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Abstract 16 

We introduce regularity and stochastic transitivity as necessary and well-behaved 17 

conditions respectively, for the consistency of discrete choice preferences with the 18 

Random Utility Model (RUM). For the specific case of a three-alternative nested logit 19 

(NL) model, we synthesise these conditions in the form of a simple two-part test, and 20 

reconcile this test with the conventional zero-one bounds on the structural (‘log sum’) 21 

parameter within this model, i.e. 0 1  , where   denotes the structural parameter. 22 

We show that, whilst regularity supports the lower bound of zero, moderate and strong 23 

stochastic transitivity may, for some preference orderings, give rise to a lower bound 24 

greater than zero, i.e. impose a constraint l  , where 0l  . On the other hand, we 25 

show that neither regularity nor the stochastic transitivity conditions constrain the upper 26 

bound at one. Therefore, if the conventional zero-one bounds are imposed in model 27 

estimation, preferences which violate regularity and/or stochastic transitivity may either 28 

go undetected (if the ‘true’ structural parameter is less than zero) and/or be 29 

unknowingly admitted (if the ‘true’ lower bound is greater than zero), and preferences 30 

which comply with regularity and stochastic transitivity may be excluded (if the ‘true’ 31 

upper bound is greater than one). Against this background, we show that imposition of 32 

the zero-one bounds may compromise model fit, inferences of willingness-to-pay, and 33 

forecasts of choice behaviour. Finally, we show that where the ‘true’ structural 34 

parameter is negative (thereby violating RUM – at least when choosing the ‘best’ 35 

alternative), positive starting values for the structural parameter in estimation may 36 

prevent the exposure of regularity and stochastic transitivity failures. 37 

  38 
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1. Introduction 1 

As is well-established in microeconomic consumer theory, the fundamental preference 2 

axioms of completeness, transitivity and continuity – taken together – permit the 3 

representation of an individual’s complete preference ordering by a continuous real-4 

valued order-preserving function (Debreu, 1954). An important proposition follows from 5 

Debreu; the individual is conceptualised as making consumption choices as if to 6 

maximise utility. This proposition, which is the cornerstone of Neo-Classical consumer 7 

theory, has been the subject of considerable interest in the behavioural economics 8 

literature. A focus of this interest has been the design and implementation of 9 

experiments that seek to elicit empirical support for (or refutation of) the axioms of 10 

completeness, transitivity and continuity – as well as other related properties of choice 11 

behaviour. Emanating from this literature, several phenomena have been identified as 12 

giving rise to violations of the fundamental axioms and, by implication, violations of 13 

utility maximisation.  14 

The present paper is motivated by an interest in exploring analogies to the fundamental 15 

preference axioms, and their empirical verification, in the alternative domain of 16 

probabilistic discrete choice. The discrete choice context, where the individual chooses 17 

from a finite and exhaustive set of mutually-exclusive alternatives, creates difficulties 18 

for conventional Neo-Classical consumer theory. This is because the theory employs 19 

marginal concepts derived using calculus; application to discrete choice has been 20 

described as ‘awkward’ (McFadden, 1981 p199), and worse still ‘impossible’ (Ben-21 

Akiva & Lerman, 1985 p44). In response to these difficulties, a bespoke version of 22 

consumer theory has evolved, centred upon the theoretical construct of the Random 23 

Utility Model (RUM)1.   24 

Drawing analogy with psychophysical models of judgement and choice (Fechner, 25 

1859; Thurstone, 1927; Luce, 1959), RUM was conceived by Marschak (1960) and 26 

Block & Marschak (1960)2 as a probabilistic representation of the Neo-Classical theory 27 

of choice. In common with the Neo-Classical theory, RUM is couched at the individual 28 

level, is based fundamentally on the notion that the individual acts as if to maximise 29 

utility, and (in the original ‘distribution free’ form of RUM proposed by B&M, at least) is 30 

entirely supported by the notion of ordinal utility. Contrasting with Neo-Classical theory, 31 

however, RUM appeals to the context of discrete choice consumption. 32 

The present paper relates to three strands of extant literature, as follows. 33 

1.1 Representation theorems for RUM 34 

The literature on representation theorems has considered the necessity and sufficiency 35 

of conditions on probabilistic choice systems (PCS) giving rise to (cardinal) utility 36 

                                                           
1 One of the reviewers of this paper pointed out that the term ‘Random Utility Model’ (RUM) has sometimes 
been interpreted differently in different disciplines, and that a tighter and more contemporary terminology 
is ‘choice probabilities induced by strict linear orders’. See Marley & Regenwetter’s (2016) recent review 
of deterministic and probabilistic representations of choice, which distinguished between economic (i.e. 
parametric) and psychological (i.e. linear order) approaches to RUM. However, since the terminology 
‘choice probabilities induced by strict linear orders’ is not common parlance in transport, this paper will 
remain faithful to ‘RUM’, but the reviewer’s point is worthy of mention. 

2 Henceforth, we will abbreviate Block & Marschak (1960) to ‘B&M’. 
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functions (Debreu, 1959; Davidson & Marschak, 1959) and RUM. Focussing here on 1 

representation theorems for RUM, Falmagne (1978) was first to show the necessity 2 

and sufficiency of the so-called ‘B&M polynomials’3. Some years later (and apparently 3 

ignorant of Falmagne’s paper until their attention was drawn to it in the course of peer 4 

review), Barberá & Pattanaik (1986) re-stated Falmagne’s theorem in terms of rankings 5 

rather than utility scales, which allows closer correspondence with the concept of 6 

ordinal utility. More recently, Fiori (2004) contributed an elegantly concise proof of 7 

Falmagne’s theorem. 8 

Mindful of its origins in the cognate discipline of psychophysics, it is interesting to 9 

observe that RUM has attracted interest from a multidisciplinary audience, spanning 10 

several core disciplines (especially economics, psychology and mathematics), as well 11 

as a raft of sectoral applications (including transport, health and the environment). 12 

McFadden (2005) presented a useful synthesis of representation theorems for RUM 13 

and, reflecting his parent discipline of economics, he characterised such theorems as 14 

addressing the ‘problem of revealed stochastic preference’4. Within this synthesis, 15 

McFadden & Richter’s (unpublished) 1970a and 1970b papers, subsequently 16 

consolidated within their 1991 paper, covered similar ground to Falmagne (1978). 17 

Reflecting back some years later, Marley (1990) described the evolution of the 18 

literature on representation theorems for RUM, and offered specific observations 19 

concerning the links between the Falmagne and McFadden/Richter bodies of work. 20 

A distinct but related strand of literature is that dealing with representation theorems 21 

for ‘parametric’ versions of RUM5. Motivated by an interest in its practical applicability, 22 

three independent parallel teams – namely Daly & Zachary (1976, subsequently 23 

published in 1978), Williams (1977) and McFadden (1978) – proposed alternative 24 

presentations of RUM, each formalised in terms of necessary and sufficient conditions 25 

on choice probabilities and/or random utilities giving rise to choice probabilities. In this 26 

context, and drawing similarities with McFadden’s ‘problem of revealed stochastic 27 

preference’, the probabilistic content of RUM derives from the propensity for variability 28 

in behaviour across a population of individuals, as distinct from the intra-individual 29 

variability of a single individual in B&M. This change in emphasis, together with the 30 

extended theoretical apparatus, provided the stimulus for the adoption of RUM in 31 

mainstream econometric practice (see section 1.3 to follow). 32 

1.2 Empirical testing of theoretical properties of choice 33 

Following from the theoretical developments outlined above, a second strand of 34 

literature has subjected the fundamental preference axioms – as well as a broader 35 

range of theoretical properties of choice – to empirical testing. In this context, the 36 

psychology and behavioural economics literatures would seem rather more developed 37 

than the discrete choice literature, but this perhaps reflects the relative infancy of the 38 

                                                           
3 See Theorem 4 (p60) of Falmagne (1978). 

4 According to McFadden (2005), this problem poses the question: ‘Are the distributions of choices 
observed for a population of individuals in a variety of choice situations consistent with rational choice 
theory, which postulates that individuals maximize preferences?’ (p245). 

5 In this regard, Regenwetter et al (2010) distinguished between B&M’s ‘distribution free’ RUM and the 
‘parametric’ RUM that arises from (1), whilst Batley (2008) distinguished between ‘ordinal’ RUM and 
‘cardinal’ RUM. 
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latter. Following the conception of non-parametric RUM in 1960, parametric versions 1 

of RUM entered practical usage only in the late 1960s; see McFadden’s 1968 (but 2 

unpublished until 1975) pioneering application to public policy analysis. Despite their 3 

different levels of maturity, the psychology, behavioural economics and discrete choice 4 

literatures show interesting parallels in terms of the phenomena which have been 5 

observed in experimental contexts (for a recent overview of this literature, see 6 

Busemeyer & Rieskamp, 2013). Of particular relevance to the present paper are three 7 

phenomena, namely ‘regularity’, ‘transitivity’ and ‘invariance’. These phenomena will 8 

be formally analysed in sections 2 and 3 to follow; the present section simply introduces 9 

the intuition for each phenomenon, and briefly summarises their respective evidential 10 

positions. 11 

Regularity: this property asserts that the probability of choosing any given alternative 12 

from an offered set should not increase if the offered set is expanded to include 13 

additional alternatives. Violations of regularity were first reported by Huber et al (1982), 14 

who rationalised these violations in terms of ‘asymmetric dominance’. The latter 15 

phenomenon characterises situations where a binary choice set is appended by a third 16 

alternative which is similar – but materially inferior – to one of the initial pair. According 17 

to asymmetric dominance, the third alternative is rarely chosen, but its inclusion in the 18 

offered set enhances the probability of choosing the similar alternative from the initial 19 

pair. Whilst different explanations for asymmetric dominance have been advanced in 20 

the literature (e.g. Simonson, 1989; Simonson & Tversky, 1992), there is reasonable 21 

consensus that this phenomenon is prevalent in choice experiments (Heath & 22 

Chatterjee, 1995). More generally, there exists an extensive mature literature in 23 

psychology on choice and response time for so-called ‘context effects’, where choice 24 

is affected by the presence or absence of other alternatives. Within this literature, the 25 

similarity between alternatives has been identified as a principal context effect (e.g. 26 

