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su(N) Einstein-Yang-Mills theories.
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Abstract

We establish the existence of hairy black holes in su(N) Einstein-Yang-

Mills theories, described by N −1 parameters, corresponding to the nodes of

the gauge field functions.
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I. Introduction

Interest in non-Abelian Einstein-Yang-Mills theories was sparked by the

discovery of particle-like1 and non-Reissner-Nordström (“hairy”) black hole2

solutions when the gauge group is su(2). Since then a plethora of hairy

black holes, possessing non-trivial geometry and field structure outside the

event horizon, have been found (see, for example,3), including coloured black

holes in su(N) Einstein-Yang-Mills theories.4,5 Many of these objects have

as a fundamental requirement for the existence of hair, a non-Abelian gauge

field, often coupled to other fields, such as a Higgs field.6 As in,6 the existence

of gauge hair is not surprising in itself, since the gauge field force is long-

range. However, the non-Abelian nature of the field is important for evading

the no-hair theorem, for example, for scalar fields coupled to the gauge field.

The vast majority of these solutions have been found only numerically, with

analytic work in this area at present being limited to an extensive study of

the su(2) case,7,8,9 and some analysis of the field equations for general N .10,11

In this paper we continue this analysis of the coupled Einstein-Yang-Mills

equations for an su(N) gauge field, and prove analytically the existence of

“genuine” hairy black hole solutions for every N . By a “genuine” su(N)

black hole, we mean a solution which is not simply the result of embedding a

smaller gauge group in su(N). As in the su(2) case, the solutions are labeled

2



by the number of nodes of each of the N − 1 non-zero functions required

to describe the gauge field. We shall prove that for each integer n1, there

are an infinite number of sequences of integers nN−1 ≥ nN−2 ≥ . . . ≥ n1

corresponding to black hole solutions. It is to be expected that in fact every

such sequence corresponds to a black hole solution, but unfortunately we are

unable to prove this analytically, although we shall present a numerically-

based argument for su(3) and numerical investigations (such as that done for

su(5) in4) for higher dimension groups which indicate that this is in fact the

case. The method used to prove the main theorem of this paper is remarkably

simple, drawing only on elementary topological ideas.

The structure of the paper is as follows. In section 2 we review briefly the

su(N) Einstein-Yang-Mills field equations and the ansatz and notations we

shall employ in the rest of the paper. Next we state some elementary proper-

ties of these equations, including results from.11 The remainder of the paper

has a similar progression of ideas as,7 and we continue by first analyzing the

behaviour of solutions to the field equations in the two asymptotic regimes, at

infinity and close to the event horizon. Although these forms were discussed

in,11 we present here a shorter proof. Section 5 is devoted to a discussion of

the flat space solutions, which will be important for later propositions. The

results here are somewhat weaker than in7 due to the fact that for su(N), we

3



have N − 1 variables and therefore have a 2(N − 1)-dimensional phase space

rather than a phase plane as in the su(2) case, so the powerful Poincaré-

Bendixson theory no longer applies. We now consider integrating the field

equations outward from the event horizon and consider the various possible

behaviours of the resulting solutions. As in,7 there are three types of solu-

tion: the regular black holes we are seeking, singular solutions (in which the

lapse function vanishes outside the event horizon), and oscillating solutions

in which the geometry is not asymptotically flat. The main results of this

paper are in sections 7 and 8. An inductive argument is used to prove the

existence of solutions for su(N) assuming existence for su(N − 1) (since we

have rigorous theorems for su(2)7,8). The argument is presented in detail for

su(3) in section 7 and a brief outline of the extension to general N in section

8. Finally, a summary and our conclusions are presented in section 9.

II. Ansatz and field equations

In this section we first describe the ansatz we are using and outline the

field equations.

The field equations for an su(N) Yang-Mills gauge field coupled to gravity

have been derived in10 for a spherically symmetric geometry. We take the
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line element, in the usual Schwarzschild co-ordinates, to be

ds2 = −S2µ dt2 + µ−1 dr2 + r2 dθ2 + r2 sin2 θ dφ2, (1)

where the metric functions µ and S are functions of r alone and

µ(r) = 1 − 2m(r)

r
. (2)

A spherically symmetric su(N) gauge potential may be written in the form10

A = Adt+B dr +
1

2

(

C − CH
)

dθ − i

2

[(

C + CH
)

sin θ +D cos θ
]

dφ (3)

where D = Diag {k1, k2, . . . , kN} with k1 ≥ k2 ≥ . . . ≥ kN integers whose

sum is zero. In addition, C is a strictly upper triangular complex matrix

such that Cij 6= 0 only if ki = kj + 2 and CH its Hermitian conjugate, and

A, B are anti-Hermitian matrices that commute with D. An irreducible

representation of su(N) can be constructed by taking10

D = Diag {N − 1, N − 3, . . . ,−N + 3,−N + 1} . (4)

In this case A, B have trace zero and can be written as

Ajj = i

{

− 1

N

j−1
∑

k=1

kAk +

N−1
∑

k=j

(

1 − k

N

)

Ak

}

(5)

for real functions Ak, and similarly for B. The only non-vanishing entries of

C are

Cj,j+1 = ωje
iγj (6)
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where ωj and γj are real functions. All the functions in this ansatz depend

only on r. Now we make the following simplifying assumption10:

Aj = 0, Bj + γ′j = 0, ∀j. (7)

The remaining gauge freedom can then be used to set B = 0,12 which implies

that the γj are constants, which we choose to be zero for simplicity.

The gauge field equations for the ωj then take the form10,11(where we

have set κ = 2 in10)

r2µω′′

j +
(

2m− 2r3pθ
)

ω′

j +

[

1 − ω2
j +

1

2

(

ω2
j−1 + ω2

j+1

)

]

ωj = 0, (8)

where

pθ =
1

4r4

N
∑

j=1

[

ω2
j − ω2

j−1 −N − 1 + 2j
]2

(9)

and the Einstein equations can be simplified to

m′ = µG+ r2pθ,
S ′

S
=

2G

r
(10)

where

G =

N−1
∑

j=1

ω
′2
j . (11)

Note that ω0 ≡ 0 ≡ ωN , so that these are the usual equations2 in the su(2)

case, and have a very similar, but slightly coupled, structure for general N .

The equations (8–11) possess two symmetries.11 Firstly, the substitution

ωj → −ωj for any fixed j leaves the equations invariant, exactly as in the
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su(2) case. Secondly, there is an additional symmetry under the transforma-

tion j → N− j for all j. We will not assume that this symmetry is respected

by the solutions of the field equations, so that the su(3) case is not necessarily

trivial.

We are concerned in this paper with black holes, which will have a regular

event horizon at r = rh, where µ = 0. The equations in their present form

are singular at rh, so in order to produce a set of equations which are regular

as µ → 0, we define a new independent variable τ by7

dr

dτ
= r

√
µ, (12)

denote d/dτ by ,̇ and define new dependent variables κ, Uj and Ψ as follows7:

Ψ =
√
µ, Uj = Ψω′

j, κ =
1

2Ψ

(

1 + Ψ2 + 2µG− 2r2pθ
)

. (13)

Then the field equations take the form7:

ṙ = rΨ (14)

ω̇j = rUj (15)

Ψ̇ = (κ− Ψ)Ψ − 2µG (16)

(SΨ)˙ = S (κ− Ψ)Ψ (17)

U̇j = − (κ− Ψ)Uj −
1

r

[

1 − ω2
j +

1

2

(

ω2
j+1 + ω2

j−1

)

]

ωj (18)

κ̇ = −κ2 + 1 + 2µG. (19)
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The main thrust of this article is to prove the existence of regular, black

hole, solutions of the field equations for general N with N − 1 degrees of

freedom. In other words, we begin with a regular event horizon at r = rh,

where µ = 0, and integrate outwards with increasing r. Later we shall classify

the possible behaviour of the solutions as r increases. We are interested

primarily in those solutions which possess the physical properties of a black

hole geometry, namely for which µ > 0 for all r > rh, the ωj and their

derivatives are finite for all r > rh and the spacetime becomes flat in the

limit r → ∞. We shall refer to such solutions as regular black hole solutions.

III. Elementary results

In this this section we state a few elementary results, which will prove

useful in later analysis. Firstly, two lemmas which are proved in the su(N)

case exactly as in the su(2) case, see.7

Lemma III.1 If µ(r0) < 1 for some r0 then µ(r) < 1 for all r ≥ r0.

Lemma III.2 As long as 0 < µ < 1 all field variables are regular functions

of r.

These two lemmas show that for a regular event horizon at r = rh, where

µ = 0, then µ < 1 for all r > rh and the field variables are regular functions as
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long as µ > 0. The black hole solutions we seek approach the Schwarzschild

geometry as r → ∞, so we may assume that all ωj are bounded for all r

(from lemma III.2 each ωj is bounded on every closed interval [rh, r1], so we

are simply assuming that ωj remains bounded as r → ∞). It will be proved

in section VI that this assumption is in fact valid for solutions having µ > 0

for all r. Define a quantity Mj for each j to be the lowest upper bound on

ω2
j , i.e.

