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CLASSIFICATION OF MODULES FOR

INFINITE-DIMENSIONAL STRING ALGEBRAS

WILLIAM CRAWLEY-BOEVEY

Abstract. We relax the definition of a string algebra to also include
infinite-dimensional algebras such as k[x, y]/(xy). Using the functorial
filtration method, which goes back to Gelfand and Ponomarev, we show
that finitely generated modules and artinian modules (and more gener-
ally finitely controlled and pointwise artinian modules) are classified in
terms of string and band modules. This subsumes the known classifi-
cations of finite-dimensional modules for string algebras and of finitely
generated modules for k[x, y]/(xy). Unlike in the finite-dimensional case,
the words parameterizing string modules may be infinite.

1. Introduction

By a string algebra we mean an algebra of the form Λ = kQ/(ρ) where k
is a field, Q is a quiver, not necessarily finite, kQ is the path algebra, ρ is
a set of zero relations in kQ, that is, paths of length ≥ 2, (ρ) denotes the
ideal generated by ρ, and we suppose that

(a) Any vertex of Q is the head of at most two arrows and the tail of at
most two arrows, and

(b) Given any arrow y in Q, there is at most one path xy of length 2
with xy /∈ ρ and at most one path yz of length 2 with yz /∈ ρ.

The name is due to Butler and Ringel [2], but they imposed a finiteness
condition (which we drop), which forces an algebra with a one to be finite-
dimensional. Note that the notion has a longer history, going back to the
special biserial algebras of Skowroński and Waschbüsch [14].

We consider left Λ-modules M which are unital in the sense that ΛM =
M . If Q is finite, then Λ has a one, and this corresponds to the usual
notion. It is equivalent that M is the direct sum of its subspaces evM ,
where v runs through the vertices in Q and ev denotes the trivial path at
vertex v, considered as an idempotent element in Λ. This ensures that Λ-
modules correspond to representations of Q satisfying the zero relations in
ρ, with the vector space at vertex v being evM .

As usual, a module M is finitely generated if M = Λm1 + · · ·+ Λmn for
some elements m1, . . . ,mn ∈M . Slightly more generally, if Q has infinitely
many vertices, we say that a module M is finitely controlled if for every
vertex v, the set evM is contained in a finitely generated submodule of M .
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2 WILLIAM CRAWLEY-BOEVEY

Similarly, slightly more general than the notion of an artinian module, we
say that a module M is pointwise artinian if for any descending chain of
submodules M1 ⊇ M2 ⊇ M3 ⊇ . . . and any vertex v in Q, the chain of
subspaces evM1 ⊇ evM2 ⊇ evM3 ⊇ . . . stabilizes.

Given a string algebra, our main results classify modules satisfying these
finiteness conditions in terms of so-called ‘string’ and ‘band’ modules. The
results apply in particular to the string algebra k[x, y]/(xy), which arises
from the quiver with one vertex and loops x and y with ρ = {xy, yx}. Also
to the algebra k〈x, y〉/(x2, y2), with ρ = {x2, y2}. As another example, one
can take Γ = kQ/(ρ) where Q is the quiver

· · ·
x−1

−→
−→
y−1

−1
•

x0−→
−→
y0

0
•

x1−→
−→
y1

1
•

x2−→
−→
y2

2
•

x3−→
−→
y3

· · ·

and ρ = {xiyi−1 : i ∈ Z} ∪ {yixi−1 : i ∈ Z}. Clearly Γ-modules are the same
thing as Z-graded modules for k[x, y]/(xy), where x and y have degree 1, and
finitely controlled Γ-modules correspond to Z-graded k[x, y]/(xy)-modules
whose homogeneous components are finite-dimensional.

Words. As in previous work on string algebras, in order to describe the
string and band modules, we use certain ‘words’, and as in [13], they may
be infinite. These words are also used to define functors used in the proofs,
and it is for this purpose that there are two trivial words for each vertex.
By a letter ℓ one means either an arrow x in Q (a direct letter) or its formal
inverse x−1 (an inverse letter). The head and tail of an arrow x are already
defined, and we extend them to all letters so that the head of x−1 is the
tail of x and vice versa. If I is one of the sets {0, 1, . . . , n} with n ≥ 0, or
N = {0, 1, 2, . . . }, or −N = {0,−1,−2, . . . } or Z, we define an I-word C as
follows. If I 6= {0}, then C consists of a sequence of letters Ci for all i ∈ I
with i− 1 ∈ I, so

C =



















C1C2 . . . Cn (if I = {0, 1, . . . , n})

C1C2C3 . . . (if I = N)

. . . C−2C−1C0 (if I = −N)

. . . C−1C0|C1C2 . . . (if I = Z)

(a bar shows the position of C0 and C1 if I = Z) satisfying:

(a) if Ci and Ci+1 are consecutive letters, then the tail of Ci is equal to
the head of Ci+1;

(b) if Ci and Ci+1 are consecutive letters, then C−1
i 6= Ci+1; and

(c) no zero relation x1 . . . xm in ρ, nor its inverse x−1
m . . . x−1

1 occurs as
a sequence of consecutive letters in C.

In case I = {0} there are trivial I-words 1v,ǫ for each vertex v in Q and
ǫ = ±1. By a word, we mean an I-word for some I; it is a finite word of
length n if I = {0, 1, . . . , n}. If C is an I-word, then for each i ∈ I there is
associated a vertex vi(C), the tail of Ci or the head of Ci+1, or v for 1v,ǫ.
We say that a word C is direct or inverse if every letter in C is direct or
inverse respectively.
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The inverse C−1 of a word C is defined by inverting its letters (with
(x−1)−1 = x) and reversing their order. For example the inverse of an N-
word is a (−N)-word, and vice versa. By convention (1v,ǫ)

−1 = 1v,−ǫ, and
the inverse of a Z-word is indexed so that

(. . . C0|C1 . . . )
−1 = . . . C−1

1 |C−1
0 . . . .

If C is a Z-word and n ∈ Z, the shift C[n] is the word . . . Cn|Cn+1 . . . . We
say that a word C is periodic if it is a Z-word and C = C[n] for some n > 0.
The minimal such n is called the period. We extend the shift to I-words C
with I 6= Z by defining C[n] = C. There is an equivalence relation ∼ on the
set of all words defined by C ∼ D if and only if D = C[m] or D = (C−1)[m]
for some m.

Modules given by words. Given any I-word C, we define a Λ-module
M(C) with basis bi (i ∈ I) as a vector space, and the action of Λ given by

evbi =

{

bi (if vi(C) = v)

0 (otherwise)

for a trivial path ev in Λ (v a vertex in Q), and

xbi =











bi−1 (if i− 1 ∈ I and Ci = x)

bi+1 (if i+ 1 ∈ I and Ci+1 = x−1)

0 (otherwise)

for an arrow x in Q. For example, for the algebra k[x, y]/(xy) and the word

C = y−1xxy−1y−1y−1y−1 . . . ,

the module M(C) may be depicted as

q

b0

q

b1

q

b2

q

b3

q

b4
q

b5
q

b6
q

b7
p
p
p
p

@@Ry ��	
x

��	
x

@@R
y

@@R
y

@@R
y

@@R
y

where the arrows show the actions of x and y.
For any word C there is an isomorphism iC :M(C) →M(C−1) given by

reversing the basis, and for a Z-word C and n ∈ Z there is an isomorphism
tC,n : M(C) → M(C[n]), given by tC,n(bi) = bi−n. Thus modules given by
equivalent words are isomorphic.

If C is a periodic word of period n, then M(C) becomes a Λ-k[T, T−1]-
bimodule with T acting as tC,n, and we define

M(C, V ) =M(C)⊗k[T,T−1] V

for V a k[T, T−1]-module. It is clear that M(C) is free over k[T, T−1] of
rank n, so M(C, V ) is finite dimensional if and only if V is finite dimen-
sional. Equivalent periodic words give rise to the same modules, since for
m ∈ Z one has M(C, V ) ∼= M(C[m], V ) ∼= M((C−1)[m], resι V ), where ι is
the automorphism of k[T, T−1] exchanging T and T−1 and resι denotes the
restriction map via ι.
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String and band modules. Let Λ = kQ/(ρ) be a string algebra. By a
string module we mean a moduleM(C) with C a non-periodic word, and by
a band module we mean one of the form M(C, V ) with C a periodic word
and V an indecomposable k[T, T−1]-module. By a primitive injective band
module we mean one of the form M(C, V ) where C is a direct or inverse
periodic word and V is the injective envelope of a simple k[T, T−1]-module.

Theorem 1.1. String modules, finite-dimensional band modules and prim-
itive injective band modules are indecomposable. Moreover, there only exist
isomorphisms between such modules when the corresponding words are equiv-
alent: there are no isomorphisms between string modules and modules of the
form M(C, V ); string modules M(C) and M(D) are isomorphic if and only
if C ∼ D; and M(C, V ) ∼= M(D,W ) if and only if D = C[m] and W ∼= V
or D = (C−1)[m] and W ∼= resι V for some m.

