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We implement several non-binary logic systems using the spin dynam-
ics of nuclear spins in nuclear magnetic resonance (NMR). The NMR
system is a suitable test system because of its high degree of experimen-
tal control; findings from NMR implementations are relevant for other
computational platforms exploiting particles with spin, such as elec-
trons or photons. While we do not expect the NMR system to become a
practical computational device, it is uniquely useful to explore strengths
and weaknesses of unconventional computational approaches, such as
non-binary logic.
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1 INTRODUCTION

Implementations of computations on less conventional platforms such as

DNA [1], slime moulds [2], oscillating chemical reactions [3] or liquid crystal

media [4] have recently seen increased activities and attention with a view to
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exploring new ideas in the theory of logic gates. However, despite the uncon-

ventional nature of the computational platform, the form of computation in

the vast majority of cases is based on a binary representation and binary logic.

The predominance of binary logic in computation is at least partly a conse-

quence of previous choices of technology to implement computation, which

worked well for binary. There are many examples of non-binary computa-

tional machines, including Babbage’s Difference and Analytic engines which

used denary [5], and a wide variety of analogue systems [6]. Consideration of

new, less conventional, technologies allows us to reconsider what we imple-

ment and look again at other computational systems, such as those with an

unconventional base. The dynamics of nuclear spins have been explored in

this context, building on previous work that looked at nuclear magnetic reso-

nance (NMR) systems and binary logic [7].

In a computational context, the NMR system and its spin dynamics are

probably more widely known for their applications in quantum computing [8,

9]. However, nuclear spin dynamics have also played a role as an extremely

versatile and highly controllable experimental platform in the implementation

of classical computations [7], highlighting the advantages of the NMR system

as a sandpit for design-oriented theoretical work or as a developmental tool

for, for example, optical computation.

Previously we have taken an NMR-based design approach for the imple-

mentation of binary logic gates [7]. Combined consideration of theoretical

descriptions of binary logic gates as well as the NMR properties of (sim-

ple) nuclear spin systems in the liquid state lead to a number of suggestions.

For example, an NMR-focussed starting point suggests that a ternary logic

system [10, 11] might make better use of the natural occurrence of values

{−1, 0,+1} in a system made up of an ensemble of spin-1/2 particles than

does binary logic. From the starting point of mathematical logic, it appears

attractive to investigate properties of logic based on complex numbers, and

how this maps to possible experimental NMR implementations.

2 SUMMARY OF NMR EXPERIMENTS

Before discussing ternary and complex-number based logic in the context

of NMR implementations we briefly discuss some of the basic underlying

principles of NMR experiments underpinning our work; we will use nomen-

clature introduced in earlier work [7]. Our work is restricted to some of the

most simple NMR experiments.

Our samples are simple liquid compounds representing 1H nuclear spin

systems that can be fully described by their bulk magnetisation vectors. The

effects of radiofrequency (r.f.) pulses on the magnetisation vectors can be

IJUC˙0170˙McGarry˙V3 2



DISCRETE AND CONTINUOUS SYSTEMS OF LOGIC IN NMR 3

x

y

z

x

pulse

y

pulse
2

x

y

z

x

y

z

x

y

-y

-x

(a)

(b)

FIGURE 1

(a) Illustration of r.f.pulses rotating the bulk magnetisation vector away from its equilibrium +z

orientation. (b) The magnitudes and phases of NMR signals after Fourier transformation of the

time domain signals. Note that both r.f. pulses and observation can be on- or off-resonance [12].

most easily visualised as (positive) rotations of the vector by a specified angle

around a particular axis. This is illustrated in Figure 1(a).

Also shown are the corresponding NMR signals in the frequency domain

(Fourier transformation of the observed time domain signal) carrying magni-

tude and phase information. Recall that observation of the bulk NMR signal

is always the projection of the magnetisation vector onto the x-y plane. Fig-

ure 1(b) highlights the choice of signal amplitudes and phases as the basis

for construction of ternary logic gates. Note that both off- and on-resonance

options exist [12] for excitation as well as observation.

3 TERNARY LOGIC

A ternary logic function with two input variables mapping to one output value

can be described by a 3 × 3 truth table, shown in Table 1. Using the logic

values of the balanced ternary system, {−1, 0, 1}, is a straightforward choice

IJUC˙0170˙McGarry˙V3 3
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B

-1 0 1

-1 1 0 -1

A 0 0 0 0

1 -1 0 1

TABLE 1

An example of a ternary logic function - ternary multiplication, with input A on the left, input

B above, and the nine output values corresponding to the nine pairs of input values in the main

part of the table.

for the range of NMR experiments being considered, in which these three

values occur naturally.

