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ABSTRACT

The estimation of mutual information between graphs has been an elusive problem until the formula-

tion of graph matching in terms of manifold alignment. Then, graphs are mapped to multi-dimensional

sets of points through structure preserving embeddings. Point-wise alignment algorithms can be ex-

ploited in this context to re-cast graph matching in terms of point matching. Methods based on bypass

entropy estimation must be deployed to render the estimation of mutual information computationally

tractable. In this paper the novel contribution is to show how manifold alignment can be combined

with copula-based entropy estimators to efficiently estimate the mutual information between graphs.

We compare the empirical copula with an Archimedean copula (the independent one) in terms of re-

trieval/recall after graph comparison. Our experiments show that mutual information built in both

choices improves significantly state-of-the art divergences.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

One of the key elements for building a pattern theory is the

definition of a set of principled dissimilarity measures between

the mathematical structures underpinning the theory. For in-

stance, in vectorial pattern recognition, one of the fundamental

degrees of freedom of an information theoretic algorithm (for

clustering, matching, classification and learning) is the choice

of a divergence. There are some possibilities including mutual

information, Kullback-Leibler, Bregman divergences, and so on

(see Escolano et al. (2009) for a review).

The mutual information I(X; Y) between two variables X and

Y is very interesting since it captures high-order statistical de-

pendencies between the variables. However, when these vari-

ables are graphs we must address two issues. Firstly, we must

express graphs X and Y as random variables, beyond the sim-

plistic model of Erdös-Rényi model. In such model a random

graph is built by assigning a probability to the edges. How-

ever this model does not fully characterize the probability that

a given graph (with a variable number of vertices) is observed.

Secondly, since I(X; Y) = H(X) + H(Y) − H(X, Y) we must es-

timate the Shannon entropy H(.) of a graph. There are several

∗∗Corresponding author: Tel.: +34-965903897; fax: +34-965903902;

e-mail: sco@dccia.ua.es (Francisco Escolano)

approaches for estimating graph entropy. The most efficient

entropy estimators rely on functionals aiming to quantify the

amount of information flowing through the graph. For instance,

in Bai and Hancock (2013) the state vector of the steady state

random walk on the graph defines a discrete probability func-

tion on the nodes. The Shannon entropy of such a probability

function yieldsH(.). On the other hand, quantumwalks probing

is used in Torsello et al. (2014) for providing mixed quantum

states known as density matrices. Following Passerini and Sev-

erini (2009), the von Neumann entropy (or quantum entropy)

maps discrete (graph) Laplacians to quantum states: scaling the

graph Laplacian by the inverse of the volume of the graph we

obtain a density matrix whose entropy can be computed using

the spectrum of the discrete Laplacian. More recently Han et al.

(2012) have approximated the von Neumann entropy by formu-

lating it in terms of node degrees.

The above methods for estimating graph entropy operate on

the graph itself, i.e., they consider the graph as a coder of

node/vertex dependencies and describe entropy in terms of its

capability for diffusing information. However, in this paper we

consider that a graph is a special type of random variable with

a bounded number of nodes and/or edges and we model struc-

tural distortion in terms of a novel coding (transforming graphs

into low-dimensional manifolds). Then, it is possible to exploit

the apparatus of bypass entropy estimators (Neemuchwala et al.

(2005b), Leonenko et al. (2008)). In fact, bypass estimators do
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not rely on estimating probability density functions but on Eu-

clidean distances between vectorial patterns. This means that

the Parzen approximation of the probability density function is

no longer needed since entropy can be estimated directly from

the samples.

On the other hand, the development of graph embeddings

which map vertices to multi-dimensional spaces bypasses the

rigid discrete representation of graphs. After being embedded,

the associated multi-dimensional subspace must retain the rich

topological information of the original representation. Many

embeddings have been proposed so far: ISOMAP (Tenen-

baum et al. (2000)), Heat Kernels (Xiao et al. (2010)) ,

Diffusion Maps (Lafon and Lee (2006)), Laplacian Eigen-

maps (Belkin and Niyogi (2003)), Commute Times (Qiu and

Hancock (2007)), Centered Normalized Laplacian (Robles-

Kelly and Hancock (2007)) among others. Most of the these

latter structure preserving embeddings (i.e. distances in the

embedding are correlated with structural properties) establish

a formal link between topology (usually encoded in spectral

terms) and some kind of metric or dissimilarity measure in

the subspace. Understanding and exploiting the latter formal

link is key to quantifying the effectiveness of the corresponding

embedding for a given task. For instance, graph comparison.

In Escolano et al. (2011) there are experimental graph compar-

isons showing that the Commute Time (CT) embedding out-

performs the alternatives in terms of retrieval/recall for the best

dissimilarity measure in a given set. In addition, the fact that

the latter embedding induces a metric allows us to work in the

multi-dimensional subspace of the embedding. Here, problems

such as finding graph prototypes are more tractable. It is then

possible to return to the original topological space via inverse

embedding (Escolano and Hancock (2011)).