ω2
j ≤ Mj, ∀j = 1, 2, . . . , N − 1. (20)

It has been shown in8 that the following result is true for N = 2, and proved

in general with the assumption that all ωj are bounded via an elegant method

in.11

Theorem III.3 Mj ≤ j(N − j).

Part of the proof of this theorem in11 involves a knowledge of where ωj

may have maxima or minima. The result following is less powerful than in

the su(2) case due to the coupling in the gauge field equation (8).

Proposition III.4 As long as µ(r) > 0, the function ωj(r) cannot have

maxima in the regions

ωj >

√

1 +
1

2

(

ω2
j+1 + ω2

j−1

)

and 0 > ωj > −
√

1 +
1

2

(

ω2
j+1 + ω2

j−1

)

(21)
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or minima in the regions

ωj < −
√

1 +
1

2

(

ω2
j+1 + ω2

j−1

)

and 0 < ωj <

√

1 +
1

2

(

ω2
j+1 + ω2

j−1

)

.

(22)

Proof

When ω′

j = 0, from (8),

µω′′

j = − 1

r2

[

1 − ω2
j +

1

2

(

ω2
j+1 + ω2

j−1

)

]

ωj , (23)

so that ωj will have a maximum if

ωj > 0 and ω2
j < 1 +

1

2

(

ω2
j+1 + ω2

j−1

)

(24)

or

ωj < 0 and ω2
j > 1 +

1

2

(

ω2
j+1 + ω2

j−1

)

. (25)

Similarly, ωj will have a minimum if

ωj > 0 and ω2
j > 1 +

1

2

(

ω2
j+1 + ω2

j−1

)

(26)

or

ωj < 0 and ω2
j < 1 +

1

2

(

ω2
j+1 + ω2

j−1

)

. (27)

�
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IV. Asymptotic behaviour of solutions

We seek solutions to the above field equations representing black holes

with a regular event horizon at r = rh and finite total energy density. In

order to prove the local existence of solutions of the field equations with the

desired asymptotic behaviour, we shall apply the following theorem.7

Theorem IV.1 Consider a system of differential equations for n+m func-

tions a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bm) of the form

x
dai
dx

= xpifi(x,a, b),

x
dbi
dx

= −λibi + xqigi(x,a, b), (28)

with constants λi > 0 and integers pi, qi ≥ 1 and let C be an open subset

of R
n such that the functions fi and gi are analytic in a neighbourhood of

x = 0, a = c, b = 0, for all c ∈ C. Then there exists an n-parameter family

of solutions of the system (28) such that

ai(x) = ci +O(xpi), bi(x) = O(xqi), (29)

where ai(x) and bi(x) are defined for c ∈ C, and |x| < x0(c) and are analytic

in x and c.

In this section we consider only the equations for µ and the ωj . The equa-

tion for S (10) is independent of the others and hence can be integrated
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immediately once we have the other field variables, with an additional pa-

rameter. This procedure gives a finite answer on any closed, bounded interval

on which the remaining variables are finite. Results similar to propositions

IV.2 and IV.3 were proved in,11 but here we are using a more straightforward

approach.

A. Behaviour at infinity

As r → ∞, in order to have finite total energy density, the geometry must

approach the Schwarzschild solution, that is

m→M = constant, G→ 0, pθ → 0. (30)

Hence each ωj must approach a constant value, which is fixed by (30) to be

ω2
j → j(N − j). (31)

The equations for the ωj are then automatically satisfied in the limit as

r → ∞.

Proposition IV.2 There exists an N-parameter family of local solutions of

(8–11) near r = ∞ analytic in cj, M and r−1 such that

µ(r) = 1 − 2M

r
+O

(

1

r4

)

ωj(r) =
√

j(N − j) − cj
r

+O

(

1

r2

)

. (32)
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Proof

Introduce new variables

x =
1

r
, ψj = r

(

√

j(N − j) − ωj

)

, ξj = r2µω′

j λ = r (1 − µ) .

(33)

Then

x
dλ

dx
= −2

x

(

µG+ r2pθ
)

(34)

where

G = x4
N−1
∑

j=1

ξ2
j

µ2
(35)

and

pθ =
x4

4

N
∑

j=1

[

x2ψ2
j − x2ψ2

j−1 − 2xψj
√

j(N − j)

+2xψj−1

√

(j − 1)(N − j + 1)
]2

, (36)

that is,

x
dλ

dx
= −x3fλ (37)

where fλ is a polynomial in x, µ−1, ξ’s and ψ’s. Similarly,

x
dψj
dx

= −ψj +
1

µ
ξj = −ψj + ξj + xfψj

(38)

where fψj
is analytic in x, λ, ψ’s and ξ’s in a neighbourhood of x = 0. Using

the field equations we also have

x
dξj
dx

= −2ξj + 2ψj [j(N − j)] − ψj−1

√

j(j − 1)(N − j)(N − j + 1)

−ψj+1

√

j(j + 1)(N − j)(N − j − 1) + xfξj (39)

13



where fξj is a polynomial in x, µ−1, ψ’s and ξ’s. The algebra simplifies if we

define new functions αj , βj such that

ψj = αj + βj

ξj = αj + Λβj (40)

where Λ is a real constant not equal to unity. The equations for αj and βj

then read

(Λ − 1)x
dαj
dx

= 2αj − 2[j(N − j)]αj +
√

j(j − 1)(N − j)(N − j + 1)αj−1

+
√

j(j + 1)(N − j)(N − j − 1)αj+1 + (Λ2 + Λ)βj

−2[j(N − j)]βj +
√

j(j − 1)(N − j)(N − j + 1)βj−1

+
√

j(j + 1)(N − j)(N − j − 1)βj+1 + xfαj

(Λ − 1)x
dβj
dx

= −2αj + 2[j(N − j)]αj −
√

j(j − 1)(N − j)(N − j + 1)αj−1

−
√

j(j + 1)(N − j)(N − j − 1)αj+1 + (1 − 3Λ)βj

+2[j(N − j)]βj −
√

j(j − 1)(N − j)(N − j + 1)βj−1

−
√

j(j + 1)(N − j)(N − j − 1)βj+1 + xfβj
, (41)
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where the fαj
and fβj

are analytic functions of x, µ−1, α’s and β’s. Consider

the matrix MN−1 whose entries are

























2(N − 1) −
√

(N − 1)2(N − 2) . . .

−
√

(N − 1)2(N − 2) 2.2(N − 2) . . .

0 −
√

2(N − 2)3(N − 3) . . .

...
...

...

























. (42)

For a vector q = (q1, . . . , qN−1), let pj =
√

j(N − j)qj for j = 1, . . . , N − 1.

Then

qTMN−1q = p2
1 + p2

N−1 + (p1 − p2)
2 + . . . (pN−2 − pN−1)

2 . (43)

Hence the matrix MN−1 is real, symmetric and positive definite, and will

have positive real eigenvalues Ei, and corresponding eigenvectors vi. We may

expand our variable vectors in terms of eigenvectors of MN−1 as follows:

α =

N−1
∑

i=1

Ai(x)vi β =

N−1
∑

i=1

Bi(x)vi (44)

fα =
N−1
∑

i=1

Fi(x)vi fβ =
N−1
∑

i=1

Gi(x)vi, (45)

in terms of which the equations (41) now become:

(Λ − 1)x
dAi
dx

= (2 − Ei)Ai + (Λ2 + Λ − Ei)Bi + xFi

(Λ − 1)x
dBi

dx
= (Ei − 2)Ai + (1 − 3Λ + Ei)Bi + xGi. (46)

15



This transformation has removed the coupling between the j’s but the A’s

and B’s are still coupled. Repeating the procedure with the matrix Pi will

decouple these equations, where

Pi =









2 − Ei Λ2 + Λ − Ei

−2 + Ei 1 − 3Λ + Ei









. (47)

This matrix has eigenvalues

µ± =
1

2
(1 − Λ)

(

3 ±
√

1 + 4Ei
)

(48)

and corresponding eigenvectors V ±. Writing








Ai

Bi









= C+(x)V + + C−(x)V −,









Fi

Gi









= D+(x)V + +D−(x)V −,

(49)

the equations are now

(Λ − 1)x
dC±

dx
= µ±C± + xD±. (50)

In the case where µ− < 0, theorem IV.1 applies directly and we have

C− = O(x); (51)

when µ− = 0 (corresponding to Ei = 2),

C− = K− +O(x) (52)

for some constant K−. The other eigenvalue µ+ is always strictly positive,

and in this situation theorem IV.1 does not apply. However, equation (50)
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can be integrated using the standard Picard method (see, for example,13) to

give an analytic solution

C+ = K+ +O(x). (53)

Both C± will be analytic in K± and x in some neighbourhood of x = 0 and

substituting back through equations (44,49) gives solutions of the form (32)

as required. �

B. Behaviour at the event horizon

We assume that at r = rh there is a non-degenerate event horizon, namely

µ(rh) = 0, but µ′(rh) > 0 is finite.

