UNIVERSITY OF LEEDS

This is a repository copy of Maternal Rest/Nrsf Regulates Zebrafish Behavior through
snap25a/b.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/102899/

Version: Accepted Version

Article:

Moravec, CE, Samuel, J, Weng, W et al. (2 more authors) (2016) Maternal Rest/Nrsf
Regulates Zebrafish Behavior through snap25a/b. Journal of Neuroscience, 36 (36). pp.
9407-9419. ISSN 0270-6474

https://doi.org/10.1523/INEUROSCI.1246-16.2016

© 2016, the Authors. This is an author produced version of a paper published in Journal of
Neuroscience. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

10

11

12

13

14

15

16

17

18

19

20

21

22

Maternal Rest/Nrsf Regulates Zebrafish Behavior Through snap25a/b
Maternal Rest Regulates Behavior Through snap25a/b
Cara E. Moravec'?, John Samuel’, Wei Weng4, lan C. Wood’, Howard 1. Sirotkin'**

1) Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY
11794 USA; 2) Genetics Gradate Program Stony Brook University, Stony Brook, NY
11794 USA;

3)Seneca College, Toronto, ON, Canada M2] 2X5

4) xyZfish, 2200 Smithtown Ave, Ronkonkoma, NY 11779 USA
5) School of Biomedical Sciences, University of Leeds, LS2 9]T, UK
# Corresponding Author

Department of Neurobiology and Behavior
Stony Brook University

Stony Brook, NY 11794

631-632-4818
howard.sirotkin@stonybrook.edu

Number of Pages: 41

Number of Figures: 9

Number of Tables: 5

Number of Words:
Abstract: 223
Introduction: 641

Materials and Methods: 615



23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Results: 2,535
Discussion: 1,326

References and Figure Legends: 2,215

Acknowledgments:

We thank our many colleagues for experimental support and advice, Dr
Victoria Prince for the syt4 plasmid, Dr. lan Woods for the nsfa plasmid, Dr. Shaoyu
Ge and Adrian Di Antonio for imaging advice, Neal Bhattacharji and the
undergraduate assistants for fish care, Drs. Nurit Ballas and Bernadette Holdener for
comments on the manuscript. This work was supported by NYSTEM [C026414 ] and

NIH [1R03HD1066000] to H.I.S. The authors declare no competing financial interests.



43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Abstract

During embryonic development, regulation of gene expression is key to creating the
many subtypes of cells that an organism needs throughout its lifetime. Recent work
has shown that maternal genetics and environmental factors have lifelong
consequences on diverse processes ranging from immune function to stress
responses. The RE1l-silencing transcription factor (Rest) is a transcriptional
repressor that interacts with chromatin-modifying complexes to repress
transcription of neural specific genes during early development. Here we show that
in zebrafish, maternally supplied rest regulates expression of target genes during
larval development and has lifelong impacts on behavior. Larvae deprived of
maternal rest are hyperactive and show atypical spatial preferences. Adult male fish
deprived of maternal rest present with atypical spatial preferences in a novel
environment assay. Transcriptome sequencing revealed 158 genes that are
repressed by maternal rest in blastula stage embryos. Furthermore, we found that
maternal rest is required for target gene repression until at least 6 dpf. Importantly,
disruption of the RE1 sites in either snap25a or snap25b resulted in behaviors that
recapitulate the hyperactivity phenotype caused by absence of maternal rest. Both
maternal rest mutants and snap25a RE1 site mutants have altered primary motor
neuron architecture that may account for the enhanced locomotor activity. These
results demonstrate that maternal rest represses snap25a/b to modulate larval

behavior and that early Rest activity has lifelong behavioral impacts.
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Significant Statement:

Maternal factors deposited in the oocyte have well-established roles during
embryonic development. We show that in zebrafish, maternal rest (RE1-silencing
transcription factor) regulates expression of target genes during larval development
and has lifelong impacts on behavior. The Rest transcriptional repressor interacts
with chromatin-modifying complexes to limit transcription of neural genes. We
identify several synaptic genes that are repressed by maternal Rest and
demonstrate that snap25a/b are key targets of maternal rest that modulate larval
locomotor activity. These results reveal that zygotic rest is unable to compensate for
deficits in maternally supplied rest and uncovers novel temporal requirements for
rest activity, which has implications for the broad roles of Rest-mediated repression

during neural development and in disease states.

Introduction:

Precise regulation of gene expression is key to proper nervous system
function and is influenced by both genetic and environmental factors. Central to the
mechanisms of gene regulation are chromatin modifications, which include
alterations of the acetylation and methylation status of chromatin by transcriptional
activators and repressors. Changes to chromatin landscapes may have both
immediate and lifelong consequences and are caused by environmental effects
including poor maternal care (Weaver et al., 2004), prenatal stress(St-Cyr and
McGowan, 2015; Vangeel et al,, 2015), smoking(Ivorra et al,, 2015), and gestational

diabetes(Petropoulos et al., 2015).
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Maternal mRNAs encoding transcription factors and chromatin effectors are
deposited in oocytes prior to fertilization and modulate developmental gene
expression in many species. For example, depletion of maternal Drosophila Piwi
alters heterochromatin formation(Gu and Elgin, 2013); knockdown of VegT in
Xenopus alters embryonic cell fate and patterning (Zhang et al., 1998); loss of
maternal runx2b dorsalizes zebrafish embryos (Flores et al., 2008); and deletion of
maternal BRG1, arrests mouse development at early cleavage stages and reduces
zygotic genome activation (Bultman et al.,, 2006). These findings suggest a broad

role for maternal mRNAs in modulating chromatin landscapes in early embryos.

The RE1-Silencing Transcription factor (Rest)/Neuron Restrictive Silencing
Factor (Nrsf) recruits cofactors to modify chromatin structure to silence neural
specific genes in non-neural tissues (Chong et al., 1995; Schoenherr and Anderson,
1995) and to modulate transcription within the developing nervous system(Ballas
et al.,, 2005). Rest regulates hundreds of neural specific genes via interactions with a
conserved ~23bp DNA element, the RE1 site (Lunyak, 2002; Mortazavi et al., 2006).
The N-terminal domain of Rest interacts with Sin3 family members to recruit
repressor complexes that include MeCP2 and HDAC1/2 (Naruse et al.,, 1999;
Grzenda et al., 2009). The Rest C-terminal domain interacts with CoRest family
members, which associate with HDAC 1/2, LSD1 and H3K9 methyltranferase G9a,

among other factors (Ballas et al,, 2001; Lunyak, 2002; Roopra et al., 2004).