1.2. Contribution

With these ingredients at hand (bypass estimators and suit-

able embeddings), the mutual information between graphs can

be defined in terms of structural information channels (sec-

tion 2). In such channel model, there will be embedding-based

encoders and inverse embedding decoders. The channel will be

characterized by a conditional entropy relying on a global non-

rigid transformation between the input embedding and the dis-

torted one. We will devote Section 3 to present how to obtain a

multi-dimensional estimation of Mutual Information (MI) from

the combination of copulas and Rényi entropy estimators. In

Section 4 we will compare MI for embedded graphs with other

challenging dissimilarities. In order to perform a fair compari-

son we will use the GatorBait database which has been proven

to be a very challenging one despite its small size. This is due to

the fact that it exhibits we very high intra-class variability and

very low inter-class variability in only 100 samples. In Sec-

tion 5 we will present our conclusions and future work.

Our main contribution in this paper is to define graph simi-

larity through a model of structural information channel where

distortion relies on manifold and MI is estimated through dif-

ferent types of copula functions.

2. Information Channels and Manifold Deformation

Let X = (VX ,EX) be a random variable X : Ω → E defined

over the set of unweighted and undirected graphs Ω with node-

sets VX having |VX | = n nodes. Then, its associated edge-set

EX ⊆ VX × VX satisfies |EX | ≤
(

n

2

)

and a realization of X is

given by an n × n adjacency matrixAX ∈ E.

Let KX : VX × VX → R be a topological similarity measure

KX(i, j), ideally a kernel, between two nodes i, j ∈ VX . We

assume that the probability mass p(X) relies on the probabil-

ity mass of KX(., .) as follows: peaked similarity distributions

yield less probable realizations than flat ones. This choice is

convenient for two reasons. Firstly, it is consistent with re-

cent definitions of graph entropy (see Passerini and Severini

(2009), Escolano et al. (2012) and Han et al. (2012)). Secondly,

it provides a principled framework for understanding graph dis-

tortion in terms of the distortions induced in KX(., .).

Let C be an structural information channel X → C → Y

where Y = (VY ,EY) satisfies VY = VX . Then, the condi-

tional probability p(Y|X) describes a noiseless channel with re-

spect to the vertices or nodes, but a noisy channel with respect

to the edges. The channel C generates structural noise (inser-

tions and/or deletions of edges) through an unknown match-

ing function g : EX → EY
⋃

{Φ}, where Φ is the NULL la-

bel accordingly with Myers et al. (2000). Finding the func-

tion g(.) is typically posed in terms of minimizing the graph-

edit distance between X and Y (see Sanfeliu and Fu (1973)).

Although many recent developments have proposed approx-

imations of the graph-edit distance (see for instance Fischer

et al. (2015)) they are (to some extent) rooted in marginaliz-

ing p(Y|X). Marginalization tends to capture or preserve local

coherence between the matched edges at the cost of loosing

global coherence, especially when the input graphs X and Y

are unattributed.

Here, we propose a different approach which enforces global

coherence. Let fX : VX → R
d, with d ) n = |VX |, a graph

embedding function. The embedding fX(.) induces a manifold

MX , i.e. a subspace of R
d, where the structural similarities

KX(i, j) between pairs of vertices i, j ∈ VX are encoded by a

geodesic. Graph embedding functions are such that the Eu-

clidean norm || fX(i) − fX( j)||
2 is a reasonable approximation of

the geodesic insofar d matches the intrinsic dimension of the

manifold (see Escolano et al. (2011)).

Therefore, since a graphX is mapped to a subspace/manifold

MX ⊆ R
d we assume that the embedding function fX(.) plays

the role of an encoder associated with the channel C which

transmits one manifold MX at a time. Given a manifold to

transmit, its encoding is not free of error, i.e. it is noisy: differ-

ent vertices can be mapped to the same point of Rd. However,

we assume that the messages (resulting from the encoding) re-

tain the global topology of their respective graphs X. A simple

model for the the conditional distribution p(Y|X) governing C

is the usual factorization

p(Y|X) =

n
∏

i=1

p(Θ
(i)

Y
|Θ
(i)

X
) , (1)

whereΘ
(i)

Y
andΘ

(i)

X
are respectively the i−th points of manifolds
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MY andMX . However, the above factorization is misleading,

since we have

p(Θ
(i)

Y
|Θ
(i)

X
) ∝ exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Θ
(i)

X
− T (Θ

(i)

Y
;W)

σ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2
⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (2)

where T (.;W) is a global non-rigid transformation parameter-

ized byW, and σ is the bandwidth (see Escolano et al. (2011)

for more details). This is consistent with assuming that we can-

not observe the matching function g(.) but instead its effects

in the similarity matrix KX(., .) in order to produce a new one

KY (., .) which determines the embedding fY : VY → R
d lead-

ing toMY .

The framework developed in this paper encompasses our

early research. A model for the information channel C does

not only assume that an output manifold MY is received. It

must also specify how it is decoded. We do that through an in-

verse embedding. In our previous work (see Escolano and Han-

cock (2011)) we showed that for certain types of embeddings,

e.g. commute-time embeddings, it is possible to approximate

Y with minimal error.

