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A DEM modse for visualising damage evolution and predicting
failure envelope of composite laminae under biaxial loads
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Abstract

A two dimensional particle model based on the discrete element method (P&deloped

for micromechanical modelling of fibre reinforced polymer (FRP) composite laminae under
biaxial transverse load&®kandom fibre distribution withim representative volume element
(RVE) is considered for the micromechanical DEM simulatidnsaddition to predicting the
stress-strain curves of the RVEs subjected to transverse compression and transverse shear
stresses against the experimental testing results and other numerical modelling results, the
DEM model is also able to capture the initiation and propagation of all micro damage events.
Fibre distribution $ found to more significaht influence the ultimate failure of composite
laminae under transverse shear, while it has much less effect on the failure under transverse
compression. The failure envelope of composite laminae under biaxial transverse
compression and transverse shear is predicted and compared with Hashin and Puck failure
criteria, showing a reasonable agreement. The predicted failure envelope is correlated with
the damage evolution and the quantitative analysis of failure events, which improves the
understanding of the failure mechanisms.

Key words: FRP; damage evolution; failure criterion; DEM; micromechanical modelling.
1. Introduction

Fibre reinforced polymer (FRP) composite laminates have been widely used over the past
thirty years in aerospace industries mainly due to their high stiffness-weight and strength-
weight ratios. However, thetie yet a universal model or approach to acculateredict the

failure strength of FRP composite laminates under biaxial or triaxial loads in real applications
[1). A large amount of experimental tests need to be carried out to obtain the failure strength
of FRP composite laminates which is usually designed to be much laagethéhrequired
strength under real loading conditions. This means that in many cases the FRP composites are
over safely designed and their advantages of light weight and design flexibility have not been
maximised. In addition, the experimental tests are affected by the testing environment and the
results are very diverse, especially when materials are sedbjerta system of loads
including transverse load that is very difficult to carry out. Therefore, an accurate and
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universal approach for predicting the strength of FRP composite laminates is always highly
demanded.

Generally, five different failure mechanisms could occur in composite laminates and they
depend mainly on the loading conditions and directfohs [2]. Fibre fracture and localised fibre
buckling occur when tension and compression are, respectively, applied along the fibre
direction. Tensile load applied in the direction perpendicular to the fibres results in either
fibre/matrix debonding or matrix cracking. Delamination takes place between plies and has to
be considered in order to predict the laminate behaviour precisely. Therfearéheoretical

failure criteria available for predicting failure modes separately as well as the failure
envelope of composite lamina/laminates under different loading conditions. Among them,
there are several well-known physically-based phenomenological failure cfiterfja [3-6] that
have the capability to predict the failure envelope and also provide information on failure
modes of composite lamina/laminates under certain loading conditjohs [1]. In particular,
Puck’s failure criterion is one of the better criteria adopted in the World Wide Failure
Exercise (WWFE) for predicting composite laminate failure. However, these criteria contain
several non-physical parameters that need to be obtained from specific and challenging
experimental tests. It has been shown in WWFE that the predictions of failure strength under
some loading conditions (in particular biaxial and triaxial loads) by existing failure criteria
are not accurate enough. One of the main reasons is that these criteria have not considered the
effects of heterogeneous material microstructure and the interaction as well as progression
between different failure modes. Theoretically it is not straightforward to dynamically
correlate different failure modes during the failure process as the random and Ineterege
microstructure of composite lamina/laminates are hardly to be considered. Micromechanics
analysisis very useful for studying the mechanical behaviour of FRP composite laminates
and understanding tlledamage process and failure strength. Witthie framework of
micromechanical modelling, the macroscopic properties are obtained through a representative
volume element (RVE) of the material microstructure. Unlike the conventional
homogenisation techniques, micromechanical modelling can take into account the details of
geometry and fibre distribution to compute the stesand strains in each material
constituents, which leads to more accurate predictions of damage initiation and propagation
and failure strength [7].

Two different approaclsehave been widely employed for numerical micromechanical
modelling. The first approach assumes that the fibres are periodically distributed aad uses
unit cell consisting of one or two fibres for the modelling. For examples €tai.,[§] used a

single fibre unit cell to study the fibre/matrix debonding of a glass-epoxy composite. Ha et al.,
[9] determined the failure envelope of a composite lamina under biaxial loads by modelling a
unit cells of square and hexagonal fibre arrangements. The second approach uses a RVE in
which several dozens of fibres are distributed randomly. Intensive studies have been carried
out using this method to understand the effects of RVE size, position of fibres and internal
distance between fibres on the elastic properties as well as the strength of FRP composite
laminae. For instance, Trias et gl ][10] concluded that the minimum size of carbon fibre
reinforced polymer with a volume fraction of 509is= L/r; = 50, where L is the side of

the RVE andy is the fibre radius. Yan@.l] found that inter-fibre spacingasignificant

impact on the transverse tensile and compressive strength of composites, especially when
thermal residual stress is taken into account.



Apart from FEM modelling, discrete element method (DEM) has been recently intraguced
model the damage evolution in composites. For instance, the crack propagation and stress-
strain curves of composite materials under transverse tensile loading was simulated by DEM
in [12}[13]. It was concluded that DEM has advantages of tracing the crack path within the
microstructures in addition to predicting the final failure strength. Yang el al[, [114, 15] also
investigated the transverse cracks and delamination in cross-ply laminates and predicted the
crack density using two dimensional DEM. With the increasing of caenpotver and the
lowering of the cost, DEM has become more beneficial than traditional numerical approaches
in studying damage initiation and crack propagation at microscopic scale. For instance,
Maheo et al.[[1]6] used three dimensional DEM to model the damage of a composite material
under uniaxial tension. Although the model assumed a periodic distribution of fibres and used
only one fibre, it has demonstrated the potential of DEM for modelling the failure process as
well as failure strength under real uniaxial loads in three dimensions.

