (e.g., sequential, parallel

execution) and the data flows between them. It also

specifies rules, which dictate the security properties

that the constituent services of the orchestration

must have for the orchestration to satisfy another

security property as a whole. These rules express

security property relations of the form IF P THEN

∧i=1,…,nPi where P is a security property that is

required of the service orchestration as a whole and

Pi are security properties of the constituent services,

which must be satisfied for P to be guaranteed. The

security property relations expressed by the rules are

formally proven. The constituent services of a SESO

pattern are abstract “placeholder” services that need

to be instantiated by concrete services when the

pattern is instantiated.

When a constituent service S of an SBS needs to

be replaced at runtime and no single alternative

service S’ satisfying exactly the same security

properties as S can be found, SESO patterns can be

applied to discover compositions of other services

that have exactly the same security properties as S

and could replace it within SBS. SESO patterns

determine the criteria (security, interface and

functional) that should be satisfied by the services

that could instantiate the orchestration specified by

them. These criteria are used to drive a discovery

process whose goal is to instantiate the pattern. If

this discovery/pattern instantiation process is

successful, i.e., different combinations of services

that satisfy the required criteria and fit with the

orchestration structure of the pattern can be

discovered, any composition of services which is

built from the pattern is guaranteed to have the

required overall security property by-construction.

An earlier account of our approach has been

given in (Pino and Spanoudakis 2012a; Pino and

Spanoudakis 2012b). In this paper, we present the

method that underpins the proof of security

properties in SESO patterns, show examples of

concrete proofs of security properties for specific

SESO patterns, and present an amended version of

the original composition algorithm that makes use of

coarse-grained service workflows in the composition

process in order to find service compositions that are

not only secure but also functionally relevant to the

service that is needed. In addition, we describe a tool

that implements our approach.

The rest of this paper is organized as follows.

Section 2 presents an overview of our approach.

Section 3 discusses the validation of the security of

primitive service orchestration patterns and provides

examples of proofs of security properties for some

of these patterns. Section 4 discusses the encoding of

secure service orchestration patterns. Section 5

presents the new pattern driven secure service

composition algorithm. Section 6 provides an

overview of the tool that we have developed to

implement our approach. Finally, Section 7

overviews related work and Section 8 provides

conclusions and directions for future work.

2 OVERVIEW

The service composition approach that we present in

this paper is part of a general framework developed

at City University to support runtime service

discovery (Zisman et al., 2013). This framework

supports service discovery driven by queries

expressed in an XML based query language, called

SerDiQueL, which supports the specification of

interface, behavioural and quality discovery criteria.

The execution of queries can be reactive or

proactive. In reactive execution, the SBS submits a

query to the framework and gets back any services

matching the query that the latter can find. In

proactive execution, the SBS submits to the

framework queries that are executed in parallel, to

find potential replacement services that could be

used if needed, without the need to initiate and wait

for the results of the discovery process at this point

(Zisman et al., 2013).

To take into account service security

requirements as part of the service discovery

process, we have extended the above framework in

two ways: (i) we have extended SerDiQueL to

enable the specification of the security properties

that are required of individual services, as querying

conditions, and (ii) we have developed a

composition module supporting the construction of

possible compositions of services that could replace

a given service in an SBS in cases where a query

cannot find any single replacement service, based on

the approach that we present in this paper. A

detailed description of the extended version of

SerDiQueL (called A-SerDiQueL) that is used for (i)

and (ii) is beyond the scope of this paper and can be

found in (Spanoudakis et al., 2011). In this paper, we

focus on the process of searching for and

constructing secure service compositions. The key

problems during the composition process are to

ensure that the constructed composition of services:

(a) provides the functionality of the service that it

should replace, and (b) satisfies the security

properties required of this service.

To address (a), our approach uses abstract

service workflows. These workflows express service

CLOSER 2014

coordination processes that realize known business

processes through the use of software services with

fixed interfaces. Such workflows are available for

specific application domains such as telecom

services (IBM BPM Industry Packs), logistics

(RosettaNet), and are often available as part of SOA

architecting and realization platforms (e.g., IBM

WebSphere). Service workflows are encoded in an

XML based language that represents the interfaces,

and the control and data flow between the

workflow's composing activities.

To address (b), we are using the SESO patterns.

These patterns are based on primitive service

orchestrations that have been proposed in the

literature (e.g., sequential and parallel service

execution) but augment them by specifying concrete

security properties P1, ..., Pn that must be provided

by the individual services that instantiate the pattern

for the overall orchestration to satisfy a required

security property P0. The derivation of these security

properties is based on rules that encode formally

proven relations between the security properties of

the individual placeholder services of the pattern and

the security property required of the entire service

orchestration represented by the pattern. Once

derived through the application of rules, the security

properties required of the individual partner services

of the orchestration are expressed as queries in A-

SerDiQueL. These queries are then executed to

identify concrete services with the required security

properties, which could instantiate the placeholder

services of the pattern. If such services are found the

pattern is instantiated. The pattern instantiation

process is gradual and, if it is completed

successfully, a new concrete and executable service

composition that satisfies the overall security

property guaranteed by the pattern is generated.

A key element of our approach is the formal

validation of the relations between the security

properties of the individual placeholder services of a

SESO pattern and the security property of the entire

composition expressed by the pattern. The validation

of such relations is discussed in the next section.

3 VALIDATING SECURE

SERVICE COMPOSITIONS

The task of formally validating the security of a

service composition requires a three-step approach.