Consequently, in our model we naturally associate distortion

(when the information rate exceeds the channel capacity) with

excessive deformation, since the capacity of the channel, de-

fined as C = maxp(X) I(X;Y), decays significantly with the in-

crease of ε =
∑n
i=1

∣

∣

∣

∣

∣

∣Θ
(i)

X
− T (Θ

(i)

Y
;W)
∣

∣

∣

∣

∣

∣

2
. This means that, al-

though T (.;W) is chosen so that ε is minimized, the deforma-

tion is constrained by a regularization constant, i.e. the channel

capacity is bounded by regularization.

Bridging deformation with mutual information I(X;Y)

opens up a way of analyzing structural pattern distortion in

terms of rate-distortion theory. In the following section, we

propose a means of estimating I(X;Y) within this framework.

3. Mutual Information Between Graphs

3.1. Graphs as Random Variables

When heading X = (VX ,EX) and Y = (VY ,EY) as random

variables, now with |VX | = n, |VY | = m with m ! n in general,

we assume: (i) the existence of an upper bound B of the number

of vertices for any graph encoded by a structural random vari-

able, i.e. n,m ≤ B; therefore the number of edges of any graph

is bounded by
(

B

2

)

; (ii) the density mass p(.) is defined according

to a similarity measure K(., .) so that peaked similarity distribu-

tions yield less probable realizations than flat ones. These rules

are followed by the graphs X = (VX ,EX) feeding the structural

information channel C.

In addition, the information channel C can also incorporate

nodal noise as well (whenm ! n). The impact of this fact in the

design of p(Y|X) is that we must establish a correspondence

function (or matching field) c : VY → VX , where c(.) is not

necessarily a one-to-one matching. Then we can reformulate

the conditional probability in terms of

p(Y|X) =

m
∏

u=1

p(Θ
(u)

Y
|Θ

c(u)

X
) , (3)

where the correspondence function c(.) comes from the mini-

mization of

ε′ =

n
∑

i=1

m
∑

u=1

∣

∣

∣

∣

∣

∣Θ
(i)

X
− T (Θ

(u)

Y
;W)
∣

∣

∣

∣

∣

∣

2
, (4)

for instance through regularized multi-dimensional point

matching (see Myronenko and Song (2010)) and then compute

the correspondence function from the optimal transformation

T (.;W) minimizing ε′. After applying this transformation we

have c(u) = i for u ∈ VY and i ∈ VX . In this way, we ensure that

the number of matched points is always n = |VX | in order to be

consistent with the information-theoretic alignment framework

used for images (see Viola and III (1997) and Neemuchwala

et al. (2005a)). The correspondence function plays then the role

of providing a common reference system for comparing the two

manifoldsMX andMY after the optimal alignment.

Regarding the impact of nodal noise in the structure of the

similarity matrix KX(., .) in order to produce another similar-

ity matrix KY (., .), we interpret this noise in terms of rewiring

the path structure of the original graph beyond a simple editing

of the edges. New nodes can be added to VX or old nodes of

VX can be deleted and this may imply the appearance or the

deletion of edges. However, since p(Y|X) relies on the global

transformation T (.;W) we assume that nodal noise will have a

significant impact on the conditional probability p(Y|X) inso-

far the structure of the obtained manifoldMY differs fromMX

after the optimal alignment.

Consequently we will formulate the mutual information

I(X;Y) in terms of manifold distortion after the optimal align-

ment.

We summarize our approach in Algorithm 1 where there

are explicit calls to compute non-rigid deformations (see de-

tails in Algorithm 2 introduced here for the sake of repro-

ducibility1). In this regard, the choice of non-rigid deforma-

tions instead of using rigid or affine deformations is the ex-

plicit addition of a regularization term. In Algorithm 2 this

term is taking into account when computing the Green’s func-

tion. The non-rigid transformation used in graph comparison

is grounded in two principles. Firstly, the geometry of the sub-

spaces MX and MY is typically non Euclidean. This means

that a rigid or affine alignment will potentially lead to low fre-

quency (poorly discriminative) results, unless a small number

of samples/nodes justifies the use of such a strong regularizer

(either rigid or affine). Secondly, given the graphs X and Y we

embed their topological information (purely structural) in R
d.

Then, the quadratic assignment problem associated with graph

matching is linearized in the embedding space. The classical

rectangle rule of Graduated Assignment (Gold and Rangara-

jan (1996)) imposes the constraint that if two nodes match then

their matches are also adjacent to enforce the smoothness of

the matching field. This is exactly the role of regularization in

R
d. Regularization in the non-rigid approach is less constrained

than in the rigid or affine cases.