Our main result is as follows.

Theorem 1.2. Every finitely controlled Λ-module is isomorphic to a direct
sum of copies of string modules and finite-dimensional band modules.

Note that string modules may be given by infinite words, but that not
all such words give finitely controlled or finitely generated modules. This is
addressed in Section 12. For example the k[x, y]/(xy)-module M(C), with
C as before, is finitely generated, while the Γ-moduleM(D) with Γ as above
and

D = . . . y3y2x
−1
2 y2y1x

−1
1 y1y0x

−1
0 |x−1

1 x−1
2 x−1

3 . . .

is finitely controlled, but not finitely generated. For the pointwise artinian
case we prove the following—in fact the proof in this case is slightly easier.

Theorem 1.3. Every pointwise artinian Λ-module is isomorphic to a di-
rect sum of copies of string modules, finite-dimensional band modules and
primitive injective band modules.

Concerning uniqueness of the decomposition, we prove the following.

Theorem 1.4 (Krull-Remak-Schmidt property). If a finitely controlled or
pointwise artinian module is written as a direct sum of indecomposables in
two different ways, then there is a bijection between the summands in such
a way that corresponding summands are isomorphic.

Theorem 1.3 is proved in §10, and the others are proved in §12. Our re-
sults extend existing work on the classification of finite-dimensional modules
for string algebras (or related special biserial algebras) due to several au-
thors [5, 12, 4, 15, 2]. These authors used the so-called functorial filtration
method, which relies on certain functorially-defined filtrations of modules.
The original work of Gelfand and Ponomarev [5] applied to k[x, y]/(xy), and
Ringel [12], in what is probably the best reference for the method, adapted
it to k〈x, y〉/(x2, y2). We modify the method so that it works for infinite-
dimensional modules. In particular we change the definition of C ′′ for a
relation C in Definition 4.1 and prove a Splitting Lemma, 4.6; we consider
functors C± for C an N-word in §6; we prove finite dimensionality results for
refined functors in §7; we prove our Realization Lemma 10.2 and covering
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properties in §10. Finally we use our Extension Theorem 11.2 to overcome
a limitation of the functorial filtration method.

Our results include the classification of finitely generated k[x, y]/(xy)-
modules. The possibility of such a classification is hinted at in a footnote
in [11] (on page 652 of the English translation), was worked out by Levy [8]
more generally for Dedekind-like rings, and again discussed by Laubenbacher
and Sturmfels [7]. These authors all used a different method, sometimes
called ‘matrix reductions’. The functorial filtration method is essentially
different, although the last part of our proof of Theorem 1.2, using the
Extension Theorem 11.2, is reminiscent of matrix reductions. Our proof
offers new insight even for the algebra k[x, y]/(xy); for example Theorem 9.1
identifies the summands of a finitely generated module. As discussed above,
our results also give a classification of graded modules for this algebra with
finite-dimensional homogeneous components, where x and y have degree 1;
this appears to be new. The same ideas would work for any grading.

Instead of a string algebra, one can consider its localization or completion
with respect to the ideal generated by the arrows. Algebras of this type have
occasionally been studied by matrix reductions. For example Burban and
Drozd [1] study the derived category for certain ‘nodal’ algebras, including
k〈〈x, y〉〉/(x2, y2). The functorial filtration method should adapt to classify
finitely generated modules for such localizations and completions. Note that
Theorem 11.2 would no longer be necessary in this case, as there would be
no primitive simples.

2. More about words

We introduce some more constructions which will be needed later. Let
Λ = kQ/(ρ) be a string algebra. We choose a sign ǫ = ±1 for each letter
ℓ, such that if distinct letters ℓ and ℓ′ have the same head and sign, then
{ℓ, ℓ′} = {x−1, y} for some zero relation xy ∈ ρ. (This is equivalent to the
use of σ and ǫ in [2].) Note that if Ci and Ci+1 are consecutive letters in a
word, then C−1

i and Ci+1 have opposite signs.
The head of a finite word or N-word C is defined to be v0(C), so it is

the head of C1, or v for C = 1v,ǫ. The sign of a finite word or N-word C is
defined to be that of C1, or ǫ for C = 1v,ǫ. The tail is defined for a word C
of length n to be vn(C) and for C a (−N)-word to be v0(C).

The composition CD of a word C and a word D is obtained by concate-
nating the sequences of letters, provided that the tail of C is equal to the
head of D, the words C−1 and D have opposite signs, and the result is a
word. By convention 1v,ǫ1v,ǫ = 1v,ǫ and the composition of a (−N)-word C
and an N-word D is indexed so that

CD = . . . C−1C0|D1D2 . . . .

If C = C1C2 . . . Cn is a non-trivial finite word and all powers Cm are words,
we write C∞ and ∞C∞ for the N-word and periodic word

C1 . . . CnC1 . . . CnC1 . . . and . . . C1 . . . Cn|C1 . . . CnC1 . . . .

If C is an I-word and i ∈ I, there are words

C>i = Ci+1Ci+2 . . . and C≤i = . . . Ci−1Ci
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with appropriate conventions if i is maximal or minimal in I, such that

C = (C≤iC>i)[−i].

We say that a word C is repeating if C = D∞ for some non-trivial finite
word D. We say that a word C is eventually repeating (respectively direct,
respectively inverse) if C>i is repeating (respectively direct, respectively
inverse) for some i. We say that an I-word C is right vertex-finite if for each
vertex v there are only finitely many i > 0 in I with vi(C) = v.

Lemma 2.1. No word can be equal to a shift of its inverse.

Proof. If C is finite of length n, then C = C−1 implies C−1
i = Cn+1−i for

all i. The same holds if C is a Z-word and C = C−1[−n]. Now if n is even,
then C−1

i = Ci+1 for i = n/2, which is impossible, and if n is odd, then

C−1
i = Ci for i = (n+ 1)/2, which is also impossible. �

3. Primitive cycles and k[z]-module structure

By a primitive cycle P we mean a non-trivial finite direct word (so a
non-trivial path in Q which is non-zero in Λ) such that ∞P∞ is a periodic
word of period equal to the length of P . Equivalently P is not itself a power
of another word, and every power of P is a word. For example the primitive
cycles for k[x, y]/(xy) are x and y; for k〈x, y〉/(x2, y2) they are xy and yx;
the algebra Γ in the introduction has no primitive cycles.

A non-trivial finite direct word is uniquely determined by its first arrow
and length, so there are at most two primitive cycles with any given head v.
Moreover if P and R are distinct primitive cycles with head v the string
algebra condition implies that PR = RP = 0 in Λ. For any vertex v we
define zv ∈ evΛev to be the sum of all primitive cycles with head v. If
zv = P +R, then znv = Pn +Rn and, for example, znvP = Pn+1.

Let k[z] denote the polynomial ring in an indeterminate z. We turn any Λ-
module M (including Λ itself) into a k[z]-module by defining zm = zvm for
m ∈ evM . The following lemma shows that this turns Λ into a k[z]-algebra.

Lemma 3.1. The actions of k[z] and Λ on M commute.

Proof. If a is an arrow with head v and tail u then zva = azu, for zva is
either zero, or it is a word of the form Pa where P is a primitive cycle
whose first letter is a. Then Pa = aR where R is a primitive cycle at u, so
aR = azu. �

Lemma 3.2. evΛeu is a finitely generated k[z]-module for all vertices u, v.

Proof. Consider non-trivial paths from u to v in Q which are non-zero in
Λ. They correspond to finite direct words C with head v and tail u. By
the string algebra condition all such words with the same sign must be of
the form D,PD,P 2D, . . . for some non-trivial words D and P . If there are
infinitely many such words, then P is a primitive cycle, and these words
are equal in evΛeu to D, zvD, z

2
vD, . . . . Thus evΛeu is a finitely generated

k[z]-module. �

Lemma 3.3. For a Λ-module M , the following are equivalent.

(i) M is finitely controlled.
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(ii) M is pointwise noetherian, meaning that for any ascending chain of
submodules M1 ⊆M2 ⊆M3 ⊆ . . . and any vertex v in Q, the chain
of subspaces evM1 ⊆ evM2 ⊆ evM3 ⊆ . . . stabilizes.

(iii) evM is a finitely generated evΛev-module for every vertex v in Q.
(iv) evM is a finitely generated k[z]-module for every vertex v in Q.

Proof. (iv) ⇒ (ii) ⇒ (iii) ⇒ (i) are straightforward. For (i) ⇒ (iv), suppose
that M is finitely controlled. Then evM is contained in a finitely gener-

ated submodule
∑k

i=1 Λmi. We may assume that each mi belongs to eviM
for some vi. Then evM is contained in a k[z]-submodule of M which is

isomorphic to a quotient of
∑k

i=1 evΛevi , so is finitely generated as a k[z]-
module. �

Lemma 3.4. For a Λ-module M , the following are equivalent.

(i) M is is pointwise artinian
(ii) evM is an artinian evΛev-module for every vertex v in Q.
(iii) evM is an artinian k[z]-module for every vertex v in Q.