It starts with a formal model of the service to be

replaced and the formal models of the services to be

composed. Firstly, the service composition is

represented in terms of a formal model derived from

the models of the individual services by applying a

set of formal construction rules. These rules project

the respective security properties of each of the

composed services as well as the targeted property

of the service to be replaced into the composed

system. Secondly, additional properties are added to

the composed system regarding the behaviour of the

orchestration engine, i.e., the primitive service

orchestration pattern. Finally, the desired property is

verified using the properties of the composed

services and the orchestrator.

For the formal system representation and

validation of security properties we utilize the

Security Modeling Framework SeMF developed by

Fraunhofer SIT (Gürgens et al., 2005b). In SeMF, a

system specification is composed of a set ℙ of

agents and a set ∑ of actions, ∑/P denoting the

actions of agent P, and other system specifics that

are not needed in this paper and are thus omitted.

The behaviour B of a discrete system Sys can then

be formally described by the set of its possible

sequences of actions. Security properties are defined

in terms of such a system specification. Relations

between different formal models of systems are

partially ordered with respect to different levels of

abstraction. Formally, abstractions are described by

so called alphabetic language homomorphisms that

map action sequences of a finer abstraction level to

action sequences of a more abstract level while

respecting concatenation of actions. Language

homomorphisms satisfying specific conditions are

proven to preserve specific security properties, the

conditions depending on the respective security

property. A detailed account of SeMF is beyond the

scope of this paper can be found in (Fuchs and

Gürgens, 2011; Fuchs et al., 2011; Gürgens et al.,

2005a; Gürgens et al., 2002) for.

Based on the representations of each of the

service systems in the composition, we present a

general construction rule using homomorphisms that

map the service composition onto the individual

services by preserving the individual services'

security properties. This allows us to deduce the

respective security properties to be satisfied by the

composition. The different SESO patterns are

translated into behaviour of the orchestrator

regarding the invocation of the respective services.

This includes functional and security related

property statements. Based on this information it is

possible to deduce the overall security properties of

the composition system and validate whether they

meet the expected results. In the next three sections,

we illustrate our approach by exemplarily proving a

CLOSER 2014

specific data integrity property. The formal

representation of services, composition and security

properties is given in terms of generic agents and

actions that are later used by the SESO patterns for

instantiation towards concrete services and security

properties. While our example is a very simple one,

our approach can handle more complex service

models, e.g. involving global agents (unique to all

services), or service specific agents (e.g. backend

storage) as well as various different orchestrations

patterns, proving different instantiations of various

security properties regarding integrity and

confidentiality (Pino et al., 2012).

3.1 Formal Representation of Generic
Service Composition

In the following, we denote the system model of the

service S
0
 to be replaced by a composition by Sys

0
,

the system models of the services S
1
 and S

2
 to be

composed by Sys
1
 and Sys

2
, respectively, and the

composition system by Sys
c
. The sets of agents and

actions are denoted analogously (i.e. by ℙ!, ∑
i
, for

i=0, 1, 2). We then view the systems Sys
0
, Sys

1
 and

Sys
2
 as homomorphic images of the composed

system Sys
c
.

Figure 1: Service Composition.

The principal idea of substituting a service by a

service composition is depicted in Figure 1: we

assume services S
1
 and S

2
 to act independently of

(i.e., not to invoke) each other. Thus we utilize an

orchestration engine O for their composition that

takes the role of both the clients C
1
 and C

2
 of Sys

1

and Sys
2
 respectively, as well as the role of the

service S
0
 in Sys

0
 to be replaced. We formalize this

by using a generic renaming function !!→!: ∑ →

∑!!→! that replaces all occurrences of agent P in an

action by Q. Based on this function, we define

functions r
i
 : ∑

i
 → ∑

c
 (i = 0, 1, 2) as follows:

!
!(!) ∶= !

!
!
→!
(!) if ! ∈ ∑/!!

!
∪ ∑/!!

!

!
!(!) ∶= !

!
!
→!
(!) if ! ∈ ∑

/!!
!

∪ ∑
/!!
!

(j = 1, 2). The resulting set ∑
c
 of actions of the

composed system is then as follows:

∑! = !
!(∑

/!!
!

∪ ∑
/!!
!
) ∪ !!(∑!) ∪ !!(∑!) ∪ ∑/!

!

∑/!
! represents additional actions taken by the

orchestration engine beyond the communication

with client and services. These actions depend on

the specific orchestration pattern used and will be

discussed in the next section. Since the functions r
i

are injective we can now use their inverse image in

order to define the homomorphisms that map the

composition system onto the abstract systems: each

homomorphism h
i
 abstracts ∑

c
 to ∑

i
. Regarding the

actions corresponding to those in ∑
i
, h

i
 is simply the

inverse of r
i
, and all other actions are mapped onto

the empty word. Hence for i = 0, 1, 2, we define h
i
 :

∑
c
 → ∑

i
 as follows:

ℎ
!(!) =

!′ if ∃!′ ∈ ∑!: !!(!′) = !

! else

These homomorphisms serve as a means to relate

not only the models of the individual systems to the

composition model but also to relate - under certain

conditions - their security properties. A

homomorphism that fulfils certain conditions

“transports” a security property from an abstract

system to the concrete one, i.e. if the conditions are

satisfied and the property holds in the abstract

system, the corresponding property will also hold in

the concrete system. Thus, the homomorphism

preserves the property. The conditions that must be

satisfied depend on the property in question; see

(Gürgens et al., 2005a; Gürgens et al., 2002) for

example. We use this approach to prove specific

security properties for a composition of services

based on the security properties of these services.