Each of the nine pairs of input values can lead to any of three output val-

ues, meaning there are 39 = 19,683 possible functions of this sort. When

attempting to implement a ternary logic function in a physical system or,

inversely, trying to work out which logic functions may be implemented by a

given physical system, it may be useful to classify these functions based on

physical equivalences to reduce the search space; if two or more functions

can be represented by an identical physical system, they need not be consid-

ered separately. These equivalences come about because any given physical

implementation of a logic gate could be reinterpreted as another logic gate

just by remapping the physical values of the implementation to different logic

values.

For example, a binary logic gate can be represented by an electronic cir-

cuit, where a high voltage is generally chosen to correspond to a 1, but could

just as easily be chosen to correspond to a 0 (with a low voltage correspond-

ing to the other value in each case). By making use of this freedom of rela-

belling, more than one logic gate could be represented by the same electronic

circuit.

The approach of canalising inputs taken in earlier work on binary logic

[7] puts all two-input, one-output binary logic gates into four classes based

on patterns in the parameters of the experiments implementing those logic

gates. These four classes are the same as those produced by the Negation-

Permutation-Negation (NPN) classification system [13].

In the NPN classification, two binary logic functions are considered to be

in the same class if one can be converted into the other by negating input

values, permuting the order of the input values, or negating the output values,

in any combination. This amounts to the same thing as remapping physical

values to all the possible different combinations of logic values, and so each

one of these classes is a list of logic functions which can be implemented by

the same physical system.

IJUC˙0170˙McGarry˙V3 4
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These two approaches to classifying logic gates have different ease of

application in different circumstances, one being parameter-centric which

is useful when looking at a physical system, and the other being based on

mathematical transformations, but both lead to the classes which will aid the

search for logic gate implementations. We extend the ideas of the parameter-

centric canalising approach to ternary logic so that searching for implemen-

tations of ternary logic functions may be made easier.

The canalising input values approach determines which NPN classes can

be implemented by a physical system by looking at how the parameters of

that system behave. Specifically, it looks for values of parameters which

canalise the output of the system, i.e. in a two input, one output binary logic

gate, if there is a certain value for one of the inputs for which the output is a

constant value, then that input value is said to be canalising. By determining

the behaviour of the parameters in this way, the class of logic functions which

could be mapped on to that system are found immediately.

An extension of the NPN classification of binary logic functions places the

19,683 different two-input, one-output ternary logic functions into 84 differ-

ent equivalence classes [14, 15] by still allowing the order of the inputs to be

swapped, and replacing the single negation function of binary logic with the

six permutation functions of ternary logic. See Appendix A for details of this

classification system.

The algorithms previously used for classifying a ternary logic function

do not greatly simplify the search for implementations of logic gates in novel

substrates because they do not obviously relate to the behaviour of parameters

in physical systems. One algorithm [14], for example, takes a given logic

function and transforms it into a canonical logic function which represents the

class it belongs to, which does not translate to features of a physical system

in a straightforward way. All of these canonical logic functions are shown in

Figure 2.

By looking at the ternary NPN classes, it is apparent that certain features

which resemble the canalising inputs of binary logic functions are present

within any given class, though a simple parameter-centric classification from

these features has yet to be found which matches the NPN classification

exactly.

A classification which contains a mixture of individual NPN classes and

unions of two or more NPN classes is found when one considers a set of

measures which reproduce the canalising inputs classification when applied

to a binary logic gate, but can also be applied to a ternary logic gate:

� The number of different output values in each column, with order unim-

portant between columns,

IJUC˙0170˙McGarry˙V3 5
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1: 3 2: 54 3: 108 4: 108 5: 36 6: 108 7: 108 8: 216 9: 108 10: 216 11: 216 12: 432

13: 216 14: 432 15: 216 16: 432 17: 216 18: 432 19: 216 20: 216 21: 54 22: 216 23: 216 24: 432

25: 432 26: 108 27: 216 28: 432 29: 216 30: 216 31: 432 32: 216 33: 54 34: 216 35: 216 36: 216

37: 432 38: 432 39: 432 40: 12 41: 108 42: 216 43: 216 44: 108 45: 36 46: 54 47: 216 48: 108

49: 216 50: 216 51: 432 52: 54 53: 432 54: 432 55: 54 56: 108 57: 216 58: 216 59: 432 60: 432

61: 108 62: 216 63: 216 64: 216 65: 216 66: 432 67: 432 68: 432 69: 216 70: 432 71: 432 72: 216

73: 108 74: 432 75: 432 76: 216 77: 216 78: 108 79: 432 80: 432 81: 216 82: 72 83: 72 84: 12

FIGURE 2

The 84 canonical logic functions with two inputs and one output which represent each of the 84

equivalence classes in this type of logic function. These functions can be transformed under the

equivalences described in Appendix A to produce all 19,683 functions of this type. Each class is

numbered based on the order found in previous classifications [14,15]. The number of functions

present in each class is given following the class number.