Proof. (iii) ⇒ (i) ⇒ (ii) are straightforward. For (ii) ⇒ (iii), since evΛev
is a finitely generated k[z]-module, it is noetherian and its simple modules
are finite dimensional. Thus a finitely generated evΛev-submodule of evM
is both noetherian and artinian, so finite length, hence finite dimensional.
It follows that evM is locally finite-dimensional as a k[z]-module.

If evΛev is generated as a k[z]-module by n elements, then there is a k[z]-
module map from k[z]n onto evΛev. If S is a simple k[z]-submodule of evM ,
tensoring with S, we get a map from Sn onto evΛev ⊗k[z] S, and so onto
(evΛev)S. Thus (evΛev)S has length at most n as a k[z]-module, so also as
a evΛev-module, and hence (evΛev)S is contained in the n-th term in the
socle series of evM as an evΛev-module. It follows that the k[z]-socle of evM
is contained in the n-th term in the socle series of evM as an evΛev-module,
and as evM is artinian as an evΛev-module, the modules in the socle series
have finite length, so they are finite dimensional. Thus the k[z]-socle of evM
is finite dimensional.

Now (iii) follows from the following characterization: a k[z]-module is ar-
tinian if and only if it is locally finite-dimensional and has finite-dimensional
socle. This follows from the fact that the injective envelopes of simple k[z]-
modules are artinian. �

4. Linear Relations

In this section we generalize known results about linear relations to the
infinite-dimensional case. Let V and W be vector spaces. Recall that a
linear relation from V to W (or on V if V =W ) is a subspace C of V ⊕W ,
for example the graph of a linear map f : V → W . If C is a linear relation
from V to W , v ∈ V and H ⊆ V we define

Cv = {w ∈W : (v, w) ∈ C} and CH =
⋃

v∈H

Cv,

and in this way we can think of C as a mapping from elements of V (or
subsets of V ) to subsets of W . If D is a linear relation from U to V then
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CD is the linear relation from U to W given by

CD = {(u,w) : ∃ v ∈ V with w ∈ Cv and v ∈ Du}.

We write C−1 for the linear relation from W to V given by

C−1 = {(w, v) : (v, w) ∈ C},

and hence we can define powers Cn for all n ∈ Z.
If M is a Λ-module and x is an arrow with head v and tail u, then

multiplication by x defines a linear map euM → evM , and hence a linear
relation from euM to evM . By composing such relations and their inverses,
any finite word C defines a linear relation from euM to evM , where v is the
head of C and u is the tail of C. We denote this relation also by C. Thus,
for any subspace U of euM , one obtains a subspace CU of evM . We write
C0 for the case U = {0} and CM for the case U = euM . (The last makes
sense if we consider C as a linear relation from M to itself).

Definition 4.1. If C is a linear relation on a vector space V , we define
subspaces C ′ ⊆ C ′′ ⊆ V by

C ′′ = {v ∈ V : ∃v0, v1, v2, . . . with v = v0 and vn ∈ Cvn+1∀n}, and

C ′ =
⋃

n≥0

Cn0.

The first of these differs from the definition used previously, for example
in [12], but that work only involved relations on finite-dimensional vector
spaces, for which the two definitions agree:

Lemma 4.2. If C is a linear relation on V then

C ′′ ⊆
⋂

n≥0

CnV

with equality if V is finite-dimensional.

Proof. The inclusion is clear. If V is finite-dimensional, the chain of sub-
spaces V ⊇ CV ⊇ C2V ⊇ . . . stabilizes, with CrV = Cr+1V = . . . for some
r. Then any v ∈ CrV belongs to C ′′ since for any vn ∈ CrV we can choose
vn+1 ∈ CrV with vn ∈ Cvn+1. �

Definition 4.3. If C is a linear relation on V we define subspaces C♭ ⊆
C♯ ⊆ V by C♯ = C ′′ ∩ (C−1)′′ and C♭ = C ′′ ∩ (C−1)′ + C ′ ∩ (C−1)′′. (Note
the symmetry between C and C−1.)

Lemma 4.4. (i) C♯ ⊆ CC♯, (ii) C♭ = C♯ ∩ CC♭, (iii) C♯ ⊆ C−1C♯, and

(iv) C♭ = C♯ ∩ C−1C♭.

Proof. (i) If v ∈ C♯ then there are vn (n ∈ Z) with v0 = v, vn ∈ Cvn+1 for
all n. Now v ∈ Cv1 and clearly v1 ∈ C♯, so C♯ ⊆ CC♯.

(ii) Suppose b ∈ C♭. We write it as b = b+ + b− with b+ ∈ C ′′ ∩ (C−1)′

and b− ∈ C ′ ∩ (C−1)′′. Now there are b±n (n ∈ Z) with b± = b±0 , b
±
n ∈ Cb±n+1

for all n, b+n = 0 for n ≪ 0 and b−n = 0 for n ≫ 0. Clearly b+1 + b−1 ∈ C♭

and b = b+ + b− ∈ C(b+1 + b−1 ), so C
♭ ⊆ C♯ ∩CC♭. Conversely, suppose that

v ∈ C♯ ∩ Cb. Then b±−1 ∈ Cb±, so

v − b+−1 − b−−1 ∈ C♯ ∩ C(b− b+ − b−) = C♯ ∩ C0 ⊆ C♯ ∩ C ′ ⊆ C♭.
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Clearly also b±−1 ∈ C♭, so v ∈ C♭.

(iii) and (iv) follow by symmetry between C and C−1. �

Lemma 4.5. A linear relation C on V induces an automorphism θ of C♯/C♭

with θ(C♭ + v) = C♭ + w if and only if w ∈ C♯ ∩ (C♭ + Cv).

Proof. For v ∈ C♯ we define θ by θ(C♭+v) = C♭+w where w is any element

of C♯ ∩ (C♭ + Cv). There always is some w by Lemma 4.4(iii), and θ is

well-defined since if w′ ∈ C♯ ∩ (C♭ + Cv′) and v − v′ ∈ C♭, then

w−w′ ∈ C♯ ∩ (C♭+C(v− v′)) ⊆ C♭+C♯ ∩C(v− v′) ⊆ C♭+C♯ ∩CC♭ = C♭

by Lemma 4.4(ii). Clearly θ is a linear map, and by symmetry between C
and C−1 it is an automorphism. �

If C is a linear relation on V , we say that C is split if there is a subspace U
of V such that C♯ = C♭⊕U and the restriction of C to U is an automorphism.

Lemma 4.6 (Splitting Lemma). If C is a linear relation on V and C♯/C♭

is finite-dimensional, then C is split.

Proof. Let θ be the induced automorphism of C♯/C♭ and let A = (aij) be

the matrix of θ with respect to a basis C♭ + v1, . . . , C
♭ + vk of C♯/C♭. Thus

θ(C♭ + vj) =
k
∑

i=1

aij(C
♭ + vi) = C♭ +

k
∑

i=1

aijvi

so there are b1, . . . bk ∈ C♭ with

bj +
k
∑

i=1

aijvi ∈ Cvj

for all j. We write bj = b+j +b−j with b+j ∈ C ′′∩(C−1)′ and b−j ∈ C ′∩(C−1)′′.

Now there are b±j,n (n ∈ Z) with b±j = b±j,0, b
±
j,n ∈ Cb±j,n+1 for all n, b+j,n = 0

for n≪ 0 and b−j,n = 0 for n≫ 0. Define matrices M±,n = (m±,n
i,j ) for n ∈ Z

by

M+,n =

{

0 (n > 0)

(A−1)1−n (n ≤ 0)
and M−,n =

{

−An−1 (n > 0)

0 (n ≤ 0).

and let

uj = vj +
∑

n∈Z

k
∑

i=1

m+,n
ij b+i,n +

∑

n∈Z

k
∑

i=1

m−,n
ij b−i,n.

These are finite sums since M+,n = 0 for n > 0 and b+i,n = 0 for n≪ 0, and

M−,n = 0 for n ≤ 0 and b−i,n = 0 for n≫ 0. Now

bj +
k
∑

i=1

aijvi ∈ Cvj

implies

bj,0 +
k
∑

i=1

aijvi +
∑

n∈Z

k
∑

i=1

m+,n
ij b+i,n−1 +

∑

n∈Z

k
∑

i=1

m−,n
ij b−i,n−1 ∈ Cuj .
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If δpq is the Kronecker delta function, we have

δn0I +M±,n+1 = AM±,n

which enables this to be rewritten as
k
∑

i=1

aijui ∈ Cuj

for all j. Then C♯ = C♭ ⊕ U where U has basis u1, . . . , uk, and C induces
on U the automorphism with matrix A. �

5. Torsion

A k[z]-module V is torsion if and only if it is locally finite dimensional.
The torsion submodule τ(V ) of an arbitrary module V decomposes as the
direct sum of

τ0(V ) = {v ∈ V : znv = 0 for some n ≥ 0}, and

τ1(V ) = {v ∈ V : f(z)v = 0 for some f(z) ∈ k[z] with f(0) = 1}

which we call the nilpotent torsion and primitive torsion submodules of V .