3.2 Formally Representing Sequential
Composition

The actions of the systems are constructed from the

service operations op0, op1, and op2 as prefix,

followed by one of the suffixes IS, IR, OS, OR to

represent InputSend, InputReceive, OutputSend,

OutputReceive, respectively. This results in the

following agent and action sets:

S0

C0

⇔

S1 S2

O

C0

CLOSER 2014

ℙ
!
⊇ {!! , !!},∑! ⊇

!"!– !" !
! , !! ,!"#"! ,

!"!– !" !
! ,!! ,!"#"! ,

!"!–!"(!
! ,!! , !!(!"#"!)),

!"!–!"(!
! , !! , !!(!"#"!))

In our simple example of a sequential

composition pattern, the orchestrator forwards data0

received from C
0
 to S

1
 which returns f1(data0). These

data are then forwarded by the orchestrator to S
2

who returns f2(f1(data0)) which the orchestrator

finally returns to the client. In a more complex

scenario the orchestrator can for example alter (e.g.,

split) the client data and combine the output of S
1

with some data resulting from the client's input and

send this to S
2
. A proof for this more complex

construction is achievable analogously to the one

presented below.

The agent and action sets of the composition are

constructed as specified in the previous section,

using the functions r
0
, r

1
 and r

2
. Function r

0
 for

example maps action op0-IS(C
0
, S

0
, data0) onto op0-

IS(C
0
, O, data0), hence h

0
(op0-IS(C

0
, O, data0)) =

op0-IS(C
0
, S

0
, data0), while h

0
(op2-OR(O, S

2
,

f2(data2))) = h
0
(r

2
(op2-OR(C

2
, S

2
, f2(data2)))) = !.,

with data1 := data0 and data2 := f1(data1).

3.3 Validation of Integrity Preserving
Compositions

Exemplarily, we will now prove that a specific data

integrity property of S
0
 is provided by the

orchestration specified above. The definition of

(data) integrity that we assume in our example is

taken from RFC4949: “The property that data has

not been changed, destroyed, or lost in an

unauthorized or accidental manner.” (Shirey, 2007).

In SeMF, this property is expressed by the concept

of precedence: pre(a,b) holds if all sequences of

actions ω ∈ B that contain action b also contain

action a. Obviously, precedence is transitive (we

omit the trivial proof). Further, precedence is

preserved by any homomorphism (Fuchs and

Gürgens, 2011).

 Let us now assume that service S
0
 provides the

integrity property that whenever the client receives

f0(data0) from the service, the client has sent data0 to

this service before:

P1’ pre(op0-IS(C
0
, S

0
, data0), op0-OR(C

0
, S

0
,

f0(data0)))

As explained above, precedence is preserved by

h
0

(as constructed in Section 3.1). Hence the

corresponding property of the composition is

(assuming f0 = f2°f1):

P1 pre(op0-IS(C
0
, O, data0), op0-OR(C

0
, O,

f2(f1(data0))))

For our proof, we assume that the services Sys
1

and Sys
2
 provide the properties:

P2’ pre(op1-IS(C
1
, S

1
, data1), op1-OR(C

1
, S

1
,

f1(data1)))
P3’ pre(op2-IS(C

2
, S

2
, data2), op2-OR(C

2
, S

2
,

f2(data2)))

The homomorphisms h
1

and h
2
 as constructed in

Section 3.1 preserve these precedence properties.

Accordingly, the corresponding properties in Sys
c

are:

P2 pre(op1-IS(O, S
1
, data0), op1-OR(O, S

1
,

f1(data0)))
P3 pre(op2-IS(O, S

2
, f1(data0)), op2-OR(O, S

2
,

f2(f1(data0))))

In addition, the orchestrator must act according

to the pattern (as specified in Section 3.2), i.e.,

satisfy the following properties:

P4 pre(op0-IS(C
0
, O, data), op1-IS(O, S

1
, data))

P5 pre(op1-OR(O, S
1
, data), op2-IS(O, S

2
, data))

P6 pre(op2-OS(O, C
0
, f2(f1(data0))), op2-OR(C

0
,

O, f2(f1(data0))))

Proof. By transitivity of precedence, from properties

P2 to P6 we can conclude that property P1 holds.

The above proof is almost trivial but shows the

principle of our approach. In (Pino et al., 2012) we

have proven more complex integrity properties

involving actions of global agents being invoked by

either S
1
 or S

2
, as well as several confidentiality

properties. All proofs use the approach presented in

this paper: (i) deriving the formal model of the

service composition from the formal models of the

individual services, (ii) relating these models by

using property preserving homomorphisms and thus

representing the individual services' security

properties in terms of the composition model, and

(iii) using appropriate security properties to be

satisfied by the orchestrator. Whilst we assume the

orchestrator to behave correctly and hence to satisfy

these additional properties, the security properties

we assume for the individual services of the

composition are translated into inference rules,

which are then used in order to construct a service

composition. It should also be noted that the proofs

of security properties for specific SESO patterns

need to be constructed offline and encoded in the

patterns as rules, as we discuss in Sect. 4 below. At

runtime, the rules encoded in specific pattern are

CLOSER 2014

used to deduce the security properties that need to be

satisfied by the candidate services that can

instantiate the pattern.