1MATLAB code and data for reproducing all the experiments in this pa-

per can be found in http://sites.google.com/site/scohomepage/ and will be soon

submitted to IPOL.
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Algorithm 1 StructuralMI

Input: Graphs X, Y and embedding function f

Output: I(X;Y)

ΘX = fx(VX); ΘY = fy(VY);

[ΘY→X , c] =NonRigid(ΘX,ΘY ) ;

Joint 2d variable: ΘZXY = [Θ
T
X
(c) ΘT

Y→X
]T ;

Set α ≈ 1, α ! 1;

Compute Iα(ΘX ,ΘY→X) from Eq. 19:

Îα(ΘX ,ΘY→X) = −Îα(ΘX(c)) − Îα(ΘY→X) + Îα(ΘZXY ) ;

Set I(ΘX ,ΘY→X) = Îα(ΘX ,ΘY→X);

[ΘX→Y , c
′] =NonRigid(ΘY ,ΘX) ;

Joint 2d variable: ΘZYX = [Θ
T
Y
(c′) ΘT

X→Y
]T ;

Compute Îα(ΘX→Y ,ΘY):

Îα(ΘX→Y ,ΘY ) = −Îα(ΘX→Y) − Îα(ΘY (c
′)) + Îα(ΘZYX ) ;

Set I(ΘX→Y ,ΘY ) = Îα(ΘX→Y ,ΘY);

return I(ΘX ,ΘY→X) + I(ΘX→Y ,ΘY );

In addition, given that graphs X and Y are considered ran-

dom variables the estimation of I(X;Y) implies that we should

carefully consider the d−dimensional representation of the

structural patterns and more importantly to existing methods

which are capable of capturing the statistical dependences be-

tween such representations. This naturally leads to the funda-

mental concept of copula, i.e. the amount of high-order statis-

tical dependence between a collection of variables (see Nelsen

(1999)) and the equivalence between the negative entropy of

the copula and the mutual information between the variables.

Therefore, we commence from the definition of mutual infor-

mation and then that of the copula itself to develop a computa-

tional method for its estimation in Section 3.3.

3.2. Rényi Mutual Information

Given the conditional probability p(Y|X) = p(Y,X)/p(X)

we have that mutual information can be posed in terms of

I(X;Y) = H(X) + H(Y) − H(X,Y). This formulation is more

suitable for the practical use of bypass entropy estimators than

the usual entropy formula I(X;Y) = H(Y) − H(Y|X). This is

due to the fact that H(X) =
∫

Rd
p(X) log p(X)dX and this re-

quires the estimation of the density function p(X). The curse

of dimensionality precludes the use of plug-in estimators, such

as Parzen’s windows, for high d. On the other hand, bypass

estimators, which only rely on the samples themselves, scale

reasonably well with d (see Benavent et al. (2009) for a discus-

sion).

As a result, bypass estimators are useful when structural vari-

ables are coded by sets of d−dimensional vectors. This is the

case, since we have X→ ΘX , through the embedding fx(.), and

Y → ΘY through fy(.). In addition, we have applied the optimal

global transformation T (.;W) and obtained a correspondence

field c : VY → VX .

Algorithm 2 NonRigid (from Myronenko and Song (2010))

Input: Sets of d−dimensional points X and Y

Output: Deformed Y, Correspondence function c : Y → X

InitializeW = 0, σ ∝
∑

i,u ||X
(i) − Y (u) ||2, β > 0, λ > 0

Build Green’s function G, whereGab = e
− 1

2β2
||Y(a)−Y(b) ||2

repeat

Update transformation T = Y +GW

E-step: Compute P

Pui =
Pui

∑

k Puk + h(σ, d)
where Pui = e

− 1

2σ2
||X(i)−T (Y(u))||2

M-step: SolveW

(G + λσ2diag(P1)−1)W = diag(P1)−1PX − Y

Update σ

until Convergence

Obtain c: c(u) = i if Pui ≈ 1.

return Y +GW, c;

Let ΘX be the set of n d−dimensional points encoding X and

ΘY→X be their corresponding n points from ΘY after the global

deformation and the correspondence field are applied. In Algo-

rithm 1 we have used the notation ΘX(c) to denote the samples

of ΘX corresponding with those of ΘY→X via the correspon-

dence mapping c(.). However we drop this notation here for the

sake of clarity.

Then, we have that

I(ΘX ,ΘY→X) = H(ΘX) + H(ΘY→X) − H(ΘX ,ΘY→X) , (5)

is a proxy we use for I(X;Y) once the global transformation

T (.;W) and the correspondence field c : VY → VX are found.

Obtaining I(ΘX ,ΘY→X) with bypass entropy estimators for

d > 1 is an open problem. The underpinning principle of

most of the state of the art bypass estimators is that the Shan-

non entropies H(ΘX), H(ΘY→X) and H(ΘX ,ΘY→X) can be es-

timated from the distribution of inter point distances between

the points of the d−dimensional sets ΘX , ΘY→X and those of

the 2d−dimensional joint (ΘX ,ΘY→X) respectively. However,

there is some controversy attending to the statistical consis-

tency of the estimators. For instance, although the Leonenko

et al. estimator (Leonenko et al. (2008)) has been successfully

used in Escolano et al. (2011) to compute the SNESV measure,

some authors have recently pointed out that there exist several

formal flaws which do not ensure weak convergence. In Pál

et al. (2010) it is suggested to relax the original problem and

estimate instead the generalized Mutual Information (Rényi or

α−order, with α > 1) whose limit is the Shannon MI when

α→ 1.