� The number of different output values in each row, with order unimpor-

tant between rows.

These two measures can be taken in either order, and then every gate which

has a matching set of measures is in the same parameter-centric class (PC

class).

As an example, the PC class which contains the ternary multiplication

function, shown in Figure 3, will have one row (or column) with a constant

output value, and the other two rows (or columns) will have three different

output values. In addition, one column (or row) will have a constant output

value, and the other two columns (or rows) will have three different output

values.

Some NPN classes share the same set of measures in the PC classification,

and so some PC classes are a union of two or more NPN classes. The PC

classification makes finding an implementation for a ternary logic function

contained in one of the PC classes which are equal to a single NPN class more

IJUC˙0170˙McGarry˙V3 6



DISCRETE AND CONTINUOUS SYSTEMS OF LOGIC IN NMR 7

A B C

FIGURE 3

The 54 ternary logic functions which make up the NPN equivalence class which contains ternary

multiplication. The three equivalences are exemplified. A: Swapping the order of the second two

columns (relabelling {0, 1} → {1, 0} in the top input), B: permuting the output values (rela-

belling {−1, 0, 1} → {1, −1, 0} as shown above), C: swapping the order of the inputs - a reflec-

tion about the main diagonal. A physical system which implements one of these logic functions

could be relabelled to represent any of these functions.

straightforward, and still narrows down the search when the ternary logic

function to be implemented is in one of the PC classes with NPN overlap,

although the overlap does add some of the complication back in. Adding

further measures to the PC classification could separate the PC classes to be

the same as the NPN classes at the cost of the simplicity of the measures.

3.1 NMR Implementations

One possible NMR implementation of a ternary logic gate can be found in an

experiment with a single frequency in the spectrum, using the flip angle, β,

and the phase, φp, of a single pulse as the two input parameters. This pulse

sequence is shown in Figure 4(a).

A contour plot of the expected resultant magnetisation is shown in Figure

5(a). Previously, this setup has been used to implement a binary XOR gate -

the chosen parameter values which represent an XOR gate are shown in the

IJUC˙0170˙McGarry˙V3 7
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FIGURE 4

Pulse sequences used for ternary logic experiments. (a) A single square pulse of variable duration

(rotation) and phase, (b) A frequency-selective pulse is followed by a delay before acquisition

and (c) two square pulses each of adjustable duration (rotation) and phase. All experiments are

preceded by a suitably long delay (τrd) to ensure the system is at equilibrium. The arched pulse

in (b) is selective.

figure, and the result of performing the experiment with each combination of

input values is also shown.

In this plot, lines have been drawn through the chosen parameter values, so

that the PC measures can be found. There is a horizontal section of constant

value and a vertical section of constant value, as well as two other horizontal

and vertical sections which go through positive, negative and zero values.

These measures define a PC class which corresponds to just one NPN class -

the class which contains ternary multiplication.

If more than one NPN class corresponded to this parameter-centric classi-

fication, we would need to make further checks to confirm that ternary mul-

tiplication can be implemented, but because only one class corresponds to it,

we can immediately conclude that multiplication can be implemented by this

experiment, as is shown in Figure 6(b).

IJUC˙0170˙McGarry˙V3 8
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FIGURE 5

(a) A contour plot showing the expected x magnetisation for a single pulse experiment as a

function of the phase of the pulse, φp , and flip angle, β. (b) By performing this experiment with

the φp and β values shown, this experiment can be interpreted as the binary XOR logic function,

with the integral of the frequency domain signal corresponding to the x magnetisation.
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FIGURE 6

An implementation of the ternary multiplication function is shown, taking different φp and β

values from the same experiment as in Figure 5, shown in (a). The result of each possible com-

bination of input values is laid out as a ternary logic table in (b).