We previously showed that zebrafish rest is broadly expressed in the

developing nervous system (Gates et al., 2010), but is not essential for neurogenesis
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(Kok et al., 2012). Rather, Rest acts to fine tune neural gene expression(Kok et al.,
2012) and consequently modulate both larval and adult behaviors (Moravec et al.,
2015). Zebrafish rest mRNA is provided as a maternal transcript (Gates et al., 2010)
that is essential for proper regulation of gene expression in the blastula(Kok et al.,
2012). In addition, maternally supplied rest also modulates later migration of facial
branchiomotor neurons(Love and Prince, 2015). An early function of REST has also
been demonstrated in rodents, where maternal deprivation decreases REST
levels(Uchida et al., 2010; Rodenas-Ruano et al., 2012). Subsequent misregulation of
NMDA receptor gene expression leads to changes in synaptic plasticity(Rodenas-
Ruano et al,, 2012). Conversely, increased maternal care augments REST levels,
which correlates with decreased expression of a stress hormone, corticotropin-

releasing hormone(CRH) (Korosi et al., 2010).

In this study, we demonstrate that in zebrafish maternal rest modulates
zygotic gene expression until at least 6 dpf and that depletion of maternal rest
results in behavioral changes in larvae including hyperactivity and atypical spatial
preferences. Strikingly, behavioral anomalies persist into adulthood in animals that
lack maternal rest. Affected adult males, but not females, engage in abnormal
swimming behaviors including atypical wall preference combined with frequent
vertical swimming and sharper turning angles. Importantly, disruption of the RE1
site of either of two target genes, snap25a or snap25b, recapitulates the larval
hyperactivity phenotype. This finding implicates snap25 paralogs as key targets of
Rest in controlling larval behavior. Consistent with the role of Snap25 in axon

growth, we investigated the architecture of the primary motor neurons in the



132  mutants and observed increased branching in primary motor neurons in embryos
133  thatlack maternal rest and in snap25a Re-1 mutants. Together, these results
134  demonstrate that maternally supplied Rest influences embryonic and larval gene

135  expression and lifelong behavior.

136  Materials and Methods:

137 Fish Maintenance:

138 Zebrafish embryos were obtained from natural crosses and maintained at
139  28.5° Cunder 13:11 hour light dark cycle. Adult fish were fed twice daily with a
140 combination of artemia and flake food. The rest sbu29 mutation was maintained as
141  previously described (Moravec et al., 2015). All rest mutants came from

142  intercrossing rest heterozygotes to control for effects caused by maintaining mutant
143  inbred stocks. Larval assays were performed at 6 days post fertilization (dpf) on
144  multiple clutches derived from different parents to minimize genetic background

145  effects.

146  Housing and genotyping:

147 Housing and genotyping were previously described in (Kok et al., 2012;
148  Moravec et al., 2015)with a slight modification. Adult fish were raised in groups of
149 8-101in 1.8 liter tanks, moved into unisex tanks at 4 months and transferred to

150 individual 1-liter tanks two weeks before the behavioral assays.

151 Behavioral Testing Apparatus and Paradigms:
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The Novel Environment and Visual-Motor-Behavioral Assays and the testing
apparatus were previously described (Moravec et al., 2015). Assays of adults, of
both sexes, were conducted at 6 months. All behavioral assays were performed

between 1 to 5 PM and approved by the Stony Brook University IACUC.

Deep sequencing:

Total RNA was extracted from pools of 10 embryos from each of the four
groups (MrestSBU29/+, Zrest ,MZrest and WT) and 2 pools per a group were sent to
the New York Genome Center for sequencing. Samples underwent a Tru Seq V2
library prep and sequenced on a Hi Seq 2000 by 2X 50 bp paired end reads. The
reads were aligned to Danio_rerio.Zv9.74 from Ensembl. Significance was defined as
p <0.05 after a correction of multiple testing hypothesis using the Benjamini &

Hochberg procedure.

Expression studies:

Total RNA was extracted from pools of five embryos using Trizol (Invitrogen)
and cDNA was synthesized by using Super Script Il reverse transcriptase
(Invitrogen). Quantitative PCR (qPCR) was carried out with a Light Cycler 480
(Roche) using Quanta SYBR green (Quanta bioscience). Transcript levels from each
sample were normalized to B-actin. Each experiment consisted of three pools of
embryos run in duplicate. Primer pairs are listed bellow or were described

previously (Kok et al., 2012).

npas4a F:GGGCTCAAGCACTTCTCAAC R:AGATAGCCCACTGCTTCCTG



173  amph F:CCAGAGGAAGAGACCAGTTCA R:CTTCTCCTGGTTGGGTCTCA

174  sty4 F: TGGAGAAATCCCAGGACAAG R:GACAGACCATGTGCCTCCTT

175  scn3b F:TGATGTATGTGCTGCTGGTG RiTGTGCTTGCTCGTCAGATTT

176  nsfa F:TTTGACAAGTCCAGGCAGTG R:CTGAGTCGTAAGGGCTGGAG

177  kcns3a F:GAGGATGACCCTCAGAACCA R:GTGCCCTCAAACTTTTCCAA

178 canalba F:ATACTGGATCGGCCCAAACT R:ATACTGGATCGGCCCAAACT

179  sty10 F:-TGTGGTTCGCATTCTCAAAG RIACTTCTTTTTGCGCTCTGGA

180 grm5(1/2) F:-TGTCACTGATGGCTTCCAGA R:TGGCTGCAGGTTCAGGTAGT

181 olfmlb F:GGGACCTGCAGTACGTGGTA RiTATTGCTTGGCGATGTTTTG

182  cadpsb F:-TTGTCGTGAGGTGTTCAAGC R:CAAACTTGGCCATCCAAGAG

183 nrxnla  F:TAATGTGCGTGTGGAGGGTA R:GGGTGACGTTTCTGAACGAT

184 RNA whole-mount in situ hybridization was performed as described by

185 Thisse etal. (Thisse et al., 1993). In cases where genotype differences could be
186  attributed to tube specific variations in staining, embryos were marked by tail
187  clips and the procedure carried out with both sets of embryos in the same