Then, given a d−dimensional random variable Θ, we have

both the generalized entropy Hα and the generalized MI Iα de-

fined respectively as

Hα(Θ) =
1

1 − α
log

∫

Rd
q(Θ)αdΘ
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Iα(Θ) =
1

α − 1
log

∫

Rd

q(Θ)α

(

∏d
i=1 qi(Θ

(i))
)α−1

dΘ ,

(6)

where q : Rd → R is the joint probability density function and

qi : R→ R are the marginals.

Given a discrete sample Θ of n d−dimensional vectors

Θ
(1),Θ(2), . . . ,Θ(n) (coming in this case from the manifold) we

can obtain consistent estimators of both Hα(Θ) and Iα(Θ). In

this regard, estimation relies on building graphs (one node per

sample) whose edges rely on the Euclidean distances between

the nodes (d−dimensional points). For instance, entropic span-

ning graphs (Hero et al. (2002)) are Minimum Spanning Trees

(MSTs) computed from the p−th powers of the L2 distances be-

tween the points. There is a mathematical relation between the

sum of all the p−th powers of the Euclidean distances associ-

ated to the edges in the MST and the Rényi entropy. Nearest-

neighbor (kNN) graphs are more robust to outliers than MSTs

and they are used for instance in Pál et al. (2010) where a given

set of nearest neighbors may be specified by a set of integers S

and then used to define directed edges.

The kNN graph G generalizes the choice of the k−th nearest

neighbor of each point (when |S | = 1) as follows: G = (V,E)

where V = {Θ(1),Θ(2), . . . ,Θ(n)} and ei j ∈ E if Θ
( j) is the j-th

nearest neighbor of Θ(i) and j ∈ S . It has been proved that a

consistent estimator of the Rényi entropy is

Ĥα(Θ) =
1

1 − α
log

Lp(Θ)

γn1−p/d
, (7)

where Lp(Θ) =
∑

ei j∈E
||Θ(i) − Θ( j)||p, p = d(1 − α) and γ is a

constant that can be estimated by generating a large sample X

in [0, 1]d and then setting γ = Lp(X)/n
1−p/d.

3.3. Mutual Information and Copula Entropy

The formal link between the estimation of entropy and that

of mutual information is the concept of a copula (Nelsen

(1999)). Given a d−dimensional random variable we de-

fine F(Θ) = C(F1(Θ1), F2(Θ2), . . . , Fd(Θd)) where C(.) is

a copula function, that is, a joint c.d.f. (cumulative

distribution function) C : [0, 1]d → [0, 1] which en-

codes the dependence between c.d.f. uniform marginals.

Since a random vector (F1(Θ
(1)), F2(Θ

(2)), . . . , Fd(Θ
(d))) has

uniform marginals, we have that the joint probability

Prob[F1(Θ
(1)), F2(Θ

(2)), . . . , Fd(Θ
(d)] is a copula function.

A nice property of copula functions is that

I(Θ) = −H(c(F(Θ))) , (8)

i.e. the mutual information is equivalent to the negative en-

tropy of the p.d.f. c(.) of the copula function (Ma and Sun

(2011)). This is consistent with the rescaling property of mutual

information I(Θ) = I(h(Θ)) if h(.) is a strictly increasing func-

tion (Pál et al. (2010)). Since each Fi(.) satisfies this property,

then we can formulate the Rényi mutual information in terms

of :

Iα(Θ) = −Hα(F1(Θ1), F2(Θ2), . . . , Fd(Θd)) . (9)

Given this formal link, we can bypass the estimation of c(F(Θ))

by computing the so called empirical copula. If our choice of

the copula function is the multi-dimensional c.d.f., then the em-

pirical copula is given by taking the union or concatenating all

F̂ j for j = 1, . . . , d, where F̂ j is an estimator of F j:

F̂ j(Θi) =
1

n
|Ri| , Ri =

{

Θ
(k)

j
≤ Θ

(i)

j
: 1 ≤ k ≤ n

}

, (10)

where Θ
(i)

j
is the j−th component of the i−th sample, and simi-

larly forΘ
(k)

j
. Then F̂ j(Θi) is the average rank ofΘi, the number

of samples in the j−th dimension smaller or equal thanΘi. Con-

sequently, the empirical copula is given by (W1,W2, . . . ,Wn)

where Wi = (F̂1(Θ
(i)

1
), F̂2(Θ

(i)

2
), . . . , F̂d(Θ

(i)

d
))T . Given the em-

pirical copula, a consistent estimator of the Rényi mutual infor-

mation between the n samples is

Îα(Θ) = −Ĥα(W1,W2, . . . ,Wn) . (11)

For instance, in Fig. 1 we show both a) the samples of a 2D

mixture of 3 Gaussians and b) the samples corresponding to the

empirical copula and their connection through the kNN graph

where S = {k} and k = 4. Although the graph has more than

3 connected components (due to the choice of k) the empirical

copula reflects the community structure of the mixture (there

are no links between the large communities). We have esti-

mated Îα = 0.1734 with α = 1 − p/d = 0.9894. In practice, the

Shannon mutual information is estimated by choosing α ≈ 1.