Trueblood et al, 2015). 27 

Transitivity: this property asserts that if alternative x  is preferred to alternative y , 28 

and y  to z , then x  should be preferred to z . Recognising that transitivity is 29 

ostensibly a deterministic property, the RUM literature has developed various 30 

stochastic interpretations of transitivity (referred to as ‘weak’, ‘moderate’ and ‘strong’). 31 

None of these variants of transitivity are necessary for RUM, although there is a close 32 

relationship between stochastic transitivity and the so-called ‘triangle condition’ (see 33 

section 2.2 to follow), which is necessary for RUM. Following the precedent of 34 

Papandreou (1957) and Davidson & Marschak (1958)6, researchers have subjected 35 

stochastic transitivity to empirical testing, and have generally reported evidence of 36 

violations (see Rieskamp et al (2006) and Hougaard et al (2011) for overviews of this 37 

literature). However, the recent paper by Regenwetter et al (2011) systematically 38 

reanalysed much of this evidence; using a non-parametric statistical test of the triangle 39 

condition, they found that most individuals did not produce statistically significant 40 

violations. More recently, Cavagnaro & Davis-Stober (2014) repeated the same 41 

analysis using a slightly refined version of Regenwetter et al’s test; this revealed 42 

variability in stochastic transitivity properties across individuals, but essentially 43 

corroborated Regenwetter et al’s finding. 44 

                                                           
6 Moscati (2007) has contributed an insightful historical overview of this literature. 
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Invariance: this property asserts that the relative preference between two alternatives 1 

should be invariant to the addition/subtraction of other alternatives to/from the choice 2 

set. An important feature of early discrete choice model specifications was the 3 

‘Independence from Irrelevant Alternatives’ (IIA) property (Luce, 1959), which states 4 

that the ratio of any two choice probabilities is unaffected by the presence or absence 5 

of other alternatives in the choice set. Modellers initially saw IIA as an attractive 6 

property, in the sense that the choice between alternatives could be predicted without 7 

the need for data on ‘external’ alternatives, and this prompted widespread application 8 

of the multinomial logit (MNL) model (McFadden, 1973). Subsequently, IIA began to 9 

be seen more as a weakness rather than a strength, since it was unable to account for 10 

similarity between alternatives, which had been identified as an important determinant 11 

of choice (Tversky, 1972a; 1972b). 12 

This prompted the development and adoption of the nested logit (NL) model (Daly & 13 

Zachary, 1976; Williams, 1977)7, which generalises MNL such that subsets of similar 14 

alternatives are ‘nested’ together, not unlike Tversky & Sattath’s (1979) concept of a 15 

preference tree (or PRETREE)8. McFadden (1978) formalised the specification of 16 

parametric RUM models through the Generalised Extreme Value (GEV) theorem. GEV 17 

gives rise to a subset of models within the RUM class (Ibáñez, 2007), which embody 18 

general patterns of correlation between alternatives, and include MNL and NL among 19 

its members. Throughout the 1980s and 1990s, MNL and NL established themselves 20 

as the primary tools of discrete choice modellers; for example Ortúzar (2001) described 21 

them as the ‘…the workhorses for the empirical analysis of travel behaviour in respect 22 

of discrete choices’ (p213). This did not however deter the exploration for further 23 

generalisations of RUM, especially in terms of the flexibility of substitution patterns 24 

between discrete choice alternatives. Cross-nested logit (CNL), which is also derived 25 

from GEV, generalises NL by allowing alternatives to belong to more than one nest, 26 

potentially with different ‘degrees’ of membership. Although the derivation of CNL is 27 

usually credited to Vovsha (1997), the model was clearly stated in Williams (1977) and 28 

McFadden (1978). Swait’s (2001) GenL model, which is motivated by a specific interest 29 

in choice set generation, restricts CNL by suppressing the different degrees of 30 

membership. Daly and Bierlaire’s Recursive Nested Extreme Value (RNEV) model 31 

(Daly, 2001; Bierlaire, 2002; Daly & Bierlaire, 2006) generalises both NL and CNL, by 32 

allowing cross-nesting with an arbitrary number of levels.  33 

1.3 The feasible range of the structural parameter in GEV 34 

Having exposed the key role played by the invariance property within practical 35 

specifications of RUM, let us now consider the ability to test observed behaviour for 36 

consistency with RUM. In this regard, the structural parameter   of the GEV-based 37 

models (MNL, NL, CNL and RNEV), otherwise referred to as the coefficient of the 38 

‘inclusive value’ within these models, will be the focus of our interest. Conventional 39 

practice is to constrain the choice model in estimation such that the structural 40 

parameter falls within the bounds 0 1  . Informing this convention, McFadden 41 

                                                           
7 Building upon earlier contributions by Manheim (1973), Wilson (1974) and Ben-Akiva (1974); see the 
historical account in Ortúzar (2001). 

8 Pre-dating Tversky & Sattath (1979), NL also resonates with Gorman’s (1968) concept of a utility tree. 
In more recent work, Batley & Daly (2006) considered formal equivalence between NL and PRETREE.    
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(1981) remarked (but did not prove) that: ‘A necessary and sufficient condition for [NL] 1 

to be consistent with GEV is that…the coefficient of each inclusive value…lie[s] in the 2 

unit interval’ (p240). In support of the zero-one bounds, McFadden presented two 3 

arguments, one rationalising the structural parameter in terms of correlation between 4 

nested alternatives, and a second based upon testable properties of binary choice 5 

data; the latter argument is considered more fully in Annex B of the present paper.  6 

With regards to the lower bound of the structural parameter in GEV models, Train 7 

(2003) remarked that: ‘A negative value of [the structural parameter] is inconsistent 8 

with utility maximisation and implies that improving the attributes of an alternative (such 9 

as lowering its price) can decrease the probability of it being chosen’ (p81). McFadden 10 

(1981) further remarked: ‘It should be noted that, while a negative coefficient of 11 

inclusive value leads to a local failure of the GEV conditions, a coefficient of an 12 

inclusive value exceeding one will fail to satisfy GEV only for some values of the 13 

variables. Thus it is possible that an empirical fit yielding a coefficient greater than one 14 

will be consistent with GEV over the range of the data and can be combined with a 15 

second function outside the range of the data to yield a system that satisfies GEV 16 

globally. However, this chapter has not attempted to develop a test for local 17 

consistency with GEV at the observations, or for consistency with some function that 18 

satisfies GEV globally’ (p248).  19 

With regards to the upper bound of the structural parameter in GEV models, a number 20 

of researchers have reviewed the practical convention of constraining 1  , further 21 

developing McFadden’s (1981) points noted above. The initial contribution in this 22 

regard was by Börsch-Supan (1990), who sought to demonstrate that, for two-level NL, 23 

1   is consistent with RUM for some range of (but not all) values of the explanatory 24 

variables. In this way, Börsch-Supan admitted the possibility of more flexible ‘local’ 25 

bounds on the structural parameter, whilst complying with the conventional zero-one 26 

bounds in a ‘global’ sense. As evidential support, Börsch-Supan cited examples from 27 

the literature of NL models exhibiting 1  , namely Börsch-Supan (1985), Hensher 28 

(1984) and Small & Brownstone (1982). Train (2003) cited the additional examples of 29 

Train et al (1987) and Lee (1999). In these cases, 1   was accepted by the 30 

respective authors as a valid result, and interpreted as reflecting greater substitutability 31 

between nests than within nests. Herriges & Kling (1996), building upon Koning & 32 

Ridder (1994), subsequently corrected an oversight in Börsch-Supan, and offered 33 

proof of the definitive conditions on the structural parameter for two-level NL involving 34 

nests of two, three or four alternatives. They further applied the model empirically, 35 

showing the dependence of these conditions on the marginal probabilities of choosing 36 

the nests. For the simplest case of two-level NL involving nests of two alternatives – 37 

which will be the focus of the present paper – Herriges & Kling calculated an upper 38 

bound on the structural parameter of 20 for consistency with RUM. This result was 39 

however associated with an extreme marginal probability of 0.95; for a marginal 40 

probability of 0.5, the upper bound was reduced to 2, and for lower marginal 41 

probabilities still, the permissible range showed little increase beyond 1.  42 

In the course of a comprehensive review of NL, Carrasco & Ortúzar (2002, section 3.5) 43 

devoted particular attention to the bounds of the structural parameter, identifying some 44 

practical limitations of the Börsch-Supan’s (1990) argument (and its subsequent 45 

refinements). First, for any given dataset, tree structures associated with 1   may 46 
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well be sub-optimal in terms of explanatory fit. Second, the admission of 1   may 1 

contravene the requirement for a decreasing structural parameter (and by implication 2 

an increasing scale) as one moves down multi-level NL. Third, whilst the Börsch-Supan 3 

argument has theoretical credence, it has received limited support from empirical 4 

evidence. Moreover, as a preamble to their review, Carrasco & Ortúzar (2002, section 5 

2.3) compared and contrasted the alternative derivations of NL developed by Williams 6 

(1977) and McFadden (1978), and in particular highlighted their different rationales for 7 

the structural parameter. Williams’ (1977) alternative derivation of NL represents the 8 

structural parameter as the ratio of scale parameters at adjacent levels of the tree, 9 

where the scale parameters reflect the variance of the random terms at the respective 10 

levels. The implication of this derivation is that – unlike McFadden’s NL – Williams’ NL 11 

constrains the structural parameter to the zero-one bounds, and requires the structural 12 

parameter to increase as one moves down the tree. Furthermore, with reference to the 13 

earlier justification for GEV-based NL models exhibiting 1  , Williams’ NL in effect 14 

constrains patterns of substitution between alternatives (Williams & Senior, 1978). 15 

1.4 The contributions of the present paper 16 

The present paper does not seek to revisit the question of how the 0 1   bounds 17 

relate to the definition of RUM per se (whether in the context of McFadden’s or 18 

Williams’ derivations), but instead addresses the more general question of how these 19 

bounds relate to the properties of regularity and stochastic transitivity introduced in 20 

section 1.2 above. However, as will be apparent from the summary of literature above, 21 

any interest in the 0 1   bounds is intertwined with interests surrounding 22 

representation theorems for RUM and the invariance property. Whilst B&M showed 23 

that stochastic transitivity – unlike regularity – is unnecessary to derive RUM, our 24 

interest in this property is motivated by the proposition that any ‘well-behaved’ discrete 25 

choice model might be expected to exhibit stochastic transitivity.  26 

Against this background, the present paper offers three principal contributions: 27 