Despite of the massive research efforts recently devotiewestigating the failure behaviour

of composite laminates under shear loading [1I7-22], the damage mechanisms and failure
theory are still not fully understood. Therefore this paper aims to extend our previous work
on DEM modelling of composite materials from uniaxial loadiagbiaxial loading. Two
dimensional DEM is used to visualise the damage mechanisms and to predict the stress-strain
curves as well failure strength of composite lamina under three different types of loads, i.e.,
transverse compression, transverse shear and biaxial loads. The stress-strain curees obtain
in this paper have advantages over those from traditional numerical models as the
microscopic damage at different loading levels can be clearly visualised. The failure envelope
of MY750 matrix reinforced by E-glass fibres under both transverse normal and shear loads
is also predicted by DEM and compared with Pﬁk [5] and Hin [3] failure criteria.

2. Thediscrete element method (DEM) and its contact models

In two dimensionaDEM, circular elements (or particles) are used to discretise the material
domain, as shown in Fig.1. Each particle in DEM has mass and its motion is governed by the
Newtoris Second Law. The particleartbe rigid or deformable, and interact with each other
through contacts. To represent the mechanical behaviour of a bulk material, a bonding model
is usually employed to bond two rigid particles at the contact. A few bonding models have
been reported in literatures to numerically achieve the desired material propeocties
instance, André et all, [23] developadohesive beam model which later was usedl by [16] to
predict the damage of a composite material. In this study, however, the parallel bond model
developed in[[24]s adopted. The parallel bond can be described as a finite-sized piece of
cementitious material deposited between two contacting particles, and can be envisioned as a
set of elastic springs uniformly distributed over its cross-section. When two particles are
bonded by a parallel bond the overall behaviour the contact is a result of particle-particle
overlap (grain-based part) and parallel bond (cement-based part), as shown in Fig.1.
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Fig.1 Schematic diagram of the parallel bond.

The grain-based part is represented by a linear contact model that can be deseriad as

of springs at the contact (one in the normal direction and the other one in the shear direction).
The inter-particle force, F, acting at the contact point represents the action betweemnseleme
A andB and may be decomposed into a normal fégttend a shear forde®. These forces

are related to the relative displacements through normal and shear s#ffnasdk®as
follows:

Fm = knyn 1)
AFS = —kSAuS @)

whereu™ andAu® are the overlap and incremental tangential displacement, respectively; k is
the resultant contact stiffness calculabgd

(4),,(B)

k= iig & () ©
kn(A)+ 531)1
kYK

kS = S S (4)

kP kP

where kY andk® are the normal stifiness, and®”and k®’ are the shear stiffness of
particles Aand B, respectively.

4



The forceF and momend associated with cement-based part are calculated by:

AF™ = k™ AAu™ (5)
AFS = —kSAAu® (6)
AM = —k"IAO (7)

WhereF™ and FSare axial and shear forces, respectivélyis the rotation between two
bonded particles; and A ahdare the area and second moment of area of parallel bond cross
section, respectively:

A= 2Rt (t =1in2D) (8)
1=§E3t (t = 1in 2D) (9)

It is important to note, since parallel bonds act in parallel with the linear contact model, the
overall stiffness at the contaktis:

K™ = (k™) + (AE”) (10)

K* = (k%) + (Ak®) (11)

The maximum tensile stregdsand shear stregscarried by the parallel periphery (cement-
based part) are calculated by:

—F* |M|R
5 = i 12
== +— (12)
|F*]
= _ 13
T=— (13)

If 6 > o, orT > 7.the parallel bond breaks and a crack is generated. In this paper, the
parallel bonds are used to model fibres and matrix. The mechanical properties of the bond
will be calibrated against macro properties in the following section. The force-displacement
laws for the normal and shear componenta dirallel bond are shown in Fig.2. More details

of DEM theory and parallel bond can be foun [24] » [25].
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Fig.2 Force-displacement laws of parallel bond model: (a) normal behaviour, and (b) shear
behaviour.

Debonding of fibre/matrix interface upon loading is accounted for by a contact softening
model which is similar to the cohesive element used in FEM moletsontact softening

model the strength is reduced as a linear function of the displacement after the peak strength,
as shown in Fig.3. The initial response in absence of damage is linear elastic and the force
incrementsAF™ and AF#, are calculated as a function of displacemexits and AU®:

(12)

AF™ = K"AU™ : :
(n: normal, s: shear) (13)

AF® = K°AU?®

The contact strengthkx is calculated from the two strength parameters fi/eandF;’)
and the current orientation of the contact force:

2a 2a
Fae = (1= =) B2+ 2 B8 14)

where a is the angle between the directions of the contact force and the line segment
connecting the cerds of two contacted particles. The yielding of the bond in tension is
determined by comparing the resultant contact force, i.e.,

F = \/(Fn)z + (F5)2 (15)

with the contact strength. The contact yields if the contact force is larger than the contact
strength:



F > Fpay (16)

When yielding occurs, the increment of contact displacem¥nis the sum of elastic and
plastic contact displacement increments:

AU™ = UG + AU, (n: normal, s: shear) (17)
AUS = AUS + AU ' T (18)
More details of the contact softening model are discuss4, 1nd [25].
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Fig.3 Constitutive behaviour of contact displacement-softening model: (a) normal behaviour,
and (b) shear behaviour.

3. Calibration of DEM models

In continuum mechanics based models, the input properties obtained from experimental tests,
such as modulus and strength, are directly used. However, in a DEM model with randomly
packed particleghere is no rigorous formula to correlate the micro-parameters (contact and
particle stiffness as well as bond strength) in DEM with the real material properties. In
general, the relation between micro-parameters that characterise a DEM model and macro-
properties (such as elastic constant and peak strength) is found by means of virtual calibration
tests, such as uniaxial compression test and tension testmiitaiokparameter is related to a
relevant material property antlis trialled in orderto match the virtual macro-properties
gained from the DEM specimen with those of the real material. This process is repeated in
different virtual tests until all the necessary macro-properties are matched.

3.1 Generation of DEM specimen

Sample preparation is a step of particular importance in DEM modelling. The two
dimensional samples used in this section are squareavdimensionof 63 um x 63 um.