Proposition IV.3 There exists an N-parameter family of local solutions of

(8–11) near r = rh, analytic in rh, ωj,h and r such that

µ(rh + ρ) = µ′(rh) +O(ρ),

ωj(rh + ρ) = ωj,h + ω′

j(rh) +O(ρ2) (54)

where µ′(rh) and ω′

j(rh) are functions of the ωj,h.

Proof

Let ρ = r − rh be the new independent variable, and define

x = r, λ =
µ

ρ
, ψj = ωj , ξj =

µω′

j

ρ
. (55)

17



Then the field equations take the form

ρ
dx

dρ
= ρ, (56)

ρ
dλ

dρ
= −λ+

[

1

x
− 2xpθ

]

+ ρ
λ

x
[1 − 2G]

= −λ+ ρHλ + Fλ (57)

ρ
dψj
dρ

=
ρξj
λ

(58)

ρ
dξj
dρ

= −ξj + ρHj + Fj , (59)

where the F ’s and H ’s are polynomials in x−1, λ−1, and the other variables,

and the F ’s depend only on x and ψj ’s. Next define

ξ̃j = ξj − Fj, λ̃ = λ− Fλ, (60)

whose derivatives are given by

ρ
dξ̃j
dρ

= −ξ̃j + ρGj (61)

ρ
dλ̃

dρ
= −λ̃ + ρGλ. (62)

Here the G’s are analytic in x−1, λ−1, λ, x, λ̃, ψj , ξ̃j . Applying theorem IV.1,

there exist solutions of the form

x = rh + ρ, ψj = ωj,h +O(ρ), λ̃, ξ̃j = O(ρ), (63)

which gives the behaviour (54), together with the required analyticity. From

the field equations (8–11), setting µ(rh) = 0 gives the following relations:

µ′(rh) =
1

2
r2
hpθ(rh) (64)

18



ω′

j(rh) = −
[

1 − ω2
j,h + 1

2

(

ω2
j−1,h + ω2

j+1,h

)

ωj,h
]

rh − r3
hpθ(rh)

(65)

where

pθ(rh) =
1

4r4
h

N
∑

j=1

[

ω2
j,h − ω2

j−1,h −N − 1 + 2j
]2
. (66)

�

V. Flat space solutions

The behaviour of the gauge field equations in the flat space limit will be

useful later in section VI when we come to examine the properties of regular

solutions. We are not concerned here with the global existence of flat space

solutions but only the local properties pertinent to the curved space problem.

The analysis here is similar to that in,7 but note that for general N there

will beN−1 coupled gauge field equations. The powerful Poincaré-Bendixson

theory of autonomous systems is not applicable when N > 2, and so we will

be able to derive only correspondingly weaker results, and cannot draw a

phase portrait. Fortunately the theorems later require only a knowledge of

the nature of the critical points and the local behaviour close to these points,

which is the subject of this section.

In flat space the gauge field equations reduce to:

r2ω′′

j +

[

1 − ω2
j +

1

2

(

ω2
j+1 + ω2

j−1

)

]

ωj = 0. (67)
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These equations can be made autonomous by changing variables to τ = log r,

and denoting d/dτ by :̇

ω̈j − ω̇j +

[

1 − ω2
j +

1

2

(

ω2
j+1 + ω2

j−1

)

]

ωj = 0. (68)

This system of N − 1 coupled equations has critical points when

[

1 − ω2
j +

1

2

(

ω2
j+1 + ω2

j−1

)

]

ωj = 0. ∀j = 1, 2, . . . , N − 1. (69)

If ωj 6= 0 for all j then

ωj =
√

j(N − j). (70)

There is also a critical point when ωj = 0 for all j.

The other critical points can be described as follows. Suppose that ωi = 0

and ωi+k = 0 but that ωi+m 6= 0 for m = 1, . . . , k − 1 (where k ≥ 2). The

critical point is then described by the equations

0 = ωi

0 = 1 − ω2
i+1 +

1

2

(

ω2
i + ω2

i+2

)

...

0 = 1 − ω2
i+k−1 +

1

2

(

ω2
i+k−2 + ω2

i+k

)

0 = ωi+k (71)

which have the solution

ωi+m =
√

m(k −m) for m = 1, . . . , k − 1. (72)
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In other words, if we have a run of k non-zero ω’s with zero ωi at each end,

then the solution for the non-zero ω’s is the same as the N = k case with no

zero ω’s. We can also put together a run of as many zero ω’s as we like in

the critical point.

In order to classify the critical points, we linearize the field equations.

Let

ωj(τ) = ω
(0)
j + ǫj(τ) (73)

where ω
(0)
j is the value of ωj at the critical point and ǫj is a small perturbation.

The equation for ǫj is, to first order,

0 = ǫ̈j − ǫ̇j + ǫj

[

1 − ω
(0)2
j +

1

2

(

ω
(0)2
j+1 + ω

(0)2
j−1

)

]

+ω
(0)
j

[

−2ǫjω
(0)
j + ǫj+1ω

(0)
j+1 + ǫj−1ω

(0)
j−1

]

. (74)

We shall take the two cases we need to consider in turn.

Firstly, the case where ω
(0)
j = 0, when the equation for ǫj reduces to

ǫ̈j − ǫ̇j + ǫj

[

1 +
1

2

(

ω
(0)2
j+1 + ω

(0)2
j−1

)

]

= 0. (75)

In order to find the nature of the critical point, let

ǫj = eλτ , (76)

then λ satisfies the equation

λ2 − λ+

[

1 +
1

2

(

ω
(0)2
j+1 + ω

(0)2
j−1

)

]

= 0. (77)
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This implies that

λ =
1

2
± 1

2
iα, (78)

where α is the positive real number given by

α2 = 3 + 2ω
(0)2
j+1 + 2ω

(0)2
j−1 . (79)

We conclude that, in the (ǫj , ǫ̇j) plane, we have an unstable focal point, as

found in the su(2) case in.7

Secondly, we consider the situation in which there is at least one ω
(0)
j

which is non-zero. Suppose that ω
(0)
i = 0, and ω

(0)
i+k = 0, but ω

(0)
i+m 6= 0 for

m = 1, . . . , k− 1, where we include the case that i = 0 and k = N . Then we

have a series of coupled perturbation equations:

0 = ǫ̈i+1 − ǫ̇i+1 − 2ǫi+1ω
(0)2
i+1 + ǫi+2ω

(0)
i+2ω

(0)
i+1

0 = ǫ̈i+2 − ǫ̇i+2 − 2ǫi+2ω
(0)2
i+2 + ǫi+3ω

(0)
i+3ω

(0)
i+2 + ǫi+1ω

(0)
i+1ω

(0)
i+2

...

0 = ǫ̈i+k−1 − ǫ̇i+k−1 − 2ǫi+k−1ω
(0)2
i+k−1 + ǫi+k−2ω

(0)
i+k−2ω

(0)
i+k−1. (80)

Define a vector ǫ by

ǫ = (ǫi+1, . . . , ǫi+k−1)
T (81)

and consider solutions of the form

ǫ = eλτq (82)
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where q is a constant vector. Then λ2−λ are eigenvalues of the matrix Mk−1

given by (42). As discussed in section IV, the matrix Mk−1 has positive real

eigenvalues Ej. Then

λ =
1 ±

√

1 + 4Ej
2

= j + 1,−j (83)

will have positive and negative real values and there is a saddle point. Again

this is in direct analogy with the su(2) case.7

VI. Global behaviour of the solutions

In this section we investigate the behaviour of solutions of the regular

field equations (14–19) as functions of τ . From section IV, we know that,

given any starting values ωj,h for the gauge field functions, then there is a

local solution of the field equations in a neighbourhood of the regular event

horizon at r = rh, τ = 0, which is analytic in τ and the initial parameters.

Furthermore, from lemma III.2 as long as 0 < Ψ < 1 the solutions remain

regular. Therefore, as we integrate out in τ from the event horizon there are

only three possibilities:

1. There is a τ0 > 0 such that Ψ(τ0) = 0.

2. For all τ > 0, we have Ψ(τ) > 0 and r(τ) remains bounded as τ → ∞.

3. For all τ > 0, we have Ψ(τ) > 0 and r(τ) → ∞ as τ → ∞.
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We refer to solutions of the first type as singular solutions. Those of type

2 are known as oscillating solutions in7 and we retain their terminology. It

will be shown below (proposition VI.4), that there is a maximum value rmax

of r for oscillating solutions. Finally, we denote by S∞ solutions of the first

type for which r(τ0) < rmax. Our first task is to show that solutions of type

3 are precisely the black hole solutions we are seeking. We begin by proving

the assumption made at the end of section II, namely that for solutions of

type 3, each ωj is bounded for all r.