1. We will distinguish between necessary (which we represent in terms of 28 

regularity) and well-behaved (which we represent in terms of stochastic 29 

transitivity) conditions for RUM. 30 

2. Focussing specifically upon three-alternative NL, we will synthesise these 31 

necessary and well-behaved conditions for RUM in the form of a simple two-32 

part test. 33 

3. Using both theory and empirics, we will reconcile the simple two-part test with 34 

conventional criteria for determining the RUM-compliance of three-alternative 35 

NL.  36 

To these ends, the layout of the paper is as follows. Section 2 presents a formal 37 

definition of RUM, details the theoretical conditions which give rise to this definition, 38 

and arising from these conditions identifies properties which will be the subject of 39 

empirical testing. Section 3 describes, in analytical terms, the application of these tests 40 

to a special case of RUM in the form of two-level NL. In order to illustrate the practical 41 

implication of section 3, section 4 develops broadly the same example empirically, 42 

using both simulated and real data. Section 5 provides a summary and conclusion. 43 

 44 
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2. Theoretical background of RUM 1 

2.1 Theoretical conditions underpinning RUM 2 

Consider an individual economic agent, who is offered a finite and exhaustive set of 3 

mutually exclusive alternatives: 4 

 1,...,N n            5 

Let us further restrict the analysis to a feasible subset M N , which we refer to as 6 

the ‘choice set’. We will not concern ourselves with the specific constraints determining 7 

feasibility, but these could include factors such as budget. B&M9 introduced two 8 

‘conditions’ (their terminology) which define RUM, thus10:  9 

CONDITION  P , Rankings consistent with the Random Utility Model: There are !n  10 

numbers  p r  such that for any x M  and any M , M N : 11 

  0p r   and    
;x M

M R
p x p r  12 

where  p r  is the probability of the ranking r ; ;x MR  is the set of all rankings r  on M  13 

for which x  is the first among all elements of M , i.e.  ;x M x yR r r r   for all y M14 

; and  Mp x  is the probability of alternative x  being chosen from M , where 15 

 0 1Mp x   and   1Mx M
p x


 . 16 

Whilst the above condition encompasses all preference orderings on the feasible set, 17 

the condition that follows considers the subset of preference orderings where a given 18 

alternative is first ranked (i.e. is chosen).  19 

CONDITION  U , Random Utility Model: There is a random vector  1,..., nU U  unique 20 

up to an increasing monotone transformation such that for any x M  and any M , 21 

M N :  22 

   PrM x yp x U U   for all y M  23 

If the random utilities are (uniformly) continuous random variables, then this implies 24 

non-coincidence, i.e.  Pr 0x yU U   for all y M . On this basis, Condition  U  25 

effectively defines the existence of a probability space on these random utilities.  26 

                                                           
9 This section adheres closely to B&M’s seminal 1960 paper, and the reader is referred to that paper for 
more detailed discussion of the various definitions and conditions. However, much of the same material 
is covered by Fishburn’s (1998) subsequent and very authoritative review.  
10 In what follows, we deploy the following notational conventions to represent choice probability, namely: 

 Mp x  is the probability of choosing x  from the offered set M ;    , ,x y zp x  is the probability of choosing 

x  from the trinary , ,x y z M ; and  ,p x y  is the probability of choosing x  from the pair ,x y M . 
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Finally, note that B&M (Theorem 3.1, p183) showed that conditions  U  and  P  each 1 

imply the other, i.e.    U P 11. 2 

2.2 Theoretical conditions as testable properties of RUM 3 

In seeking to confirm the consistency (or otherwise) of given data with RUM, it should 4 

be acknowledged that: ‘...save for the choice axiom, [models of the RUM class] are all 5 

stated in terms of nonobservable utility functions, and so it is impossible to test them 6 

completely until we know conditions that are necessary and sufficient to characterize 7 

them in terms of preference probabilities themselves, for only these can be estimated 8 

from data’ (Luce & Suppes, 1965 pp339-340). Contemporary discrete choice modellers 9 

have tended to overlook B&M’s original work on RUM, which devoted detailed attention 10 

to testable properties and defined several conditions which follow from  U  and  P11 

. These conditions refer to various properties of binary and multinomial choice 12 

probabilities on the feasible set M , as follows.   13 

CONDITION  e , Regularity: If L M , then    M Lp x p x  for all ,x L M , L M  14 

CONDITION  3e , Regularity for any trinary: For any three elements , ,x y z M , 15 

     , , ,x y zp x p x y , or equivalently         , , min , , ,x y zp x p x y p x z  16 

B&M (Theorem 3.3, p185) showed that condition  P  implies condition  e , which itself 17 

implies (but is not implied by) condition  3e , i.e.      3P e e . In general, 18 

regularity is necessary but not sufficient for RUM (Marschak, 1960, p192), but in the 19 

specific case of a trinary choice set, regularity is necessary and sufficient for RUM to 20 

hold. Some additional conditions follow: 21 

CONDITION  3c , Triangular condition: For any three distinct elements , ,x y z M  22 

     1 , , , 2p x y p y z p z x     23 

It is well known that for binary choice probabilities involving up to five distinct 24 

alternatives, RUM holds if and only if the relevant triangle inequalities hold (Cohen & 25 

Falmagne, 1971; 1990; McFadden & Richter, 1970a; 1970b; 1991; Fishburn, 1998; 26 

Cavagnaro & Davis-Stober, 2014). B&M (Theorem 5.6, p195) and Luce & Suppes 27 

(1965, Theorem 34, p343) further showed that    3 3e c .  28 

2.3 Other theoretical conditions as testable properties 29 

The above relations reveal that regularity is the key condition for testing the 30 

consistency of discrete choice preference data with RUM. However, Marschak (1960) 31 

described the following conditions as ‘...partial results (which) may, however, prove 32 

useful’.  33 

                                                           
11 In what follows, we use   to denote ‘implies’,   to denote ‘implies and is implied by’, and  to 
denote ‘implies but is not implied by’. 
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CONDITION  WST , Weak Stochastic Transitivity: If   1, 2p x y   and 1 

  1, 2p y z  , then   1, 2p x z   2 

CONDITION  MST , Moderate Stochastic Transitivity: If   1, 2p x y   and 3 

  1, 2p y z  , then       , min , , ,p x z p x y p y z  4 

CONDITION  SST , Strong Stochastic Transitivity: If   1, 2p x y   and 5 

  1, 2p y z  , then       , max , , ,p x z p x y p y z  6 

Marschak (1960; Theorem 12, p227) showed that      SST MST WST , 7 

whilst B&M (Theorem 5.8, p196) showed that    3SST c , and Luce & Suppes 8 

(1965; Theorems 35 and 38, pp343-346) showed that    3MST c . 9 

 10 

3. An analytical example 11 

Following from the preceding discussion, any test of regularity on a given trinary (i.e. 12 

condition  3e ) amounts to a comparison of the binary and trinary choice probabilities 13 

and, in particular, an examination of how these probabilities deviate depending upon 14 

the presence/absence of a ‘third’ alternative. Regularity will certainly hold in discrete 15 

choice contexts subject to IIA, but may not hold otherwise. Since the NL model 16 

(Williams, 1977; Daly & Zachary, 1978; McFadden, 1978) seeks to relax IIA, an 17 

interesting question is whether NL complies with regularity; this question will be the 18 

focus of section 3.3.1.   19 

Although stochastic transitivity – unlike regularity – is not a necessary condition of 20 

RUM, we hypothesise that any ‘well-behaved’ discrete choice model will exhibit MST 21 

or (better still) SST. We further hypothesise that, by ensuring compliance with MST 22 

and SST, modellers will yield RUMs that embody more intuitive parameter estimates 23 

(e.g. in terms of the size and sign of implied demand elasticities), and greater 24 

explanatory power. In a similar fashion to our analysis of regularity, section 3.3.2 will 25 

consider the extent to which NL complies with stochastic transitivity. 26 

Before embarking upon these discussions of regularity and stochastic transitivity, 27 

section 3.1 will introduce an illustrative choice problem, and section 3.2 will apply NL 28 

to this problem. In considering the compliance of NL with regularity and stochastic 29 

transitivity, a key focus will be whether these conditions corroborate the conventional 30 

0 1   bounds on the structural parameter. 31 

3.1 The choice problem  32 

In testing the compliance of RUM with the fundamental preference axioms, behavioural 33 

economists have tended to adhere to B&M’s original definition of RUM, which 34 
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interprets U  as a random ordinal variable. By contrast, discrete choice modellers have 1 

re-interpreted U  as a random cardinal variable, via the following definition:   2 

x x xU V    for all x M  (1) 3 

where xV  are constants referred to as ‘deterministic utility’, and x  are random 4 

variables exogenous12 of xV  with a continuous joint finite density function. This defines 5 

the class of Additive Random Utility Models (ARUM).  6 

Henceforth, we restrict the scope of the paper to the case where the choice set consists 7 

of the trinary13: 8 

 , ,M x a b N    9 

wherein a  and b  show some degree of similarity not possessed by x . For example, 10 

in the case of travel mode choice, a  and b  could represent two alternative bus 11 

services to a given location, whilst x  could represent car. Reflecting these features, 12 

let us create a subset containing the two similar (i.e. bus) alternatives a  and b :   13 

 ,L a b M   14 

The NL model arises from a special case of (1) where the random variables for all three 15 

alternatives are identically Gumbel distributed, but where a  and b  (e.g. the random 16 

variables for the bus alternatives) are correlated with each other, whilst x  (e.g. the 17 

random variable for the car alternative) is independent of a  and b . The correlation 18 

between a  and b  seeks to capture the degree of similarity between a  and b . 19 

3.2 A nested logit representation of the choice problem 20 

Following McFadden (1987), a NL representation of the aforementioned choice 21 

problem is uniquely determined by two choice probabilities, namely the marginal 22 

probability of choosing L M : 23 
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 (2) 24 

and the conditional probability of choosing a L : 25 

                                                           
12 This assumption of exogeneity is almost unavoidable if there is wish to apply RUM to welfare analysis; 
see McFadden (1995) or Batley (2014). 