Many packing methods have been proposed in previous sfudies][26-28]. In the present study,
a radii expansion procedure is us@[ZS]. This method starts with placing an initial set of
particles with artificially small radii in a square area encldsgtbur rigid frictionless walls
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(see Fig. 4a). The particle size varies from @M to 0.166um according toa uniform
distribution, which is sufficiently small to ensure adequate particles cover the region between
fibres, as will be seen later in this paper. The particles are then expanded bsingctiesir

radius by a multiplier factor of two until the desired porosity is achieved. The formula bellow
is used to calculate the radii multiplier, m, in order to change the porosity of the space from
initial assumed porosity,, to the desired porosity, n.

(21)

Finally, a number of computation cycles are executed to bring the system into equilibrium.
This method has been used by many other reseafches|[29-31] to generate densely packed
particle assemblies and readers can refdr_th [25] for more details. The numerical specimen
studied in this section consists of 16,451 particles and the histogram of the particlassizes,
shown in Fig.4, confirms a uniform distribution.
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Fig.4 The DEM model: (a) model geometry and particle assembly, and (b) particle size
distribution.

Once the samplés prepared, numerical tests shown in Fig.5 are conducted to find the
relationship between the DEM micro-parameters and the material macro-properties. The
uniaxial compression test is conducted by moving the right and left rigid atadl constant

and very small velocity (see Fig.5a). Whilst in the direct shear test, the boundary particles are
first identified and then assigned with a constant velocity to produce shear displacement, as
shown i Fig.5b. The applied loading rate needs to be slow enough in@rdamtain the
sample in quasi-static equilibrium state during the test and should be stable so as to not
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induce any possible dynamic straips][32]. On the other hand, using too small loading rate
would be computationally expensive. If not indicated otherwise, the loading rate used
throughoutthis paper is “5 mnvs”, which could be considered as a fast one in the real
experimental tests. However, since DEM is based on small time integration scheme, time step
At is chosen in each cycle to be very small (exg10~%s). In other words, with a loading
velocity of 5 mnis anda time step oft x 1079 s,20,000,000 steps are needed to move the
boundary to a distance of Qrim.

— -

(@) (b)

«——— Walls ———» |
- - L

Fig.5 Virtual uniaxial tests of a DEM model: (a) compression and (b) shear.
3.2 Parametric study of contact stiffness

Generally the mechanical properties of an elastic material can be characterised by its
elasticity (i.e., elastic modulus, shear modulusl Poisson’s ratio) and strength (i.e.,
compressive strength, tensile strength and shear streldiak been found that local elastic
parameters of particles and contacts, e.g., particle stiffness and parallel bond stiffness,
mainly affect the macroscopic elastic response of the entire DEM model, therefore
calibrations are requirefl [P5]. As the DEM modelaoomposite lamina consists of two
constituend (fibre and matrix) with different properties, each constituent needs to calibrated
individually before combing them together with interface stiffness which is assumed equal to
that of fibres[[1B]. Usuallyhe macroscopic Young’s modulus of the matrix or fibres is
directly proportional to the stiffness of particigs, k%) and parallel borsl(k™, k). While

the macroscopic Poisson’s ratio is directly proportional to the ratios iof/k* and k™/k*

25]. The material used in this papsrMY750 epoxy matrix reinforced by flass fibres

which is chosen from the World Wide Failure Exercise (WWEE) [33]. Both matrix and fibres
are considered isotropic and their mechanical properties are gjven in Table 1.




Table 1 Mechanical properties of fibres and matrix.

Fibre  Transverse modulus; E5Pa) 74
Poisson’s ratio, v 0.2

Matrix Modulus, E, (GPa) 3.35
Shear Modulus, ((GPa) 1.24
Poisson’s ratio, v, 0.35
Compressive strength,,Y(MPa) 120
Tensile strength, ¥ (MPa) 80

As the aim of this paper is to investigate the transverse behaviour of composite laminae, the
2D DEM modelling is thus carried out under plane strain condition. The elastic properties
given i Table ]L are measured under plane stress conflifion [6] and they can be converted to

properties under 2D plane strain condi:

_ _ Vfm
Vf,m B 1+ Vf,m (22)
Efm = Efm(1— v},m) (23)

Using Egs (22) and (23) together with the material properti¢s in Tglle Poisson’s ratio
andYoung’s modulus for both fibre and matrix under plane strain condition are calculated as
vr = 0.166, Ef = 71.96 GPa, V,,, = 0.259 and E,,, = 3.12 GPa, respectively.

In the calibration process, it is convenient to define a ratio between the normal and tangential
stiffness for both particles and parallel bonds as:

a= (kP /k) = (kn/k*) (24)

particles parallel bonds

Fig.| shows the relationship between the ratiand macroscopic elastic properties obtained

from axial compressive tests of the DEM model of matrix when normal stiffness for particles
and parallel bonds are kept constant at 3.12 GPa. It can be seen thaicesases the
Young’s modulus decreases while Poisson’s ratio increases for the chosen range of values.

As both elastic modulus and Poisson’s ratio vary with a, the calibrationis carried out as
follows. First, the value of is chosen from Fig.6a to produde desired Poisson’s ratio.
Then,a is kept constant aralseies of simulation tests are conducted withange of normal

stiffness(K" = k,(lA) = k™) as shown i.b. As can be seeFig.b fraessors ratio is
independent ok™ and remains constant for all chos€h, whereas Young’s modulus
increases with thE™. The target value df,,, can therbe found.
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Fig.6 (a) Influence of normal stiffness to shear stiffness ratiay the Young’s modulus and
Poisson’s ratio; (b) Effect of normal stiffness on Young’s modulus and Poisson’s ratio.

Same procedure is repeated to find the elastic properties of fibore and the microscopic
parameters obtained are providedable 2.

Table 2 Micro-parameters for particles and parallel bonds.

Fibre  Matrix
Particles k,(lA)/kgA) 2.5 5
kY (GPa) 70 4
Parallel bond  k"/k* 2.5 5
k" (GPa) 70 4

In order to further verify these parameters, a numerical shear test is performed on the DEM
model to predict the shear moduldg,, of the matrix. The elastic properties for both fibre
and matrix obtained from DEM are very close to those from experimental [33] af listed Table

Table 3 DEM predictions of the elastic properties of fibre and matrix.