Lemma 5.1. If V is a torsion k[z]-module, and C = {(v, zv) : v ∈ V } is
the graph of multiplication by z, then C is a split relation.

Proof. Multiplication by z is invertible on τ1(V ), so τ1(V ) ⊆ C ′′. Also
C ′ = 0, (C−1)′′ = V and (C−1)′ = τ0(V ). Thus

C♯ = C ′′ ∩ (τ0(V )⊕ τ1(V )) = (C ′′ ∩ τ0(V ))⊕ τ1(V ) = C♭ ⊕ τ1(V ). �

Now we return to the string algebra Λ = kQ/(ρ). If M is a Λ-module,
we consider it as a k[z]-module, and hence define τ(M), τ0(M) and τ1(M).
They are Λ-submodules of M , and we have

τ(M) =
⊕

v

τ(evM) and τ i(M) =
⊕

v

τ i(evM).

We say that M is nilpotent torsion if M = τ0(M) and primitive torsion if
M = τ1(M). If P is a primitive cycle with head v we can also consider evM
as a k[P ]-module, and we write

τP (evM) = τ0P (evM)⊕ τ1P (evM)

for the corresponding torsion submodules. They are k[z]-submodules of
evM .

Lemma 5.2. We have

τ0(evM) =
⋂

P

τ0P (evM) and τ1(evM) =
⊕

P

τ1P (evM)

where P runs through the (up to two) primitive cycles with head v.

Proof. We only need to deal with the case when there are two primitive cy-
cles P,R with head v. Ifm ∈ τ0(evM) then znm = 0 for some n. Thus (Pn+
Rn)m = 0, so Pn+1m = Rn+1m = 0, and hence m ∈ τ0P (evM) ∩ τ0R(evM).
Also τ1P (evM) is annihilated by R, so its intersection with τ1R(evM) must
be zero. Now suppose that m ∈ evM and f(z)m = 0 with f(z) = 1 + g(z)
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where g(0) = 0. Then 0 = f(P + R)m = m + g(P )m + g(R)m. Thus
0 = g(P )(m + g(P )m + g(R)m) = g(P )m + g(P )2m = f(P )g(P )m, so
g(P )m ∈ τ1P (evM). Similarly g(R)m ∈ τ1R(evM), so m = −g(P )m− g(R)m
is in the direct sum. �

Lemma 5.3. Suppose P is a primitive cycle with head v and M is a Λ-
module. Let I =

⋂

n≥0 P
nM .

(i) If M is finitely controlled, then I = P ′′ = τ1P (evM).
(ii) If M is finitely controlled or pointwise artinian, then I ⊆ PI.

Proof. (i) Clearly τ1P (evM) ⊆ P ′′ ⊆ I. Now evM is a finitely generated
module for the ring k[P ], or k[P,R]/(PR) if there is another primitive cycle
R with head v. Then by Krull’s Theorem [9, Theorem 8.9] applied to evM
and the ideal generated by P , we have I ⊆ τ1P (evM).

(ii) The finitely controlled case follows from (i). The subspaces PnM
are k[z]-submodules, so in the pointwise artinian case we have PnM =
Pn+1M = . . . for some n, so I = Pn+1M = PI. �

6. Functorial filtration given by words

For v a vertex and ǫ = ±1, we define Wv,ǫ to be the set of all words
with head v and sign ǫ. They are necessarily either finite words or N-words.
There is a total order on Wv,ǫ given by C < C ′ if

(a) C = ByD and C ′ = Bx−1D′ where B is a finite word, x, y are
arrows, and D,D′ are words, or

(b) C ′ is a finite word and C = C ′yD where y is an arrow and D is a
word, or

(c) C is a finite word and C ′ = Cx−1D′ where x is an arrow and D′ is
a word.

For any Λ-module M and C ∈ Wv,ǫ we define subspaces

C−(M) ⊆ C+(M) ⊆ evM

as follows. First suppose that C is a finite word. Then C+(M) = Cx−10 if
there is an arrow x such that Cx−1 is a word, and otherwise C+(M) = CM .
Similarly, C−(M) = CyM if there is an arrow y such that Cy is a word, and
otherwise C−(M) = C0. Now suppose that C is an N-word. Then C+(M)
is the set of m ∈ M such that there is a sequence mn (n ≥ 0) such that
m0 = m and mn−1 ∈ Cnmn for all n. One defines C−(M) to be the set of
m ∈M such that there is a sequence mn as above which is eventually zero.
Equivalently C−(M) =

⋃

nC≤n0. Observe that if C ∈ Wv,ǫ is repeating,
say C = D∞, then C−(M) = D′ and C+(M) = D′′, where D is considered
as a linear relation on evM .

Clearly one has θ(C±(M)) ⊆ C±(N) for a homomorphism θ : M → N
of Λ-modules. Thus C± define subfunctors of the forgetful functor from
Λ-modules to vector spaces (or k[z]-modules).

Lemma 6.1. The functors C± commute with arbitrary direct sums.

Proof. Straightforward. �

Lemma 6.2. If C,D ∈ Wv,ǫ and C < D, then C+(M) ⊆ D−(M).

Proof. Standard. For finite words, see the lemma on page 23 of [12]. �
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7. Refined Functors

If B and D are words with the same head v and opposite signs, and M
is a Λ-module, we define

F+
B,D(M) = B+(M) ∩D+(M),

F−
B,D(M) = (B+(M) ∩D−(M)) + (B−(M) ∩D+(M)), and

FB,D(M) = F+
B,D(M)/F−

B,D(M).

If C = B−1D is a non-periodic word, we consider FB,D as a functor from
the category of Λ-modules to vector spaces.

If C = B−1D is a periodic word, say of period n, then C = ∞E∞ for some
word E of length n and head v. IfM is a Λ-module, then E induces a linear
relation on evM , and F+

B,D(M) = E♯ and F−
B,D(M) = E♭ as in Section 4.

Thus E induces an automorphism of FB,D(M) = E♯/E♭, and hence FB,D

defines a functor from Λ-modules to k[T, T−1]-modules, with the action of
T given by this automorphism. We say that M is E-split or C-split if the
relation E on evM is split.

Let v be a vertex. If (B,D) ∈ Wv,1 × Wv,−1 and M is a Λ-module, we
define

G±
B,D(M) = B−(M) +D±(M) ∩B+(M) ⊆ evM

Clearly G−
B,D(M) ⊆ G+

B,D(M) and G+
B,D(M)/G−

B,D(M) ∼= FB,D(M). We
totally order Wv,1 ×Wv,−1 lexicographically, so

(B,D) < (B′, D′) ⇔ if B < B′ or (B = B′ and D < D′).

We have G+
B,D(M) ⊆ G−

B′,D′(M) for (B,D) < (B′, D′) by Lemma 6.2.

Lemma 7.1.

(i) FB,D commutes with direct sums.
(ii) If B−1D is not a word, then FB,D = 0.
(iii) If B−1D is a non-periodic word, then FD,B

∼= FB,D.
(iv) If B−1D is a periodic word, then FD,B

∼= resι FB,D.
(v) If C is a fixed word, the functors FB,D with B−1D = C[n], for any

n, are all isomorphic.

Proof. (i) This follows from Lemma 6.1.
(ii) B−1D must involve a zero relation, and exchanging B and D if

necessary, we may assume that B = x−1
n . . . x−1

1 C and D = y1 . . . yrE
with x1 . . . xny1 . . . yr ∈ ρ. If m ∈ F+

B,D(M) then m = y1 . . . yrm
′ with

m′ ∈ E+(M), so m ∈ x−1
n . . . x−1

1 0 ⊆ B−(M), so m ∈ F−
B,D(M).

(iii), (iv) Clear.
(v) This is the same as the corresponding lemma at the top of page 25 in

[12]. The extension to functors to k[T, T−1]-modules in case C is periodic is
straightforward. �

Lemma 7.2. Suppose B and D are non-trivial words with head v and op-
posite signs, and that the first letters of both are direct. If M is finitely
controlled or pointwise artinian then B+(M)∩D+(M) is finite dimensional.
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Proof. The action of z annihilates B+(M) ∩D+(M), since any arrow with
tail v has zero composition with the first arrow of B or D. Now since
evM is either finitely generated or artinian as a k[z]-module, the subspace
{m ∈ evM : zm = 0} is finite dimensional. �

Lemma 7.3. Suppose that M is a finitely controlled or pointwise artinian
Λ-module. Suppose that C = B−1D is periodic of period n, so C = ∞E∞

for some word E of length n and head v, and B = (E−1)∞ and D = E∞.
Then either

(i) FB,D(M) is finite dimensional, or
(ii) FB,D(M) is an artinian k[T, T−1]-module and E or E−1 is a prim-

itive cycle.

In either case, the relation E on evM is split.