4 SECURE SERVICE

ORCHESTRATION PATTERNS

Proofs of security properties, like the one that we

discussed in Section 3, form the basis of SESO

patterns in our approach. More specifically, an

SESO pattern encodes: (a) a primitive orchestration

describing the order of the execution and the data

flow between placeholder services, and (b) the

implications between the security properties of these

services and the security property of the whole

orchestration. The placeholder services within a

primitive orchestration can be atomic activities (i.e.,

abstract partner services) or other patterns. The

implications in (b) are of the form:

“IF P is a primitive orchestration with
placeholders S1, …, Sn and ρ

P
 is a

security property required for P THEN ρ
P

can be guaranteed if each Si in P

satisfies a set of security properties

ρj (j =1, …, mi)”.

These implications reflect proofs of security

properties, developed based on the approach

discussed in Sect. 3. They are encoded as inference

rules and used during the composition process to

infer the security properties that would be required

of the placeholders of a pattern P for it to satisfy ρ
P
.

The benefit of encoding proven implications as

inference rules is that there is no need to reason from

first-principles when attempting to construct

compositions of services, based on SESO patterns.

To be more specific, SESO patterns and

implications of the above form are encoded as

Drools production rules (Drools). Drools is a rule-

based reasoning system supporting reasoning driven

by production rules. Production rules in Drools are

used to derive information from data facts stored in a

Knowledge Base (KB). A production rule in Drools

has the general form: when <conditions> then

<actions>. When a rule is applied, the rule engine

of Drools checks, through pattern matching, whether

the conditions of the rule match with the facts in the

KB and, if they do, it executes actions of the rule.

This execution can update the contents of the KB by

adding or deleting facts in it. The reasoning process

of Drools is based on the Rete algorithm a pattern-

matching algorithm that is known to scale well for

large sets of data facts and rules (Forgy, 1982);. The

latter property of Drools is the main reason for

selecting it to represent and reason with SESO

patterns in our approach.

Table 1 shows the encoding of integrity in the

sequential orchestration pattern that was presented in

Section 3.3 as a Drools rule. In particular our rule

uses the following definition of integrity:

Definition 2. Integrity(S, x, y) = pre(op0-IS(C
0
, S, x),

op0-OR(0
0
, S, y))

Using such more abstract security properties in

the rules avoids the need to encode in the rule the

formalism that the proof is based on. This makes it

also possible to use SESO patterns proven through

different formalisms in our approach.

Returning to the rule in Table 1, Lines 3-5

describe the primitive orchestration that the security

property refers to. More specifically, the rule can be

applied when a sequential pattern ($P) with two

placeholders, i.e., activity $S1 followed by activity

$S2, is encountered. The rule defines the parameters

of these activities: $S1 has an input parameter $d

and an output parameter $f1d, and $S2 has an

input parameter $f1d and an output parameter

$f2f1d, as shown in Table 1. Line 6 describes the

original security requirement requested on the

composition pattern $rhoP, i.e. integrity on the

pattern $P of its data $d and $f2f1d. This

requirement is equivalent to the precedence property

P1 presented in Section 3.3. Lines 8-9 (i.e., the

Table 1: Integrity Rule for Sequential SESO Pattern.

1: rule "Integrity - Sequential Orchestration"

2: when

3: $S1 := Activity($d := inputs, $f1d := outputs)

4: $S2 := Activity($f1d := inputs, $f2f1d := outputs)

5: $P := Sequential($S1 := activ1, $S2 := activ2)

6: $rhoP : Integrity($P := subject, $d := inputs, $f2f1d := outputs)

7: then

8: insert(new Integrity($S1, $d, $f1d));

9: insert(new Integrity($S2, $f1d, $f2f1d));

10: retract($rhoP);

11: end

CLOSER 2014

then part of the rule) specify the security properties

that are required of the activities of the pattern in

order to guarantee $rhoP, namely: (i) integrity on

the input ($d) and output ($f1d) of $S1, as stated

by the precedence property P2, and (ii) integrity on

the input ($f1d) and output ($f2f1d) of $S2, as

required from P3. Additionally, we assume the

framework executing the orchestration to satisfy

properties P4–P6, hence these need not be

mentioned in the rule. Finally, according to the rule,

once the original requirement $rhoP is guaranteed

by the new ones, it can be removed from the KB.

Similar encodings of other SESO patterns have

been expressed using this approach but cannot be

discussed due to space limitations. SESO pattern

encoding rules, like the one presented above, are

used during the composition process to infer the

security properties that are required of the concrete

services that may instantiate the placeholder services

in a workflow. This process is discussed next.

5 SESO PATTERN DRIVEN

SERVICE COMPOSITION

The service composition process is carried out

according to the algorithm shown in Table 2. This

algorithm is invoked when an SBS service needs to

be replaced but the service discovery query specified

for it cannot identify any single service matching its

conditions.

In such cases, the structural part of the query,

which defines the operations that a service should

have and the data types of the parameters of these

operations, is used to retrieve from the repository of

the discovery framework abstract workflows that

can provide the required service functionality. An

abstract workflow represents a coarse grained

orchestration of activities, which collectively offer a

specific functionality, and is exposed as a composite

service. Such workflows are fairly common

(Carminati et al., 2006; Medjahed et al., 2003) and

result from the generation of reference process

models in specific domains as in (RosettaNet; IBM

BPM Industry Packs). The activities of an abstract

workflow are orchestrated through a process

consisting of the primitive orchestrations that

underpin the security patterns, as discussed in

Section 4. If such workflows are found the

generation of a service composition is attempted by

trying to instantiate each abstract workflow.