188 tube. Probes were synthesized from plasmids or from 6 dpf cDNA using primer pair

189  for amph anti sense F:ATTTGCCAAAAACGTCCAAA

190 R:GAGTAATACGACTCACTAGGGGGGCCTTTTTCAAGTCCTCT . For

191 immunohistochemistry, embryos were fixed in 4% PFA overnight at 4°C and stored
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in methanol. ZNP-1 staining was performed as described (Wei et al., 2013).
Quantification of average fluorescence of the immunohistochemistry was done
using Image J. The same three puncta was quantified on each sample and ratio to

controls (WT or ZrestSBU29/+),

Disruption of RE1 sites:

RE1 sites in snap25a (TTCAGCACCCTGGACAGCGAC) and snap25b
(TTCAGCACCGCGGAGAGCGCT) were disrupted using the CRISPR-CAS9 system.
Guide RNA targets sites: snap25a-GCAAACGCAGTCGCTGTCCA snap25b -
GGTGCTGAAATCCACACAAC. gRNAs were generated using Ambion MegaScript T7
kit. Guide RNA (200pg) was co-injected with 400pg of Cas9 protein (PNA Bio, Inc.)
into the cell of one-cell embryos. Fish were genotyped using primers: snap25a RE1
site F: ACGATGTGGGCGGTTTCT R: TGGAAATTTAGCTGCAGGAG snap25b RE1 site

F:TTGCACAGCTTTTGCATGA R:TACCATGGAGGCTCGACTTT.

Statistics:

Statistical analyses were conducted as previously described (Moravec et al.,
2015) using SPSS, version 21 and Graphpad software. Outliers were detected using
the Grubs test and removed from analysis. Significance was defined as less than 0.05

and trending was defined as 0.099 to 0.05. All error bars represent standard error.

Results:

Maternal Rest regulates gene expression at blastula stage:

10
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We previously observed that depletion of maternal rest caused derepression
of a subset of target genes in blastula stage zebrafish embryos (Kok et al,, 2012). To
better understand the role of maternal rest in gene repression, we preformed deep
sequencing of blastula mRNA comparing Mrestsbuz9/+ to ZrestsPu29/+ and
MZrestsbuz9/sbuz? o related wild-type controls. Mrestsbu29/+ fish are the offspring of a
rest mutant female and a wild-type male and there for lack maternal rest mRNA.
The corresponding controls have normal maternal contribution of rest and are the
offspring of a rest mutant male and a wild-type female (Zrestsbu29/+), MZrestsbu29/sbuz9
lack both maternal and zygotic rest and are the offspring of two homozygous
mutants. The corresponding control wild-types were obtained from crosses of wild-
type siblings of the mutant parents used to generate the MZrestsbu29/sbuz9 offspring.
Because of the temporal proximity of these embryos to the mid-blastula transition,
we anticipate that most of the transcriptional changes detected will be result from
direct effects of maternal Rest depletion because the analysis occurred shortly

after the activation of the zygotic genome.

Overall the deep sequencing identified a total of 26,000 transcripts, but only
214 were significantly misregulated in both Mrestsbu29/+ and MZrestsbu29/sbuz9
RNAseqs (P<0.05 after Benjamini & Hochberg correction) (Figure 1A). Of these 214
genes, 158 were upregulated when maternal rest was absent. Genuine targets of
maternal Rest would likely be misregulated in both Mrestsbu29/+ and MZrestsbu29/sbuz9
embryos. Therefore, we focused on this set of transcripts. Because Rest is thought to
influence gene expression over large chromosomal regions(Lunyak, 2002). We used

an algorithm we previously developed (Johnson et al., 2006; 2009) to determine

11
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which of these genes had an RE1 site with 100kb of the transcriptional start site
(TSS). This analysis revealed that 63 genes (~40%) had predicted RE1 sites (score
>.91) located within 100kb of the TSS. This set of shared upregulated genes were

significantly enriched for RE1 sites (Chi square =159.989 and P<0.0001).

DAVID analysis of the upregulated genes revealed that 41 of the 158
misregulated genes are expressed in neural tissues as would be expected of
authentic Rest targets (Chong et al., 1995; Schoenherr and Anderson, 1995; Lunyak,
2002; Bruce et al., 2004). GO analysis of 158 upregulated genes indicated that their
functions were enriched in exocytosis, synaptic transmissions and cell-cell signaling
(Figure 1B). In addition, 56 significantly downregulated transcripts were identified,
but only 9 had associated RE-1 sites. This set of downregulated genes was not
enriched for RE-1 sites (Figure 1A, Chi squared= 1.990, P<.1583), although recent
work has suggested that rest might act as an activator in some contexts (Kuwabara

et al.,, 2004; Perera et al., 2015).

To validate the RNA-seq results, we assayed the expression of 15 upregulated
RE-1 associated genes by qPCR in Mrestsbu29/+ cDNA. These genes were selected
based on the significance of altered expression in the transcriptome analysis. Among
them are amphiphysin, the most significantly misregulated gene, known zygotic Rest
targets (snap25a, snap25b, gpr27 and syt4) (Kok et al., 2012; Love and Prince, 2015)
and genes with a diversity of functions, including an ion channel(scn3b), an
axon growth regulator (nsfa) and a transcription factor (npas4a)(Bruce et al.,

2004).

12
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At blastula stage, qPCR confirmed that 13/14 genes tested are upregulated in
Mrestsbu29/+ (Figure 2, Data not shown). The remaining gene, gpr27, was not
detectable by qPCR in either Mrestsbu29/+ or Zrestsbuz9/+ at blastula stage. Based on
these results, we conclude that identification of derepressed RE1 containing genes

in the RNA-seq experiment had a low false positive rate.