13 The three-alternative choice set is but one example of real world or experimental choices. However, it 
is arguably the most common case of NL considered in both the literature (e.g. the widely used ‘red bus-
blue bus’ example) and practice, and embodies important features which readily generalise to larger 
choice sets. 
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 (3) 1 

where   continues to denote the structural parameter, and the model is implicitly upper 2 

normalised (Hensher & Greene, 2002; Carrasco & Ortúzar, 2002). Drawing reference 3 

to Carrasco & Ortúzar’s critique of Börsch-Supan (1990), which was summarised in 4 

section 1.3 above, note that (2) and (3) give rise to two-level NL, thereby avoiding any 5 

complications associated with multiple levels.    6 

In these terms, the probabilities of choosing the similar alternatives a  and b  are given 7 

by: 8 

     ,M Mp a p L p a b   9 

      1 ,M Mp b p L p a b    10 

whilst the probability of choosing the dissimilar alternative x  is given by: 11 

   1M Mp x p L   12 

This tree structure is illustrated in the top left panel of Figure 1. 13 

FIGURE 1 ABOUT HERE 14 

3.3 Applying the testable properties to three-alternative nested logit 15 

Again drawing from B&M’s derivation of the theoretical conditions, but now focussing 16 

on the trinary choice set (and employing the notation  3P  to represent the application 17 

of condition  P  to this trinary set and all of its non-empty subsets), the testable 18 

properties from section 2 above are summarised in Figure 2. 19 

FIGURE 2 ABOUT HERE 20 

An important practical property of NL (and indeed of any parametric RUM) is that, 21 

having established a model on the complete choice set M , it readily lends itself to the 22 

derivation of choice probabilities for any reduced choice (i.e. for any subset of M ). 23 

This property, which avoids the need to systematically model the full permutation of 24 

preference orderings, will be exploited in what follows. We will return to this point when 25 

introducing the empirical example in section 4. 26 

3.3.1 Compliance with regularity  27 

In testing compliance with the regularity condition, two general cases are of relevance. 28 

Case 1: Intra-nest choice 29 

For the three alternative NL choice problem under examination, regularity is satisfied 30 

if both: 31 

   , Mp a b p a  and    , Mp b a p b  32 



 13 

With reference to Annex A, it is trivial to show that, for intra-nest choice, compliance 1 

with regularity is guaranteed, irrespective of the value taken by the structural parameter 2 

 . 3 

Case 2: Inter-nest choice 4 

In this case, regularity is satisfied if: 5 

   , Mp x a p x ,    , Mp a x p a ,    , Mp x b p x , and    , Mp b x p b  6 

For inter-nest choice, Annex A further shows that compliance with regularity will 7 

depend upon the relative magnitudes of the marginal and conditional probabilities14. In 8 

particular, negative values of the structural parameter are non-compliant, but values 9 

greater than one could be compliant. 10 

Drawing together Cases 1 and 2 above, Figures 3 and 4 provide an empirical example 11 

of the choice problem under examination. Whilst Figure 3 assumes a b xV V V  , such 12 

that the three alternatives are deterministically indifferent, Figure 4 assumes 13 

9, 8, 10a b xV V V   , such that x  is deterministically preferred to a , a  to b , and 14 

x  to b . In both figures, the upper and lower panels compare, for each of the inter-nest 15 

choices, the binary and multinomial choice probabilities as the structural parameter is 16 

increased from -10 to +10. With reference to (1), the structural parameter effectively 17 

represents the magnitude and interdependence of the random variables for the three 18 

alternatives. Despite the differences in deterministic preferences, both figures 19 

corroborate our theoretical proposition that regularity requires 0  , since at negative 20 

values of the structural parameter one or more of the binary choice probabilities are 21 

less than their associated multinomial choice probabilities. Furthermore, in the case of 22 

Figure 4, regularity also gives rise to an upper bound, since    , Mp b x p b  where 23 

1.5  . 24 

FIGURE 3 ABOUT HERE 25 

FIGURE 4 ABOUT HERE 26 

3.3.2 Compliance with stochastic transitivity 27 

Relative to the discussion of regularity above, the discussion of stochastic transitivity 28 

will require rather more exposition. With reference to the general case outlined in 29 

section 2.3 above (i.e. not specific to NL), we begin by introducing the notation xyz  to 30 

represent a complete set of binary stochastic preferences on the trinary choice set 31 

 , ,x y z  such that  , 1 2p x y  ,  , 1 2p y z   and  , 1 2p x z  . In other words, 32 

xyz  represents a preference ordering that complies with WST as a minimum (and 33 

possibly also complies with MST and SST)15. 34 

                                                           
14 This dependence resonates with Herriges & Kling’s (1996) findings reported in section 1. 
15 As pointed out by one of the anonymous reviewers of this paper, xyz  does not in general imply 

     M M Mp x p y p z  . This implication does however follow under the particular condition of ‘order 
independence’ (Luce & Suppes, 1965; Definition 9, pp411-412), a condition which characterises MNL.    
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Now relating this notation to the specific case of the three alternative NL under 1 

examination here, we refer to axb  as the intrinsic preference ordering, on the grounds 2 

that the first two stochastic binary choices in the transitivity chain (i.e. the inter-nest 3 

binary choices between a  and x  (see top right panel of Figure 1), and between x  4 

and b  (see bottom left panel of Figure 1)) will be independent of the value of the 5 

structural parameter, whilst the final stochastic ‘transitive’ choice (i.e. the intra-nest 6 

binary choice between a  and b  (see bottom right panel of Figure 1)) will be dependent 7 

on the value of the structural parameter16.  8 

Following the rationale outlined in Annex B, the intrinsic preference ordering allows us 9 

to infer, for given inter-nest binary choices, the upper bound on the structural 10 

parameter such that the intra-nest binary choice complies with stochastic transitivity, 11 

thus:  12 

   
 

ln 1 1

ln 1

u v

w


 



 (4) 13 

where: 14 

     , , 1p a x p x a u    15 

     , , 1p x b p b x v    16 

, 0u v   17 

and: 18 

     , , 1p a b p b a w    19 

 max ,w u v  in the case of SST 20 

 min ,w u v  in the case of MST 21 

0w   in the case of WST 22 

That is to say, conditional upon a  being stochastically preferred to x , and x  to b , (4) 23 

elicits the upper bound on   which ensures that a  is stochastically preferred to b  with 24 

sufficient strength that stochastic transitivity holds for the intrinsic preference ordering 25 

axb . Since MST is associated with the minimum value of w , and SST is associated 26 

with the maximum, these two transitivity conditions may give rise to different upper 27 

bounds on the structural parameter.  28 

Having derived (4) for the intrinsic preference ordering axb , let us now consider its 29 

application as a test of stochastic transitivity for actual preference orderings covering 30 

all possibilities. To this end, two general cases are of relevance, depending on whether 31 

                                                           
16 This definition of the intrinsic preference ordering resonates with Herriges & Kling’s (1996) comment: 
‘…restrictions are imposed on [the structural parameter] by consistency condition C.3 are expressed in 
terms of [the marginal probability], with no cross-group terms involved’ (p37). In passing, note that since 
the assignment of the nested alternatives as a  or b  is arbitrary, we could instead adopt bxa  as the 
intrinsic preference ordering. 
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the ‘transitive’ choice (i.e. the final binary choice of the actual preference ordering) is 1 

intra-nest (i.e. in the manner of the intrinsic preference ordering) or inter-nest17.  2 

Case 3: Where the ‘transitive’ choice is intra-nest 3 

This case deals with actual preference orderings axb  and bxa  (again reflecting 4 

complete binary stochastic preferences on the trinary choice set, as per the notational 5 

definition at the beginning of section 3.3.2). However, having defined the discrete 6 

choice problem (section 3.1), and determined which alternatives should be nested 7 

together (section 3.2), it is arbitrary as to whether a given nested alternative is labelled 8 

a  or b . The implication follows that the same bounds on the structural parameter will 9 

(in essence18) apply to the actual preference orderings axb  and bxa . Moreover, Case 10 

3 is in substantive terms consistent with the intrinsic preference ordering, and 11 

focussing here upon axb , we can re-state (4)19: 12 

   
  

   
  max

ln 1 1 ln 1 1

ln 1ln 1axb
axb

u v u v

ww k
 

   
  

 
 (5) 13 

where axbk  is a non-negative constant (see Table 1 for additional working). From (5) 14 

we can infer that: 15 

 SST entails an upper bound on the structural parameter, which we denote 16 

max;SST , and which may be greater than one.  17 

 MST also entails an upper bound, which we denote max;MST , and which may 18 

itself be greater than max;SST . 19 

 In summary: max; max;axb SST MST    . 20 

A corollary of the above findings is that (5) will elicit the conventional upper bound of 21 

one for the structural parameter only where a  and/or b  is indifferent to x 20. 22 

To give these results some intuition, note that whilst the inter-nest binary probabilities 23 

(which in Case 3 account for the first and second choices in the transitivity chain) will 24 

be independent of the value of the structural parameter, the intra-nest binary probability 25 

(which in Case 3 accounts for the third ‘transitive’ choice) will not. For this case, we 26 

                                                           
17 In passing, it is worth remarking that we confirmed the bounds for both Cases 3 and 4, by applying the 
stochastic transitivity tests (B1), (B2) and (B3) to a wide range of values for both the deterministic utilities 
(i.e. , ,x a bV V V ) and the structural parameter (i.e.  ), and checking correspondence with the bounds on 

the structural parameter arising from (5), (6) and (7). 

18 With the caveat that, having adopted a given intrinsic preference ordering (either axb  or bxa ), 

max( , )w u v  and min( , )w u v  for the actual preference ordering axb  will correspond to 

min( , )w u v  and max( , )w u v  respectively for the actual preference ordering bxa . 

19 A slight qualification is that we introduce the subscript axb  to the structural parameter to denote the 
actual preference ordering; we will adopt the same convention in the subsequent working. 