3.4. Archimedean Copulas vs Empirical Copulas

Given the F̂ j(Θi) ∈ [0, 1] in Eq. 10 as estimators of the

marginal c.d.f. of the i−th sample along the j−th dimension, it

is possible to define alternatives to the empirical copula (which

is n×d-dimensional) in order to performmore efficient compu-

tations for the estimation of mutual information. A particularly

interesting family is that of the Archimedean copulas (McNeil

and Neslěhová (2009)). These copulas are specially designed

for summarizing the dependence structure in multiple dimen-

sions and collapse it into a single variable since copulasC(.) are

functions that satisfy C : [0, 1]d → [0, 1]. Archimedean cop-

ulas have been used in biometrics (Cao et al. (2012)) whereas

empirical copulas have been used for ICA (Pál et al. (2010)).

In the Archimedean context, instead of estimating the usual

Prob[F1(Θ
(1)), F2(Θ

(2)), . . . , Fd(Θ
(d)] (or bypassing it in prac-

tice) it is preferred to define the copula as follows:

C(U1, . . . ,Ud) = ψ
(

ψ−1(U1) + . . . + ψ
−1(Ud)

)

, (12)

where U j = F j(Θ j) for j = 1, . . . , d and ψ(.) is an Archimedean

generator. An Archimedean generator ψ(.) is a non-increasing

continuous function ψ : [0,∞) → [0, 1] which satisfies ψ(0) =

1, limx→∞ ψ(x) = 0 and is strictly decreasing in the interval

[0, inf{x : ψ(x) = 0}]. The inverse ψ−1(.) is defined as follows

ψ : (0, 1] → [0,∞) and by convention ψ(∞) = 0 and ψ−1(0) =

inf{x : ψ(x) = 0}. In addition, ψ(.) only defines a copula if ψ(.)

is d−monotone. The function ψ(.) is d−monotone, with d ≥ 2,

in a given interval (a, b) if is differentiable up to order d− 2 and

the derivatives ψ(k)(.) satisfy

(−1)kψ(k)(x) ≥ 0 for k = 0, 1, 2, . . . , d − 2 . (13)
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Fig. 1. Estimation of the empirical copula. Left: 200 samples generated from a 2D Mixture of 3 Gaussians. Right: Empirical 2D copula and its associated

kNN graph.

for all x ∈ (a, b) and also when (−1)d−2ψ(d−2)(.) is both non

decreasing and convex in (a, b). If the function has deriva-

tives for all orders and the latter requirements are satisfied,

then it is completely monotone. The notation ψd(.) denotes a

d−monotone function and ψ∞(.) a completely monotone one.

The latter notation is very useful for parameterizing fami-

lies of Archimedean copulas. For instance, the generator of the

Clayton copula family is

ψθ(x) = (1 + θx)
−1/θ
. (14)

For θ > 0 the Clayton generator is completely monotone and

we have that

ψ0(x) = lim
θ→0
(1 + θx)−1/θ = exp(−x) (15)

is the so called independence copula in any dimension.

In this paper we will focus on ψ(x) = exp(−x) (and conse-

quently on ψ−1(x) = − log(x)) because they are simple and pa-

rameter independent. Then, given the choice of the independent

copula we have to estimate:

C(U1, . . . ,Ud) = exp
(

−(− log(U1) − . . . − log(Ud))
)

= exp

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d
∑

j=1

log(U j)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= exp

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

log

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d
∏

j=1

(U j)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

d
∏

j=1

(U j) ,

(16)

where the copula is given by the factorization of the marginal

c.d.f.s. This means that in a multi-dimensional setting the com-

mon structural information of the n samples is encoded inde-

pendently by each of these marginals. For instance, setting

Û
(i)

j
= F̂ j(Θi) implies that rank computation along the j−th di-

mension contains the structure of the samples w.r.t. Θi along

that dimension. Therefore, let Vi = C(Û
(i)

1
, Û

(i)

2
, . . . , Û

(i)

j
) ∈

[0, 1] be new variables using now Eqs. 12 and/or 16 for defining

C(.). Then, we have that

Îα(Θ) = −Ĥα(V1,V2, . . . ,Vn) , (17)

that is, mutual information is estimated by a set of one-

dimensional samples. Rényi estimation can be then done

in time O(n log n). In fact, we can simplify the computa-

tions by avoiding the estimation of rank information. To

do so, we take the original samples and normalize them so

that they belong to [0, 1]d. In doing this, we are implic-

itly assuming that the value of each normalized sample com-

ponent is a marginal c.d.f.. We then exploit Sklar’s the-

orem: given a copula C : [0, 1]d → [0, 1] and c.d.f.

marginals F j(Θ j) then C(F1(Θ1), F2(Θ2), . . . , Fd(Θd)) defines

a d−dimensional cumulative distribution function. This theo-

rem allows us to use an Archimedean copula C′ for defining

V ′
i
= C′(N(Θ

(i)

1
),N(Θ

(i)

2
), . . . ,N(Θ

(i)

j
)), where N(Θ

(i)

j
) is the

normalization of Θ
(i)

j
. As a result we have

Îα(Θ) = −Ĥα(V
′
1,V

′
2, . . . ,V

′
n) , (18)

and we can refer to this approach as the raw estimation of the

Archimedean copula and, thus, the raw estimation of mutual

information.