As shown in Table 2, initially, the algorithm

identifies the abstract workflows that could be

potentially used to generate a composition that can

provide the operations of the required service (see

STRUCTURALMATCH function in line 3). This is based

on the execution of the query associated with the

Table 2: Service Composition Algorithm.

Require: QS - query for the required service

Ensure: ResultSet - set of instantiated workflows

1: procedure SERVICECOMPOSITION(QS)

2: for all abstract workflows AW in the repository do

3: if STRUCTURALMATCH(QS, AW) == true then

4: Put a copy of AW in WStack

5: end if

6: end for

7: while there are more workflows in WStack do

8: Get the first workflow W in the WStack

9: Pop the first unassigned activity A from W

10: Extract the structural query QA for A from W

11: SecCond := SECURITYCONDITIONS(QS, W)

12: Add to QA the security conditions SecCond

13: Res := SERVICEDISCOVERY(QA)

14: for all services S* in Res do

15: WS* := W[A/S*] //i.e. substitute S* for A in W
16: if exists an unassigned activity in WS* then

17: Push WS* in WStack

18: else

19: Add WS* to ResultSet

20: end if

21: end for

22: end while

23: return ResultSet

24: end procedure

CLOSER 2014

service to be replaced (QS). If such workflows are

found, the algorithm continues by starting a process

of instantiating the activities of each of the found

workflows with services.

The activities of the workflows are instantiated

progressively, by investigating each workflow W in a

depth-first manner. More specifically, the algorithm

takes the first unassigned activity A in W (in the

control flow order) and builds a query QA based on

the workflow specification and the discovery query

QS. In particular, the structural part of QA is taken

from the description of A in the abstract workflow.

The security conditions in QA are generated through

the procedure SECURITYCONDITIONS(QS,W). This

procedure infers the security conditions for A based

on the Drools rules that encode the SESO patterns

detected within the current workflow. More

specifically, all the information about the workflow,

its patterns, activities, security properties and

requirements are put into the KB. Then the rules that

represent the detected SESO patterns are fired (i.e.

applied), propagating the requirements through the

workflow. The generated requirements for the

unassigned activity are then retrieved and converted

to query conditions. The propagation of security

requirements is possible thanks to the fact that each

workflow can be seen as a recursive application of

primitive orchestrations.

Figure 2 shows the order of propagation through

the use of the rules, on a workflow shown in (c). A

security requirement ρ
S
 is initially given for a service

S (Figure 2 (a)). The first rule that will be fired by

Drools is the one for the outermost pattern of the

workflow: a choice pattern (i.e., the if-then-else

primitive orchestration in Figure 2 (b)). The security

requirement is then propagated by the relevant rule

(if such a rule exists) to the placeholders A and B

returning the requirements ρ
A1

, …, ρ
An

 and ρ
B1

, …,

ρ
Bm

 (with n, m ≥ 0 and n+m ≥ 1). For each security

requirement ρ
Ai

 (with i=1, …, n), a rule is fired to

propagate the requirement to the sequential pattern

that instantiates A (Figure 2 (c)). This process

generates the security requirements for placeholders

C and D.

If a security requirement cannot be propagated to

the atomic activity level (e.g., no rules are defined

for the given pattern or security property) then

Drools returns an error state to point out that a

security requirement cannot be guaranteed by the

existing set of rules. This ensures that no security

requirements are ignored.

After constructing QA, the query is executed by

the runtime discovery framework in (Zisman et al.,

2012) to identify a list of candidate services for QA.

The candidate services in this list (if any) are then

used to instantiate the activity A in W. Note that the

composition algorithm implements a depth-first

search in the composition process in order to explore

fully the instantiation of a particular activity within a

pattern before considering other activities, as this is

expected to spot dead-ends sooner than a breadth-

first search.

Figure 2: Recursive application of secure service

orchestration patterns.

5.1 Example

As an example of applying the algorithm in Table 2,

consider a Stock Broker SBS that uses an operation

GetStockQuote from a service StockQuote to obtain

price quotations for given stocks. GetStockQuote

takes as input a string Symbol identifying a stock and

returns the current value of that stock in USD.

Suppose that the Stock Broker SBS has a

security requirement regarding integrity of the input

and output data of this operation, and would

consider replacement services that can offer the

same operation only if they have certificates

confirming the satisfaction of this particular security

requirement by the service. To deal with potential

problems with StockQuote at runtime (e.g.,

unavailability), Stock Broker can subscribe a service

discovery query QSQ for replacing StockQuote to the

discovery framework and request its execution of

proactive mode. QSQ should specify the functional

and security properties that the potential replacement

services of StockQuote must have. If the execution

of QSQ results in discovering no single service

matching it (i.e., when single service discovery

fails), the service composition process is carried out.

At this stage, according to the algorithm of Table 2,

the framework will query the abstract workflow

repository to locate workflows matching QSQ.

CLOSER 2014

Suppose that this identifies an abstract workflow

WSQ shown in Figure 3 that matches the query. WSQ

contains three activities connected by two sequential

patterns (see two dashed areas of workflow). The

first placeholder of the outer sequence contains the

activity GetISIN, which converts the Symbol

identifying the Stock into the ISIN (another unique

stock identifier). The second placeholder

corresponds to the inner sequence. Within this inner

sequence, the first placeholder is the activity

GetEURQuote that returns the current stock value in

EUR given the Stock ISIN. The second placeholder

is the activity EURtoUSD, which converts a given

amount from EUR to USD.

Figure 3: Abstract Workflow WSQ.