20 In this case, from (B10) it must hold that     1 1 1w u v    , which simplifies to w u v uv   . 

If, for example, b  is indifferent to x , then 0v   and the latter inequality further simplifies to w u , 
consistent with SST. If all three alternatives are indifferent to each other, then 0w  , consistent with 
WST. 
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wish to discern, for given inter-nest binary probabilities greater than 0.5, any bounds 1 

on the structural parameter which ensure that the intra-nest binary choice will complete 2 

the transitivity chain. Since an increasing value of the structural parameter will amplify 3 

the probability of choosing the (deterministically) inferior alternative from the intra-nest 4 

binary, Case 3 gives rise to an upper bound on the structural parameter; at higher 5 

values of the structural parameter, the (deterministically) inferior intra-nest alternative 6 

will become sufficiently attractive that stochastic transitivity fails. Consider for example 7 

the actual preference ordering axb . If the inter-nest choices are consistent with this 8 

preference ordering (i.e. a  is stochastically preferred to x , and x  to b ), then 9 

compliance with stochastic transitivity rests upon the intra-nest choice, in particular the 10 

strength of preference for a  over b , relative to the strength of the inter-nest 11 

preferences. An increasing value of the structural parameter will gradually reduce the 12 

intra-nest probability for a  over b , until an upper bound is reached where stochastic 13 

transitivity fails.  14 

Case 4: Where the ‘transitive’ choice is inter-nest 15 

Whereas Case 3 dealt with actual preference orderings that are consistent with the 16 

intrinsic preference ordering, in the sense that the ‘transitive’ choice is intra-nest, Case 17 

4 deals with actual preference orderings that entail inter-nest transitivity, i.e. abx , 18 

bax , xab  and xba  (again reflecting complete binary stochastic preferences on the 19 

trinary choice set, as per the notational definition at the beginning of section 3.3.2). As 20 

was noted in Case 3 however, having determined which alternatives should be nested 21 

together, it is arbitrary as to which alternative is labelled a  and b . In practice, 22 

therefore, we need only consider two of these four preferences orderings, where the 23 

defining feature of these preference orderings is the rank of the lone alternative x .  24 

Case 4.1: Consider the actual preference ordering xab , where the lone alternative is 25 

first-ranked (i.e. 1xr  , noting that we could instead consider xba , and (in essence21) 26 

derive the same bounds on the structural parameter). Reconciling xab  with the odds 27 

ratios (B4a) and (B4b), we can reason that (see Table 1 for additional working), in the 28 

case of the actual preference ordering xab , it must hold that    , , 1p a x p x a  , 29 

   , , 1p x b p b x   and    , , 1p a b p b a  . The implication is that, whereas Case 30 

3 gave rise to an upper bound on the structural parameter (5), the present case gives 31 

rise to the lower bound:  32 

     
 

   
  min; 1

ln 1 1 ln 1 1

ln 1 ln 1 x

xab

xab r

u v k u v

w w
  

    
  

 
 (6) 33 

                                                           
21 In an analogous fashion to Case 3, having adopted an intrinsic preference ordering (either axb  or bxa

), max( , )w u v  and min( , )w u v  for the actual preference ordering xab  will correspond to 

min( , )w u v  and max( , )w u v  respectively for the actual preference ordering xba . 
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where min; 1xr
   denotes the lower bound of the structural parameter given that the lone 1 

alternative is ranked first, 0u  , 0v  ,  max ,w u v  for SST,  min ,w u v  for 2 

MST, and 0xabk  .  3 

TABLE 1 ABOUT HERE 4 

It should be qualified that, given the relations inherent within (6), the lower bound for 5 

MST will in principle be negative (more specifically, the numerator of the lower bound 6 

in (6) will be positive, but the denominator will be negative). In practice however, a 7 

negative structural parameter will violate regularity (section 3.3.1), and it therefore 8 

makes sense to impose a lower bound of zero for MST.  9 

Case 4.2: Consider the actual preference ordering abx , where the lone alternative is 10 

third-ranked (i.e. 3xr  , noting that bax  will (in essence22) yield the same bounds on 11 

the structural parameter). Following an analogous line of reasoning to Case 4.1, it must 12 

in this case hold that    , , 1p a x p x a  ,    , , 1p x b p b x   and 13 

   , , 1p a b p b a  , thereby giving rise to the lower bound:   14 

    
 

   
  min; 3

ln 1 1 ln 1 1

ln 1 ln 1 x

abx

abx r

u k v u v

w w
  

    
  

 
  (7) 15 

where min; 3xr
   denotes the lower bound of the structural parameter given that the lone 16 

alternative is ranked third, 0u  , 0v  ,  max ,w u v  for SST,  min ,w u v  for 17 

MST, and 0abxk  . In practice, the lower bound for MST will again be zero.  18 

Moreover (6) and (7) provoke the following inferences: 19 

 In summary: min; 30
xr abx   , and min; 10

xr xab    20 

 Whether min; 1 min; 3x xr r   , or min; 1 min; 3x xr r   , will be an empirical issue. 21 

To give this result some intuition, in Case 4 the intra-nest choice will be first or second 22 

in the transitivity chain, whilst the third (i.e. ‘transitive’ choice) will be inter-nest. As 23 

before, we wish to discern, for given inter-nest probabilities, any bounds on the 24 

structural parameter such that the intra-nest probability (which unlike Case 3 will not 25 

be the third ‘transitive’ choice) is consistent with the transitivity chain. Consider for 26 

example the actual preference ordering abx . If the inter-nest choices are consistent 27 

with this preference (i.e. a  is stochastically preferred to x , and b  to x ), then 28 

compliance with stochastic transitivity rests upon the intra-nest choice, in particular the 29 

strength of preference for a  over b , relative to the strength of the inter-nest 30 

preferences. As the value of the structural parameter increases, the probability of 31 

choosing a  over b  will decrease, whilst the probability of choosing a  over x  will 32 

                                                           
22 In an analogous fashion to Case 3, having adopted an intrinsic preference ordering (either axb  or bxa

), max( , )w u v  and min( , )w u v  for the actual preference ordering abx  will correspond to 

min( , )w u v  and max( , )w u v  respectively for the actual preference ordering bax . 
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remain constant, until the bound is eventually reached where    , , 0.5p a x p a b   1 

and SST is satisfied. 2 

3.4 A simple two-part test for regularity and stochastic transitivity 3 

Arising from the discussions of regularity (section 3.3.1) and stochastic transitivity 4 

(section 3.3.2), in relation to our NL representation (section 3.2) of a three-alternative 5 

discrete choice problem (section 3.1), the logical progression is to propose a simple 6 

two-part test, as follows. 7 

Part I of the test considers compliance with regularity, which in the trinary case is 8 

necessary and sufficient for RUM. In principle, regularity applies to both the intra-nest 9 

and inter-nest choices, but in practice, only the latter entail a restriction on the structural 10 

parameter. More specifically, regularity implies a lower bound of zero on the structural 11 

parameter. It is important to note that, whilst excluding negative values, this condition 12 

does not guarantee that a positive value of the structural parameter will comply with 13 

regularity. From an empirical perspective, regularity will hold as the structural 14 

parameter increases through the range zero to one, and possibly in excess of one. 15 

However, a critical value will eventually be reached at which one or more choice shares 16 

approach zero or one, and regularity then fails; the specific critical value will depend 17 

on the utilities at hand.  18 

Part II considers compliance with MST and SST, which are well-behaved conditions, 19 

but not necessary for RUM. In terms of these conditions, we must distinguish between 20 

cases where the lone alternative is first, second or third ranked, and between different 21 

forms of transitivity, namely MST and SST. Where the lone alternative is second (i.e. 22 

middle) ranked, SST and MST imply upper bounds on the structural parameter 23 

(possibly in excess of one). Where the lone alternative is first or third ranked, MST 24 

implies a lower bound of zero, whereas SST implies a lower bound greater than or 25 

equal to zero, and neither condition implies an upper bound. 26 

To give an example, recall that Figure 4 assumes 10, 9, 8x a bV V V   , such that 27 

alternative x  is deterministically preferred to a , and a  to b . With reference to Part I 28 

of the test, compliance with regularity requires the structural parameter to be greater 29 

than zero. Furthermore, empirical analysis of this example reveals that regularity fails 30 

as the structural parameter increases beyond 1.5, whereupon    , Mp b x p b . 31 

Therefore, employing a combination of theory and empirics, we can discern that – in 32 

this example – regularity will be satisfied where the structural parameter lies within the 33 

bounds 0 1.5xab  , i.e. an upper bound greater than one. 34 

With reference to Part II, application of the stochastic transitivity condition (6) reveals 35 

that, in order for alternative x  to be stochastically preferred to alternative b , the 36 

structural parameter should be greater than zero for MST, and greater than or equal 37 

to 0.5 for SST. Combining the regularity and stochastic transitivity requirements, we 38 

can infer that – for this example – regularity and MST will be satisfied where 39 

0 1.5xab  , whilst regularity and SST will be satisfied where 0.5 1.5xab  . 40 
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More generally, Table 2 summarises the simple two-part test, detailing the specific 1 

bounds on the structural parameter that apply to each possible preference ordering 2 

arising from the three-alternative choice problem.  3 

TABLE 2 ABOUT HERE 4 

 5 

4. An empirical example 6 

Having reconciled the regularity and stochastic transitivity conditions with the 7 

conventional zero-one bounds on the structural parameter, the present section will 8 

consider the empirical implications of these findings, by examining the prevalence of 9 

structural parameters that fall outside the conventional bounds, and the factors that 10 

might give rise to such results. In these practical contexts, it is also appropriate to 11 

consider the applicability of the two-part test outlined in section 3 above and, where it 12 

is applicable, the ability of the test to determine the validity of structural parameters 13 

observed empirically.  14 

Before proceeding, it is important to acknowledge that three-alternative NL could 15 

potentially be estimated using data on: i) binary choices only (using Bradley & Daly’s 16 

(1997) ‘trick’ to normalise the scale of the different pairs); ii) trinary choices only; or iii) 17 

some mixture of binary and trinary choices. Since a key input to the two-part test is 18 

knowledge of the intrinsic preference ordering (reflecting the complete set of binary 19 

stochastic preferences on a given trinary), this would seem to favour format i). 20 

However, there is arguably an intellectual dissatisfaction in constructing a NL model of 21 

trinary choice if individuals never actually face such a choice – especially if there is 22 

analytical interest in the perceived similarity between the nested alternatives, and the 23 

perceived dissimilarity of the lone alternative. Indeed, format i) tends to be the 24 

exception rather than the rule in practical NL modelling. On the other hand, the trinary 25 

choices inherent within formats ii) and iii) might, on the face it, seem to impede the 26 

applicability of the two-part test. This is because the binary stochastic preferences 27 

inherent within these trinary choices are opaque to the analyst. However, following the 28 

rationale previously deployed by Batley & Daly (2006), the marginal (2) and conditional 29 