Transcriptional Effects of Maternal Rest depletion persist beyond blastula stages:

To determine whether maternal rest is required to maintain gene expression
profiles of target genes at later stages, we assayed expression of the same target
genes 7.5 hours later at the 8-somite stage using qPCR. Out of the 14 genes we
studied, three genes, snap25a, snap25b, gpr27, were significantly derepressed in
Mrestsbu29/+ embryos at 8 somites (Figure 2, Data not shown). To determine
whether these effects persist, we assayed expression of a set of genes including
those showing earlier derepression at 6 days and observed derepression of amph
and npas4a, but no other differences were uncovered with qPCR (Figure 2). The
stage specific effects on individual targets such as amph and npas4a in
Mrestsbu29/+ embryos likely stems from the presence of stage specific
transcriptional activators that play significant roles in modulating

transcription of these genes.

Because domain specific differences in expression may not be detected by
whole embryo qPCR, we performed RNA in situ hybridizations on 24 hpf embryos to
assay gene expression in Mrests®u29/+ embryos. It was previously shown that Rest

target genes are misexpressed in the hindbrain of MZrestsbu29/sbu29 mutants at 24hpf

13
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(Love and Prince, 2015). We observed ectopic expression of snap25a, snap25b and
syt4 in the hindbrain of Mrestsbu29/+ embryos at 24 hpf, while nsfa and amph
expression were not altered (Figure 3). In Mrestsbu29/+, snap25a ectopic expression
spans the hindbrain and midbrain (as marked by the bracket) (Figure 3 A-B), while
snap25b shows ectopic expression in hindbrain cranial ganglia (arrows in Figure 3
E-F). Syt4 has a restricted expression pattern in the hindbrain compared to snap25a
and snap25b, but the domain located rostral to the otic vesicle is broadly expressed
in the Mrestsbuz9/+when compared to Zrestsbu29/+(white brackets)(Figure 3 I-]). No
spatial differences were observed in expression of nsfa or amph (Figure 3 M-N Q-R).
At 6 dpf, these genes are exclusively expressed in the brain (Figure 3). We observed
Mrestsbu29/+increased expression of nsfa and amph in 6dpf Mrestsbu29/+ embryos
(Figure 3 O-P, S-T) but no differences in expression of snap25a, snap25b or sty4 at

this stage (Figure 3 C-D, G-H, K-L).

Depletion of maternal rest modulates larval locomotion:

In addition to de-repression of rest target genes, disruption of zygotic rest
results in hypo-locomotion at 6 dpf (Moravec et al., 2015). To determine whether
maternal rest modulates larval behavior during development, we monitored
locomotor activity during spontaneous and evoked swimming behaviors in embryos
lacking maternal rest mRNA at 6 dpf. Larvae were placed in 24 well plates, one
animal per well and locomotor activity was analyzed using the Zebrabox imaging

system (Viewpoint).

14
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Spontaneous movements of Mrestsbu29/+, Zrestsbu29/+, MZrestsbu29/sbu29 and
related wild-type control larvae were analyzed at 6 dpf in the light. Comparison of
Mrestsbu29/+ and Zrestsbu29/+, locomotion revealed that Mrestsbu29/+ ]arvae move
significantly more (n=71, average of 1511 movements) than Zrestsbu29/+ (n=72,
average of 1061.57 movements) controls (Fig 4A, P=0.0013) over 15 minutes. A
repeated measure ANOVA evaluated movements over one-minute time intervals
identified a significant main effect of genotype. On average, the Zrestsbu29/+ controls
traveled 70 movements/min, while the Mrests®u29/+ Jarvae traveled a 100
movements/min (Fig 4B, Table 1). The requirement for maternal rest in modulating
larval locomotor behavior was also apparent from comparisons of MZrestsbuz9/sbuz9
mutants (N=48) and related wild-type controls (N=72). In this assay, the
MZrestsbu29/sbuz9 mutants significantly surpassed the related wild-type controls in the
number of movements, duration of movements and distance traveled (Figure 4 G-H,
Table 1). Both genotypes of maternal rest depleted larvae also show a significant
increased activity in additional parameters of movement including distance traveled
and duration of movements (Figure 4 C-F,I-L Table 1). Overall, this data revealed
that the loss of maternal rest results in larval hyperactivity.

Wall preference for the four groups of larvae were assessed by calculating
the percentage of time the larvae spent in both the center and the peripheral
divisions of the circular wells (enter well diameter: 150mm, center well diameter
62mm). Comparison of Mrestsbu29/+ ys, Zrestsbu29/+ and MZrestsbu29/sbuz9 ys, related
wild-type controls, demonstrated that the larvae lacking maternal rest displayed a

preference to be located at the periphery of the well (Figure 5). We also examined

15
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evoked responses to a light change but no significant differences were observed in
the absence of maternal rest (Data not shown). The hyperactivity and atypical
spatial preference behavior that is observed in the larvae lacking maternal rest

differs from that of the zygotic rest mutant (Moravec et al., 2015)

Depletion of maternal rest alters adult behavior:

Depletion of maternal rest in MrestsPu29/+ or elimination of both maternal rest
and zygotic rest as in MZrestsbu29/sbuz9 |arvae causes hyperactivity and atypical spatial
preferences in spontaneous movement at six dpf. To determine whether depletion
of maternal rest changes behavior in adults, a novel environment assay was

employed to measure locomotion and spatial preference at six months of age.

To investigate whether the effects of maternal rest on spatial preference
persisted into adulthood, the amount of time that fish lacking maternal rest spent
within 2.75 cm of the walls was analyzed. A comparison of Zrestsbu29/+ and
Mrestsbuz9/+ movement patterns revealed a strong preference of Mrestsbuz9/+ males
for the tank walls compared to the Zrestsbuz9/+ males. No preference was observed
between Mrestsbu29/+ and Zrestsbu29/+ females(Figure 5A). A two-way ANOVA
identified a significant main effect of genotype but no significant main effect of sex
or sex X genotype interaction, although the sex X genotype interaction was strongly
trending (Table 2). Our data showed Mrestsbuz9/+ males spend around 40% of the
interval near the edge of the tank, while Zrestsbu29/+ males spend around 23% of
their time near the edge of the tank. The female Mrestsbuz9/+ and Zrestsbu29/+ fish

spend a comparable about of time near the edge of the tank, 32.8 % to. 30.6%,

16
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respectively (Figure 6B). A within-sex analysis of time spent near the wall in one
minute intervals showed that every minute Mrestsbu29/+ males spent more time near
the edge of the tank when compared to ZrestsPu29/+ controls (Figure 6D Table 3),

while no differences were observed when comparing females (Figure 6C, Table 3).