Proof. If C is not direct or inverse, then by Lemma 7.1 we may apply a shift,
and hence we may suppose that the situation of Lemma 7.2 applies, so case
(i) holds. Supposing otherwise, and interchanging B and D if necessary,
we may suppose that C is direct, so since it is periodic, E = P , a primitive
cycle. Now ifM is finitely controlled, we have F+

B,D(M) = P ′′ = τ1P (evM) by

Lemma 5.3, which is finite dimensional. If not, then FB,D(M) is a quotient
of a k[z]-submodule of evM , with the action of T being the same as the
action of z, so it is artinian. Now the splitting follows from the Splitting
Lemma 4.6 in case (i) or Lemma 5.1 in case (ii). �

8. Evaluation on string and band modules

The results in this section are essentially the same as those in [12, §§4,5].
Suppose C is an I-word. For i ∈ I, the words C>i and (C≤i)

−1 have head
vi(C) and opposite signs. For ǫ = ±1, let C(i, ǫ) denote the one which
has sign ǫ. We define di(C, ǫ) = 1 if C(i, ǫ) = C>i and di(C, ǫ) = −1 if
C(i, ǫ) = (C≤i)

−1.

String modules. Recall that if C is a non-periodic I-word, the string mod-
ule M(C) has basis the symbols bi for i ∈ I.

Lemma 8.1. If D ∈ Wv,ǫ then

(i) D+(M(C)) has basis {bi : vi(C) = v, C(i, ǫ) ≤ D}, and
(ii) D−(M(C)) has basis {bi : vi(C) = v, C(i, ǫ) < D}.

Proof. LetM =M(C). Using the ordering on words and functors, it suffices
to show that bi ∈ C(i, ǫ)+(M) and that if a linear combinationm of the basis
elements bj belongs to C(i, ǫ)−(M), then the coefficient of bi in m is zero.

If C(i, ǫ) is finite, let 1u,η be the trivial word with C(i, ǫ)1u,η defined (and
hence equal to C(i, ǫ)). Define d = di(C, ǫ). For n ≥ 1, and not greater than
the length of C(i, ǫ), we have bi+d(n−1) ∈ C(i, ǫ)nbi+dn. Moreover, if C(i, ǫ)

has length n then bi+dn ∈ 1+u,η(M). It follows that bi ∈ C(i, ǫ)+(M).
By induction on n, the following is straightforward. Suppose n is not

greater than the length of C(i, ǫ). If m is an element of M whose coefficient
of bi is λ, and m ∈ C(i, ǫ)≤nm

′, then the coefficient of bi+dn in m′ is also λ.
Clearly if C(i, ǫ) has length n, then no element of 1−u,η(M) has bi+dn occuring

with non-zero coefficient. It follows that no element of C(i, ǫ)−(M) can have
bi occuring with non-zero coefficient. �
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Lemma 8.2. Let M =M(C) where C is a non-periodic I-word.

(i) If i ∈ I, then F+
C(i,1),C(i,−1)(M) = F−

C(i,1),C(i,−1)(M)⊕ kbi.

(ii) If B−1D = C, then FB,D(M) ∼= k.
(iii) If B−1D is not equivalent to C, then FB,D(M) = 0.

Proof. (i) By Lemma 8.1,

F+
C(i,1),C(i,−1)(M) = F−

C(i,1),C(i,−1)(M)⊕ U

where U is spanned the bj with C(j, 1) = C(i, 1) and C(j,−1) = C(i,−1).
By Lemma 2.1, and since C is not periodic, this condition holds only for
j = i.

(ii) We have {B,D} = {C(i, 1), C(i,−1)} for some i.
(iii) Exchanging B and D if necessary, and letting v be the head of B

and D, we have (B,D) ∈ Wv,1 ×Wv,−1. Lemma 8.1 implies that the spaces
G±

B,D(M) are spanned by sets of basis elements bj , so if FB,D(M) 6= 0, then

some bi belongs to G
+
B,D(M) but not to G−

B,D(M). But by (i) we have

bi ∈ G+
C(i,1),C(i,−1)(M) \G−

C(i,1),C(i,−1)(M).

Then (B,D) = (C(i, 1), C(i,−1)) by the total ordering of the G±
B,D, so

B−1D is equivalent to C. �

Lemma 8.3. Suppose that C is a non-periodic I-word. Suppose that i ∈ I,
B = C(i, 1) and D = C(i,−1). Let M be a Λ-module and consider M(C)⊗k

FB,D(M) as a direct sum of copies of M(C) indexed by a (possibly infinite)
basis of FB,D(M). Then there is a map θB,D,M : M(C) ⊗k FB,D(M) → M
such that FB,D(θB,D,M ) is an isomorphism.

Proof. Take a basis (fλ) of FB,D(M), and lift the elements fλ to elements

mλ ∈ F+
B,D(M) = B+(M) ∩ D+(M). In each case there is a Λ-module

map θλ : M(C) → M sending bi to mλ. These combine to give a map
θB,D,M : M(C) ⊗k FB,D(M) → M . By Lemma 8.2, the map FB,D(θB,D,M )
is an isomorphism. �

Band modules. Suppose that C is a periodic word of period n and V is a
k[T, T−1]-module. The moduleM(C, V ) =M(C)⊗k[T,T−1]V can be written
as

M(C, V ) = V0 ⊕ V1 ⊕ · · · ⊕ Vn−1

where each Vi = bi ⊗ V is identified with a copy of V . (It is a band module
provided V is indecomposable.)

Lemma 8.4. If D ∈ Wv,ǫ then

(i) D+(M) =
⊕

i∈I+ Vi, I+ = {0 ≤ i < n : vi(C) = v, C(i, ǫ) ≤ D},
(ii) D−(M) =

⊕

i∈I− Vi, I− = {0 ≤ i < n : vi(C) = v, C(i, ǫ) < D}.

Proof. Similar to Lemma 8.1. �

Lemma 8.5. Let M =M(C, V ).

(i) If 0 ≤ i < n, then F+
C(i,1),C(i,−1)(M) = F−

C(i,1),C(i,−1)(M)⊕ Vi.

(ii) If B−1D = C, then FB,D(M) ∼= V as k[T, T−1]-modules.
(iii) If B−1D is not equivalent to C then FB,D(M(C, V )) = 0.
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Proof. Similar to Lemma 8.2. �

Lemma 8.6. Suppose that C = B−1D is a periodic word and M is a C-
split module. Let V = FB,D(M). Then there is a homomorphism θB,D,M :
M(C, V ) →M such that FB,D(θB,D,M ) is an isomorphism.

Proof. We have D = E∞ and B = (E−1)∞. Then V = E♯/E♭, and as a
k[T, T−1]-module, the action of T is induced by E. By assumption E♯ =

E♭ ⊕U , such that E induces an automorphism on U , and of course U ∼= V .
As in [12, §5, Proposition], one gets a mapping θB,D,M :M(C, V ) →M such
that FB,D(θB,D,M ) is an isomorphism. Namely, there are elements ur,i ∈M
for 1 ≤ i ≤ n and r in some indexing set R, with (ur,0)r∈R and (ur,n)r∈R
bases of U connected by ur,0 = Tur,n, and ur,i−1 ∈ Eiuri for all r, i. Using
these elements one defines θB,D,M : M(C,U) → M , sending bi ⊗ ur,0 ∈ Vi
for 0 ≤ i < n to ur,i. �

9. Direct sums of string and band modules

Theorem 9.1. Suppose that M is a direct sum of copies of string modules
and modules of the form M(C, V ), say

M =

(

⊕

λ

M(Cλ)

)

⊕

(

⊕

µ

M(Cµ, V µ)

)

.

(i) If B−1D is a non-periodic word, then dimFB,D(M) is equal to the

number of string module summands M(Cλ) with Cλ ∼ B−1D.
(ii) If B−1D is a periodic word, then dimFB,D(M) is isomorphic to the

direct sum of the V µ for µ such that Cµ a shift of B−1D and of
resι V

µ for µ such that Cµ is a shift of D−1B.

Proof. Follows immediately from Lemmas 8.2 and 8.5. �

If V is a finite-dimensional (respectively artinian) k[T, T−1]-module, we
can write it as a finite direct sum of indecomposables V = V1 ⊕ · · · ⊕ Vn,
where the summands are finite dimensional (respectively finite dimensional
or injective envelopes of simple modules). Thus if C is a periodic word
(respectively a direct or inverse periodic word) we can write M(C, V ) ∼=
M(C, V1)⊕· · ·⊕M(C, Vn), a direct sum of finite-dimensional band modules
(respectively finite dimensional or primitive injective band modules).

Theorem 9.2. Suppose thatM is a finitely controlled (respectively pointwise
artinian) Λ-module. Then there is a homomorphism θ : N → M where N
is a direct sum of string and finite-dimensional band modules (respectively a
direct sum of string, finite-dimensional band modules and primitive injective
band modules) with the property that FB,D(θ) is an isomorphism for all
refined functors FB,D.