(3) choice probabilities of NL lend themselves to the elicitation of probabilities in 30 

reduced choice sets, by considering these as limiting cases when the utility weights of 31 

individual alternatives become zero.  32 

For example, if 0xV   then   1Mp L   and    ,Mp a p a b . In support of this 33 

representation of reduced choice sets, consider the following intuition: as XV  reduces 34 

in value towards zero, and the probability of choosing x  also reduces to zero, one 35 

might reasonably expect NL to ‘behave’ in the sense that: 36 

     , lim 0x Mp a b V p a   37 

This says that the probability (3) of choosing a  from the reduced choice set L  is the 38 

same whether x  is not considered at all, or whether x  is considered but its utility 39 

weight is allowed to decline to zero. Similarly, if 0bV   then  , 1p a b   and (2) gives 40 

the probability of choosing a  from the reduced choice set  ,a x . Thus the probability 41 
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equations for the three-alternative case yield the relevant probability equations for each 1 

of the three possible binary choices. 2 

4.1 Empirical example using real data 3 

Our first empirical example is based on data collected using a stated choice (SC) 4 

survey, conducted using an online panel in the United Kingdom in early 2010. For full 5 

details of the survey, see Hess et al (2012). The sample consisted of 387 respondents 6 

who routinely commuted by bus or rail. The respondents were each issued with ten 7 

stated choice scenarios, where each scenario involved a choice between three 8 

unlabelled journeys based on their usual mode, and where the first journey was a 9 

respondent-specific ‘reference’ journey that was held constant across scenarios. The 10 

three journey alternatives were described in terms of five attributes, namely travel time 11 

(in minutes), cost (£), the rate of crowding (trips out of ten), the rate of delays (trips out 12 

of ten), the average delay across delayed trips (in minutes), and the provision of a 13 

delay information text message (sms) service (three possible levels; none, charged, 14 

and free). In each scenario, the respondent was asked to choose their most preferred 15 

option as well as their least preferred option. For purposes of analysis, we combined 16 

the data on best and worst choices, yielding twenty observations per respondent (ten 17 

with the choice of the best alternative in each task, and ten with the choice of the worst 18 

alternative out of the remaining two in each task), where no differences in scale were 19 

found between best and worst choices, and where similar findings to those reported 20 

here were obtained when using only data on the best choice.  21 

Formalising this example using the notation introduced earlier, let x  be the reference 22 

journey, and let a  and b  be hypothetical alternatives. Overall, the choice shares were 23 

such that alternative x  (which was also specified as the lone alternative in NL terms) 24 

was most preferred, followed by alternative b , and then alternative a  (where the latter 25 

two alternatives were, in NL terms, nested together), i.e.      M M Mp x p b p a  . 26 

Two different models were estimated on this dataset, namely MNL and NL. In both 27 

models, and in line with earlier findings by Hess et al (2012), we used a log-transform 28 

on the fare attribute. The results are summarised in Table 3, where the estimation of 29 

the models recognised the repeated choice nature of the data in the calculation of the 30 

robust standard errors.  31 

TABLE 3 ABOUT HERE 32 

The MNL results show the expected signs for all key attributes, with high levels of 33 

statistical significance, along with a dislike, albeit not statistically significant, for a 34 

charged delay sms service (relative to no service). For the NL model, we first imposed 35 

a constraint on the structural parameter such that 0 1  , in line with the default 36 

option in many estimation packages – this model collapsed to a MNL structure, i.e. 37 

with 1  . We then re-estimated the NL model without constraining the structural 38 

parameter, finding that 1.74  . This potentially supports our propositions 39 

concerning the bounds on the structural parameter for consistency with regularity and 40 

stochastic transitivity, in the sense that the structural parameter exceeds one. 41 

However, in order to facilitate application of the two-part test from section 3.4 – and 42 

thereby elicit a precise bound on the structural parameter for consistency with 43 

stochastic transitivity – we simplified matters by re-estimating the NL model on a 44 
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restricted dataset containing only observations of the ‘best’ alternative from the trinary 1 

choice set (thus omitting observations of the ‘worst’ alternative from reduced choice 2 

sets of two alternatives). For the restricted dataset, we deployed the rationale outlined 3 

at the outset of section 4 to elicit the complete set of binary stochastic preferences 4 

associated with the trinary. This exercise identified a prevailing preference ordering of 5 

xba , and using (6) we calculated – for each and every observation in the dataset – a 6 

lower bound of 1.46 for compliance of the structural parameter with SST. Estimating 7 

NL on the reconstituted dataset, the (unconstrained) structural parameter was also 8 

found to be 1.46, thereby corroborating (6), and implying that the best-fitting model 9 

was that falling at the lower bound. That the estimated structural parameter fell at the 10 

lower bound should come as no surprise since, for given choice shares, a structural 11 

parameter greater than 1.46 would imply greater variance in the utilities of alternatives 12 

a  and b , and thus a poorer fitting model.   13 

Returning to the best-worst (i.e. unrestricted) dataset, Table 3 reports that, relative to 14 

MNL, the NL admitting 1   gives an improvement in log-likelihood by 83.28 units for 15 

one additional parameter (from -5,724.137 to -5,640.858), which is highly significant, 16 

giving a likelihood ratio test value of 166.56, with a critical 99% 2  test value of just 17 

6.63. The improvement in fit is also reflected in the fact that the estimate for the 18 

structural parameter is significantly different from one at high levels of confidence, with 19 

a t-ratio against one of 8.64. It is apparent therefore that, for the present data at least, 20 

imposing the conventional 0 1   constraint on the structural parameter leads to 21 

inferior model performance. Whilst there are of course situations where a better fitting 22 

model may be rejected on theoretical grounds, our work here allows us to determine 23 

that these higher values are in fact permissible. 24 

Despite the improvement in fit brought by the NL with 1.74  , it is however 25 

interesting to note that the 0 1   constraint has little or no impact on the implied 26 

monetary valuations (i.e. ratio of the marginal utility of key attributes to the marginal 27 

utility of travel cost); again, it should be qualified that this result refers only to the 28 

present data and cannot be taken as a general outcome. Notwithstanding the usual 29 

reservations about forecasting with hypothetical data, we also conducted a simple 30 

example looking at the effect of a 10% increase in fare for the reference journey on its 31 

probability of being chosen. Recall that the reference journey was specified as the lone 32 

alternative in NL (i.e. as alternative x ) and, prior to the fare increase, was first-ranked 33 

of the three alternatives. The results in Table 3 show that, relative to MNL (or indeed 34 

to any NL observing 0 1  ), the estimated NL (embodying 1  ) predicts a larger 35 

decrease in the choice probability of the reference alternative. Drawing reference to 36 

the earlier discussion of substitutability between alternatives in section 1.3, this finding 37 

suggests that the imposition of an upper bound of one on the structural parameter, 38 

when this is not theoretically required or empirically supported, may yield misleading 39 

forecasts. 40 

4.2 Empirical example using simulated data 41 

Further to the empirical example using real data, we also conducted a larger scale 42 

simulated data exercise, using a broad range of ‘true’ (i.e. supposed) values for the 43 

structural parameter. The example was again based on a three-alternative choice task, 44 

where two alternatives represented rail journeys, and the third alternative represented 45 
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a car journey. The alternatives were described in terms of time and cost, on the basis 1 

that the car journey was faster but more expensive than the two rail journeys. The 2 

actual attribute levels came from a D-efficient experimental design.  3 

The simulation was run on a loop, with the time and cost coefficients fixed at -0.025 4 

and -0.125 respectively, but the structural parameter adjusted incrementally each time. 5 

As will be described further in the subsequent sections, the range of the structural 6 

parameter encompassed both negative and positive values. On each iteration of the 7 

loop, 10,000 choice observations were simulated, and applied to the estimation of both 8 

MNL and NL models. 9 

For modelling purposes, the rail journeys were specified as alternatives a  and b , and 10 

the car journey as alternative x ; thus in NL terms, the car journey was represented as 11 

the lone alternative. Given the range of values for the ‘true’ structural parameter, 12 

different datasets entailed different preference orderings of alternatives ,a b  and x . 13 

That said, at 1  , which represented the approximate mid-point of the range 14 

simulated, the choice shares were such that      M M Mp a p b p x  . Since 1   15 

implies independence of the random terms of the three alternatives, order 16 

independence is justified (see footnote 15), and we can infer an underlying preference 17 

ordering (i.e. reflecting complete binary stochastic preferences on the trinary choice 18 

set) of abx . As detailed in Table 2, given this preference ordering, regularity and MST 19 

require the structural parameter to be greater than zero, but do not imply an upper 20 

bound.  21 

4.2.1 Negative ‘true’ values of the structural parameter 22 

The motivation for the first part of this analysis is somewhat different from the preceding 23 

analysis of real data, in that we are interested in the implications that arise if the ‘true’ 24 

structural parameter is negative (i.e. in principle, violating regularity and stochastic 25 

transitivity), but the analyst restricts the structural parameter to the conventional 26 

0 1   range (i.e. in practice, ‘forcing’ compliance with regularity and stochastic 27 

transitivity). We simulated data with values for the structural parameter ranging from -28 

1 to -0.07, finding that values closer to zero than -0.07 led to estimation failures. For 29 

each of the 94 datasets simulated on this basis, we estimated MNL as well as NL 30 

without any constraint on the structural parameter. To reiterate our motivation here, we 31 

wish to determine whether, if the data underpinning the models embodies violations of 32 

regularity and stochastic transitivity, the estimated NL could expose these violations. 33 

FIGURE 5 ABOUT HERE 34 

With reference to the top right panel of Figure 5, we find that when using a positive 35 

starting value for the structural parameter in NL, the model is unable to recover the 36 

negative sign of the parameter used to generate the data – with one exception where 37 

the ‘true’ value is -0.99. By contrast, when using a negative starting value for the 38 

structural parameter, the ‘true’ value is retrieved from the data. We confirmed this result 39 

for a range of different starting values, and using all standard NL estimation packages 40 

as well as purpose-written code. These findings point to difficulties in retrieving the 41 