IJUC˙0170˙McGarry˙V3 9



10 PEDRO M. AGUIAR et al.

80006000400020000

A

CHCl3
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H20

iso  = 3997.8Hz
CSA

iso  = 2 iso
CSB CSA

rf
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-1: p = 
iso
CSA 0: p = 

iso
CSB 1: p » iso

CSB

-1

0

1 1

0 -1

0

0

1 -1 1 0

τd = 0

τd = τ1

τd = τ2

(a) (b)

FIGURE 7

(a) The sample spectrum used for the selective delay implementation, along with the transmitter

frequency ωrf, selected so that peak B has twice the frequency difference from the transmitter as

peak A, so that the spins of B will have precessed twice as far as the spins of A in a time delay

before acquisition, τd . (b) The result of using the pulse sequence in Figure 4(b) with the selected

values for τd and ωp shown. τ1 corresponds to an acquisition delay which allows the spins of B

to precess by π (the spins of A precess by π/2), and τ1 allows the spins of A to precess by π

(the spins of B precess by 2π ). The selective frequency of the pulse, ωp , leads to a signal from

either A, B, or neither. The integral of the resulting frequency domain signal corresponds to the

logic values shown.

Another NMR implementation could make use of a sample with peaks at

more than one frequency, as shown in Figure 7(a). This allows for a pulse

sequence involving selective pulses and delays, see Figure 4(b). This allows

two more possible parameters of the NMR experiment to be used to find

logic gates with different parameter behaviours to those found in the single

spectral peak experiment. The abundance of parameters and freedom to keep

expanding the experiment strongly suggests that any of the 84 NPN classes

of logic gates should be implementable by NMR.

One such implementation using two spectral peaks was tested, varying the

frequency of the selective pulse as one input parameter and the time delay

before acquisition as the second parameter. The results of this experiment

are shown in Figure 7(b), laid out as a ternary logic function table. The PC

class of this experiment (and therefore the corresponding NPN classes) is one

which could not be achieved by the single pulse, single spectral frequency

experiment.

To begin exploring beyond ternary logic, an experiment involving two

pulses was performed on a sample with a single spectral peak. The pulse

sequence for this experiment is shown in Figure 4(c).

IJUC˙0170˙McGarry˙V3 10
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FIGURE 8

The comparison of the expected (a) and measured (b) results of a 10×10 array of NMR exper-

iments using the pulse sequence in Figure 4(c). The the flip angle of pulse one, β1, was varied

over the range [0, 2π ] in the x direction and the phase of pulse two, φp2 was varied over the

range [0, 2π ] in the y direction, with fixed φp1 = 3π
2

and β2 = π
2

.

Two of the pulse parameters were varied sequentially: the flip angle, β1,

of pulse one, and the phase, φp2 of pulse two. The other parameters were set

to fixed values, φp1 = π
2

and β2 = π
2

. 100 results were taken, in a 10x10 grid

with values of β1 taken evenly spaced over the interval [0, 2π ] and φp2 also

evenly sampled over [0, 2π ].

These data were compared to a theoretical model and were shown to match

the expected results to within a small error, showing that the system of pre-

dicting NMR experimental outcomes is robust. The comparison of the the-

oretical results and the measured results is shown in Figure 8. This array of

values leads to the idea of continuous logic.

4 CONTINUOUS COMPLEX-NUMBER-BASED LOGIC

Rather than using the discrete truth-values found in Boolean algebra, it has

been established that a system of continuous logic can be implemented that

uses continuous truth-values to express uncertainty [16]. In an attempt to

extend upon the ideas of the previous section we construct Complex Logic,

a system of logic that has been split into two parts based on the exponen-

tial form of complex numbers: Magnitude Logic (mLogic) and Phase Logic

(pLogic).

When representing information as a complex number, we can arbitraily

define any function on n complex numbers in terms of two other functions

f (z1, · · · zn) = g(r1, · · · rn) exp(ih(θ1, · · · θn)) (1)

IJUC˙0170˙McGarry˙V3 11



12 PEDRO M. AGUIAR et al.

where zk = rkeiθk . The following subsections focus on the ways in which

these functions can be defined in order to produce a meaningful logic. The

possible choices for g are described by mLogic and those for h by pLogic. A

more mathematically rigorous approach to continuous logic can be found in

Appendix B.

4.1 Magnitude Logic

Fuzzy logic is a form of continuous logic that has been well-developed else-

where [16]. Here we state that all aspects of mLogic correspond in some

way to fuzzy logic. For this to be the case it is necessary that only complex

numbers with magnitude r ∈ [0, 1] are considered.