Lemma VI.1 If Ψ(τ) > 0 for all τ and limτ→∞ r(τ) = ∞ then all the ωj

remain bounded as r → ∞.

Proof

From the local existence propositions IV.3 and IV.2 and lemma III.2, each

ωj is an analytic function of r as long as µ > 0. Introduce a new variable

x = r−1, then each ωj is an analytic function of x in a neighbourhood of

x = 0, except possibly at x = 0, and can be written as a Laurent series:

ωj(x) =

∞
∑

n=−∞

ajnx
n. (84)

In order for µ > 0 for all r, it must be the case that 2mr−1 = 2mx <

1, although m itself need not necessarily remain bounded. Hence 2mx is

bounded in a neighbourhood of x = 0, and in particular is analytic at x = 0.
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Therefore we can write

2mx =

∞
∑

n=0

bnx
n. (85)

Thus

m =
1

2

∞
∑

n=0

bnx
n−1,

dm

dr
= −x2dm

dx
= −1

2

∞
∑

n=0

bn(n− 1)xn, (86)

so that dm/dr is analytic in a neighbourhood of x = 0. From the field

equations,

dm

dr
= µG+ r2pθ (87)

where

G =

N−1
∑

j=1

(

dωj
dr

)2

r2pθ =
x2

4

N
∑

j=1

[

ω2
j − ω2

j−1 −N − 1 + 2j
]2
. (88)

Since both G and r2pθ are positive, they must each be analytic in a neigh-

bourhood of x = 0. Consider G first, using

dωj
dr

= −x2dωj
dx

= −
∞

∑

n=−∞

ajnnx
n+1 (89)

and since
(

dωj

dr

)2

must be analytic near x = 0, it must be the case that

ajn = 0 ∀n < −1. (90)

Then

ω2
j =

aj2
−1

x2
+

∞
∑

n=−1

cjnx
n (91)
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for constants cjn and hence

ω2
j − ω2

j−1 −N − 1 + 2j =
1

x2

[

aj2
−1 − a

(j−1)2
−1

]

+
∞

∑

n=−1

djnx
n. (92)

Since r2pθ is analytic,

aj
−1 = ±aj−1

−1 ∀j. (93)

But ω0 ≡ 0, so a0
−1 = 0 and thus aj

−1 = 0 for all j. We conclude that ωj is

analytic at x = 0, and therefore finite as x = 0. Therefore ωj is bounded for

all r ∈ [rh,∞). �

Proposition VI.2 If Ψ(τ) > 0 for all τ and limτ→∞ r(τ) = ∞ then the

solution tends to one of the flat space critical points, with the exception of

the origin.

The proof of this proposition closely follows Proposition 14 of Ref. 7, the

main thrust of which is the following lemma.

Lemma VI.3 If Ψ(τ) > 0 for all τ and limτ→∞ r(τ) = ∞ then

lim
τ→∞

Ψ(τ) = 1. (94)

Proof

There are two cases to consider.

1. There is at least one ωj which has zeros for arbitrarily large r.
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2. All ωj have only a finite number of zeros.

Case 1

The proof in this situation follows exactly that of Proposition 14 of Ref. 7

(equations (74–76)) since all the ωj’s are bounded (lemma VI.1).

Case 2

In this case there is a T1 > 0 such that for all τ > T1 no ωj has a zero.

However, since the equations governing the ωj are coupled, the ωj do not

necessarily have to be monotonic, provided proposition III.4 is satisfied.

Suppose, initially, that there is a T2 > T1 such that for all τ > T2 every

ωj is monotonic. In this situation each ωj has a limit and so limτ→∞ Uj = 0

for all j. Then the proof of Proposition 14 of Ref. 7 carries over directly to

show that m(τ) is bounded and limτ→∞ Ψ(τ) = 1. The proof proceeds as

follows. Firstly, in analogy to equation (74) of Ref. 7, integrating the field

equations (14–19) gives, for each j,

|ΨUj(τ2) − ΨUj(τ1)| ≤
cj
r(τ1)

(95)

for all τ2 > τ1 > T2, and some constant cj, since all the ωj are bounded. Fix

τ1 for the moment, then for all τ3 > τ1,

∫ τ3

τ1

rΨU2
j dτ

′ ≤ c′j

∫ τ3

τ1

ω̇j dτ
′ ≤ c′′j (96)
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for constants c′j and c′′j , since ωj has a limit. Hence

m(τ3) −m(τ1) ≤
1

2

N−1
∑

j=1

c′′j (97)

which is bounded.

Next turn to the other extreme situation, where ω2
j has minima for arbi-

trarily large r, for every j. If ω2
j has a minimum at r = r0, then by proposition

III.4,

ω2
j (r0) ≥ 1 +

1

2

(

ω2
j+1(r0) + ω2

j−1(r0)
)

. (98)

Define Nj to be the greatest lower bound of the set of minimum values of ω2
j

for τ > T1, where Nj can be zero (although ω2
j cannot). Then we have

Nj ≥ 1 +
1

2
(Nj+1 +Nj−1) . (99)

These inequalities may be solved to give

Nj ≥ j(N − j) ∀j. (100)

However, since ω2
j ≤ j(N − j) for all j from theorem III.3, it follows that

ω2
j (τ) = j(N− j) for sufficiently large τ and all j. Therefore Uj(τ) is zero for

sufficiently large τ , hence m(τ) is bounded as τ → ∞ and limτ→∞ Ψ(τ) = 1.

The remaining intermediate case is where ωj and ωj+l, where l > 1, are

monotonic for all sufficiently large τ , whilst ω2
j+i, i = 1, . . . , l−1 have minima
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for arbitrarily large τ . We include the possibility that j = 0, to cover the

case where there is only one ωi which has a limit. Define L1 and L2 by

ω2
j → L1, ω2

j+l → L2 (101)

as τ → ∞. Given ǫ > 0, there is a T1 such that

∣

∣ω2
j − L1

∣

∣ < ǫ,
∣

∣ω2
j+l − L2

∣

∣ < ǫ ∀τ > T1. (102)

If ω2
j+1 has a minimum at τ0 > T1, then

ω2
j+1(τ0) ≥ 1 +

1

2

(

ω2
j+2(τ0) + ω2

j (τ0)
)

≥ 1 +
1

2

(

ω2
j+2(τ0) + L1 − ǫ

)

. (103)

With Nj+1 as before, then

Nj+1 ≥ 1 +
1

2
Nj+2 +K1 (104)

where K1 = 1
2
(L1 − ǫ). Similarly,

Nj+l−1 ≥ 1 +
1

2
Nj+l−2 +K2 (105)

where K2 = 1
2
(L2 − ǫ). The remaining inequalities for Nj+2, . . . , Nj+l−2 are

exactly as before (99). The previous method can be repeated to give

Nj+i ≥ i(l − i) +K1 +K2 i = 1, . . . , l − 1. (106)

Now define Ñi to be the lowest upper bound of the set of maximum values

of ω2
i (which exists since ω2

i is bounded). If ω2
j+1 has a maximum at τ0 > T1,
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then

ω2
j+1(τ0) ≥ 1 +

1

2

(

ω2
j+2(τ0) + ω2

j (τ0)
)

≥ 1 +
1

2

(

ω2
j+2 + L1 + ǫ

)

. (107)

The analysis now proceeds exactly as in the previous paragraph and yields

Ñj+i ≤ i(l − i) + K̃1 + K̃2 i = 1, . . . , l − 1 (108)

where K̃i = 1
2
(Li + ǫ) for i = 1, 2. In addition, by definition it must be the

case that

Ñj+i ≥ Nj+i (109)

which means that

i(l − i) +
1

2
(L1 + L2) − ǫ ≤ Nj+i ≤ Ñj+i ≤ i(l − i) +

1

2
(L1 + L2) + ǫ (110)

for all ǫ > 0, whence Ñj+i = Nj+i for all i and

ω2
j+i = i(l − i) +

1

2
(L1 + L2) (111)

for sufficiently large τ .

In conclusion, then, we have shown that the intermediate case has some

ωj ’s which are monotonic for sufficiently large τ , with the remaining ωj ’s

being constant for sufficiently large τ . Hence in this case also m is bounded

as τ → ∞ and limτ→∞ Ψ(τ) = 1. �
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Proof of Proposition VI.2

In order to show that the geometry becomes flat as τ → ∞, it remains to

show that S → 1 as τ → ∞. From the proof of lemma VI.3, for ωj having a

limit as τ → ∞, we have

rUi = ω̇i → 0 (112)

as τ → ∞. In case 1 of the proof of lemma VI.3, the proof of7 carries straight

over to show that Ui → 0 as τ → ∞ also in this situation. Now

Ṡ

S
= ΨG =

1

Ψ

N−1
∑

i=1

U2
i ≤ C

Ψr2
(113)

for some constant C and sufficiently large τ . Therefore

S ′

S
=
Ṡ

S

1

rΨ
≤ C

µr3
≤ C̃

r3
(114)

for some constant C̃ and sufficiently large τ , as µ → 1 as τ → ∞. This

means that S has a finite limit as τ → ∞.