The framework then infers the security properties

required for each of the services that could

instantiate the activities and uses them to query for

such services. Initially, the rule shown in Table 1 is

fired given the property required for the external

sequential pattern, i.e. integrity on inputs and

outputs of the workflow (i.e. Symbol and USD

value). From the required security property, the rule

derives two more properties: (1) integrity on inputs

and outputs of GetISIN (i.e. Symbol and ISIN), and

(2) integrity on inputs and outputs of the sequential

inner pattern representing the second activity (i.e.

ISIN and USD value). The second property fires

again the rule and this propagates the requirement

for integrity of the ISIN and USD value, resulting in

the two properties: integrity on GetEURQuote of

ISIN and EUR value, and integrity on EURtoUSD of

EUR value and USD value.

After the application of the rules, we derive the

required property for the first unassigned activity

GetISIN, namely integrity of the input Symbol and

the output ISIN. A query consisting of the interface

and the security property required for GetISIN is

then executed and the discovered services are used

to instantiate the workflow. Note that in the

discovery process, services are considered to satisfy

the required security properties only if they have

appropriate certificates asserting these properties. In

a similar way, a query specifying the required

interface and security property of integrity is created

for the second (GetEURQuote) and the last activity

(EURtoUSD). Each query is executed, and the

workflow gets instantiated by the results. After the

replacement service is fully composed, the service

composition is published in a BPEL execution

engine and its WSDL is sent to the Stock Broker

SBS in order to update its bindings.

6 TOOL SUPPORT &

EXPERIMENTS

To implement and test our approach, we have

developed a prototype realizing the composition

process and integrated it with the runtime service

discovery tool described in Section 2. The prototype

gives the possibility to select a service discovery

query and execute it to find potential candidate

services and service compositions. If alternative

service compositions can be built, the alternatives

are presented to the user who can select and explore

the services in each of them. Figure 4 shows the

results of an execution in the case of the example in

Section 5.1. These include two alternative service

compositions; see GetUSDStockQuote-Wf1-0 and

GetUSDStockQuote-Wf1-1 in the Ranking-1 panel

(the appearance of the two compositions in the same

line in the panel indicates that there is no ranking

between these two compositions). If one of these

compositions is selected, details about the service

operations that have instantiated the abstract

workflow activities are shown in the Composition

Details panel. In this case, the abstract workflow

with the two nested sequences of activities has been

instantiated by sequential(GetISIN,

sequential(GetEURQuote, EURtoUSD)).

Figure 4: Screenshot of Composition tool.

CLOSER 2014

Then, by selecting an activity in the workflow,

the details of the service instantiating the selected

activity are shown. These can be the WSDL

description, the required security properties that the

patterns generated for the query that was used to

identify the service, and the certificates that

demonstrated the satisfaction of these properties

during the composition process. The bottom part of

Figure 4 shows the required security properties that

were used in the query for the service

GetEURQuote.

Early performance tests of our approach have

been carried out using service registries of different

sizes. Table 3 shows average execution times for

single service and service composition discovery

obtained from using our tool on an Intel Core i3

CPU (3.06 GHz) with 4 GB RAM. The reported

times are average times taken over 30 executions of

a discovery query. In the experiments, we used

service registries of four sizes (150, 300, 600 and

1200), 25 abstract workflows and 3 patterns.

Table 3: Execution times (in milliseconds) w.r.t. service

registry size and number of generated compositions.

Registry size 150 300 600 1200

Single Service

Discovery Time

194 275 355 642

Composition

Discovery Time

777 2214 4943 12660

No. of generated

Compositions

4 12 24 40

As shown in the table, the time required for

building service compositions is considerably higher

than the time required for single service discovery.

The main part of this cost comes from the process of

discovering the individual services to instantiate the

partner links of the composition.

Although the overall composition time is high,

its impact is not as significant, since as we discussed

in Sect. 2 our framework can apply discovery and

service composition in a proactive manner, i.e.,

discover possible service compositions in parallel

with the operation of an SBS and use them when a

service needs to be replaced. Furthermore, the cost

of compositions can be reduced or kept under a

given threshold by controlling the number of

alternative compositions that the algorithm in Table

2 builds.

Whilst the benefits of the proactive approach

have been shown in (Zisman et al., 2013) for the

case of single service discovery, further

experimentation is required to explore the same for

the composition and assess the effect on

performance of controls over the number of

generated compositions.

7 RELATED WORK

The main focus of existing work in service

composition is to address the problem of creating

compositions that have certain functional and quality

of service (QoS) property (Raman et al., 2002;

Ponnekanti et al., 2002; Fujii et al., 2004; Majithia et

al., 2004; Jaeger et al., 2004; Aggarwal et al., 2004;

Dustdar et al., 2005; Tan et al. 2009; Alrifai et al.,

2012). This work provides a foundation for

functional and QoS properties but provides only

basic support for addressing security properties in

service composition, which is the main focus of our

approach.

The problem of supporting security requirements

(properties) in service composition has been a focus

of work in the area of model based service

composition. In this area, service compositions are

modeled using formal languages and their required

properties are expressed as properties on the model

(Deubler et al., 2004; Dong et al., 2010; Bartoletti et

al., 2005). Our approach to composition is also

model based but uses model based property proofs

to identify how overall security properties of

compositions can be guaranteed through propagation

to properties on the individual components

(services) of the composition. Works in this field,

however, provide proofs of additional security

properties that could be used to extend the patterns

used in our approach, even if they use different

formalisms. An example of such proofs is given in

(Mantel, 2002), which presents compositionality

results related to information flows (e.g. non-

interference) and that can be easily converted into

SESO patterns and inference rules in our framework.