Proof. If C = B−1D is a non-periodic word, then Lemma 8.3 gives a map
θB,D,M from a direct sum of copies of M(C) to M . If C = B−1D is peri-
odic word, then M is C-split by Lemma 7.3, and Lemma 8.6 gives a map
θB,D,M from a module of the form M(C, V ) to M . As indicated above,
we can decompose M(C, V ) ∼= M(C, V1) ⊕ · · · ⊕ M(C, Vn), a direct sum
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of finite-dimensional band modules (or finite dimensional and primitive in-
jective band modules). Let N be the direct sum of all of these string and
band modules as (B,D) runs through pairs in such a way that C = B−1D
runs through the equivalence classes of words, once each. The maps θB,D,M

combine to give a map θ : N → M with FB,D(θ) an isomorphism for all
these pairs, and hence for any pair of words B,D with the same head and
opposite signs. �

Lemma 9.3. Suppose θ : N → M is a homomorphism, with M finitely
controlled and such that FB,D(θ) is an isomorphism for all refined functors
FB,D. Then Im(θ) contains the primitive torsion submodule τ1(M) of M .

Proof. By Lemma 5.2 it suffices to show τ1P (evM) ⊆ Im(θ) for P a primitive
cycle with head v. Let m ∈ τ1P (evM). By Lemma 5.3,

m ∈ P ′′ = P ′′ ∩ (P−1)′′ = F+
B,D(M)

where B = (P−1)∞ and D = P∞. Thus by hypothesis m = m′ + θ(n) for
some n ∈ N and

m′ ∈ F−
B,D(M) = (P ′ ∩ (P−1)′′) + (P ′′ ∩ (P−1)′).

Now P ′ = 0 since P is direct, and P ′′ ∩ (P−1)′ = τ1P (evM) ∩ τ0P (evM) = 0.
Thus m′ = 0, so m = θ(n) ∈ Im(θ). �

Lemma 9.4. Suppose θ : N →M is a homomorphism, with N a direct sum
of string and band modules and such that FB,D(θ) is an isomorphism for all
refined functors FB,D. Then θ is injective.

Proof. Suppose that n is a non-zero element of evN with θ(n) = 0. We can
write n as a sum of components in different summands of N . Let S be one
of these summands. If S is a string module, the component can be written
as a linear combination of the basis elements bi, and if S is a band module
M(C, V ), the component can be written as a sum of elements in the vector
spaces Vi. By Lemmas 8.2 and 8.5, there is (B,D) ∈ Wv,1 × Wv,−1 with
F+
B,D(S) = F−

B,D(S) ⊕ U where U = kbi or Vi. It follows that G+
B,D(S) =

G−
B,D(S) ⊕ U . Only finitely many bi and Vi from finitely many summands

S of N make a non-zero contribution to n, and among the finitely many
pairs (B,D) which arise, choose B maximal, and for the pairs with this B,
choose D maximal. Then n is in G+

B,D(N) but not in G−
B,D(N). But this

means that n induces a non-zero element of FB,D(N). Thus by assumption
θ(n) induces a non-zero element of FB,D(M). But this is impossible since
θ(n) = 0. �

10. Covering property

Lemma 10.1. Let C be an N-word and M a Λ-module. If

(i) M is pointwise artinian, or
(ii) M is finitely controlled and C is not (direct and repeating),

then the descending chain C≤1M ⊇ C≤2M ⊇ C≤3M ⊇ . . . stabilizes.
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Proof. Case (i) is clear. For case (ii), suppose that C is direct. If P is a
primitive cycle with the same head as C and length r, then the first letter C1

cannot be the same as P1, for that would force C = P∞, which is direct and
repeating. Thus PrC1 = 0 in Λ, so PC1M = 0. It follows that C1M ⊆ Z,
where Z = {m ∈ evM : zm = 0} and v is the head of C. The hypothesis
on M ensures that Z is finite dimensional, so the terms in the descending
chain are finite-dimensional, so it must stabilize.

If C is eventually inverse the chain stabilizes at C≤nM with n chosen so
that C>n is inverse.

Thus we may suppose C is not direct and not eventually inverse. It
follows that C = Dx−1yB for some words D,B, and distinct arrows x, y,
say with head v. We need the chain Dx−1yB≤nM to stabilize. This holds
since Dx−1yB≤nM = Dx−1(xM ∩ yB≤nM), and xM ∩ yB≤nM is finite
dimensional by Lemma 7.2, so the chain xM ∩ yB≤nM stabilizes. �

Lemma 10.2 (Realization lemma). If M is finitely controlled or pointwise
artinian and C is an N-word, then C+(M) =

⋂

n≥0C≤nM .

Proof. It suffices to show that if ℓD is a word with ℓ a letter, then

⋂

n≥0

ℓD≤nM ⊆ ℓ





⋂

n≥0

D≤nM



 .

This is trivial if ℓ is an inverse letter, so suppose ℓ is a direct letter. If the
descending chain D≤nM stabilizes, the result is clear. Thus by Lemma 10.1
we may suppose that D is direct and repeating. Then, since ℓ is a direct
letter, so is ℓD. Thus ℓD = P∞ for a primitive cycle P = ℓB. Then

⋂

n≥0

ℓD≤nM =
⋂

m≥0

PmM

and by Lemma 5.3 this is contained in

P





⋂

m≥0

PmM



 ⊆ ℓ





⋂

m≥0

BPmM



 = ℓ





⋂

n≥0

D≤nM



 .

�

Lemma 10.3 (Weak covering property). Let M be a Λ-module, let v be
a vertex and ǫ = ±1. Suppose that S is a non-empty subset of evM with
0 /∈ S. Then there is a word C ∈ Wv,ǫ such that either (a) C is finite and
S meets C+(M) but does not meet C−(M), or (b) C is an N-word and S
meets C≤nM for all n but does not meet C−(M).

Proof. Suppose there is no finite word C ∈ Wv,ǫ such that S meets C+(M)
but not C−(M). Starting with the trivial word 1v,ǫ, we iteratively construct
an N-word C ∈ Wv,ǫ such that S meets C≤nM but not C≤n0. Suppose we
have constructed D = C≤n. If there is a letter y with Dy a word, and S
meets DyM , then we define Cn+1 = y and repeat. Otherwise S does not
meet D−(M). If there is a letter x with Dx−1 a word, and S does not meet
Dx−10 then we define Cn+1 = x−1 and repeat. Otherwise S meets D+(M).
By our assumption, one of these two possibilities must occur. �
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Lemma 10.4 (Covering property for one-sided functors). Let M be a Λ-
module, let v be a vertex and ǫ = ±1. Suppose U is a k[z]-submodule of
evM , H is a subset of evM and m ∈ H \ U . Suppose that either M is
pointwise artinian, or that M is finitely controlled and zevM ⊆ U . Then
there is a word C ∈ Wv,ǫ such that H ∩ (U +m) meets C+(M) but does not
meet C−(M).

Proof. The set S = H ∩ (U +m) contains m but not 0, so the weak covering
property gives a word C such that S does not meet C−(M). If C is a
finite word, then S meets C+(M), as required. If C is an N-word, and
C is not direct and repeating, then by Lemma 10.1 and the realization
lemma, S doesn’t meet C+(M), as required. Thus suppose C is direct and
repeating. Then C = P∞ for some primitive cycle P . Then U +m meets
P 2M = zPM ⊆ U , contradicting that m /∈ U . �

Lemma 10.5 (Covering property for refined functors). Let M be a Λ-
module, and let v be a vertex. Suppose U is a k[z]-submodule of evM and
m ∈ evM \ U . Suppose that either M is pointwise artinian, or that M is
finitely controlled and zevM ⊆ U . Then U + m meets G+

B,D(M) but not

G−
B,D(M) for some (B,D) ∈ Wv,1 ×Wv,−1.

Proof. By the covering property for one-sided functors, with H = evM there
is B with head v and sign 1 such that U+m meets B+(M) but not B−(M).
Then we can write U + m = U + m′ for some m′ ∈ B+(M). Letting
U ′ = U +B−(M) we have m′ /∈ U ′. We now apply the covering property for
one-sided functors with the submodule U ′ and H = B+(M) and the element
m′, to get a word D with head v and sign −1, such that B+(M)∩ (U ′+m′)
meets D+(M) but not D−(M). It follows that U +m meets G+

B,D(M) but

not G−
B,D(M). �

Lemma 10.6. Suppose θ : N → M is a homomorphism such that FB,D(θ)
is an isomorphism for all refined functors FB,D.

(i) If M is pointwise artinian, then θ is surjective.
(ii) If M is finitely controlled, then the cokernel of θ is primitive torsion.

Proof. In case (i), if θ is not surjective, say ev Im(θ) 6= evM , let U = ev Im(θ)
and choose m ∈ evM \ U . In case (ii), if the cokernel of θ is not primitive
torsion, choose a vertex v with evM/ev Im(θ) not primitive torsion. Then
this module has a 1-dimensional quotient killed by z, so there is a k[z]-
submodule U of codimension 1 in evM with ev Im(θ) ⊆ U and zevM ⊆ U .
Choose m ∈ evM \ U .