The MrestsPu29/+ male fish also presented with another behavioral change,
erratic swimming patterns during the novel environment assay. Increased erratic
swimming patterns were observed in Mrestsbu29/+ males when compared to
Zrestsbuz9/+ males as measured by distance traveled, velocity in the vertical direction,
turn angle and location in the tank. (Data Not Shown). This behavior is similar to the

movements of rest mutants of both sexes (Moravec et al,, 2015).

Identification of Rest target genes that modulate locomotor behavior:

To identify the Rest target genes whose misregulation produces the
behavioral phenotypes we observed in the Mrestsbuz9/+ and MZrestsbu29/sbuz9 1arvae,
we deleted the RE1 elements associated with snap25a and snap25b using the
CRISPR-CAS9 system. We chose these two genes because they are upregulated
during embryogenesis past blastula stage (Figures 2 and 3) and have key synaptic
functions. Both zebrafish snap25 paralogues have RE1 sites with in the first intron
as does mammalian snap25 and Rest has been shown to frequently associate with

the snap25 RE1 sites (Bruce et al., 2004).

The CRISPRs were designed to recognize a portion of the RE1 site and
flanking sequence to prevent cleavage events at multiple RE1 sites. RE1 sites

contain two highly conserved sections (Mortazavi et al., 2006) and we aimed to

17
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delete at least one of these regions. The snap25a RE1bu82 3llele is an 11 base pair
deletion that removes one of these conserved regions, while the snap25b RE15bu83

allele is a 53 bp deletion and removes the entire RE1 site (7A-B).

We first determined the effects of these RE1 site mutations on gene
expression at multiple stages of development. qPCR analysis at blastula stage of
snap25a in the snap25a RE1:bu82/sbu2 mutant (Figure 7C) and snap25b in the snap25b
RE1sbug3/sbus3 mutant (figure7E) mirrored the upregulation of these transcripts
observed in Mrestsbu29/+, RNA in-situ hybridization with snap25a and snap25b
probes at 24hpf revealed ectopic expression of snap25a and snap25b in the
hindbrain similar to Mrests®u29/+ embryos. The snap25a RE1 heterozygotes and
mutants both showed increase expression in the hindbrain and midbrain (as
marked by the bracket) when compared to sibling wild-types (Figure 7D). The
snap25b RE1 heterozygous and mutants show medial ectopic expression in the
hindbrain (as marked by the arrows) when compared to sibling wild-types (Figure

7F).

RE-1 site mutant larvae are hyperactive:

We investigated the spontaneous and light evoked movements of both the
snap25a and snap25b RE-1 site mutants at 6 days. Remarkably, similar to the
Mrestsbuz9/+ and the MZrestsbu29/sbu29 |arvae the snap25a and snap25b, RE1 site
mutants showed hyperactivity in spontaneous movement. Specifically, the snap25a
RE1sbus2/sbu2 site mutants (n=24) initiated significantly more swims (an average of

2316 movements), when compared to sibling wild-types (n=30, an average of 1751
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movements) and snap25a RE1sbu82/+ heterozygotes (n=74, an average of 1660
movements) (Figure 8A Table 4). A repeated measure ANOVA evaluated number of
movements across the one-minute time bins identified a significant main effect of
genotype. The snap25a RE1sbus2/sbusz site mutant made an average of 154
movements/minute compared to the sibling wild-type and snap25a RE1 sbuz/+
heterozygotes who make an average of 116 movements/min and 110

movements/min respectively (Figure 8B, Table 5).

The snap25b RE1sbu83/sbu83 mytants displayed a similar behavior to
Mrestsbuz9/+ Jarvae. These mutants engaged (n=44) in an average of 2,490
movements compared to the sibling wild-type(n=37) an average of 1,918
movements and snap25b RE1sbu83/+ heterozygotes(n=62) an average of 1924
movements (Figure 8G, Table 4). A repeated measure ANOVA of the number of
movements revealed a significant main effect of genotype. The snap25b
RE1sbu83/sbu83 gjte mutant made an average of 166 movements/min compared to the
sibling wild-types and snap25b RE1sbu83/+ heterozygotes that averaged
127movements/min and 128 movements/min respectively (Figure 8H, Table 5).
We also examined distance traveled and duration of movements and found that both
the snap25a and snap2b RE1 mutants surpassed the related wild-types and
heterozygotes in both parameters (Figure 8C-F,I-L, Table 4-5). Nether of these RE1
mutants presented with an atypical spatial preference or showed a response to a
light change (Data Not Shown). These results indicate that the rest regulation at
snap25a and snap25b is sufficient to controlling locomotor behavior, but not spatial

preference at 6 dpf.
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Motor neurons in Mrestsbu29/+ and snap25a RE1sbu82/sbu82 gite mutants have

increased processes:

Increased expression of the zebrafish snap25 paralogs results in
hyperactivity, increased branching of motor neurons and changes to the synaptic
activity at neuromuscular junctions (Wei et al.,, 2013). To investigate changes in the
primary motor neuron architecture in the Mrestsbu29/+ and the snap25 RE1site
mutants, we performed whole mount immunostaining with Znp-1,synaptotagmin
IIB(syt2b), at 56 hpf. We observed increased expression of Znp-1 in the spinal cord
along with increased Znp-1 puncta associated with primary motor neurons in
Mrestsbu29/+ embryos (n=5) (marked by a red arrow) when compared to ZrestSBU29/+
(n=4)(Figure 9A). Quantification of average fluorescence in these ZNP-1 puncta
showed a significant increase in fluorescence in the Mrestsbu29/+ embryos (P=0.0010)
(Figure 9B). We also examined the primary motor neuron architecture of the snap
RE1 site mutants and observed increased Znp-1 staining (marked by red arrows) in
the snap25a RE1sbu82/sbu8Z gijte mutant (n=7), but not the snap25bRE1sbu83/sbus3 gijte
mutant (n=7) when compared to wild-type controls (snap25aRE1 site control =7
and snap25bRE1 site control=7) (Figure 9B,C,E). Quantification of the ZNP-1 puncta
in the snap25a RE1sbu82/sbu82 and snap25bRE1sbu83/sbud3 sjte mutants revealed a
significant increase of fluorescence in the snap25a RE1 mutant (P=0.0078), but not
in snap25bRE1 mutant (Figure 9D, F) . These results suggest that alterations of the
neuromuscular junction (NM]) in MrestSBU29/+ larvae stem from derepression of
snap25a, but that regulation of snap25b expression by maternally supplied Rest is

important elsewhere.
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Discussion:

Our previous work demonstrated that zebrafish rest mutants undergo largely
normal neurogenesis (Kok et al.,, 2012), but that rest mutant larvae show locomotor
defects and engage in erratic swimming as adults (Moravec et al., 2015). We now
present evidence that the effects of maternally supplied rest limits expression of a
subset of target genes until at least 6dpf and that larvae lacking maternal rest are
hyperactive and present with a spatial preference for outer portion of the well when
compared to controls. To our knowledge this is the first example of a maternally
supplied mRNA that modulates behavior. Remarkably, behavioral consequences of
the deficit in the early maternal rest expression persist into adulthood as observed
by the erratic swimming behavior and atypical place preference that was apparent

in adult Mrestsbu29/+ males, but not females.

Rest has been proposed to play important roles in stem and progenitor cells
to control self-renewal and differentiation in the nervous system (Ballas et al., 2005;
Singh et al., 2008). While we cannot conclusively rule out the possibility that
maternal rest deficit alters cell fate, we have found no evidence for major cell fate
changes in any of the rest mutants. Furthermore, because the larval hyperactivity
phenotype can be recapitulated by disrupting the RE1 sites in either snap25a or
snap25b, we favor the model that the primary effects are on gene expression of
these rest target genes. This is consistent with the observations in rodents that
early Rest-mediated epigenetic effects regulate the later developmental switch in

synaptic NMDA receptors (Rodenas-Ruano et al., 2012).
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Rest levels in mammals are diminished by maternal deprivation and elevated
by augmented maternal care(Korosi et al.,, 2010; Uchida et al,, 2010; Rodenas-Ruano
et al,, 2012). While zebrafish do not engage in maternal care, MrestSBU29/+ embryos
face a similar early deficit in Rest activity. Our transcriptome analysis did not
identify GRIN2b as a key Rest target, as has been demonstrated in the rat studies of
early Rest function (Rodenas-Ruano et al., 2012). Instead, our work implicates the
two snap25 paralogues as key mediators of the observed behavioral phenotypes.
Nonetheless, the data in rodents and fish may point to a fundamental role for Rest in
establishing chromatin landscapes that have later impacts on expression of neural

genes and neuronal function.

The half-life of the protein generated from maternal rest RNA is unknown,
but the maternal mRNA is degraded by about shield stage, 6 hours after fertilization
(unpublished result). Because Rest protein is actively degraded(Westbrook et al.,
2008; Kaneko et al., 2014), it seems likely that the protein has vanished long before
gene expression (Fig 2,3) and behavioral defects (Fig 4,5) are observed at 6 dpf.
During this period, zygotic rest is expressed (Gates et al., 2010), yet is unable to
compensate for the loss of early Rest activity. The adult behavioral analysis further
suggests an early unique role for maternally supplied rest in establishing chromatin
states that persist lifelong. However, our data does not exclude the possibility that
the effects stem from consequences of cumulative transgenerational consequences
of Rest deficiency as has been observed in C. Elegans mutants for the Rest complex

protein, LSD1(Katz et al., 2009)

22



479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

Transcripts regulated by maternal rest:

Bioinformatic analysis indicated that we enriched for both neural specific and RE1
containing genes in the upregulated set of genes in Mrestsbuz9/+ identified by RNA-
seq. Our qPCR validation of 14 RE1 containing genes demonstrated that the
approach robustly identified Rest targets. The downregulated genes were not
enriched for RE1 sites or for neural genes, but recent work has suggested that rest
might act as an activator in some contexts (Kuwabara et al., 2004; Perera et al.,
2015). However, if Rest acts as an activator at blastula stages, the number of targets
is quite low. Alternatively, downregulation of some transcripts could be due to
secondary effects which are expected at a low frequency because the sequence
analysis was performed less than an hour (at 4 hpf) after the mid-blastula transition

(Kimmel et al., 1995).

Regulation of synaptic proteins by Rest:

Many of the genes regulated by maternal rest encode synaptic proteins. In
fact, the five genes that show persistent misregulation, snap25b, snap25a, syt4,
npas4a and amph, all act on presynaptic neurons. The snap25 paralogs and syt4
enable binding of the synaptic vesicles to the presynaptic density allowing for
exocytosis of the neurotransmitters into the synaptic cleft, while amph promotes
recycling of empty synaptic vesicles from the presynaptic density after exocytosis.
Npas4a regulates the expression of inhibitory synapse genes to control the
excitatory/inhibitory balance in presynaptic cells. While disrupting the snap25 RE1

sites recapitulates much of the larval locomotor observed in maternal deficient
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larva, it is likely that misregulation of other targets produces behavioral
consequences. In particular, the atypical spatial preferences observed in Mrestsbu29/+

and MZrestsbu29/sbuz9 were not apparent in the RE1 site mutants.

Regulation of Behavior by Rest:

Zygotic rest mutant larvae are hypoactive (Moravec et al,, 2015), while we
now demonstrate that fish lacking maternal rest are hyperactive and demonstrate
atypical spatial preferences, spending more time near the wall. This data suggest
that maternal rest plays a distinct role from zygotic rest in modulating locomotive

behavior at six days.

Adult zygotic rest mutants of both sexes display atypical spatial preferences
in a novel environment assay characterized by edge preferences and erratic
swimming (Moravec et al., 2015). When adult Mrestsbu29/+ fish underwent the same
test, only the males but not females presented with similar phenotypes to the
zygotic mutants. The observation that depletion of a maternal RNA effects behavior
in a sex specific manor is unusual and suggests that life-long effects on the

epigenetic genome may be strongly influenced by sex hormones.