When refering to the comparison between mLogic and pLogic with fuzzy

logic, the operations in fuzzy logic will be refered to as “normal fuzzy logic

operators” and denoted mathematically by a subscript 0. mLogic and pLogic

operators are denoted by a subscript m and p respectively.

For any mLogic operator acting on a complex number, the result will have

the same phase but with a magnitude defined by the normal fuzzy logic oper-

ator. For some operator Fm , the fuzzy logic match is F0 such that

Fm(reiθ ) = F0(r )eiθ . (2)

One example is the unary operator NOT where ¬0x = 1 − x , it follows then

that

¬m(reiθ ) = (1 − r )eiθ . (3)

More generally, for an operation that is not necessarily unary

Fm(z, · · · zn) = F0(r1, · · · rn)eiθres (4)

where zk = rkeiθk and θres = θres(θ1, · · · θn) can be defined arbitrarily. The

ways in which θres can be defined are discussed in section 4.3.

For example AND (∧) with x ∧0 y = xy gives

z1 ∧m z2 = r1r2eiθres (5)

where θres = θres(θ1, θ2) must be defined separately as in equation 1.

The representation of a magnitude in the NMR system is achieved by tak-

ing advantage of the T1 decay [12] as illustrated in Figure 9. We begin from

equilibrium magnetisation (that is, M aligned along the +z direction, parallel

to the external magnetic field) and apply a π pulse after which M will be

IJUC˙0170˙McGarry˙V3 12
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τ
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(i) (ii) (iii) (iv)

X
Y

M
0

M(t)

τ
rd

FIGURE 9

A pulse sequence capable of encoding magnitude along with a schematic of the evolution of

the net magnetisation M throughout the sequence at the points (i) through (iv). Filled pulses

represent rotations of the magnetisation by π and unfilled by π
2

.

aligned along −z. M immediately begins to decay back towards the equilib-

rium position over time t according to

M(t) = M(0)
[

1 − 2e−t/T1
]

ẑ. (6)

We are free to choose the delay t = τdec such that the magnitude r is described

by the ratio αM(t)/M(0). The constant α can be chosen arbitraily in order

to present a range of magnitudes r ∈ [0, α]. In the case of mLogic α = 1.

Depending on how much time one allows for this relaxation process, different

magnitudes of the magnetisation vector can be read out at different times.

A (−π
2

)y pulse is then applied so that M lies along the positive x-axis.

The intensity of the output signal is used to calulate the magnitude. The pulse

sequence and corresponding movement of the vector are described in Figure

9. Such an experiment is more commonly used to determine the value of

T1 [12].

4.2 Phase Logic

When dealing with the phase of a complex number, we must take into account

that generally eiθ = ei(θ+2πn). For this reason it is defined that all phases shall

be expressed with θ ∈ [0, 2π ) and all arithmetic of phases is modulo 2π .

In pLogic, it is defined that 0 represents truth and π falsehood. There

are then two domains in which no member has absolute truth or absolute

falsehood: 	1 = (0, π ) and 	2 = (π, 2π ). There is a relation between the

truth values in pLogic and those in fuzzy logic: for any truth value defined

in pLogic (a pTruth value) θ , there is an equivalent truth value in fuzzy logic

IJUC˙0170˙McGarry˙V3 13
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ℜ{z}

ℑ{z}

pTruth (non-linear)

1−1

z = eiφ

z∗

−z∗

−z

φπ − φπ 0

FIGURE 10

Comparision of pTruth values of complex numbers on the unit circle. Note the pTruth of z = eiφ

is the same as that of its complex conjugate with a similar relationship for −z and −z∗. Note

also the two domains, 	1 marked by the upper (thick, solid) arc and 	2 marked by the lower

(thick, dashed) arc.

given by the projection function.

T0(θ ) =
|π − θ |

π
. (7)

It is obvious that for each θ1 ∈ 	1 there exists θ2 ∈ 	2 such that T0(θ1) =

T0(θ2) and that θ ′ = 2π − θ . Equivalently the phase-truth of some complex

number z is identical to that of its complex conjugate z∗ as illustrated in

Figure 10.

The representation of phase in the NMR system is implemented in a

way that could be combined with the magnitude implementation described

above. Again, starting from equilibrium, a (−π
2

)y pulse is applied so that M

is aligned along the positive x-axis. Now the vector is viewed in a rotating

frame offset from the on-resonance frame by a frequency ωoff

2π
.