Experimental [3B] DEM Error (%)
E (GPa) 71.96 72.2 0.33
Ve 0.166 0.170 2.3
E, (GPa) 3.12 3.16 1.2
7, 0.259 0.262 11
G (GPa) 1.24 1.21 2.4

3.3 Parametric study of bond strength

In order to enable the DEM model predict the failure behaviour of a material, it is also
necessary toorrelate the local bond strength parameters to the DEM risoaelcro strength.
Normally two failure modes are predominatiilg composite laminae under transverse
loading, i.e., matrix cracks and fibre/matrix debonding. The matrix compressive strepgth, Y

is given il Table J1. Mohr-Coulomb failure criterion has been widely used to describe the
plastic deformation of the epoxy matfix|[[7,JEl, andis adopted to determine the strength

of the parallel bonds for the matrix in the DEM model. When using the contact softening
model to represent the fibre/matrix interface, both interfacial strength and fracture energy
must be known. Unfortunately, these properties are difficult to obtain from simple laboratory
experimentd [3p]. In this study, the interfacial strength is assumed to be equal to the cohesion
of the matrix, ¢, and according to the Mohr-Coulomb failure criterion the relationship
between the cohesion and matrix strength is goyen

1—sing

c=7Y (25)

¢ 2cos@

whereg is the friction angle and can be related to the fracture surfaceé&bgle
12



E=45+¢/2 (26)

Typically 50° < & < 60° is found for epoxy matriceQ[?], and thpss between 10and 30.
Assumingp = 23° gives a cohesion ¢ of 39.7 MPa. Wang and T [36] found that micro
tensile strength of the bond directly determines the strength of material regardless the
magnitude of bond shear strength. Therefore, for simplicity 7, is assumed. Then a seyie

of uniaxial compression tests are carried out with different bond strength values to find the
relationship between bond strength and material strength, as shown in Fig.7. The macro
strength of the DEM model is the maximum value of axial stress acting on the walls at peak
load. Fig.7 indicates that macro strength increases linearly with the bond strength. At this
stage, the smallegtime stepAt, is used. The effect dime step on macro compressive
strength is studied in the next section.

3.4 Parametric study of time step

An important consideration in thBEM modelling is the time step. DEM uses a central
difference time integration approach to solve the equations of particle motion, and to
maintain a stable integration the time step must not exceed the critical tinde Step

Atcrit <+ m/K (27)

where K is the contact stiffness and m is the particle mass. Choosing a guntalsiep is of
particular importaoe becauset has direct effect on the total computational time. The effect

of time step on the macro strength is therefore investigéitying to find a large but still

valid time step and thus reduce the computational time. Three values of time step are chosen,
At; =93 x 107 s At, =1 x 1071%sand At; = 1 x 107%%s. The first one is the default

value calculated by the software itsIf [25] based on mass of particles and contact stiffness
according to Eq.](27). Note that, for all time steps, the loading velocity is kept coaisBant
mm/s[ Figl7 shows the macro strength of the sample under these three different time steps,
with matrix compressive strength and cohesion also plotted. It is demonstrated that the
strength values are almost identical for all time steps for low bond strength. The two cases
with At, andAt; almost give the same strength while they are both diverted Atpmbout

10% at bond strength of 85 MPa. Thus the choice of time step needs to be further investigated
by plotting out the complete stress-strain curves in the later section of modelling failure
process.

13
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Fig.7 Influence of bond strength and time step on the macro compressive strength of a DEM
model.

4. DEM modelling of damage evolution in RVES under transverse compression or
transver se shear load

4.1 Prediction of effective elasticity

Before performing any simulations to predict the failure of composite materials, it is
important to ensure that DEM is capable of accurately predicting the effective elastic
properties. To investigate the size dependence of the elastic properties, a set of representative
volume element (RVE) with different size are generated using the approach developed in
previous study [3[7] which can overcome jamming limit and can be used for fibres with any
inter distances. In each RVE, variable fibre diameters are used according to a normal
distribution with a mean fibre diameter of Gué and a standard deviation of 0.3106.

typical RVE of DEM model under transverse compression and transverseishiksstrated

in Fig.8. Regarding the size of RVE, Gonzéalez and LL{r¢a [7] suggestedn RVE size of

63 um X 63 um is large enough to accurately represent the macroscopic material. This
suggested size is adopted first and the effective elastic properties are then computed for
different RVE sizes range from 30n X 30 um to 100um x 100 um, trying to identify tle
smallest valid RVE in order to reduce DEM computatidimé. Each RVE consists of three
phases, i.e., matrix, fibre and interface. Calibrated micro DEM parameters for matrix and
fibres in Table 2 are used, and the micro DEM parameters for the fibre/matrix interface are
assumed to be the same as those of fibres.

14
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Fig.8 A RVE of DEM model subjeetito: (a) transverse compression and (b) transverse
shear(arrows indicate the loading directions).

Fig.9 shows the elastic properties calculated using different RVE sizes. The RVE of each size
is tested five times, anehchtime the RVE has a different random distribution of fibres. The
secondary horizontalxis § on the top represents the relationship between the side length of
RVE, L, and the mean fibre radiusg, as:

§=— (28)

As can be seen from the Fig.9, batbung’s modulus and shear modulus of the RVE with a

size of63um X 63 um are close to the experimental results Wiitihe differences from one

model to anotherThe discrepancy is likely caused by the change of fibre arrangements,
which leads to increase or decrease of the number of contacts and particles representing the
fibres, matrix and interface. However, our DEM model still gives good predictions of
Young’s modulus and shear modulus, compaed with FEM using the same approach for
generating random fibre distributiofis [3H. this study, the predicted Poisson’s ratio seems

more sensitive to RVE size and the variation could reach 19%. Similar findings from other
numerical models have also been reported. For instance, Wongsto Li [38] found that the
predicted effective properties using various theoretical and numerical methods were smaller
than the experimental data.
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4.2 Prediction of stress-strain curves and damage progression under transverse
compression

In this section the failure of RVESs subjegdto transverse compression is studied. The RVEs
used in this section and next section have an identical s&&1oh x 63 um. The effect of

time step on the stress-strain curve of a typical RVE, which is of particular importance for
saving computational time, is examineadrig.10. Within the elastic region (under 20 MPa),

the simulation results are almost identical and agree well with the experimental one. The final
failure appears to become more brittle whieme steps are reduced, confirming that small
time steps lead to better redistribution of the stress within the system and theismode

stable. For all the DEM simulatioms Fig.10, the mean compressive strength is 156.3 MPa
which is greater than experimental result by 7%. Therefore, the time siep=ofl x 10~ s

will be usedn later simulations. The nonlinear mechanical response of the stress-strain of the
DEM model is not well captured comparing with experimental data. The nonlinear behaviour
of the curve would be more obvious in case of longitudinal shear and off-axis loading.
However, the nonlinear contact law could be introduced in the future to solve the problem.
While geometric nonlinearity (e.g. fibre rotation) is not important under transverse loading.
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Fig.10 Stress-strain curves from DEM simulations using different time steps compared to

experimental result3].