The field equations only involve S′

S
rather than just S itself. Therefore S

is defined only up to a multiplicative constant, and without loss of generality

we may therefore take the finite limit of S as τ → ∞ to be 1, so that the

spacetime is asymptotically flat.

Let δ(τ) = 2Ψ − κ− 1 be a small perturbation, then the equation for ωj

reads

ω̈j +

[

1 − ω2
j +

1

2

(

ω2
j+1 + ω2

j−1

)

]

ωj = (1 + δ(τ)) ω̇j (115)
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as τ → ∞. Since δ is small, it does not alter the position or nature of the

critical points as compared with the exactly flat space case. Lemma VI.3

showed that each ω̇j, ω̈j → 0 as τ → ∞. Hence ωj must approach one of

the critical points whose nature was elucidated in section V. The flat space

analysis showed that, if ωj = 0, then there is an unstable focal point in the

(ωj , ω̇j) plane. Hence our solution cannot approach this value, unless ωj ≡ 0.

The solution has to tend to one of the saddle points along a stable direction,

and, in direct analogy with the su(2) case,14 there are no solutions where

ωj → 0 as τ → ∞. The solution must therefore be a member of the family

found in the local existence theorem IV.2. �

The power of proposition VI.2 lies in that, if we can prove the existence

of solutions for which Ψ > 0 for all τ > 0 and r → ∞, then these solutions

are automatically the regular black holes (and, if rh → 0, soliton solutions1)

we seek. We close this section by determining the asymptotic behaviour of

solutions of type 2.

Proposition VI.4 If Ψ(τ) > 0 for all τ > 0 and r(τ) remains bounded,

then Ψ → 0 and κ → 1 as τ → ∞. In addition, there is at least one j for

which ωj → 0 as τ → ∞, and this ωj has infinitely many zeros.

Proof

32



Since r is monotonic increasing and bounded, it has a limit r0. In addition,

m is monotonic increasing and bounded since the positivity of µ implies that

m <
r

2
≤ r0

2
. (116)

As τ → ∞, ṙ → 0 and hence Ψ → 0 from (14). Consider the quantity

E = −r
2

4

(

1 + Ψ2 − 2κΨ
)

= −r
2

2

(

−µG+ r2pθ
)

. (117)

Then

Ė = 2r2µGΨ − r2κµG

< r2µG(1 − κ)

< 0, (118)

for sufficiently large τ for which Ψ < 1/2, and since κ > 1.7 Hence

E → −r
2
0

4
(119)

as τ → ∞, since E is monotonically decreasing for sufficiently large τ . Then,

following,7 we have κ→ 1 as τ → ∞.

Let δ(τ) = κ− 2Ψ − 1 be small, then the equation for ωj reads

ω̈j = ω̇j (−1 − δ) − ωj

[

1 − ω2
j +

1

2

(

ω2
j+1 + ω2

j−1

)

]

. (120)

Replacing τ by −τ yields the equation

ω̈j = ω̇j (1 + δ) − ωj

[

1 − ω2
j +

1

2

(

ω2
j+1 + ω2

j−1

)

]

. (121)
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which is the equation for flat space solutions, so that ωj must approach one

of the critical points. The fact that E 6= 0 means that pθ cannot tend to zero

as τ → ∞ because µG does vanish in the limit. Hence at least one of the

ωj ’s must be zero as τ → ∞. Since δ is small it alters neither the position

nor the characteristics of the critical points, and hence this ωj will go into

the focus at zero. Therefore it oscillates infinitely many times before it hits

zero. �

We may determine the value of r0 as follows. Since κ is finite and we have

(119), it follows that r2pθ → 1/2 as τ → ∞. Hence

r2
0 =

1

2
lim
τ→∞

N
∑

j=1

(

ω2
j − ω2

j−1 −N − 1 + 2j
)2
. (122)

The maximum possible value of r2
0 is when all ωj → 0 as τ → ∞. In this

case:

r2
0,max =

1

2

N
∑

j=1

(−N − 1 + 2j)2 =
1

6
N(N − 1)(N + 1). (123)

The minimum possible value of r2
0 is when only one ωj → 0 as τ → ∞, when

r2
0 = j2(N − j)2 (124)

which has a minimum when j = 1 or N − 1, and

r2
0 = (N − 1)2. (125)

With this value of r0, we follow7 and denote by S∞ singular solutions for

which µ vanishes outside the event horizon when r < r0,max.
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VII. su(3) black holes

We are now in a position to prove the existence of regular black holes. We

begin in this section with su(3), which we shall study in some detail, before

proceeding to the general case in the next section. The method in general

is exactly the same as in this section, but it is hoped that by doing the

simplest specific case, where we have just two gauge field degrees of freedom,

explicitly, the proof will be more transparent.

Genuine su(3) solutions (as opposed to embedded su(2) solutions which

are discussed below) have been found numerically in.11 There it was con-

jectured that, analogous to the su(2) case, black hole solutions exist for an

infinite, but discrete, set of points in the parameter space given by the values

at the event horizon of the functions describing the gauge degrees of freedom.

Firstly, we review briefly the way in which su(2) solutions may be embed-

ded in su(3). For neutral black holes, numerical solutions are discussed in,5

where both su(2) and so(3) embeddings are discussed. The so(3) embedding

contains scaled su(2) black holes as well as genuine so(3) solutions possessing

two degrees of freedom, which are indexed by the number of nodes of each

of the gauge field functions. The method for embedding charged black holes

can be found in,4 where the various possible embeddings are described in de-
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tail and numerical solutions presented for the various embeddings in su(5).

Such solutions possess Coulomb charge arising from one or more of the gauge

degrees of freedom. The remaining gauge field functions do not contribute

to the charge and have structures similar to the neutral solutions. The black

holes are once again indexed by the number of nodes of the gauge functions.

Neutral black holes

Let ω1(r) =
√

2ω(r) and ω2(r) =
√

2ω(r). Then the field equations (8–11)

become:

r2µω′′ = −
(

2m− 2r3pθ
)

ω′ −
(

1 − ω2
)

ω, (126)

m′ =
(

µG+ r2pθ
)

, (127)

S ′

S
=

2G

r
, (128)

where

µ = 1 − 2m

r
, G = 4ω

′2, pθ =
2

r4

(

ω2 − 1
)2
. (129)

In order to extract the precise form of the su(2) equations, define a new

independent variable R and a new dependent variable M by

R =
1

2
r, M =

1

2
m, (130)

with the other field variables remaining unchanged. Then the equations are

R2µ
d2ω

dR2
= −

[

2M − (ω2 − 1)2

2R

]

dω

dR
−

(

1 − ω2
)

ω, (131)
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dM

dR
=

[

µ

(

dω

dR

)2

+
1

2R2

(

ω2 − 1
)2

]

(132)

1

S

dS

dR
=

2

R

(

dω

dR

)2

. (133)

These are now exactly the su(2) field equations, and the existence of regular

black hole solutions has been proved in.7,9

Charged black holes

Suppose ω2(r) ≡ 0 (the case ω1(r) ≡ 0 is identical). Then

r2µω′′

1 = −
(

2m− 2r3pθ
)

ω′

1 −
(

1 − ω2
1

)

ω1, (134)

m′ =

[

ω
′2
1 +

1

2r2

(

ω2
1 − 1

)2
+

3

2r2

]

, (135)

S ′

S
=

2ω
′2
1

r
. (136)

While these equations are not the same as those for su(2) neutral black holes,

the equations for κ, Ψ, U , ω1, r and S as functions of τ are identical. Hence

the analysis of7 carries over immediately to prove the existence of black hole

solutions of this form.

Our first existence proposition states the existence of genuine su(3) black

holes, that is, black holes which do not belong to one of the two families

outlined above. The proof is remarkably simple once we have set up our

notation suitably.
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Proposition VII.1 There exist regular black hole solutions of the su(3)

Einstein-Yang-Mills equations which do not correspond to embedded su(2)

charged or neutral black holes.

The strategy in proving this proposition is very similar to that used in.7

Generic values of the starting parameters (ω1,h, ω2,h) lead to a singular so-

lution, but we will prove that there must be some values of the starting

parameters which do not lead to a singular solution. Firstly, we rule out the

possibility of solutions of type 2. From section VI, any solution for which

µ(τ) > 0 for all τ and r(τ) remains bounded as τ → ∞, has r → r0 as

τ → ∞, where

(N − 1)2 ≤ r2
0 ≤ 1

6
N(N + 1)(N − 1). (137)

For N = 3, therefore, r0 = 2. Fixing rh > 2 will therefore rule out the

possibility of such solutions. This is analogous to the value rh > 1 which

rules out such solutions in the su(2) case. At the end of this section we shall

return to the existence proof for rh ≤ 2.