Another strand of work on automatic service

composition focuses on discovering services that can

guarantee given security properties (Carminati et al.,

2006; Medjahed et al., 2003; Lelarge et al., 2006;

Anisetti et al., 2013; Khan et al., 2012). Some of

these approaches focus on specific types of security

properties (Medjahed et al., 2003; Lelarge et al.,

2006), whilst others (Carminati et al., 2006; Anisetti

et al., 2013; Khan et al., 2012) focus on how to

express and check security properties only for single

partner services of a composition. In contrast, our

approach can support arbitrary security properties

and properties of entire service compositions.

CLOSER 2014

The approaches in (Medjahed et al., 2003) and in

(Khan et al., 2012) describe two ontology-based

frameworks for automatic composition. The former

work defines a set of metrics for selecting amongst

different compositions but provides limited support

for security. The latter work introduces hierarchies

of security properties and mentions the possibility of

using rules to reason about them but does not

support the construction of secure service

compositions. Lelarge et al., (2006) use planning

techniques to build sequential compositions that

guarantee the adoption of access control models.

Carminati et al., (2006) introduce an approach to

security aware service composition that matches

security requirements with the external service

properties. The approach presented in (Anisetti et

al., 2013) focuses on the generation of test-based

virtual security certificates for service compositions

derived from the test-based security certificates of

the external services part of the composition. The

service compositions are based on templates that

allow expressing security requirements on the

external services. The ideas underlining this

approach can be used to extend the one presented in

this paper to support the generation of virtual

certificates for compositions.

The secure orchestration patterns that we use in

our framework are similar to the workflow patterns

in (Van Der Aalst et al., 2003), as they specify

elementary workflows used to build compositions.

Our patterns, however, include information not only

about the control flow within the pattern but also

about the data flow. They also extend these patterns

with information regarding security properties to

hold for the individual services in order to guarantee

that their composition satisfies a required security

property.

8 CONCLUSION

In this paper, we have presented an approach

supporting the discovery of secure service

compositions. Our approach is based on secure

service orchestration (SESO) patterns. These

patterns comprise specifications of primitive

orchestrations describing the order of the execution

and the data flow between placeholder services, and

rules reflecting formally proven implications

between the security properties of the individual

placeholders and the security property of the

orchestration as a whole. The formal proofs (and

patterns) achieved so far cover different integrity

and confidentiality properties for various forms of

primitive orchestrations. The extension of our

approach to cover other security properties (e.g.,

availability) is subject of ongoing work. During the

composition process, the proven implications are

used to deduce the actual properties that should be

required of the individual services that may

instantiate an orchestration for the orchestration as a

whole to satisfy specific security properties.

In order to facilitate reasoning, SESO patterns

are encoded as Drools rules. This enables the use of

the Drools rule based system for inferring the

required service security properties when trying to

generate a service composition.

Our approach has been implemented and

integrated with a generic framework supporting

runtime service discovery that has been described in

(Zisman et al., 2012). We are currently investigating

the validity of our approach through a series of focus

group evaluations. We are also conducting further

performance and scalability analysis of our

prototype, focusing on exploring the effect of a

proactive composition generation approach and

setting heuristic controls over the number of

compositions generated by the algorithm.

ACKNOWLEDGEMENTS

The work reported in this paper has been partially

funded by the EU F7 project ASSERT4SOA (grant

no.257351).

REFERENCES

Aggarwal, R., Verma, K., Miller, J., and Milnor, W., 2004.

Constraint driven web service composition in

METEOR-S. In Proc. of the IEEE International

Conference on Services Computing, (SCC 2004), pp.

23-30.

Alrifai, M., Risse, T., and Nejdl, W., 2012. A hybrid

approach for efficient Web service composition with

end-to-end QoS constraints. In ACM Transactions on

the Web (TWEB), vol. 6, no. 2, Article 7.

Anisetti, M., Ardagna, C., and Damiani, E., 2013. Security

Certification of Composite Services: A Test-Based

Approach. In Proc. of the IEEE 20th International

Conference on Web Services (ICWS), pp. 475-482.

Bartoletti, M., Degano, P. and Ferrari, G.L., 2005.

Enforcing secure service composition. In Proc. 18th

Comp. Sec. Found. Workshop (CSFW). IEEE Comp.

Soc., pp. 211-223.

Carminati, B., Ferrari, E. and Hung, P.C.K., 2006.

Security conscious web service composition. In Proc.

CLOSER 2014

of the Int. Conf. on Web Serv. (ICWS). IEEE Comp.

Soc., 489-496.

Deubler, M., Grünbauer, J., Jürjens, J. and Wimmel, G.,

2004. Sound development of secure service-based

systems. In Proc. of 2nd International Conference on

Service Oriented Computing (ICSOC). ACM, pp. 115-

124.

Dong, J., Peng, T. and Zhao, Y., 2010. Automated

verification of security pattern compositions. Inf.

Softw. Technol., vol. 52, no. 3, pp. 274-295.

Drools. [Online]. Available: http://www.jboss.org/drools/

Dustdar, S., and Schreiner, W., 2005. A survey on web

services composition. International Journal of Web

and Grid Services, vol. 1, no. 1, pp. 1-30.

Forgy, C., 1982. Rete: A fast algorithm for the many

pattern/many object pattern match problem. Artificial

Intelligences, vol. 19, no. 1, pp. 17-37.