The influence of fibres distribution the RVESs on the mechanical response is also studied by
comparing the results obtained from five different fibre arrangements. The stress-strain
curves of all five RVEs under transverse compression are shown in Fig.11. It can be seen that
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the failure strength ranges from 151 MPa to 167 MPa giving the smallest and the largest
differences of 4% and 14%, respectively, in comparison with the experimental results. An
interesting outcome of using DEM that the transverse compressive failure strains of the
RVEs are also obtained whilst they have not been reasonably achieved in previous studies
using FEM due to numerical convergence difficul{igf [3[ 2P, 39]. To show the accuracy of the
DEM modelling, the results are also compared with two recent FEM ﬁv% in,EQ]11.
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40

Experimental
—a— Yang et al., 2012

20 —— Gonzalez and LLorca, 2007

0 1 2 3 4 5 6
Strain (%)

Fig.11 Stressstrain curves of five RVEs under uniaxial compression.

Another major feature of DEM modellingiis capability to predict and visualise the damage
initiation and propagation process. Taking RVE #3 as an example, Fig.12 shows the damage
progression in the composite under transverse compression, where a stress-strain curve and
the damage profiles corresponding to the three characteristic loading points are also included.
Point (a) in the stress-strain curve represents the state of a loading strain of 0.7% and its
corresponding damage pattern is shown in Fig.12&an be seen that the fibre/matrix
debonding (indicated by red dots) appears to be the major damage mechanism at this stage
After this point, the matrix cracks starts to appear, especially in the highly stressed areas
where fibres are too close. The cracking leads to certain fluctuatidims stress-strain curve

as indicated from the figure. Then, interfacial debonding and matrix cracks are emerged
throughout the RVE before reaching the peak strength, as shown in Fig.12b. The inclination
anglea, of the critical plane is about $at this point, and it is a little smaller than the failure
plane angle=56.9 calculated from Eq.(26). Finally, more matrix cracks appear with further
increase of loading and the final failure is shown in Fig.12c. From the last graph one can see
that there are several possibilities for developing a critical plane across the RVE. The failure
mode shown in Fig.12c is similar to the final accumulated failure of the RVE in FEM when
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perfectly plastic matrix assumption is uspd][19]. However, it is quite different from those

models using other failure criteria to repres

? and Drucker-Prag = 0].
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4.3 Prediction of stress-strain curves and damage progression under transver se shear

It is very difficult to carry out a laboratory test on a composite lamina/laminate under

transverse shear. Finding a robust numer
19

ical method to simulate the theh always



beneficial, in particular, to capture the behaviour of the lamina until failure. Many factors
could alter the damage behaviour aflamina under transverse shear including fibre
arrangements and fibre/matrix interface properties. Attempts have been made by nesearche
to find a relationship between the transverse shear strength and transverse compressive
strength. Some researchers assumed the transverse shear sfrengthbe half of the
compressive strengtlY,, i.e., Sy =05Y, @ whereY, is the transverse compressive
strength of the lamina. This is also adopted in this study. The transverse compressive strength
of the lamina is 145 MPa (see experimental stsgasa curve in Fig.10), therefore, we
assume tha¥,; = 72.5 MPa.

The transverse shear of five different RVEs with different fibre distribution is modelled and
the stress-strain curves are shawrFig.13, along with the FEM results extracted frpm| [19]

and [[41] for comparisons. The figuskows that all the stress-strain curves from DEM
modelling are almost identical and linear before reaching a loading stress of 35 MPa. A short
line depicts the experimental initial shear modulus is also plotted. It is evident that the current
simulation results are closer to the experimental shear modulus. After this point, the stress-
strain curves of the RVESs start to divert from each other. This discresaaitybuted to the
development of micro-cracks that, similar to what was observed from the simulations of
transverse compression described in the previous section, depends on the fibre distributions.
The shear failure strength slightly varies for different fibre arrangements. In adtbticdl,

the RVEsin Fig.13 the mean shear strength is 70 MPa, which is just slightly smaller than
experimental result &, = 72.5 MPa, and about 9% less than the strength predint

and about 19% higher than that fr[41] :
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Fig.13 Transverse shear stress-strain curve using five different fibre arrangements compared

with and].

While the stress-strain curve and damage evolution in RVE #3 under transverse shear is
shown in Fig.14. The stress-strain curve drops at point (a) due to matrix cracking at the right-
bottom of the RVE close to the edge. However, this crack does not propagate longse beca

it is constrainedy the two surrounding fibres. After this point, more interfacial debonding
occurs until the peak point (b). Afterwards, matrix cesgpear mainly in the middle of the

RVE and propagate fast and diagonally between fibres, leading to the ultimate failure at point

(c).
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Fig.14 Damage evolution under transverse shear of RVE #3 at different strain stages: (a)
0.87%, (b) 1.51%, and (c) 2.13%. (Red dots are fibre/matrix debonding and black dots are

matrix cracks)