For every pair of starting values (ω1,h, ω2,h) there are then just two pos-

sibilities:

1. µ(τ) > 0 for all τ and we have a regular black hole solution;

2. there is a τ0 > 0 such that µ(τ0) = 0 and we have a singular solution.
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Define a new variable R by

R =
r − rh
r

(138)

and Rm by the maximum value of R for each solution, that is, in case one

Rm = 1 (corresponding to r → ∞), and in case two Rm = R(τ0). For each

solution we define ni to be the number of zeros of the function ωi between

τ = 0 and τ = ∞ in case 1 and τ = τ0 in case 2, where ni can be infinite.

Defining new variables Ni by

Ni =
ni

1 + ni
(139)

we allow the possibility that Ni = 1.

Each pair of non-zero starting values (ω1,h, ω2,h) can then be mapped to

the three quantities (Rm, N1, N2) for the corresponding solution, giving rise

to a map from R
2 ((ω1,h, ω2,h) space) to B

2×[0, 1] ((Rm, N1, N2) space), where

B is the discrete set {0, 1/2, 2/3, 3/4, . . . , 1}. Call this map f . Figures 1–3

sketch the nature of (ω1,h, ω2,h) space, B × [0, 1] and B
2 respectively. Note

that this map will not be 1-1 for N = 3, although it was conjectured in7 that

for N = 2 the map is 1-1.

Note that since we know the nature of the solution space when one of the

ωi,h vanishes (since in this case ωi ≡ 0), we do not need to extend the map f

to the co-ordinate axes in (ω1,h, ω2,h) space. With this notation, we are ready
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to prove proposition VII.1, once we have the following lemma.

Lemma VII.2 Suppose that for starting values (ω̄1,h, ω̄2,h) there is a singular

solution with µ(τ̄0) = 0 and the gauge field functions having node structure

(n̄1, n̄2). Then the map f is continuous at (ω̄1,h, ω̄2,h).

Proof

From proposition IV.3, the field variables are continuous in τ and the starting

parameters. Thus all starting values (ω1,h, ω2,h) in a sufficiently small neigh-

bourhood of (ω̄1,h, ω̄2,h) will give rise to a singular solution with µ(τ0) = 0

where τ0 is close to τ̄0, the values of the field variables at τ0 will be close to

those at τ̄0 in the original solution and the node structure will be (n̄1, n̄2)

since the gauge field functions cannot have double zeros (proposition III.4).

In other words, f is continuous at (ω̄1,h, ω̄2,h). �

Proof of Proposition VII.1

Consider the open subset of the (ω1,h, ω2,h) plane given by

D = {(ω1,h, ω2,h) : 0 < ω1,h < ω2,h}. (140)

The subset D′ = {(ω1,h, ω2,h) : 0 < ω2,h < ω1,h} can be treated similarly. The

symmetries of the field equations (8–11) mean that it is sufficient to consider

only the first quadrant of the (ω1,h, ω2,h) plane. From7 we know that along

the line ω1,h = ω2,h there are singular solutions with node structure (n1, n1)
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for all n1 = 1, 2, . . .. Therefore there are neighbourhoods of D corresponding

to singular solutions with node structure (n1, n1) for all n1 = 1, 2, . . .. Hence

f(D) contains points corresponding to (Rm, N1, N1) for allN1 ∈ B. Therefore

f(D) is not a connected set. Therefore f cannot be continuous everywhere

on D because D is connected. Hence we conclude that there exists at least

one (ω1,h, ω2,h) ∈ D corresponding to a black hole solution because f is

continuous for all (ω1,h, ω2,h) corresponding to singular solutions. �

This approach allows us to see quite simply how the transversality prop-

erty conjectured in7 arises in the su(2) case. Along the line of values of ωh,

singular solutions having different numbers of nodes must be separated by at

least one regular solution. For su(2), it is known that values of ωh sufficiently

close to 1 correspond to singular solutions with ω having one node, whilst

sufficiently small ωh correspond to solutions having as many nodes as we

like. In addition, if we have a regular solution with n nodes, then all singular

solutions with ωh sufficiently close have either n or n + 1 nodes. Starting

with the singular solutions with one node, and decreasing ωh, we first hit a

regular solution with one node (there being only the trivial solution with no

nodes). Then there may be more singular solutions with one node, or two

nodes. In the former case there must be another regular solution with one

node, in the latter case there will next be a regular solution with two nodes.
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Either way, there must be a regular solution with two nodes before we can

move on to singular solutions with n > 2 nodes. The process continues for

all n.

Having shown that there exist genuine su(3) black holes, the main result

of this section is the following theorem, which we prove at the moment for

the case rh > 2, returning to the case rh ≤ 2 at the end of the section.

Theorem VII.3 Given n̄1 = 0, 1, . . ., then there exist regular black hole

solutions of the su(3) Einstein-Yang-Mills equations with ω1(r) having n̄1

nodes and ω2(r) having n2 nodes, for infinitely many n2 ≥ n̄1.

A similar result holds with the roles of ω1 and ω2 reversed. Note that this

result is slightly weaker than the corresponding theorem for su(2), since we

cannot guarantee that every combination of (n1, n2) is the node structure of

the gauge fields for some black hole solution, only that an infinite number of

such combinations does occur for each n1. At the end of this section we shall

give an argument, based on a numerical analysis, that in fact black holes

exist for all (n1, n2), although we are not able to prove this analytically. The

proof of theorem VII.3 will proceed via a series of lemmas.

Lemma VII.4 Suppose that the starting parameters (0, ω̄2,h) correspond to

a charged regular black hole solution in which ω2(r) has n̄2 zeros. Then,
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given n0, for all sufficiently small ω1,h and ω2,h sufficiently close to ω̄2,h, the

solutions are regular or singular solutions with n1 ≥ n0 and n2 ≥ n̄2.

Proof

By continuity, all field variables will remain close to the original charged

solution until r ≫ 1 and the geometry is approximately flat. At this point

ω1 will be very small and ω2 will be close to 1. The equations for ǫ1 = ω1

and ǫ2 = ω2 − 1 as functions of τ are, in this regime, to first order,

0 = ǫ̈1 − ǫ̇1 +
3

2
ǫ1

0 = ǫ̈2 − ǫ̇2 − 2ǫ2. (141)

This corresponds to a focus in the (ω1, ω̇1) plane, and hence with ω1,h suffi-

ciently small, ǫ1 will have at least n0 zeros. �

Lemma VII.5 If (ω̄1,h, ω̄2,h) leads to a regular black hole solution with ω1

having n̄1 nodes and ω2 having n̄2 nodes, then all (ω1,h, ω2,h) sufficiently close

to (ω̄1,h, ω̄2,h) lead to regular or singular solutions with ω1 having at least n̄1

zeros and ω2 having at least n̄2 zeros.

Proof

Since the solutions are continuous in the starting parameters and r, for

(ω1,h, ω2,h) sufficiently close to (ω̄1,h, ω̄2,h), the gauge function ω1 will have
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n̄1 zeros and ω2 will have n̄2 zeros for r < r1 for some r1 and ωi(r1) will be

close to their asymptotic values. �

From the proof of proposition VII.1, it is expected that the (ω1,h, ω2,h)

plane will be partitioned into open sets containing singular solutions with

(n1, n2) nodes by lines of regular solutions. These lines of regular solutions

will occur as the horizon radius, rh is varied. Numerical investigations4,5,11

indicate that for fixed rh regular solutions exist at discrete points in the

(ω1,h, ω2,h) plane, the positions of these discrete points varying as rh is var-

ied. Lemma VII.5 shows that lines corresponding to regular solutions with

different numbers of nodes must be disjoint, and furthermore that the region

corresponding to singular solutions with (n̄1, n̄2) nodes will be bounded by

lines of regular solutions having (n1, n2) nodes, where n1 ≤ n̄1 and n2 ≤ n̄2.

Lemma VII.5 is somewhat weaker than the corresponding result for su(2),7

since the coupling between the ω’s means that we cannot bound from above

the number of zeros of the gauge field functions by analytic arguments. Be-

low we shall address this question further by numerical investigations. This

leads directly to our existence theorem VII.3 being slightly weaker than for

N = 2.

Lemma VII.6 Suppose (0, ω̄2,h) corresponds to a charged regular solution,

where ω2 has n̄2 nodes. Given n0, let D0 be the largest neighbourhood of
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(0, ω̄2,h) for which (ω1,h, ω2,h) correspond to regular or singular solutions with

n1 ≥ n0 and n2 ≥ n̄2. Suppose, in addition, that there is (ω̂1,h, ω̂2,h) ∈ D0

corresponding to a singular solution with n1 = n0 and n2 = n̄2. Then there

is (ωR1,h, ω
R
2,h) ∈ D0 corresponding to a regular solution with n1 = n0 and

n2 = n̄2.