3.5. Mutual Information between Graphs

Given the above estimators of MI in terms of copulas, e.g.

Îα(Θ) = −Ĥα(V
′
1
,V ′

2
, . . . ,V ′n), we have a formal means of com-

puting the proxy

I(ΘX ,ΘY→X) = H(ΘX) + H(ΘY→X) − H(ΘX ,ΘY→X) .

Since Îα(ΘX) = −Ĥα(ΘX) and Îα(ΘY→X) = −Ĥα(ΘY→X),

we only need to compute the estimation of the joint entropy

H(ΘX ,ΘY→X). In order to do this, we define the variable

ΘZXY = [Θ
T
X
Θ
T
Y→X

]T (the 2d-dimensional concatenation of the

two variables). The samples of ΘZXY are obtained from the pairs

defined by the correspondence field. Then, we have:

Îα(ΘZXY ) = −Ĥα(ΘZXY ) = −Ĥα(ΘX ,ΘY→X) .

and also

Îα(ΘX ,ΘY→X) = −Îα(ΘX) − Îα(ΘY→X) + Îα(ΘZXY ) , (19)
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Fig. 2. Summary of the GatorBait Graph Database. The dataset has 100 Delaunay triangulations distributed in 30 classes. Classes are associated with

fish genus and therefore we have high intra-class variability. For instance, taking as principal topological feature the distribution of triangules around the

pectoral fin, we have that this feature varies among the graphs belonging to the same class. Different triangulating topologies characterize different classes.

However, there is also a high inter-class variability since the kNN of a given graph belong frequently to different classes.

so that

I(ΘX ,ΘY→X)) = lim
α→1

Îα(ΘX ,ΘY→X) . (20)

However, the above measure is not symmetric with respect to

the non-rigid transformation applied to the data, and in gen-

eral we have that I(ΘX ,ΘY→X)) ! I(ΘX→Y ,ΘY )). Therefore, the

proxy of the mutual information between two graphs X and Y

is given by the symmetrization:

Îα(ΘX;ΘY ) = Îα(ΘX ,ΘY→X) + Îα(ΘX→Y ,ΘY) , (21)

and

I(ΘX ;ΘY) = lim
α→1

Îα(ΘX;ΘY ) . (22)

In the following section we will analyze the discriminability of

mutual information in two contexts, manely a) comparison of

copula functions and b) comparison with state-of-the-art diver-

gences/algorithms.

4. Experiments

We use the GatorBait 100 database in our experiments.

GatorBait has 100 shapes representing fishes from 30 differ-

ent classes (see Fig. 2 where we summarize the main features

of this graph dataset). These shapes are discretized and then

their Delaunay triangulations (included in the publicly accessi-

ble UA Graph Database2 ) are retained for testing graph com-

parison/matching algorithms. In order to compare our MI mea-

sure with the one proposed in Escolano et al. (2011) (SNESV)

through entropic manifold alignment as well as with the classi-

cal quadratic function now computed through the PATH algo-

rithm (Zaslavskiy et al. (2009)), we reproduce here the same ex-

perimental conditions. For instance, embedding functions fx(.)

and fy(.) rely on the commute-time embedding with d = 5, and

the settings of the CPD (Coherent Point Drift) point-matching

algorithm (see Myronenko and Song (2010)) are the same. The

embedding dimension d, is typically bounded by the results ob-

tained by classical estimators of the intrinsic dimensions ofMX

andMX (see Costa and Hero (2004)). Final adjustment of d is

typically done in the proximity of d = 5 since the bypass en-

tropy estimator is relatively robust to the curse of dimensional-

ity.