The covering property for refined functors gives B,D such that U + m
meets G+

B,D(M) but not G−
B,D(M). Thus there are u ∈ U , b ∈ B−(M)

and d ∈ B+(M) ∩ D+(M) such that u + m = b + d. Since θ induces an
isomorphism in refined functors, there is n ∈ evN with d = θ(n) + c + c′

with c ∈ D−(M) ∩ B+(M) and c′ ∈ D+(M) ∩ B−(M). Then θ(n) ∈ U , so
U +m contains b+ c+ c′, so it meets G−

B,D(M), a contradiction. �

Proof of Theorem 1.3. The map θ : N → M of Theorem 9.2 is injective by
Lemma 9.4 and surjective by Lemma 10.6, so an isomorphism. �
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11. Extensions by a primitive simple

We fix a primitive simple S for Λ, that is, a simple, primitive torsion
module. It is easy to see (for example using Theorem 1.3) that it is of
the form S = M(∞P∞, V ) where P is a primitive cycle, say with head v,
sign ǫ and length p, and V is a simple k[T, T−1]-module, so of the form
V = k[T, T−1]/(f(T )) where f(T ) is an irreducible polynomial in k[T ] with
f(0) = 1. Since P has sign ǫ, it follows that P−1 and (P−1)∞ have sign −ǫ.

Definition 11.1. Let C be an I-word. We say that i ∈ I is P -deep for C
if C(i,−ǫ) = (P−1)∞. Equivalently if the basis element bi in M(C) is not
killed by any power of P . We say that i ∈ I is a P -peak for C if it is P -deep
for C and C(i, ǫ) is not of the form PD for some word D. Equivalently, it
is P -deep for C and bi is not in PM(C).

Clearly only an infinite word can have a P -peak, and then it has at most
two P -peaks (and if so it is a Z-word). Our aim in this section is to prove
the following result.

Theorem 11.2 (Extension Theorem). Suppose that M is a finitely con-
trolled Λ-module and N is a submodule of M with τ1(M) ⊆ N and M/N ∼=
S. Suppose that N is a direct sum of string and finite-dimensional band
modules,

N =
⊕

λ∈Φ

Nλ,

indexed by some set Φ. Then there is some µ ∈ Φ with Nµ of the form M(C)
for some word C, which has a P -peak, such that M = N ′

µ ⊕N ′ where

N ′ =
⊕

λ∈Φr{µ}

Nλ,

and N ′
µ is a submodule of M with N ′

µ
∼= Nµ.

The following is straightforward.

Lemma 11.3. There is a projective resolution

0 → Λev → Λev → S → 0

where the first map is right multiplication by f(P ).

For any Λ-module M , the resolution of S gives an exact sequence

0 −→ Hom(S,M) −→ evM
f(P )
−−−→ evM

αM−−→ Ext1(S,M) −→ 0.

We denote the pullback of ξ ∈ Ext1(S,M) along a ∈ End(S) by ξa, and if
θ :M → N is a homomorphism, we denote the pushout map Ext1(S,M) →
Ext1(S,N) by θ∗.

Lemma 11.4. If a ∈ End(S) and ξ ∈ Ext1(S,M), then ξa = ψ∗(ξ) for
some ψ in the centre of End(M).

Proof. For any Λ-module M , the action of k[z] on M defines a homomor-
phism γM : k[z] → End(M). If N is another Λ-module, the actions of k[z]
on M and N induce left and right actions of k[z] on Hom(N,M), but these
are the same since the action of z on evM or evN is given by multiplication
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by zv ∈ Λ. Using a projective resolution of N , the same holds for the two
actions of k[z] on Ext1(N,M). It is clear that γS induces an isomorphism

k[z]/(f(z)) ∼= End(S).

Thus, writing a = γS(h(z)) for some h(z) ∈ k[z], we can take ψ = γM (h(z)).
It is central by the discussion above. �

If C is an I-word and i is a P -peak for C, consider the exact sequence

ξC,i : 0 →M(C) → EC,i → S → 0

formed from the pushout of the projective resolution in Lemma 11.3 along
the homomorphism Λev →M(C) sending ev to bi. Thus

ξC,i = αM(C)(bi) ∈ Ext1(S,M(C)).

Lemma 11.5. The middle term EC,i of the exact sequence ξC,i is isomorphic
to M(C).

Proof. We define φ ∈ End(M(C)) as follows. If d(C,−ǫ) = 1, so that
C>i = (P−1)∞, let j be minimal with C>j an inverse word. Since i is a
P -peak for C, we have i− p < j ≤ i, where p is the length of P . We define
φ(bk) = bk+p for k ≥ j and φ(bk) = 0 for k < j. Dually, if di(C,−ǫ) = −1,
so that (C≤i)

−1 = (P−1)∞, let j ∈ I be maximal such that (C≤j)
−1 is an

inverse word, and define φ(bk) = bk−p for k ≤ j and φ(bk) = 0 for k > j.
It is straightforward to see that f(φ) is an injective endomorphism of

M(C) with cokernel isomorphic to S. We fix an isomorphism between S
and the cokernel of f(φ), and hence obtain an exact sequence

ηC,i : 0 →M(C)
f(φ)
−−−→M(C)

g
−→ S → 0.

LetM =M(C). The exact sequences above lead to a commutative diagram
with exact rows and columns

0 0 0




y





y





y

0 −−−−→ Hom(S,M) −−−−→ Hom(S,M) −−−−→ End(S)




y





y





y

0 −−−−→ evM
f(φ)

−−−−→ evM
g

−−−−→ evS −−−−→ 0

f(P )





y
f(P )





y
f(P )





y

0 −−−−→ evM
f(φ)

−−−−→ evM
g

−−−−→ evS −−−−→ 0

αM





y

αM





y

αS





y

Ext1(S,M) −−−−→ Ext1(S,M) −−−−→ Ext1(S, S)




y





y





y

0 0 0.
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The Snake Lemma gives a connecting map c : End(S) → Ext1(S,M) sending
a ∈ End(S) to ηC,ia. Now f(φ)bi = f(P )bi so by the diagram chase defining
the connecting map there is a ∈ End(S) with c(a) = αM (bi). Moreover
a 6= 0 since bi /∈ f(φ)M , so g(bi) 6= 0. Then ηC,ia = αM (bi) = ξC,i, so there
is map of exact sequences

ξC,i :0 −−−−→ M(C) −−−−→ EC,i −−−−→ S −−−−→ 0
∥

∥

∥





y

a





y

ηC,i :0 −−−−→ M(C) −−−−→ M(C) −−−−→ S −−−−→ 0

and since a is an isomorphism, EC,i
∼=M(C). �

Lemma 11.6. If C is a word which is not equivalent to ∞P∞, then the ele-
ments ξC,i with i a P -peak for C, form an End(S)-basis for Ext1(S,M(C)).

Proof. Observe that evM(C), as a k[P ]-module, is the direct sum of free
submodules k[P ]bi where i runs through the P -peaks, and a nilpotent torsion
submodule spanned by the bi with vi(C) = v and i not P -deep. Now the
isomorphism evM(C)/f(P )evM(C) → Ext1(S,M(C)) induced by αM(C)

gives the result. �

Let Σ be a set of representatives of the equivalence classes of words.

Definition 11.7. We define a P -class to be a pair (C, i) where C ∈ Σ and
i is a P -peak for C, The set of P -classes is totally ordered by (C, i) > (D, j)
if C(i, ǫ) > D(j, ǫ).

Henceforth, we write bCi instead of bi for the basis elements of M(C), so
as to identify the word C.

Lemma 11.8. Suppose that (C, i) > (D, j) are P -classes. Then there is a
homomorphism θij : M(C) → M(D) such (θij)∗(ξC,i) = ξD,j. Moreover, if
C = D then θ2ij = 0.

Proof. By assumption C(i, ǫ) > D(j, ǫ). Let r be maximal with

C(i, ǫ)≤r = D(j, ǫ)≤r = B,

say. Then C(i, ǫ)r+1 is an inverse letter and D(j, ǫ)r+1 is a direct letter (or
one of them is absent if the relevant word C(i, ǫ) or D(j, ǫ) has length r).
Let c = di(C, ǫ) and d = dj(D, ǫ). We define

θij(b
C
k ) =

{

bDj−cd(i−k) (c(i− k) ≥ −r)

0 (c(i− k) < −r).

Then θij is is a homomorphism fromM(C) toM(D) sending bCi to bDj . Thus

(θij)∗(ξC,i) = (θij)∗(αM(C)(b
C
i )) = αM(D)(b

D
j ) = ξD,j .

Now suppose that C = D. Then C(i, ǫ) is of the form E(P−1)∞ and C(j, ǫ)
is of the form E−1(P−1)∞, where E has length |i− j|. Then E > E−1 and
r is maximal with E≤r = (E−1)≤r. Then Lemma 2.1 implies that E has
length > 2r, and that E = BFB−1 for some word F of length ≥ 1 whose
first and last letters are inverse. But then the basis elements bCk in the image
of θij are all sent to zero by θij . �
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Lemma 11.9. Let M =M(D,U) be a finite-dimensional band module.