Proof

Let ñ0 > n0. Then there is a neighbourhood D̃0 ⊂ D0, D̃0 6= D0 for which

all solutions are regular or singular solutions with n1 ≥ ñ0 and n2 ≥ n̄2. In

D̃0 there must be at least one singular solution having n1 ≥ ñ0 and n2 ≥ n̄2,

by lemma VII.5, corresponding to starting values (ω̃1,h, ω̃2,h). Consider a

curve joining (ω̃1,h, ω̃2,h) and (ω̂1,h, ω̂2,h) and lying in D0. Then there must

be at least one regular solution along this curve. Let (ωR1,h, ω
R
2,h) be the

regular solution closest to (ω̂1,h, ω̂2,h), having n1 = nR1 and n2 = nR2 . Since

(ωR1,h, ω
R
2,h) ∈ D0, it follows that nR1 ≥ n0 and nR2 ≥ n̄2. Also, from lemma

VII.5, nR1 ≤ n0 and nR2 ≤ n̄2, since sufficiently close to (ωR1,h, ω
R
2,h) there are

singular solutions having n1 = n0 and n2 = n̄2. Therefore nR1 = n0 and

nR2 = n̄2. �

Lemma VII.7 Given n̄2 and n0 > n̄2, then there exist regular and singular

solutions with n2 = n̄2 and n1 ≥ n0.

Proof
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Consider the point (0, ω̄2,h) which corresponds to the charged regular solution

with n2 = n̄2. Then all (ω1,h, ω2,h) sufficiently close to (0, ω̄2,h) are regular

or singular solutions with n1 ≥ n0 and n2 ≥ n̄2. Let all such (ω1,h, ω2,h)

form a neighbourhood D0 of (0, ω̄2,h). From,7 there exist (0, ω̂2,h) ∈ D0 cor-

responding to singular solutions having ω1 ≡ 0 and n2 = n̄2. By continuity,

all (ω1,h, ω2,h) sufficiently close to (0, ω̂2,h) correspond to singular solutions

having n1 ≥ n0 and n2 = n̄2. Hence, by lemma VII.6, there are also in this

neighbourhood regular black hole solutions having n1 ≥ n0 and n2 = n̄2. �

Proof of Theorem VII.3

Fix n̄2. Then we have regular solutions with node structure (n̄2, n̄2). Now

let n0 = n̄2 + 1, then from lemma VII.7 there are regular solutions having

n2 = n̄2 and n1 ≥ n0. Let n′

0 be the smallest such n1. Now set n0 = n′

0 + 1

and repeat the process. �

In order to guarantee the existence of black hole solutions having node

structure (n̄1, n̄2) for every pair of integers (n̄1, n̄2), we would require the

following lemma in addition to lemma VII.7.

Lemma VII.8 Suppose (ω̄1,h, ω̄2,h) corresponds to a regular black hole solu-

tion in which ω1 has n̄1 nodes and ω2 has n̄2 nodes. Then, for (ω1,h, ω2,h)

sufficiently close to (ω̄1,h, ω̄2,h), solutions for which ω2 still has n̄2 nodes are

such that ω1 has either n̄1 or n̄1 + 1 nodes.
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The argument we now give for lemma VII.8 is not an analytic proof

because we require a numerical analysis.

Proof

By continuity, we know that for (ω1,h, ω2,h) sufficiently close to (ω̄1,h, ω̄2,h),

the gauge function ω1 has n̄1 zeros and ω2 has n̄2 zeros for r < r1 for some r1

and ωi(r1) will be close to their asymptotic values. Since we are considering

only solutions for which ω2 has n̄2 nodes, for r > r1, then, ω2 will be of one

sign. Therefore we may consider the new dependent variable

ψ =
ω1

ω2
(142)

which will have the same number of zeros as ω1(r) for r > r1. Then the

equation satisfied by ψ is

r2µψ′′ +
(

2m− 2r3pθ
)

ψ′ + 2r2µ
ω′

2

ω2
ψ′ +

3

2
ω2

2ψ
(

1 − ψ2
)

= 0. (143)

On some interval, r1 < r < r2, the geometry will be very nearly flat, and it

will remain flat until one of ω1, ω2 or their derivatives approach O(
√
r). Next

consider the flat space equations for ψ and ω2, which have the autonomous

form (where τ = log r):

0 = ω̈2 − ω̇2 +

(

1 − ω2
2 +

1

2
ψ2ω2

2

)

ω2

0 = ψ̈ − ψ̇ +
2ω̇2

ω2
ψ̇ +

3

2
ω2

2ψ
(

1 − ψ2
)

. (144)
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Without loss of generality, we may assume that we are close to the critical

point where ψ = 1 and ω2 =
√

2. Using the substitution

ψ = 1 + ǫ1, ω2 =
√

2(1 + ǫ2), (145)

the linearized equations close to this critical point are:

0 = ǫ̈1 − ǫ̇1 − 6ǫ1

0 = ǫ̈2 − ǫ̇2 + 2ǫ1 − 2ǫ2. (146)

The analysis of section V has already shown that we have a saddle point here;

this notation is convenient merely because the perturbation in ψ decouples

from that of ω2 in the linear approximation. From the form of the equation

(143), it is clear that |ψ| will be monotonic increasing for |ψ| > 1. In other

words, for ǫ1 > 0 initially, ǫ1 > 0 always and ω1 will have no additional zeros

for r > r1. Hence we need only consider the case where ǫ1 < 0 initially.

Unfortunately the non-linear perturbation equations cannot be integrated

analytically and so we present a numerical argument. For initial ǫ1, ǫ2 suffi-

ciently small, the values of ǫ1 and ǫ2 will remain close to those on the unstable

manifold for all τ < τ1 for some τ1, where τ1 can be taken to be as large as

we like by making the initial perturbations sufficiently small. Numerical in-

tegration of the non-linear equations with the initial point on the unstable

manifold and ǫ1 < 0, shows that ǫ2 increases monotonically and ǫ1 decreases
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monotonically with just one zero, and cuts through ǫ1 = −2 (corresponding

to ψ = −1), from whence ψ must be monotonically decreasing (see figures 4

and 5). Hence in this case ω1 has n̄1 + 1 zeros. �

Lemma VII.8 allows us to prove that every combination of integers (n1, n2)

must correspond to a black hole solution. In the proof of theorem VII.3,

we begin with regular solutions with node structure (n̄2, n̄2) and then from

lemma VII.8 there are either regular or singular solutions with node structure

(n̄2 + 1, n̄2). Using lemma VII.6, there are then regular solutions having this

node structure and the proof of theorem VII.3 follows as before.

So far we have proved the existence of infinitely many su(3) black holes

only for rh > 2. The remainder of this section will be spent proving the result

for rh ≤ 2. In this case, the points at which the map f is not continuous

(which must still exist by the argument used in proving proposition VII.1)

do not necessarily correspond to regular black hole solutions: they could also

be oscillating solutions. A couple of lemmas concerning oscillating solutions

are required before the proofs of proposition VII.1 and theorem VII.3 can be

extended.

Lemma VII.9 If (ω̄1,h, ω̄2,h) leads to an oscillating solution with ω1(τ) → 0

and ω2(τ) → 1 as τ → ∞, and ω2 has n̄2 zeros, then all (ω1,h, ω2,h) sufficiently

close to (ω̄1,h, ω̄2,h) lead to one of the following types of solution:
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1. an oscillating solution in which ω1(τ) → 0 and ω2(τ) → 1 as τ → ∞,

with ω2 having at least n̄2 zeros;

2. given n0, either a regular or a singular solution with n1 ≥ n0 and

n2 ≥ n̄2.

3. an S∞ solution.

Proof

Since in the original solution ω1 has infinitely many zeros and the solutions

are analytic in τ and the starting values, there is some τ1 such that all

solutions with (ω1,h, ω2,h) sufficiently close to (ω̄1,h, ω̄2,h) must have at least

n0 zeros of ω1 and n̄2 zeros of ω2 for τ < τ1, and all variables will be close to

their asymptotic values. �

Lemma VII.10 There exists (ω̄1,h, ω̄2,h) ∈ D corresponding to an oscillating

solution.

Proof

From,7 we know that there are points on the line ω1,h = ω2,h corresponding to

S∞ solutions. By continuity, there is a neighbourhood D0 of the line ω1,h =

ω2,h corresponding to S∞ solutions. However, lemma VII.5 still applies in this

case, so that the regular solutions on the line ω1,h = ω2,h will have singular

solutions in D sufficiently close to them for which r(τ0) > 2. Therefore,
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by lemma VII.9, there must be points in D which correspond to oscillating

solutions. �

The proofs of proposition VII.1 and theorem VII.3 are now exactly the

same as for rh > 2. Since oscillating solutions have an infinite number of zeros

for at least one of the gauge field functions, and using lemma VII.9, regular

solutions are still needed to separate singular solutions having different node

structures.