In this frame the vector is allowed to precess for a time τrd, such that for a

desired phase θ

ωoffτd = θ. (8)

IJUC˙0170˙McGarry˙V3 14
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3
= {x, y, -x, -y, y, -x, -y, x}

 ф
4
= {y, -x, -y, x, x, -y, -x, y}, ф

rec
= {x, y, -x, -y, y, -x, -y, x}

 ф
1

(c)
 ф

2
 ф

3

ф
1
= {x, -x}, ф

2
= {x, y, -x, -y}, 

ф
3
= {x, x, x, x, y, y, y, y, -x, -x, -x, -x, -y, -y, -y -y} 

ф
rec

= {x, -y, -x, y, -x, y, x, -y}

τ
d

τ
dec

 ф
rec

2π
ω

off

τ
rd

τ
rd

τ
rd

FIGURE 11

Pulse sequences used for complex logic experiments. The experiments in (a) and (b) are both

used to encode phase while that of (c) can encode magnitude and phase. The presence of mul-

tiple pulses in (b) and (c) require repetition with phase cycling as shown below sequence to

compensate for instrumental imperfections. Grey pulses are of variable duration, unfilled pulses

correspond to π
2

pulses and black to π rotations.

The encoded phase is computed from the Fourier transform of the measured

time domain signal. The pulse sequence is shown in Figure 11(a). We also

encode the phase in the on-resonance frame, using a pulse sequence described

in Figure 11(b). The former method was found to be broadly more reliable.

As with mLogic, it is defined that a pLogic operation (denoted Fp) acting

on some complex number is related to the fuzzy logic equivalent. However,

it is not a simple case of writing Fp(reiθ ) = r exp(i F0(θ )) since the fuzzy

operations do not reflect the new truth-values (as defined above).

We define an operation in fuzzy logic F to match a function in pLogic

Fpeq under the condition that

T0(Fpeq(θ1, · · · θn)) = F0(T0(θ1), · · · T0(θn)). (9)

An operation from fuzzy logic can then be described in pLogic by

Fp(reiθ ) = r exp(i Fpeq(θ )). (10)
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Mirroring the behaviour of mLogic, the phase operations alone do not define

the magnitude of the output in a non-unary operation. For example, pXNOR

r1eiθ1⊕pr2eiθ2 = rrese
i(θ1+θ2), (11)

where rres = rres(θ1, θ2) is not defined as in Equations 1 and 5.

4.3 Combined Complex-Number-Based Logic

It just so happens that when complex number multiplication is substituted

for f in equation 1, ( f (z1, z2) = z1 × z2), the resulting expression gives an

mAND and a pXNOR gate

g(r1, r2) = r1 × r2 = r1 ∧ r2 (12)

h(θ1, θ2) = θ1 + θ2 mod 2π = θ1⊕θ2 (13)

z1 × z2 = r1r2
︸︷︷︸

mAND

exp(i(θ1 + θ2)
︸ ︷︷ ︸

pXNOR

). (14)

We thus have the operations necessary for a half adder [17].

This is just one example of many possible Complex Logic Gates that com-

bine magnitude and phase logic.

In order to implement such a gate it is necessary to combine the magnitude

and phase implementation as described above. In this process, M is manipu-

lated to encode magnitude exactly as before but an additional precession time

is allowed before the measurement. In this way the magnetisation vector in

the x-y plane has both magnitude and phase encoded in it. The process is

depicted in Figure 11(c).

This process is used to implement complex number multiplication: by

choosing τdec and τd appropriately it was possible to position M in the x-y

plane at any position. Arbitrary scaling of the maximum length of M allows

any magnitude to be chosen.

Such experiments are highly accurate, with the magnitude accurate to five

parts in one thousand and the phase to one part in one hundred. This is demon-

strated in Figure 12.

5 EXPERIMENTAL

5.1 Spectrometer

All 1H NMR experiments were performed on a Bruker Avance II 700 NMR

spectrometer (corresponding to a 1H Larmor frequency ω0

2π
= −700.13 MHz)

equipped with a commercial triple-resonance (1H / 13C / 15N) probe at T =

298 K. Samples were contained in standard 5 mm o.d. NMR tubes. Durations

of (calibrated) non-selective π
2

pulses were of the order of 7.5 µs.
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FIGURE 12

Complex number multiplications using the phase sequence in Figure 11(c). (a) and (b) show the

mean measured result vs the anticipated for magnitude and phase respectively.
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5.2 Samples and Experiments
1H NMR experiments on ternary logic were carried out on a sample of 99.9

percent deuterated CHCl3 to which a small amount of H2O was added. This

sample provided two well separated 1H resonances originating from H2O

and residual CHCl3 (see Figure 7). Relaxation delays of 5s were found to be

sufficient. Selective excitation experiments were performed using Gaussian

excitation profile pulses of duration 4.244 ms corresponding to a π
2

rotation.