Changes to the architecture of primary motor neurons:

Mrestsbuz9/+ embryos display increased expression of Sty2b in trunk motor
neurons when compared to Zrestsbu29/+, This suggests a possible molecular

mechanism for the hyperactivity observed in the Mrestsbu29/+ larvae (Figure 4) as
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decreased locomotion has been linked to changes in axon formation and elongation

of the motor neurons (Granato et al., 1996).

We also investigated the primary motor neuron architecture in the snap25
RE1 sites mutants because they are also hyperactive (Figure 7) and increased
expression of Snap25 is linked to both axon growth (Wei et al,, 2013; Wang et al,,
2014; n.d.) and hyperactivity (Wei et al,, 2013). We observed increased expression
of Sty2b at the NM] of the snap25a RE1sbu82/sbu82 mutant, but not in the snap25b
RE1sbu83/sbu83 mutant. This suggests that the increased number of processes
associated with primary motor neurons in Mrestsbu29/+ larvae is due to derepression
of snap25a in the absence of maternal rest. The behavioral phenotypes of
Mrestsbuz9/+ are more complex because disrupting the RE1 site of snap25b results in
hyperactivity, but not overt changes of Sty2b expression in motor neurons.
Enhanced Snap25b levels may alter synaptic plasticity by altering
trafficking/exocytosis of synaptic vesicles, while not overtly altering the complexity
of motor neuron processes. Since neither snap25 RE1 site mutant displays altered
spatial preferences, regulation of other target gene by Rest must be responsible for
this phenotype. Itis likely that some of these genes also impact swimming

frequency as well.

We present the first evidence that maternal rest plays a long-term role in
regulation of gene expression and behavior during development. The activity of
maternally supplied rest controls expression of target genes and affects behavior not

only in larvae, but in adults as well. By rendering the zebrafish snap25 paralogs
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impervious to Rest mediated repression at these RE1 sites, we determined that
snap25a/b are key targets of maternal rest involved in modulating primary motor
neuron development and larval swimming frequency. These findings strengthen the
idea that a major function of Rest is to regulate synaptic activity and plasticity
(Rodenas-Ruano et al,, 2012). The zebrafish rest mutant provides a unique
opportunity to explore the lasting requirements for maternal factors in nervous
system function. This study provides the first evidence that maternal rest is

necessary for long-term regulation of both gene expression and behavior.
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Figure 1: Transcriptome comparison of Mrests®u29/+ and MZrestsbu29/sbu29

A) Venn diagram showing the overlap of upregulated and downregulated genes in
Mrestsbu29/+ and MZrestsbu29/sbu29 plastula. The number of genes with a predicted RE1
site near them is indicated. B) GO analysis showing the significant biological

processes that are enriched in the upregulated genes.

Figure 2: RE1 containing genes are upregulated in Mrestsbu29/+ embryos.

qPCR analysis showing fold differences relative to the Mrestsbuz9/+ transcript levels
(defined as 1). Significance was defined at P<0.05 with the use of the Student t-test.
All markers shown are upregulated at blastula stage in Mrestsbuz9/+ embryos.

snap25a(A), snap25b (B) and gpr27(C) are upregulated at the 8 somite stage (11.5
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hpf). npas4a (D)and amph (E) are upregulated at 6 dpf. ND = not detectable

Figure 3: Rest target genes are inappropriately expressed in Mrestsbu29/+ embryos.

RNA Whole-mount in situ hybridization at 24 hours and six days for Rest target
genes in Mrestsbu29/+ and Zrestshuz9/+ in the same tube. Ectopic expression
(marked by the white bracket or arrow) is observed with probes for snap25a (A-B),
snap25b (E-F) and syt4 (I-]) in the hindbrain of Mrestsbu29/+ embryos at 24hpf.
Increase expression in MrestsbuZ9/+ observed at six days in with nsfa (0-P) and amph

(S-T) probes. OV= otic vesicle MB: Midbrain

Figure 4 Larvae lacking maternal rest are hyperactive at 6dpf

A-F) Mrestsbu29/+ (N=71) exceed Zrests®v29/+ (n=72) in total movements (A-B) and
total distance (C-D) and total duration (E-F) over 15 minutes. G-L) Similarly,
MZrestsbuz9/sbuz9 (n=48) exceed related wild-type controls (n=72) in total movements
(G-H) and total distance (I-]) and total duration (K-L) over 15 minutes. All graphs
represent average mean with error bars representing standard error measurement.
Significance was defined with the use of a student t-test for the entire testing
periods and a 2-way ANOV As with repeated measures designs, with genotype serving
as the independent factor and time serving as the repeated measure for the one minute

analysis. #=genotype P < 0.05

Figure 5: Larvae lacking maternal rest show an atypical spatial preference at 6dpf

A,C) Representative locomotion diagrams of movement in one minute,
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Mrestsbu29/+ (A) and MZrestsbu29/sbu29 ((C) larva display a preference for the outer
well. Green represents small velocity movements and red represents large velocity
movements during a spontaneous locomotion assay in the light. B) Quantification
of percentage of time spent in the outer well over 15 minutes shows Mrestsbuz9/+
(n=71) larva spend significantly more time in the outer well when compared to
Zrestsbu29/+ (n=72) (P=0.002) D) Quantification of percentage of time spent in the
outer wall over 15 minutes reveals that MZrestsbuz9/sbuz9 (n=48) larva spend more
time in the outer well compared to related wild-type controls (n=72) (P=0.0307)

Significance was defined with the use of a student t-test.

Figure 6: Mrestsbu29/+ males, but not females showed increased wall preference in

the novel environment assay.