‘true’ value for the structural parameter when this is negative, with a seeming inability 42 

of the estimation to cross from positive to negative space. More worryingly, it was not 43 

the case that the estimate for the structural parameter tended towards zero, which 44 
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might have been suggestive of a ‘true’ negative value; on the contrary, the estimate 1 

became positive and significantly different from zero!  2 

The remaining panels of Figure 5 present summary plots of goodness of fit, 3 

willingness-to-pay (WTP) and cost elasticity across the range of ‘true’ negative values 4 

of the structural parameter, distinguishing between MNL and unconstrained NL. We 5 

should note that, across the range of negative structural parameters considered, we 6 

observed preference reversals whereby the multinomial choice probability for the lone 7 

alternative exceeded one of the binary choice probabilities; this phenomenon might be 8 

rationalised as a violation of regularity or stochastic transitivity, or a violation of both.  9 

Given a negative starting value for the structural parameter, the log-likelihood of NL is 10 

always superior to that of MNL, and increasingly so as the structural parameter 11 

approaches zero. The same outcome also arises when employing a positive starting 12 

value, except for the case where the ‘true’ structural parameter is equal to -0.99; in this 13 

case, the estimated value for the structural parameter – even with positive starting 14 

values – is close to the ‘true’ value. Since recovery of the ‘true’ value failed for -1 and 15 

-0.98, there is no clear reason why estimation was successful for -0.99. In general, a 16 

negative starting value for the structural parameter leads to the estimation of a 17 

structural parameter that is very close to the ‘true’ value. 18 

Turning to inferences of WTP, the ‘true’ WTP in these datasets was £0.2/min across 19 

all settings, and this was recovered very accurately by the NL with negative starting 20 

values. Again with reference to Figure 5, MNL always estimates negative WTP 21 

measures, as does the NL with positive starting values as the ‘true’ structural 22 

parameter approaches zero; this would at least give an analyst some indication of 23 

problems in the data. Where the ‘true’ structural parameter is more negative, however, 24 

the NL with positive starting values greatly underestimates WTP.  25 

Finally, looking at the implied cost elasticity for the lone alternative (car), we can see 26 

from Figure 5 that (with the exception of a single iteration of the simulation) this is 27 

recovered accurately by the NL with negative starting values. With positive starting 28 

values, however, the elasticity is (with the exception of a single iteration, once again) 29 

underestimated; this bias is more pronounced in the NL with positive starting values 30 

than in MNL. Moreover, the improvement in fit of NL relative to MNL and the 31 

compliance of the structural parameter with the conventional zero-one bounds might 32 

lead the analyst to (unwittingly) adopt a model that produces greater bias in its 33 

forecasts. 34 

4.2.2 Positive ‘true’ values of the structural parameter 35 

We also simulated datasets with ‘true’ values of the structural parameter within the 36 

range +1 to +3. In contrast to section 4.2.1, here we are interested in the implications 37 

that arise if the ‘true’ structural parameter is in excess of one, but the analyst restricts 38 

the structural parameter to the conventional 0 1   range.  39 

As noted earlier in section 4.2, given a structural parameter 1  , the simulated data 40 

exhibited the preference ordering abx ; in this case, Table 2 advises us that, in 41 

theoretical terms, regularity and MST entail a lower bound of zero for the structural 42 

parameter, but no upper bound. In empirical terms, we would expect regularity and 43 

stochastic transitivity to eventually fail as the structural parameter increases beyond 44 
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some critical value and the choice shares become extreme (e.g. as in Figure 4); 1 

however, no such failures were observed across the range 1 3  .  2 

FIGURE 6 ABOUT HERE 3 

For each ‘true’ value of  , we estimated MNL alongside the unconstrained NL (note 4 

that MNL produces the same results as NL at 1  , but different results where 1 5 

). The results for the 201 models estimated on this basis are summarised in Figure 6. 6 

Not surprisingly, the results show that as the ‘true’ value of the structural parameter 7 

exceeds one (and especially beyond 1.3), the NL model achieves substantial gains in 8 

log-likelihood over the MNL model, and is able to closely recover the ‘true’ structural 9 

parameter and WTP (where the latter continues to be £0.2/min). MNL on the other 10 

hand overestimates WTP and underestimates the cost elasticity as the structural 11 

parameter increases, and these biases increase as the ‘true’ value of the structural 12 

parameter increases. This once again suggests that the imposition of overly-restrictive 13 

constraints on the structural parameter can bias the results. 14 

As an aside, we also developed a counterpart to the analysis from section 4.2.1, by 15 

estimating NL with a negative starting value for the structural parameter for the present 16 

context where the ‘true’ values were positive. In many cases, the estimation either 17 

failed to converge or converged to negative values, whilst the ‘true’ positive value was 18 

recovered only in occasional cases. This suggests that, in an analogous fashion to 19 

section 4.2.1 where the ‘true’ structural parameter was negative, using the correct sign 20 

for the starting value is important to the estimation routine.  21 

 22 

5. Summary and Conclusions 23 

Drawing upon the early RUM literature by Marschak (1960) and Block & Marschak 24 

(1960), this paper introduced regularity and stochastic transitivity as necessary and 25 

well-behaved conditions respectively, for the consistency of discrete choice 26 

preferences with the Random Utility Model (RUM). A particular contribution of the 27 

paper was to combine the regularity and stochastic transitivity conditions in the form of 28 

a simple two-part test, and to illustrate the application of this test for a three-alternative 29 

discrete choice problem (i.e. treating the nests of NL as reduced choice sets).  30 

With regards to regularity, we showed that any failures will be associated with inter-31 

nest choices (i.e. preference reversals in relation to the lone alternative), and that the 32 

prevalence of such failures will be determined by the magnitude of the structural 33 

parameter (reflecting the degree of similarity between nested alternatives) in 34 

combination with the binary and trinary probabilities. More specifically, we found that 35 

regularity implies positivity of the structural parameter in NL, but no upper bound. 36 

With regards to stochastic transitivity, we showed that compliance will also be 37 

determined by the magnitude of the structural parameter, as well as by the odds ratios 38 

for the different pairs within the three-alternative choice set. Furthermore, stochastic 39 

transitivity will apply differently, depending on the rank of the lone alternative within the 40 

preference ordering. More specifically, where the lone alternative is second (i.e. 41 

middle) ranked, MST and SST imply different upper bounds on the structural 42 

parameter, possibly in excess of one. On the other hand, where the lone alternative is 43 
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first or third ranked, MST and SST imply lower bounds of zero and greater than or 1 

equal to zero respectively, but no upper bound. 2 

Drawing together our analyses of regularity and stochastic transitivity, we arrive at the 3 

following conclusions for the case of three-alternative NL:  4 

 Whilst regularity supports the conventional lower bound of zero (i.e. 0  ) on 5 

the structural parameter, SST may, for some preference orderings, give rise to 6 

a lower bound greater than zero (i.e. requiring l  , where 0l  ).  7 

 Neither regularity nor the stochastic transitivity conditions constrain the upper 8 

bound of the structural parameter to be one.  9 

 Therefore, if the conventional 0 1   bounds are imposed on model 10 

estimation, either or both of two scenarios could arise:  11 

 Preferences which violate regularity and/or stochastic transitivity may 12 

go undetected (e.g. where the ‘true’ value of the structural parameter is 13 

less than zero) or be unknowingly admitted (e.g. where SST calls for a 14 

lower bound greater than zero). 15 

 Preferences which comply with regularity and stochastic transitivity may 16 

be unknowingly excluded (e.g. where the ‘true’ structural parameter is 17 

greater than one). 18 

 Moreover, if either of the above scenarios arises, then the imposition of 19 

0 1   on model estimation (as is done in some standard software) may 20 

compromise model fit, inferences of willingness-to-pay, and forecasts of choice 21 

behaviour.  22 

 Finally, even where 0 1   is not imposed, maximum likelihood estimation 23 

may fail to recover ‘true’ values of the structural parameter less than zero (i.e. 24 

fail to expose regularity and stochastic transitivity violations) unless starting 25 

values are of the correct sign. This suggests that analysts may wish to test both 26 

positive and negative starting values for the structural parameter. 27 

Whilst the present paper has focussed upon a three-alternative choice set, it would 28 

seem reasonably straightforward in principle to apply the two-part test to larger choice 29 

sets and more complex tree structures, possibly involving multiple structural 30 

parameters. Regularity will continue to require a positive structural parameter for every 31 

constituent nest, whilst stochastic transitivity will give rise to upper or lower bounds on 32 

the structural parameter for each and every triple. Since different triples will elicit 33 

different bounds for a given nest, a pragmatic implementation of the method would be 34 

to focus upon the ‘global’ maximum or minimum, corresponding to Cases 3 and 4 in 35 

section 4 of the paper. 36 
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Table 1: Additional working behind equations (5), (6) and (7) 

Stochastic preference ordering axb  xab  abx  

   , ,p a x p x a    1 u   1 u   1 abxu k   

   , ,p x b p b x    1 v   1 xabv k    1 v  

   , ,p a b p b a    1 axbw k    1 w   1 w  

 
 

 
 

, ,

, ,

p a x p x b

p x a p b x
   

  1 1u v       1 1 xabu v k       1 1abxu k v    

   , ,p a b p b a      
1

1 1 axbu v         
1

1 1 xab
xabu v k         

1

1 1 abx
abxu k v     

    
  

ln 1 1

ln 1axb
axb

u v

w k


 


 
 

     
 

ln 1 1

ln 1
xab

xab

u v k

w


  



 

    
 

ln 1 1

ln 1
abx

abx

u k v

w


  



 

 where , 0u v  , 0axbk   where 0, 0u v  , 0xabk   where 0, 0u v  , 0abxk   

 

Note: the constants , ,axb xab abxk k k  impose WST on the relevant odds ratio for each stochastic preference ordering (i.e. this is analogous to the inequality in 

(B4c) for the ordering axb ).  
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Table 2: Summary of the two-part test 

 
PART I:  

NECESSARY 

PART II: 

WELL-BEHAVED 

Stochastic  
preference 
ordering 

Regularity Stochastic transitivity 

Intra-
nest 

Inter-
nest 

SST MST 

abx  

n/a 0   

min; 30
xr abx    0 abx  

axb  max;axb SST   max; max;axb SST MST     

bax  min; 30
xr bax    0 bax  

bxa  max;bxa SST   max; max;bxa SST MST     

xab  min; 10
xr xab    0 xab  

xba  min; 10
xr xba    0 xba  
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Table 3: Estimation results on stated choice data 

 

 