All 1H NMR experiments on complex number based logic were carried

out on the 1H NMR resonance of residual CHCl3 in a sample of 99.9 per-

cent deuterated CHCl3. The sample was contained in an NMR tube fitted

with a J. Young valve. The 1H T1 value for the sample was determined to be

7.6 +/− 0.1s, using standard inversion recovery [12]. Applying standard

phase cycling, precision of phase and magnitude outputs were found to be

one part in one thousand and one part in ten thousand respectively.

Simulations of the NMR experiments used to implement ternary logic

gates were created using Matlab R2012b (8.0.0.783).

6 OUTLOOK

In the light of our experimental implementations it should be abundantly clear

that we do not advertise NMR-based computation as a particularly practical

approach. However, nuclear spin dynamics are eminently rich and control-

lable and, thus, ideally suited as a design tool and sandpit for all kinds of

exploration and scrutiny when developing new ideas in logic gates and cir-

cuitry. This is particularly true in that a wide variety of implementations can

be tested on the same system and will allow for direct comparisons of con-

cepts of cost, robustness, or error-propagation behaviour.

As far as NMR systems are concerned we have so far barely scratched

the surface of the richness of its parameter space: we have solely consid-

ered nuclear spin dynamics in small molecules at ambient conditions, in a

strong and homogeneous external magnetic field in the presence of rapid

isotropic molecular tumbling and in the absence of internuclear dipolar cou-

pling interactions. This narrow window provides particularly straightforward

experimental conditions as the underlying nuclear spin dynamics can be fully

described by a vector picture [12].

If more complicated nuclear spin dynamics “hardware” is required, it will

be extremely straightforward to exploit more of the capabilities of NMR sys-

tems. For example, using an additional magnetic field gradient across the

volume of a single-component sample will encode a range of Larmor fre-

quencies over the sample volume, similar to the techniques used for spatial

encoding in medical applications of magnetic resonance [12]. Such manip-

ulations may have attractive features regarding parallel operations or in the

creation of dynamic memory.
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One could alternatively use chemical samples of a more complicated

make-up, with multiple different sites and isotopes (and corresponding res-

onance frequencies). Potentially this could include internuclear dipolar cou-

plings and could be combined with more sophisticated techniques, such as

those found in two-dimensional NMR experiments [12].

While there may be rather obvious potential benefits from increasingly

complicated nuclear spin dynamics, the drawback is that for many such sys-

tems one will have to employ numerical simulations to predict and engineer

the exact behaviour of the NMR system. In itself this is not a problem but it

has some impact on the role of NMR systems as a sandpit for developmen-

tal work for unconventional computations that could subsequently be imple-

mented on other physical systems. While numerically exact simulations are

perfectly feasible for even quite complicated nuclear spin systems and NMR

experiments [12], this option does not normally exist to the same degree for

other physical systems.

This is particularly relevant when seeing the (spin based) NMR system as

a development and checking tool for other spin-based methods, say optical

computation. Optical computation is far more likely to eventually become a

practical computational approach and may benefit from developmental work

using NMR systems — as long as there is no need for numerical simulations.

Finally we mention in passing that one of the features that renders

NMR computation less practical is the timescale of operation: even under

favourable conditions such as we used here in solution-state NMR, relax-

ation times for nuclear spin ensembles to return to equilibrium magnetisation

(equivalent to a refreshed system) are of the order of several to many tens of

seconds (and can be much longer in other forms of condensed matter). How-

ever, the natural slowness of the system, together with the timescales of r.f.

pulses of the order of μs, allows for the design of unusual systems in which

many computational steps are reversible to a very good degree of approxima-

tion.
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A TERNARY CLASSES

Two ternary logic functions which take two inputs and give one output,

f1(x, y) and f2(x, y), are considered to be in the same Negation-Permutation-

Negation (NPN) class if they are equivalent under any of three definitions:
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Equivalence A: f1(x, y) is equivalent to f2(x, y) if f1 = Pi ( f2) for any

of the permutation functions, Pi , of the set (0, 1, 2). That is, permuting the

output of one function leads to another function in the same class.

Equivalence B: The two functions are equivalent if f1(x, y) =

f2(Pi (x), Pj (y)). That is, permuting the input values of a function leads to

a function in the same class.

Equivalence C: The two functions are equivalent if f1(x, y) = f2(y, x).