A) Locomotion diagrams for individual fish over 5 minutes showing the Mrestsbu29/+
male wall preference. B) During the assay, Mrestsbu29/+ (N=21) males spent more
time near the wall compared to Zrestsbu29/+ (N=20)controls C-D) Analysis of
percentage of time spent near the walls for females (Mrestsbu29/+ (N=18) and
Zrestsbu29/+ (N=20)) (C) and Males (D) in one-minute intervals reveals that
Mrestsbu29/+ males but not females tend to swim near the side of the tank over the
entire assay. Significance was defined with the use of a multivariate analysis of
variance (MANOVA) to identify main effects of sex and/or genotype and significant
interactions between the two over the testing period. A two 2-way ANOVA with
repeated measures design was also used to compare within-sex data collected in 1-minute

bins across the 15 minute testing period.
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Figure 7: CRISPR-CASO targeting of RE1 sites

A-B) A sequence alignment of wild-type and snap25 RE1 site mutations (A)
snap25asPu82 or (B) snap25bsbu83, The genomic sequence surrounding the RE1 site is
marked black and RE1 site in red. C,E) qPCR analysis showing fold differences
relative to the RE1 mutant transcript levels (defined as 1). Significance was defined
at P<0.05 with the use of the Student t-test. D-F) RNA whole-mount in situ
hybridization with D) snap25a probe on a Snap25a RE1 site sbu82/+ inx or F) snap25b
probe on a snap25b RE1 site sbu83/+ inx . Ectopic expression is marked by the white

bracket or white arrow. OV= otic vesicle MB: Midbrain

Figure 8: snap25a and snap25b RE1 site mutants are hyperactive at 6 dpf.

A-F) The snap25a RE1sbu82/sbu82 mutants (N=24) exceeded sibling wild-type (N=30)
controls and snap25a RE1sbu82/+ heterozygotes(N=74) in A-B) number of
movements, C-D) distance and E-F) duration at 6dpf. G-L) The snap25b
RE1sbu83/sbu83 mytant (N=44) exceeded sibling wild-type (N= 37) and the snap25b
RE1sbu83/+ heterozygotes (N=62) in G-H)number of movements, I-]) distance and K-
L) duration at 6 dpf. Significance was defined with the use of a one-way ANOVA
over the entire test period; when the data were compared on per min bases, the data were
compared using 2-way ANOV As with repeated measures designs, with genotype serving

as the independent factor and time serving as the repeated measure.

Figure 9. Rest regulates primary motor neuron development.
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znp-1 immunohistochemistry on whole mount zebrafish embryos at 56 hpf to label
primary motor neurons. Confocal images were acquired from the truck using the
yolk extension as a landmark (10um stacks). (A,C) Changes in the primary motor
neuron architecture are apparent in Mrestsbu29/+ and snap25a RE1 site mutant
embryos when compared to controls. (B,D)Significant increase in fluorescence was
observed in the Mrestsbu29/+ and snap25a RE1 site mutant. Significance as defined
with the use of the student t test and control was set to one. No changes are
apparent in primary motor neuron architecture or fluorescence was observed in

snap25b RE1 site mutant embryos (E-F).
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Table 1: 2-way ANOVA with repeated measures to compare genotypes in 1-minute
intervals spontaneous movements

Variable Genotype Time Time X Genotype

Mrestvs. Zrest | F P F P F P
Total Distance [19.936154/|0.000017 (1.669738 [0.103 0.915994 0.50099
Total Duration [12.167352/|0.000652 (2.002607 ]0.036533 ]0.711894 0.69668
Total

13.437356/0.00035 2.072364 10.029648 |0.836665 0.58133

Movements

MZrest vs. WT
Total Distance 11.085346(0.001179 (0.449008 [0.829216 (0.88972 0.494282
Total Duration 11.380426(0.001015 [0.514421 [0.782803 [0.902606 | 0.48616
Total Movements [16.616386(0.000085 [0.639221 [0.670649 [1.007349 | 0.412699

Table 2: MANOVA value from the novel environment assay to identify main effects
of sex and/or genotype and significant interactions.

SEX Genotype Sex X Genotype
Variable F P F P F P
Edge of tank|0.011028(0.916645 [6.22918 [0.014763 3.472049 | 0.066329
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Table 3: 2-way ANOVA with repeated measures design for the novel environment
assay to compare within-sex data collected in 1-minute intervals across the testing

period
Edge Time Genotype Time X Genotype
of tank
Sex F p F p F p
Female |3 553977/0.000423 [0.04363 0.835755 [1.32888 0.238444
Male | -31319]0.000001 [16.835916 [0.000223 [1.002538 | 0.432771

Table 4: 1- way ANOVA values for spontaneous movements fore RE-1 mutants
comparing genotypes
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Variable

One-way ANOVA

LSD Post Hoc

Snap25a

RE1site sbus? F P WT/Het | WT/Mut | Het/Mut
Total Counts 6.520921 0.002024 |0.591579 | 0.009079 [0.000481
Total Distance 7.413463 0.000907 10.477887 | 0.013031 |0.000469
Total Duration 6.485344 0.00209 0.60111 0.004972 (0.000212
Snap25b RE1site

sbug3

Total Counts 5.724394 0.004077 10.976402 | 0.006448 [0.002353
Total Distance 6.68793 0.001683 10.992516 | 0.003439 [0.001012
Total Duration 6.259185 0.002491 0.964836 | 0.004341 [0.00152

Table 5: 2-way ANOVA with repeated measures to compare genotypes in 1-minute

intervals during spontaneous movements
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Variable One-way ANOVA LSD Post Hoc

SRréaliiztiasbusz F P WT/Het | WT/Mut | Het/Mut
Total Counts 6.520921 0.002024 |0.591579 | 0.009079 |0.000481
Total Distance 7.413463 0.000907 0.477887 | 0.013031 (0.000469
Total Duration  [6.485344 0.00209 0.60111 | 0.004972 |0.000212
Snap25b RE1site

sbug3

Total Counts 5.724394 0.004077 10.976402 | 0.006448 (0.002353
Total Distance 6.68793 0.001683 0.992516 | 0.003439 |0.001012
Total Duration  [6.259185 0.002491 0.964836 | 0.004341 [0.00152
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A Snap25a RE1 Site mutation
WT GCTTCAGCACCCTGGACAGCGACTGC

SBU8B2 GCTTCAGCACCC=========== TGC

Snap25b RE1 Site mutation
WT GCCTGTTGTGTGGATTTCAGCACCGCGGAGAGCGCTCATTAAGAGGCGCGCGCGCCAAA
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