4.4 Effect of RVE size on failure strength and failure strain

As an attempt to reduce the computatiotost, RVEs with sizes smaller théd pum x 63
um are simulated. Variations of compressive strength for five different RVE sizes are shown
in Fig.15a. The results show that the size of RVE has slight influences on the failure strength
and there is no obvious trend of convergence for the RVE size. The smallest RYfmok
30 um is most diverted away from the experimental result, while the RVE pfib® 50 um,
has a mean compressive strength closer to the experimental resut3thanx 63 pm.
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Fig.15b shows the failure strains for the RVEs of different sizes. The overall trend of results
tends to be higher than the experimental one and the smallest RVE has the largest difference.
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Fig.15 Variation of compressive strengths and transverse compressive failure strains with
RVE size, compared with experimental datd [33]: (a) compressive strengths, and (b)
transverse compressive failure strains.
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Fig. 16 shows the variation of transverse shear strength with RVE sizes. As can berse

the figure, the mean values of shear strength of the five RVEs show fluctuations rather than
clear convergence towardg = 0.5 Y., although the closest mean shear streigyfiom the

largest RVE 063 um X 63 um. In summary, the RVEs &3 um X 63 um give overall better
predictions of failure strength and failure strains, and this further confirms an RVE size of 63
um X 63 um should be used in the next sections of DEM simulations of biaxial loading.
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Fig.16 Transverse shear strength of RVEs with different sizes.
5. DEM modelling of RVEs under biaxial loads

The ultimate goal of this paper is to visualise the damage evolution and predict the failure
envelop of composite laminae under biaxial loads. An accurate and reliable failure criteria
have been pursued for the past few decades, and an effort has been made by the organisers of
the first [4,[42] and seconfl][1]] WWFE to compare the experimental results with the
predictions from different failure criteria. 19 failure criteria were evaluated and ranked
according to their capability to predict the stress-strain curves under different uniaxial loading
as well as the failure envelope in a series of test cases including biaxial loading. The
comparisons revealed that the predictions of many failure criteria varied considerably from
experimental results. WWFE also highlighted the importance of capturing the progressive
failure in composite laminates. Generally, it was found that most failure criterions performed
well when damage initiates in a single ply followed intimately by the catastrophic failure, or
brittle failure. However, most criterions were not accurate enough when noticeable
nonlinearity occurred before the final catastrophic failure. Therefore, it is important to
develop a suitable numerical method to capture and visualise the entire process of damage
initiation and progression in composite laminates.
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5.1 DEM prediction of the failure envelope

For the purpose of modelling biaxial loads using DEM, the RVEs are setbjexta
combination of transverse normal stress, and transverse sheags, to obtaino,,-T,3
failure envelope. The RVEs have a size&s®dfum X 63 um. The DEM results are compared
with predictions from two theoretical criteria developed by Haghin [3] and Puck and

SchUrman].

Hashin criterion is one of the early failure theories that can distinguish the fibre and matrix

fracture initiation in composite materials, and each is further subdivided into two damage

mechanisms, i.e., tensile and compressive failure modes. Assuming isotropic composite
lamina in the y-z (or 23) plane, the two dimensional Hashin failure theory of a lamina under

combined transverse normal stress and transverseasbaeaxpresseas

022\ <T23>2
<YT> + S, 1 0y, =0 (29)
022\ ( Ye )2 072 (T23)2

== — ) —1|=4(=) =1 <0 30
(25T) T\zs, v. T\, 022 (30)

whereY, andY; are the transverse compressive and tensile strengths of the composite,
respectively, and; andS; stand, respectively, for the transverse and longitudinal shear
strength. Despite the capability of this failure criterion for predicting the damage in the
lamina under normal and transverse shear, numerous studies over the last decades show that
it doesnot always agree with experimental results accurately, especially the failure envelope
studied under combined transverse compression and in-plane shear. This drawback of the
Hashin criterion is dudo neglecting of determination the actual fracture plane and its
orientation. And using a quadratic approach to account for the interaction between the stress
invariarts may underestimate the material strength, whereas any higher polynomial degree
would lead to more complicated expressions. With increasing computational capacity, many
models, therefore, have been proposed to improve Hashin criterion including the one
proposed by Puck and Schiirmadnh [Bick’s model is based on Mohr-Coulomb hypothesis

and assums that fracture s triggered due to the normal stregsand tangential stress,

acting on the failure plane with a specific inclination angle to the material plane, igkieh

key element of the model. The criterigrexpressed as:

2 2
\/Ki _ 2p (1 + pJ.J.)) Un(f)l n [2(1 ‘;CPLL) Tt(f)l

% Y,
' ¢ o, =0 (31)
n 2p., (1 +py,) 0, (&) =1
Ye
2(1+pyy * [2p(+piy ?
K—( tp )>rn<f>] +[ Puiltp )an@)]
Ye Ye G, <0 (32)

2 1+
n pri( Pii)

Y, O-n(f) =1
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with

0u(E) = 022 D) 1 sin(28) 33)

7:(§) = —Ty3 Sinng) + 7,3€08(2§) (34)

where $ is the fracture resistance of the fracture plane subjected to the pure transverse shear
¢ is the fracture angle plane, apds friction angle as in Eq.(26). The fracture angle plane in

the case of biaxial loading is slightly different from that for uniaxial compression in Eq.(26)
and giverby:

5=45+@ (35)

in which g = arctan(2t,5/0,,). Note that in case of uniaxial loadings=0, Eq.(35) is
reduced toEq.(26).p, ; is the inclination coefficient which does not have a clear physical
meaning and it is usually fitted to tlte,, ;) failure slope angle that is experimentally
deduced. However, Puck and Schirmérn [5] recommended g usi the range of 0.2-
0.25 for a typical glass-fibre/epoxy composites, = 0.22, a value in the middle of the
range, is used in the study

To use these two failure criteria, the material failure strengths are required. In this study, the
input failure strengths are those obtained from DEM simulations of RVE #1, gilven in] Table

Table 4 Failure strength used in Hashin and Puck failure criteria.

Y. (MPa) 159.5
Yr (MPa) 35
Sr (MPa) 715

For biaxial loading, there are certain possible loading paths. For example, the normal and
shear loads may be applied proportionally at the same time, or the loading could start by
applying uniaxial compression until a required compressive stress, then transverse shear is
applied while the compressive stress is kept constant, or vice versa. The effect of loading path
on the failure envelope has been investigated experimentally Jin [43] and numerically using
FEM in [44[43], and all concluded that the loading path did not affect or change the failure
envelope significantly. However, the influence of loading path in DEM modelling is not
studied in this paper.