That is, swapping the order of the inputs gives another function in the same

class.

These equivalences are illustrated in Figure 3.

B GENERALISED CONTINUOUS LOGIC

pLogic as defined in section 4 is only one possible reinterpretation of contin-

uous logic and may not be suitable for implementation in other systems.

Define a Continuous Logic of order n as a 4-tuple

L = (
, I, B,
). (15)

� 
 is the Logical Domain, an interval.

� I ⊂ 
 is a tuple of the n absolutes with I = (ι0, ι1, · · · ιn−2, ιn−1).

These are generalisations of the concepts of “True” and “False.”

� B is the set of base gates, the distinct functions that will act on members

of 
.

� Implicitly defined is G, the set of all possible gates G where for any

g ∈ G, g is some partial composition of any number of members of B.

� 
 is a transitive, reflexive, antisymmetric, binary function that partially

orders G, with the additional requirement that for all k, k + 1 ∈ I and

all ι j ∈ I we have ιk 
 ιk+1

The properties of any base gate b ∈ B of order m are as follows

1. b : 
m → 


2. it is not possible to construct the function b from some partial compo-

sition of other members of B.

For example, conventional fuzzy logic is described by

LFuzzy = ([0, 1], (0, 1), BFuzzy,≤) (16)

for an appropriate choice of BFuzzy such as XNOR and fanout.
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A logic is said to be gate-complete under the condition that G is a set of

all possible functions that can act on the domain. Equivalently, that B forms

a set of universal gates.

Now consider any two logics L = (
, I, B,
) and L ′ = (
′, I ′, B ′,
′)

with corresponding G and G ′ respectively. We now state that all λ ∈ 
, ι ∈ I ,

g ∈ G and equivalently for the primed logic λ′ ∈ 
′, etc.

We say that L projects to L ′ under a surjective function T : 
 → 
′ if for

all ιk and ι′k we have

T (ιk) = ι′k (17)

T is known as the projecting function and any λ and λ′ with T (λ) = λ′ are

called equivalent truth values.

For any such logics, a function g can be said to weakly match a function

g′ under the condition that

T (g(ι1, · · · ιm)) = g′(T (ι1), · · · T (ιm)) (18)

which is denoted

g ∼T g′ (19)

Furthermore, a function g can be said to strongly match some g′ if

T (g(λ1, · · · λm)) = g′(T (λ1), · · · T (λm)) (20)

which is denoted

g ≃T g′ (21)

For any L and L ′, L weakly corresponds to L ′ under T if

1. L projects to L ′ under T

2. For each g there exists some g′ such that g ∼T g′

in which case we write

L ≈T L ′. (22)

L strongly corresponds to L ′ under T if
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1. L projects to L ′ under T

2. For each g there exists some g′ such that g ≃T g′

in which case we write

L ≅T L ′. (23)

It can then be shown that pLogic weakly corresponds to Fuzzy Logic under

projecting function T0 as given in Equation 7 and the sets of functions contain

only the NOT, XOR and XNOR gates. It might be possible to define further

gates that will match in the two systems but that is not discussed here.

A final point is on the intervals of the logical domains that are between any

two absolutes, which we shall call absolute intervals. In pLogic, there are two

such domains, 	1 = (0, π ) and 	2 = (π, 2π ) as depicted in Figure 10. This

maps exactly to binary continuous logic, since each truth value corresponds

to one in the interval (0, 1).

However, if pLogic is modified so that, for example, I = {0, 2π
3

, 4π
3

} we

will have a continuous ternary logic (as opposed to the discrete ternary

logic described in Section 3). There are now three absolute intervals: (0, 2π
3

),

( 2π
3

, 4π
3

) and ( 4π
3

, 0). Such a system is depicted in Figure 13.

One might think that this could trivially map to some corresponding mod-

ification of binary continuous logic with I = {0, 1
2
, 1} but that is not the case

ℜ{z}

ℑ{z}

ι0

ι1

ι2

	0

	1

	2

FIGURE 13

A variation on phase logic containing three absolutes and hence three absolute intervals, 	0, 	1

and 	2 which are marked by solid, dashed and thick lines respectively.
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as there are now only two absolute intervals: (0, 1
2
) and ( 1

2
, 1). It would there-

fore be impossible to describe a truth-value that is somewhere between 1 and

0 whereas this can be done in the modified pLogic.

We suggest that by a suitable generalisation of the work here it may be

possible to describe any nth order logic with absolute domains for any two

absolutes in the Logic.
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