 MNL Unconstrained NL 

Individuals 387 387 

Choice tasks 3870 3870 

Observations 7740 7740 

Final LL -5724.137 -5640.858 

par. 9 10 

adj. と2 0.173 0.185 

     

 est. t-rat. (0) est. t-rat. (0) 

ASC1 0.4670 10.92 0.7680 12.06 

ASC2 -0.0338 -0.81 -0.0984 -1.72 

travel cost (log £) -12.4000 -19.95 -16.5000 -19.16 

travel time (min) -0.0372 -9.04 -0.0499 -8.91 

rate of crowding (0-1) -0.2110 -10.64 -0.2910 -10.44 

rate of delays (0-1) -0.2520 -12.42 -0.3460 -11.89 

average delay (mins) -0.0347 -5.49 -0.0470 -5.64 

charged delay sms -0.0765 -1.26 -0.0396 -0.5 

free delay sms 0.3150 6.35 0.3980 6.34 

     

 est. t-rat. (1) est. t-rat. (1) 

  1 - 1.7391 8.64 

     

Implied monetary valuations 

travel time (£/hr) 1.80 1.81 

crowding (one fewer 
trip out of 10) 0.17 0.18 

delays (one fewer trip 
out of 10) 0.20 0.21 

delays (£/hr) 1.68 1.71 

free delay sms (£) 0.25 0.24 

   

Effect of 10% increase in fare for reference alternative 

Average change in 
probability for 
reference alternative -56.93% -70.06% 
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Figure 1: Tree structure for the complete trinary, together with each binary comprising the ‘intrinsic’ tree structure  

(Note: with reference to the binary choices, the black line = 1st choice, dotted line = 2nd choice, grey line = choice unavailable)
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Figure 2: Relationships between properties of RUM for a trinary choice set  
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Figure 3: Regularity condition where a b xV V V   
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Figure 4: Regularity condition where x a bV V V   
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Figure 5: Estimation results on simulated data with negative structural parameter 
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Figure 6: Estimation results on simulated data with positive structural parameter
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Annex A: Analysis of regularity under Cases 1 and 2  1 

 2 

Case 1: Intra-nest choice 3 

In this case, regularity is satisfied if both: 4 

   , Mp a b p a  and    , Mp b a p b  5 

where, as defined previously,  ,L a b  and  , ,M x a b . 6 

As regards the first inequality, we can substitute using (2) and (3): 7 

ln

ln

V Va b

a a

V Va ba b a b

k

e eV V

V V V V
e e

V

e e e

e e e e
e e

 

 


 

   

 
 
  

 
 
  

 
 



 8 

Simplifying, we find that: 9 

ln

ln

1

V Va b

V Va b

x

e e

e e
V

e

e e

 

 





 
 
  

 
 
  





 10 

In principle, since  0 1Mp L  , regularity holds regardless of the value taken by the 11 

structural parameter (with the same finding also applying to the second inequality). 12 

However, it should be acknowledged that RUM effectively gives rise to a proper 13 

continuous distribution function over the vector of random utilities, where   embodies 14 

the utility scale that generates this distribution function. In practice, therefore, it must 15 

hold that 0  , so as to support this notion of a distribution function. 16 

Case 2: Inter-nest choice 17 

In this case, regularity is satisfied if: 18 

   , Mp a x p a ,    , Mp b x p b ,    , Mp x a p x  and    , Mp x b p x  19 

For present purposes, it will suffice to consider either of the inter-nest choices; we will 20 

therefore focus on the choice between a  and x  (with the same conceptual issues 21 

applying analogously to the choice between b  and x ). Thus, substituting for the first 22 

and third inequalities above, regularity requires that: 23 

a

a x

V

V V

e
e e

ln

ln

V Va b

a

V Va b a b

x

e e V

V V
e e

V

e e

e e
e e

 

 




  

 
 
  

 
 
  

 




 (A1) 24 

and: 25 
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x

a x

V

V V

e
e e ln

x

V Va b

x

V

e e
V

e

e e
 

 
 
  





 (A2) 26 

In contrast to the intra-nest case, compliance of (A1) and (A2) with regularity in the 27 

inter-nest case will be dependent on the value taken by the structural parameter. With 28 

reference to (2), let us abbreviate the ‘log sum’ construct   ln ln a bV Ve e      . The 29 

role of the structural parameter within (2) is to control the utility scale of the upper level 30 

of the tree structure (i.e. pertaining to the marginal probabilities) relative to the lower 31 

level (i.e. pertaining to the conditional probabilities). In this regard, note the values 32 

taken by the (scaled) log sum for limiting values of the structural parameter, as   33 

approaches zero from below (Case 2.1) and above (Case 2.2):  34 

Case 2.1: If 0   then     ln min ,a bE U U  , and    ln min ,a bV V     as 35 

0   .  36 

This implies that (A1) will hold but (A2) will not hold, i.e. regularity is contravened.  37 

Case 2.2: If 0   then     ln max ,a bE U U  , and    ln max ,a bV V     as 38 

0   .  39 

This implies that (A2) will hold, but compliance with (A1) will depend upon the relative 40 

magnitudes of the marginal and conditional probabilities23. In particular, it is notable 41 

that values of the structural parameter in excess of one could be compliant with 42 

regularity.  43 

  44 

                                                           
23 This dependence resonates with Herriges & Kling’s (1996) findings reported in section 1. 
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Annex B: Analysis of stochastic transitivity under the 45 

intrinsic preference ordering  46 

 47 

Applying the intrinsic preference ordering axb  to our earlier definitions of the stochastic 48 

transitivity conditions (section 2), SST, MST and WST can be summarised, 49 

respectively: 50 

If   1, 2p a x   and   1, 2p x b   , then       , max , , ,p a b p a x p x b     (B1) 51 

If   1, 2p a x   and   1, 2p x b  , then       , min , , ,p a b p a x p x b  (B2) 52 

If   1, 2p a x   and   1, 2p x b  , then   1, 2p a b         (B3) 53 

where, as defined previously,  ,L a b M  . 54 

Following Tversky (1972a), it will prove useful to represent each of these conditions as 55 

a system of three equations, wherein each equation is defined in terms of odds ratios, 56 

as follows: 57 

 
   ,

1
,

p a x
u

p x a
   (B4a) 58 

 
   ,

1
,

p x b
v

p b x
   (B4b) 59 

 
   ,

1
,

p a b
w

p b a
   (B4c) 60 

where: 61 

, 0u v   62 

 max ,w u v  in the case of SST 63 

 min ,w u v  in the case of MST 64 

0w   in the case of WST 65 

Now drawing reference to the example of three-alternative NL in section 3.2, if the first 66 

(B4a) and second (B4b) equations of the system hold, then we can borrow from the 67 

earlier statement of the marginal choice probability (2) to derive the identities: 68 

 
   ,

1
,

a

x

v

v

p a x e
u

p x a e
    (B5) 69 

 
   ,

1
,

x

b

v

v

p x b e
v

p b x e
    (B6) 70 
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Then combining (B5) and (B6): 71 

 
 

 
 

 
 

  1

, , 1
1 1

, , 1

a

b

v

v

p a x p x b ue
u v

p x a p b x e v



     


 (B7) 72 

Now relating (B7) to the conditional probability (3), it must hold that: 73 

   
1

1 1

a

b

V

V

e
u v

e






    (B8) 74 

Substituting for (B8) in the final equation of the system (B4c), we have that:  75 

 
       

1,
1 1 1

,

p a b
u v w

p b a
      (B9) 76 

Whereas the odds ratios for the inter-nest choices (B4a) and (B4b) are independent of 77 

the structural parameter, the odds ratio for the intra-nest choice (B9) is dependent on 78 

the structural parameter.  79 

Rearranging (B9): 80 

    1 1 1u v w


      81 

     1 1 exp ln 1u v w     (B10) 82 

Then taking logarithms and rearranging again: 83 

   
 

ln 1 1

ln 1

u v

w


 



 (B11) 84 

wherein the limits  1 1 u     and  1 1 v     must apply if a  is 85 

stochastically preferred to x , and  x  to b . 86 

Though not widely recognised in the literature on NL, it is worth noting that a similar 87 

identity to (B11) is reported in section 5.21 of McFadden (1981). Crucially, this 88 

generates a different result regarding the 0-1 bounds. 89 

For the case of three-alternative NL, McFadden rationalised the structural parameter 90 

in terms of the so-called ‘trinary condition’, a condition which was originally derived by 91 

Tversky & Sattath (1979) in the context of the PRETREE model. PRETREE offers an 92 

analogy to NL, but is motivated by the behavioural paradigm of elimination-by-aspects 93 

rather than RUM; it is important to note that the trinary condition is not necessary for 94 

RUM24. 95 

                                                           
24 See Batley & Daly (2006) for a discussion of the correspondence between NL and PRETREE. 
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CONDITION  t , Trinary Condition: If the choice set consists of the trinary 96 

 , ,M x a b N  , wherein a  and b  show some degree of similarity not possessed 97 

by x , and    , , 1p a b p b a  , then: 98 

 
 

   
   

, , ,
1

, , ,

p a b p a x p x a

p b a p b x p x b
   99 

Using (B5) to (B9), but adjusting (B9) to be an equality rather than an inequality, the 100 

trinary condition can be restated: 101 

    1 1 1 1w u v      (B12) 102 

Given this reformulation of (B9), McFadden (1981) followed the steps (B10) and (B11) 103 

as before to derive the identity: 104 

   
 

ln 1 1

ln 1

u v

w


 



 (B13) 105 

The key distinction from (B11) is that (B13) embodies an equality rather than an 106 

inequality, and this gives rise to two implications: 107 

1. Whereas (B11) derives an upper (or lower, depending on the actual – rather 108 

than intrinsic – preference ordering) bound on the structural parameter, (B13) 109 

derives a specific value of the structural parameter. 110 

2. The identity (B12) – which embodies the trinary condition – implies that the 111 

structural parameter is constrained to be within the zero-one bounds, whereas 112 

(B11) – which embodies the stochastic transitivity condition – does not (in 113 

general) impose these specific bounds. 114 

Mindful that neither the trinary condition nor MST/SST are necessary for RUM, the 115 

residual question would seem to be whether, in the context of NL, the trinary condition 116 

is overly restrictive and/or whether MST/SST are adequately restrictive. In other words, 117 

which condition should define the bounds of the structural parameter?      118 

 119 