Two loading paths are used in this study to simulate a biaxial test in DEM, as shown in
Fig.17. The first path (Fig.17a and b) is used to apply transverse tension and shear on the
RVE, the results of which are shown in ParbfAFig.18. Following the same procedure as
described in Section 4.3 for the pure shear test, the particles on the right- and left-hand side
edges of the RVE are taken as boundary particles that are subsequently subjected to a
constant velocity tangent to the edges until the desired shear stress is reached. Onyet the tar
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shear stress is reached, the unbalanced force of each particle on the boundary ésbgplace
an external force of equal magnitude loutthe opposite direction, see Fig.17b. Finady,
velocity normal to the edges taken by the right- and left-hand side boundary particles to
apply transverse normal load until the final failure, as shown in Fig.17b. By varying the
initial shear stress applied on the boundary particles, the failure envelope of Part-A in Fig.18
is constructed. The second loading process is used to simulate transverse compression and
shear quadrant only, i.e., Part-B in Fig.18. In this loading method, the right- and left-hand
side walls act as loading platens andrtherizontal moving velocity is controlled by a servo-
mechanism to maintain a constant transverse compression stress, see Fig.17@ Then,
constant velocity is apigd on the right and left boundary particles until the final shear failure
as shown in Fig.17d.

‘ ‘ External ‘ ‘
‘ ‘ force \ ‘ ‘

I ‘ Step-1 lVeIocity 4—I ‘ Step-2 I—’
e (K

(@) (b)

— ‘ ‘ — Velocity
Step-1

Constant velocity
applied on walls

(c) (d)

Fig.17 Loading schemes used to perform biaxial tests (awows represent external force
and arrows» represent velocity appli€d)-(b) shear and tension in PArtand (c)-(d)
shear and compression in PBrt-

In the DEM simulations, the strength is the peak value on the stress-strain curve and the final
failure takes place when the curve drops by 20% of the peak point, (e.g., pokigcl2a).

The corresponding failure envelope is then generated and plotted in Fig. 18 together with the
predictions from HashirHB] and Puck and SchUrrrﬁm [5] failure criteria.
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It can be seen that the strength of the material predicted byi®gdherally lower thathat
predicted by the two failure criteria when the material is subjected to transverse tension and
shear (in Part-A region), while it is higher when the material is subjected to transverse
compression and shear (in Part-B region). This is expected since the current DEM modelling
has considered residual strength attributed to any friction and contact between the fractured
surfaces that occurs aftabondis broken. The particle-particle interaction force depends on
the friction coefficient as well as the stiffness of these two particles. Therefore, collectively
the material can sustain more compression and shear and this leads to an increase of the
ultimate failure strength of the RVE. The friction and sliding free contact behaviour clearly
emerges only in presence of compression, which explains why a better comparison of the
strength is observed in Pakt- In fact, the post-failure friction and contact behaviour in
compression and/or shear is closer to physical tests whilst the analytical methods usually
cannot take it into account. However, Pigc&riterion was among the theories that performed
well for predicting the strength of unidirectional lamina sulgeétb transverse normal stress

and in-plane shear as comgamith experimental results [46]. In this study the ciités

further validated against our virtual modelling results for another type of biaxial loading
scenario of transverse normal and transverse shear loading.
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Fig.18 Failure envelope of a fibre-reinforced composite lanniniz c2,-123 Stress space.
5.2 DEM visualisation of damage evolution

In Pucks model failure under transverse normal and transverse shear depends on the
orientation of failure plane which in turn depends on the magnitude of the normal and shear
stresses acting on the failure plane surface. Thus, it is important to investigate the final failure
planes of a RVE. The crack paths discussed in this section is for RVE #1 under different
loading combinations (at,5 /0, ratio) as shown in Fig.19. Each subfigure is associated with

a loading combination along the failure envelope shiowiig.18, such as C1, Al, A2, etc.
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Fig.19 Accumulation of damages in the composite under different loading combinations in
Part-A.(Each subfigure represents a data point on the failure envelope according to its label;
Red dots represent fibre/matrix debonding and black dots represent matrix cracks.)

Fig.19C1, which is for the RVE under uniaxial transverse tension (point C1 in Fig.18), shows
that the failure plane is found to be perpendicular to the loading axis and propagates between
fibres in the middle of the RVE.

After applying transverse shear (i.84/0,, = 2.1 at Al), the failure plane is still about 90°
but not literally in the middle, and another failure path also appears as shown by thf&tircle
in Fig.19A1.

By increasingr,;/a,, ratio to 2.13 and 4.63tf has been found that the second failure path
propagates longer in the RVE and eventually two vertical crack paths present, as shown in
Fig.19A2 and A3.

Finally, the accumulated failure of the RVE subjected to pure transverse shear is plotted in

Fig.19C2 where the plane angle is found to be around 45°, and the failure path is somehow
diverted when fibres are present at the crack tip.
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FibreF1

Fig.20 Accumulated cracks in the composite under different loading combinations. (Each
subfigure represents a data point on the failure envelope according to its label; Red dots
represent fibre/matrix debonding and black dots represent matrix cracks.)

The accumulated cracks in the composite subjected to combined transverse shear and
transverse compressi@swell as pure transverse compression (Part-B of Fig.18) are shown
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in Fig.20. Similar to what has been used above, each subfigure in Fig.20 is associated with
one data point in Fig.18.

For low compression load (i.g.;/0,, = 2.5 or load case B1n Fig.20B1, the critical failure
plane is oriented at an angle of about 50° to the loading axis (i.e. y-axis), as indicated by the
arrow R1. However, s fracture band cannot propagate through the fibres, the orientation alters
slightly at the end and this variation is mainly causgthe fibre distribution, see arrow R2.

For smaller transverse shear and compression ratio, i.e., point B2 in Fig.18, the initial fracture
angle is almost the same as the previous case. However, another fracture band (which is
sindicated by the arrow R5) appears and follows the first one, see Fig.20B2.

In Fig.20B3, the orientation angle of fracture plane is reduced more to become about 42° and
also more cracks take place just before the final failure as indicated by the elliptic E1
According to Eq.(35), the fracture angle decreases whgfv,, is reduced, and this is
confirmed by our DEM simulation results, i.e., the fracture aisgteduced from 50° to 42°

with increasing compression stress.