4.1. Comparison of Copula Functions

In Fig. 3-(top left) we show the average recall/retrieval curves

for several copula functions, namely a) the Archimedean cop-

2http://www.rvg.ua.es/graphs/dataset01.html
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Fig. 3. Top: Retrieval-recall experiments in GatorBait.Top-left: comparison between different copula functions. Top-right: comparison with SNESV and

PATH similarities. Bottom: Experiments in MiniGator. Bottom-left: Comparison between the rigid, affine and non-rigid regularizers (always using the

4D empirical copula. Bottom-right: Comparison between the rigid regularizer + 4D empirical copulas and similarities of state-of-the-art algorithms.

ula (independent) for d = 5, b) the empirical copula with

d = 5, c) the empirical copula with d = 4, and finally d) the

raw Archimedean copula with d = 5. The 5D empirical cop-

ula with AUC=75.1600 outperforms all the alternatives. It is

followed by the 4D empirical copula with AUC=72.05. How-

ever, in this kind of recall/retrieval curve, for two similar AUCs

the best curve is the one that grows faster. The 4D empirical

copula intersects the alternatives (but the 5D empirical cop-

ula) when nearly 45 retrievals are performed. Therefore both

Archimedean copula functions (the independent and the raw in-

dependent) with AUC=73.26 and AUC=70.60 outperform the

4D empirical copula. However, both Archimedean copula func-

tions are outperformed by the empirical copula for the same

dimensionality. This is consistent with the information fusion

performed by the Archimedean functions which in fact produce

faster (one-dimensional) Rényi estimators. In practice we may

use the Arquimedean independent if we have time constrains in

our structural recognition systems and this is better than reduc-

ing the dimensionality of the empirical copula.

4.2. Comparison with SNESV and PATH

In order to compare our approach with SNESV and the

quadratic assignment function (without attributes) optimized by

the PATH algorithm (both with d = 5) we will use the worst

copula function, the 4D empirical copula. As we show in Fig. 3-

(top right), even the worst copula significantly outperforms both

SNESV and the quadratic assignment function optimized by

PATH. This is consistent with the high-order statistical depen-

dence information captured by mutual information. For exam-

ple, in the case of SNESV, increasing the dimensionality leads

to decrease the performance (for d > 5). However, when com-

puting the mutual information we estimate a Rényi entropy for

2d =8 dimensions (the joint entropy). The joint entropy term

is key for capturing the high-order dependencies and it is con-

sistently estimated even for a high number of dimensions. On

the other hand, SNESV (with AUC=59.60) outperforms PATH

(with AUC=58.67). Actually PATH cuts SNESV at close to

55 retrievals. Entropic Alignment (SNESV) outperforms PATH

and requires less intense computations than PATH.

4.3. MiniGator and Comparison with Attributed Methods

In order to study the robustness of our approach with re-

spect to the number of samples (average size of the graphs)

we have used a decimated version of GatorBait 100 dubbed

as MiniGator. To construct MiniGator, we retain 10% of the

points of each shape in GatorBait 100 and then build the as-

sociated Delaunay triangulation. To choose the most suitable

regularizer (rigid, affine or non-rigid), our working hypothesis

is that the smaller the number of samples the stronger the reg-

ularizer must be in order to minimize inter-class confusions. In

Fig. 3-(bottom left) we show the performance curves for the
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three choices in MiniGator. In all cases d = 5 and the cop-

ula is the empirical one. We observe a significant performance

degradation with respect to GatorBait. The best choice (rigid

regularizer) provides an AUC of 65.20 (vs AUC=72.05 for the

4D empirical copula). In addition, the performance degrades

significantly if we relax the regularizer (the affine regularizer

does not come from a constrained optimization problem). Nei-

ther the affine nor the non-rigid choices are competitive.

Given the rigid regularizer (the best choice in MiniGator)

we proceed to compare it with other state-of-the-art-algorithms,

most of them relying on attributes, such as the Factorized Graph

Matching(FGM), (see Zhou and la Torre (2012)), which ac-

tually is an attributed and optimized version of PATH. We

also explore: Reweighted Random Walks Matching (RRWM),

(see Cho et al. (2010)), Spectral Matching with Affine Con-

straint (SMAC), (see Cour et al. (2006)) and Graduated As-

signment, (see Gold and Rangarajan (1996)). We show the

performances obtained in Fig. 3-(bottom right). Our MI-based

method, which is purely topological, outperforms all the alter-

natives and FGM is the second best choice.

5. Conclusions and Future Work

In this paper we have introduced a novel similarity measure

for graph comparison through manifold (entropic) alignment:

the mutual information (MI) between graphs. Estimating MI

is addressed through the combination of copula functions and

Rényi entropy estimators. We have studied both the empiri-

cal and the Archimedean copula functions. Empirical copula

functions yield the best discriminative results, although the per-

formance of Archimedean functions is very close to that of

the empirical ones despite their formal structure. In addition,

Archimedean copulas may be computed in sub-quadratic time,

whereas empirical ones have a quadratic complexity. When

compared with state-of-the-art similarities/algorithms the worst

copula function outperforms very significantly the alternatives.

Future work includes the analysis of different families of cop-

ulas and the definition of ensembles of copulas. It also includes

the formulation of a unified cost function for finding the align-

ment that maximizes mutual information. Since Rényi estima-

tors rely on spanning trees or kNN graphs it is possible to ap-

proximate the derivatives of such estimators (it is straightfor-

ward for k = 1). In addition, the inclusion of novel and more

efficient copulas opens new perspectives for the formalization

of an information theory for graphs. For instance, we can study

the implications of the channel coding theorem in graph theory

and pattern recognition as well as having a better intuition of

the meaning of entropy and coding in this context.
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