(i) If D is not equivalent to ∞P∞ then Ext1(S,M) = 0.
(ii) If D is equivalent to ∞P∞ then Ext1(S,M) has dimension ≤ 1 as a

vector space over End(S).
(iii) If Ext1(S,M) 6= 0 and (C, i) is a P -class, then ψ∗(ξC,i) 6= 0 for some

homomorphism ψ :M(C) →M .

Proof. (i) The projective resolution of S realizes Ext1(S,M) as the cokernel
of the map f(P ) from evM to evM . If D is not equivalent to ∞P∞ then
there are no P -deep basis elements for D. It follows that each element of
evM is killed by a power of P , so f(P ) acts invertibly on evM .

(ii) We may assume that D = ∞P∞. We have M = U0 ⊕U1 ⊕ · · · ⊕Up−1

using the notation preceding Lemma 8.4, where p is the length of P . Now
as a k[P ]-module, evM is isomorphic to the direct sum of U0, which is a
copy of U with P acting as T , and a nilpotent torsion submodule, spanned
by the other Ui with Ui = evUi. Thus

Ext1(S,M) ∼= evM/f(P )M ∼= U/f(T )U ∼= Ext1(V,U).

Since U is an indecomposable k[T, T−1]-module and V is simple, this has
dimension ≤ 1 as a module for End(V ) ∼= End(S).

(iii) We may assume we are in case (ii). Then Ext1(V,U) 6= 0, so we
can identify U = k[T ]/(f(T ))r for some r > 0. There is a homomorphism
M(C) →M(D) sending bCi to bD0 . It induces a homomorphism ψ :M(C) →
M sending bCi to m = bD0 ⊗ 1 ∈ evM , and

ψ∗(ξC,i) = ψ∗(αM(C)(b
C
i )) = αM (ψ(bCi )) = αM (m).

This is non-zero since m /∈ f(P )M , which follows from the observation in
(ii) about the k[P ]-module structure of evM , as we can identify m with the
element 1 ∈ U0. �

Proof of Theorem 11.2. Letting iλ denote the inclusion of Nλ in N , we can
write the class ζ ∈ Ext1(S,N) of the extension

0 → N →M → S → 0

as
ζ =

∑

λ∈Φ

(iλ)∗(ζλ)

for elements ζλ ∈ Ext1(S,Nλ), all but finitely many zero.
If Nλ is a string module, since equivalent words give isomorphic string

modules, we may assume that it is of the form M(Cλ) with Cλ ∈ Σ,
our chosen set of representative of the equivalence classes of words, and
by Lemma 11.6 we can write

ζλ =
∑

i

ξCλ,iaλi

where i runs through the P -peaks for Cλ and aλi ∈ End(S).
There must be at least one string module Nλ with ζλ 6= 0, for otherwise,

by Lemma 11.9, S only extends band modules which are primitive torsion, so
there is a primitive torsion submodule of M mapping onto S, contradicting
the assumption that τ1(M) ⊆ N . Among all pairs (λ, i) where Nλ is a string
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module M(Cλ), i is a P -peak for Cλ and aλi 6= 0, choose a pair (λ, i) for
which the P -class (Cλ, i) is maximal. We denote it (µ, j).

Suppose that Nλ is a band module and ζλ 6= 0. By Lemma 11.9 there
is a map θλ : Nµ → Nλ such that (θλ)∗(ξCµ,j) 6= 0. Then by Lemma 11.4
and Lemma 11.9(ii) there is ψλ ∈ End(Nµ) such that φλ = ψλθλ satisfies
(φλ)∗(ξCµ,jaµj) = ζλ.

Suppose that Nλ is a string module and ζλ 6= 0. If i is a P -peak for Cλ

with (λ, i) 6= (µ, j) and aλi 6= 0, then by the choice of (µ, j), by Lemma 11.8
(or trivially if (Cλ, i) = (Cµ, j)), there is a homomorphism θλi : Nµ → Nλ

such that (θλi)∗(ξCµ,j) = ξCλ,i. By Lemma 11.4 there is ψλi in the centre of
End(Nλ) such that (ψλiθλi)∗(ξCµ,jaµj) = ξCλ,iaλi. We define φλ : Nµ → Nλ

by

φλ =

{

∑

i ψλiθλi (if λ 6= µ)

1 +
∑

i ψλiθλi (if λ = µ)

where i runs through the P -peaks for Cλ (with i 6= j in case λ = µ, so
the second sum has at most one term). It follows that (φλ)∗(ξCµ,jaµj) =
ζλ. Observe that φµ is invertible since ψµi is in the centre of End(Nµ), so
(ψµiθµi)

2 = ψ2
µiθ

2
µi = 0 by Lemma 11.8.

Now consider the pullback diagram

ξCµ,jaµj :0 −−−−→ Nµ
p

−−−−→ E
q

−−−−→ S −−−−→ 0
∥

∥

∥

r





y

aµj





y

ξCµ,j : 0 −−−−→ Nµ −−−−→ Nµ −−−−→ S −−−−→ 0.

Since aµj is an isomorphism, so is r. The map φ =
∑

λ iλφλ : Nµ → N
satisfies φ∗(ξCµ,jaµj) = ζ, so there is a pushout diagram

ξCµ,jaµj :0 −−−−→ Nµ
p

−−−−→ E
q

−−−−→ S −−−−→ 0

φ





y
t





y

∥

∥

∥

ζ : 0 −−−−→ N −−−−→ M −−−−→ S −−−−→ 0.

Since φµ is invertible, φ is a split monomorphism and N = N ′ ⊕ Im(φ). It
follows that M = N ′ ⊕ Im(t) and Im(t) ∼= E ∼= Nµ. �

12. Proofs of the main results

Theorem 1.3 has already been proved in §10.

Proof of Theorem 1.1. It is known that string modules are indecomposable:
see Krause [6] for a special case and [3, §1.4] in general. If M(C, V ) is a
finite-dimensional or primitive injective band module, then it is artinian, so
if it were to decompose, each of the summands would be a direct sum of
string and band modules by Theorem 1.3. But then Theorem 9.1 ensures
that string module summands and other bands do not occur, and gives a
decomposition of V . But since M(C, V ) is a band module, V is indecom-
posable. The statement about isomorphisms follows from Theorem 9.1. �
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Proof of Theorem 1.2. We may suppose that Q is connected. Theorem 9.2
and Lemma 9.4 give a submodule N of M , such that

N =
⊕

λ∈Φ

Nλ,

a direct sum of string and finite-dimensional band modules. Moreover N
contains τ1(M) by Lemma 9.3, and L = M/N is primitive torsion by
Lemma 10.6.

Since Q is connected it has only countably many vertices, and since L is
finitely controlled and primitive torsion, evL is finite-dimensional for all v.
It follows that we can write L as a union L =

⋃

Lj of a finite or infinite
sequence of submodules

0 = L0 ⊂ L1 ⊂ L2 ⊂ . . .

with the quotients Sj = Lj/Lj−1 being primitive simples. Let Mj be the
inverse image of Lj in M . Thus we have exact sequences

0 →Mj−1 →Mj → Sj → 0

with M0 = N and M =
⋃

nMn.
Let Nλ,0 = Nλ. By Theorem 11.2 we can write Mj =

⊕

λ∈ΦNλ,j for
submodules Nλ,j

∼= Nλ and such that Nλ,j = Nλ,j−1 unless Nλ is isomorphic
a string module M(C) such that C has a P -peak for some primitive cycle
P with Sj supported at the head of P .

For any vertex v, only finitely many of the simples Sj can be supported
at v. It follows that for each λ there is some j with

Nλ,j = Nλ,j+1 = Nλ,j+2 = . . . .

Defining Nλ,∞ = Nλ,j , it follows easily that M =
⊕

λ∈ΦNλ,∞. �

Proof of Theorem 1.4. By Theorems 1.2 and 1.3 the indecomposable sum-
mands are string and band modules. The result thus follows from The-
orem 9.1 and the Krull-Remak-Schmidt property for finite-dimensional or
artinian k[T, T−1]-modules. �

Finally, from Lemmas 3.3 and 3.4, one easily obtains the following char-
acterization of direct sums of string and band modules which are finitely
controlled or pointwise artinian.

Proposition 12.1. If M is a direct sum of string and finite-dimensional
band modules, then M is

(i) finitely generated if and only if, for any string module M(C) which
occurs, C and C−1 are eventually inverse, and the sum is finite;

(ii) finitely controlled if and only if, for any string module M(C) which
occurs, C and C−1 are eventually inverse or right vertex-finite, and,
for every vertex v, only finitely many summands are supported at v.

Proposition 12.2. If M is direct sum of string modules, finite-dimensional
band modules and primitive injective band modules, then M is

(iii) artinian if and only if, for any string module M(C) which occurs, C
and C−1 are eventually direct, and the sum is finite;
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(iv) pointwise artinian if and only if, for any string module M(C) which
occurs, C and C−1 are eventually direct or right vertex-finite, and,
for every vertex v, only finitely many summands are supported at v.
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