Fuchs, A. and Gürgens, S., 2011. D05.1 Formal Models

and Model Composition. ASSERT4SOA Project,

Tech. Rep. [Online]. Available:

http://assert4soa.eu/public-deliverables/

Fuchs, A., Gürgens, S. and Rudolph, C., 2011. Formal

Notions of Trust and Confidentiality - Enabling

Reasoning about System Security. Journal of

Information Processing, vol. 19, pp. 274-291.

Fujii, K., and Suda, T., 2004. Dynamic service

composition using semantic information. In Proc. of

the 2nd international conference on Service oriented

computing (ICSOC), pp. 39-48. ACM.

Gürgens, S., Ochsenschläger, P. and Rudolph, C., 2002.

Authenticity and provability - a formal framework. In

Infrastr. Sec. Conf. (InfraSec). LNCS, vol. 2437, SV,

pp. 227–245.

Gürgens, S., Ochsenschläger, P. and Rudolph, C., 2005a.

Abstractions preserving parameter confidentiality. In

Europ. Symp. On Research in Computer Security

(ESORICS). 418–437.

Gürgens, S., Ochsenschläger, P. and Rudolph, C., 2005b.

On a formal framework for security properties.

International Comp. Standards & Interface Journal

(CSI), Special issue on formal methods, techniques

and tools for secure and reliable app. 27(5) 457–466.

IBM BPM industry packs. [Online]. Available:

http://www-03.ibm.com/software/products/us/en/

business-process-manager-industry-packs/

Jaeger, M. C., Rojec-Goldmann, G., and Muhl, G., 2004.

QoS aggregation for web service composition using

workflow patterns. In Proc. of the 8th IEEE

International Enterprise distributed object computing

conference, (EDOC 2004), pp. 149-159.

Khan, K.M., Erradi, A., Alhazbi, S. and Han, J., 2012.

Security oriented service composition: A framework.

In Proc. of International Conference on Innovations in

Information Technology (IIT), pp. 48-53.

Lelarge, M., Liu, Z. and Riabov, A.V., 2006. Automatic

composition of secure workflows. In Proc. of the

Third international conference on Autonomic and

Trusted Computing, (ATC). Berlin, SV, pp. 322-331.

Majithia, S., Walker, D. W., and Gray, W. A., 2004. A

framework for automated service composition in

service-oriented architectures. In Proc. of the 1st

European Semantic Web Symposium, Lecture Notes in

Computer Science, vol. 3053, pp. 269-283.

Mantel, H., 2002. On the Composition of Secure Systems.

In Proc. of the 2002 IEEE Symposium on Security and

Privacy (SP2002). IEEE Computer Society,

Washington, DC, USA, 88-.

Medjahed, B., Bouguettaya, A. and Elmagarmid, A.K.,

2003. Composing web services on the semantic web.

The VLDB Journal, vol. 12, no. 4, pp. 333-351.

Pino, L. and Spanoudakis, G., 2012a. Constructing secure

service compositions with patterns. In Services

(SERVICES), 2012 IEEE Eighth World Congress on.

IEEE, pp. 184-191.

Pino, L. and Spanoudakis, G., 2012b. Finding secure

compositions of software services: Towards a pattern

based approach. In 5th IFIP International Conference

on New Technologies, Mobility and Security (NTMS).

IEEE, pp. 1-5.

Pino, L., Spanoudakis, G., Gürgens, S., Fuchs, A. and

Mahbub, K., 2012. D02.2 ASSERT aware service

orchestration patterns. ASSERT4SOA Project, Tech.

Rep. [Online]. Available: http://assert4soa.eu/public-

deliverables/

Ponnekanti, S. R., and Fox, A., 2002. Sword: A developer

toolkit for web service composition. In Proc. of the

11th World Wide Web Conference (Web Engineering

Track), pp. 7-11.

Raman, B., Agarwal, S., Chen, Y., Caesar, M., Cui, W.,

Johansson, P., ... and Stoica, I., 2002. The SAHARA

model for service composition across multiple

providers. In Proceedings of the First International

Conference on Pervasive Computing, Lecture Notes in

Computer Science, vol. 2414, pp. 1-14.

RosettaNet. [Online]. Available:

http://www.rosettanet.org/

Shirey, R., 2007. Internet Security Glossary, Version 2.

RFC 4949 (Informational), IETF. [Online]. Available:

http://www.ietf.org/rfc/rfc4949.txt

Spanoudakis, G., Mahbub, K., Pino, L., Foster, H., Maña,

A. and Pujol, G., 2011. D02.1 ASSERTs aware

service query language and discovery engine.

ASSERT4SOA Project, Tech. Rep. [Online].

Available: http://assert4soa.eu/public-deliverables/

Tan, W., Fan, Y., and Zhou, M., 2009. A Petri Net-Based

Method for Compatibility Analysis and Composition

of Web Services in Business Process Execution

Language. In IEEE Transactions on Automation

Science and Engineering, vol.6, no.1, pp.94-106.

Van Der Aalst, W.M.P., Ter Hofstede, A.H.M.,

Kiepuszewski, B. and Barros, A.P., 2003. Workflow

patterns. Distrib. Parallel Databases, vol. 14, no. 1,

pp. 5-51.

Zisman, A., Spanoudakis, G., Dooley, J. and Siveroni, I.,

2013. Proactive and reactive runtime service

discovery: A framework and its evaluation. IEEE

Transactions on Software Engineering,

http://doi.ieeecomputersociety.org/10.1109/TSE.2012.

84, Dec 2012