Failure patterns in Fig.20B4 and B5 are similar to that in Fig.20B3 except a new fracture path
appears (indicateloly the arrow R7) and has a small slope with y-axis.

Finally, it is found that with increasing transverse compression stress in Fig.20B6 and B7
more intensive cracks tend to occur between fibres which reduce the average fracture angle,
In addition, more diverse crack paths appear (indicated by the arrow R8 in lBy&tBthe

failure band becomes bigger than above cases.

The final failure of uniaxial compression stress is also included in and shown in the Fig.
20C3. The damage evolution of this loading case is similar to the one that has atretady b
discussed in Section 4.8s can be seen from Fig.20C3, two main failure paths, R9 and R10,
are present. The crack path R8 runs through the RVE until it is constrained by fibre F1 and
leads to new cracks occurring almost perpendicular to the initial pa

5.3 Quantitative analysis of damage events

A quantitative analysis of fibre/matrix debondings and matrix cracks is also carried out for
each loading case in Part-A and Part-B of Fig.18, and the results are plotted inafRid).21
Fig.22 respectively. Each column of the figure shows the number of interfacial debonding
and matrix cracks of the corresponding loading case in Fig. 18. The matrix cracking includes
both normal and shear breaking of bonds between the particles that represent the matrix.
Columns labelled from Al to A3 represent biaxial loads and are located in Part-A, whereas
columnsB1 to B7 are for those in Part-B and columns C1, C2 and C3 are for uniaxial
transverse tension, shear and compression, respectively.

As shown in Fig.21 for the loading cases in Part-A, the number of fibre/matrix debondings is
significantly high in the case of pure transverse tension (i.e., coluar@lmore matrix

cracks are found in transverse shear, (i.e., column C2). While for combined transverse tension
and shear, fibre/matrix and matrix cracks number increase stedttlyncreasing ratio of
T,3/0,, from Al to A3. It is important to mention that in all loading catbe fibre/matrix
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interfacial debonding is the main damage mechanism before the peakastthsesbond
strength of the fibre/matrix interface is much smaller than that of the matrix. While the matrix
cracks mostly happen after the ultimate stress and leads to the final failure.

M fibre/matrix debonding M matrix cracks

35.01

30.01

25.01
20.01
15.01
10.01
5.01
0.01 T T T
C1 Al A2 A3 Cc2

Loading condition

Number of cracks (X100)

Fig.21 Number of fibre/matrix debonding and matrix cracks in loading cases iA.Part-

For Part-B of the failure envelope, it is found that the number of cracks in matrix has
increased significantly with increasing compression loads from Bbtas shown in Fig.22.
Afterwards, the cracks number is almost the same as that in uniaxial compression loading
case, C3. The number of fibre/matrix debonding also increases with load, but not as fast as
matrix cracking. These results are reasonable as by increasing the confining compression load
applied on the RVE in the first step (see Fig.17) would certainly leads to more cracks before
the second step. In addition by increasing the initial stress in the bonds (that are not broken
yet) before applying shear load on the RVE in the second step, would make them more
susceptible to break in the subsequent shear load. High confining stress also increases strain
softening which continues until the final failure, and thus more normal and shear cracks
would occur. This explains the increase of the total number of damage events from B1 to B7
in Fig.22.
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Fig.22 Number of fibre/matrix debonding and matrix cracks in loading cases iB.Part-
6. Conclusions

A 2D particle model based the discrete element method (DEM) has been developed to study
the microscopic behaviour of unidirectional fibre reinforced composite laminae under
different loading conditions. Calibration process is first carried out to relate micro parameters
of the DEM models of fibre and matrix to macro properties of the materials. The critical size
of RVE using DEM is investigated that a reasonable RVE sizS8 gin X 63 ym can be

used provided that the material constituents are previously calibrated. This method shows
good prediction of the elastic modulus of composite materials as cetdwaiéin FEM models

using the same approach for generating random fibre distributions.

A micromechanical analysis is then carried out to investigate the microscopic failure
mechanisms of a composite laminae of MY750 matrix reinforced by E-glass fibres under
transverse compression and shear loading. The stress-strain curves are also produced for five
different RVEs with different fibre distributions, from which compressive and shear strength
has been obtained in together with the failure strains. It is found that DEM can better predict
the stress-strain response of the composite under transverse compression than FEM as it
clearly shows the compressive strength and compressive failure strain on the stress-strain
curve. The shear strength has alserijredicted. Previous FEM work, such [as][19], shows
more nonlinear behaviour of the stress-strain under transverse shear loads than DEM.

The DEM simulations have shown the microscopic failure mechanisms of the composite and
the detailed damage evolutionthe RVESs. For both transverse compression and shear loads,
interfacial debonding occurs first and then matrix cracks become dominating in areas where
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inter-fibre distances are small. Eventually, interfacial debonding and matrix cracks are
merged together to form the catastrophic failure of the RVEs.

The failure envelope of the composite is computed from DEM simulations under transverse
compression and transverse shear. The results pedserihis study show that DEM can be
used as a useful tool to predict the failure envelope of a general composite laminae subjected
to complex biaxial combination of transverse normal and transverse shear loads. Although
the results tend to be underestimated for transverse tension and shear whilst oveddstimat
transverse compression and shear when compared with Hashin and Puck failuretoeyeria,
are still reasonablasthe post failure mechanism in the DEM modelling is closer to that in
real experimental tests. The capability of DEM to accurately predict the macroscopic
response as well as microscopic failure mechanisms nitake®ry useful tool to explore the
effect of constituent properties on the behaviour of composite laminae. This is important from
a material viewpoint to choose critical parameters to improve and optimize laminae stiffness
as well as strength which are very difficult and expensive to obtain through experiments.

Extending the current 2D DEM model to 3D is essential in the future when modelling
composite laminates under more complelaxtal loads where delamination as well as
transverse cracking needs to be included. A fully developed 3D DEM model would be able to
visualise the damage evolution and predict the failure envelope of composite laminates that
are selected in the cases in WFEE-II. By doing so, it aims to identify the reasons for which
the existing failure criteria are not accurate in certain loading cases and subsequently modify
them or develop a new universal failure criterion that takes into account the damage
progression for higher accuracy.
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