VIII. su(N) black holes

The detailed discussion of the previous section now enables us to proceed

quite swiftly to the analogues of proposition VII.1 and theorem VII.3 for gen-

eral N . The method of proof will be by induction, which was the basic idea

used in the previous section, where we proved existence for su(3) exploiting

known results about su(2).

The first step is to illustrate how solutions which are from su(n), where

n < N may be embedded in the su(N) framework. Firstly, exactly as in

the N = 3 case, we may embed neutral su(2) solutions.11 We set ωj(r) =

√

j(N − j)ω(r) and introduce a scaled variable R = λNr, where

λN =

(

1

6
N(N + 1)(N − 1)

)
1

2

. (147)
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Then the field equations are exactly the same as the su(2) ones, and the

existence of solutions follows directly.11 Secondly, charged, effectively su(N−

1) solutions can be generated by setting ω1 ≡ 0 (or ωN−1 ≡ 0).4 Although

the equation for m′ in this situation is not the same as for neutral su(N − 1)

black holes, due to the charge, the regular equations discussed in section II

are unchanged, so the proof of existence of neutral su(N − 1) black holes

extends naturally to this case.

For N > 3, there are additional embeddings which arise from setting at

least one of ω2, . . . , ωN−2 ≡ 0, so that the gauge field equations decouple into

two or more sets of coupled components, the sets being coupled to each other

only through the metric. Solutions of this form have been found numerically

in.4 We illustrate how the existence of black holes of this type may be proved

by considering the simplest case, which arises when N = 4. In this case, we

have three non-zero gauge field functions, ω1, ω2, ω3. If we set ω2 ≡ 0, then

the field equations take the form

r2µω′′

1 = −
(

2m− 2r3pθ
)

ω′

1 −
(

1 − ω2
1

)

ω1 (148)

r2µω′′

3 = −
(

2m− 2r3pθ
)

ω′

3 −
(

1 − ω2
3

)

ω3 (149)

m′ =
(

µG+ r2pθ
)

(150)

S ′

S
=

2G

r
(151)
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where

G = ω
′2
1 + ω

′2
3 , pθ =

1

2r4

(

[

ω2
1 − 1

]2
+

[

ω2
3 − 1

]2
+ 8

)

. (152)

These equations look very much like two uncoupled su(2) degrees of freedom,

however, the two ω’s are (albeit weakly) coupled. The fact that we have two

gauge field functions here means that we can use the methods of section VII

to prove the existence of regular black hole solutions. In fact, all the results

of that section carry directly over to this situation on replacing ω2 there by ω3

here. There is one exception. The equations (148,149) are slightly different

from those in section VII and this enables us to strengthen lemma VII.5.

Lemma VIII.1 If (ω̄1,h, ω̄3,h) leads to a regular black hole solution with ω1

having n̄1 nodes and ω3 having n̄3 nodes, then all (ω1,h, ω3,h) sufficiently close

to (ω̄1,h, ω̄3,h) lead to regular or singular solutions with ω1 having either n̄1

or n̄1 + 1 zeros and ω3 having either n̄3 or n̄3 + 1 zeros.

Proof

Since the solutions are continuous in the starting parameters and r, for

(ω1,h, ω3,h) sufficiently close to (ω̄1,h, ω̄3,h), there is some r1 such that ω1 will

have n̄1 zeros and ω3 will have n̄3 zeros for r < r1. There will also be an

r2 > r1 such that all field variables are close to their asymptotic values for

r ∈ [r1, r2]. The flat space field equations (see section V) decouple completely
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since ω2 ≡ 0, and so the phase plane analysis of7 is valid in this case. The

phase plane analysis enables us to be more precise about the number of zeros

of the perturbed gauge field functions, unlike the more general case where

the phase space had more than two coupled dimensions. Therefore the con-

clusions of7 can be applied directly here and each gauge field function can

have at most one zero for r > r2. �

With this more powerful lemma, the analysis of section VII reaches the

conclusion that there are regular black hole solutions of the required form

for each rh and node structure (n1, n3).

For general N , similar embeddings of the form of two or more su(n)

(n < N) type solutions separated by at least one ωj ≡ 0 are possible, and the

existence proof follows the lines outlined above for su(4), using the existence

of solutions for the various su(n). The allowed node structures will be exactly

the same as those for the constituent su(n) components. We refer the reader

to4 for further details of the construction of solutions of this form.

The remainder of this section will be spent outlining briefly the proof of

the following theorem. By ‘types’ in the statement of the theorem we mean

the node structures of the gauge field functions.

Theorem VIII.2 There exist infinitely many types of regular black hole so-
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lutions of the su(N) Einstein-Yang-Mills equations including genuine su(N)

solutions and embedded solutions.

All that remains to prove this theorem is to show the existence of genuine

su(N) solutions in which the node structures of the gauge field functions are

not all the same. We assume for an inductive hypothesis that the theorem

holds for all n < N . The situation is slightly complicated by the fact that

our parameter space consisting of the ωj,h’s is now N − 1-dimensional. We

consider the ω1,h = 0 hyperplane, on which we know the solution space by

the inductive hypothesis. The map f (see section VII) now takes R
N−1 to

B
N−1 × [0, 1]. Again, we need only consider the action of f on those parts of

R
N−1 in which no ωj,h vanishes. We restrict attention to one of the disjoint

spaces so generated without loss of generality. Lemma VII.2 and the proof

of the su(N) equivalent of proposition VII.1 now carry over to prove the

existence of genuine su(N) black holes. Lemmas VII.4, VII.6 and VII.7 now

hold for a point (0, ω̄2,h, . . . , ω̄N−1,h) corresponding to a charged solution, and

lemmas VII.5 and VII.9 carry straight over to a point (ω̄1,h, ω̄2,h, . . . , ω̄N−1,h)

which leads to a regular black hole solution or oscillating solution respectively.

These are the ingredients necessary for the simple argument which leads to

the proof of theorem VII.3 and hence theorem VIII.2 for both r2
h >

1
6
N(N +

1)(N − 1) (in which case no oscillating solutions exist), and r2
h ≤ 1

6
N(N +
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1)(N−1). Note that, as in the su(3) case, we are not able to prove analytically

that every sequence of integers (n1, n2, . . . , nN−1) corresponds to a black hole

solution whose gauge functions have this node structure, although it might

reasonably be expected that this is indeed the case.

IX. Results and conclusions

In this paper we have proved the existence of a vast number of hairy black

holes in su(N) Einstein-Yang-Mills theories. The solutions are described by

N-1 parameters, corresponding to the number of nodes of the gauge field

functions. The result of12 tells us that each of these solutions will have

a topological instability, similar to the flat-space “sphaleron”, as was the

case for su(2) black holes. This instability does not necessarily diminish the

physical importance of these objects, as they may have an important role in

processes such as cosmological particle creation.15

We now briefly mention another important reason for studying su(N)

black holes, namely the behaviour of the solutions as N → ∞. Black holes

in su(∞) Einstein-Yang-Mills theory would possess an infinite amount of hair,

requiring an infinite number of parameters to describe their geometry. This

might be analogous to the “W-hair” found in non-critical string theory,16 and

have drastic consequences for the Hawking radiation, information loss and
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quantum decoherence processes associated with black holes. The existence

of infinite amounts of hair might also render such objects stable. It is already

known that the su(∞) Lie algebra is simply that of the diffeomorphisms of

the sphere.17 This means that the limit asN → ∞ cannot be taken smoothly,

in particular the results of the present paper are only valid when N is finite.

We hope to return to this matter in a subsequent publication.
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Figure 1: The (ω1,h, ω2,h) plane, with a schematic representation of the lines

representing regular black hole solutions, which are also denoted by crosses.
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Rm = 1

Rm = 0
N1 = 0 N1 = 0.5 N1 = 1

Figure 2: Schematic representation of the set B× [0, 1], corresponding to the

space of parameters of the su(3) solutions in section VII. The horizontal axis

represents N1, the number of nodes of the gauge function ω1, and the vertical

axis Rm, which characterizes the maximum value of the radial co-ordinate r

for each solution.
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Figure 3: The projection of the parameter space of solutions on to the set

B×B. The axes are N1 and N2, the number of nodes of the respective gauge

functions ω1 and ω2. The crosses indicate schematically the points in this

set.
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Figure 4: The su(3) perturbation ǫ1(τ) along the unstable manifold. The

value τ = 0 corresponds to the critical point. Note that ψ = 1 + ǫ1 mono-

tonically decreases through 0 and −1, from which point it will continue to

monotonically decrease.
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Figure 5: The su(3) perturbation ǫ2 along the unstable manifold. Note that

this is a monotonically increasing function, which is in accordance with the

gauge function ω2 having no further zeros.
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