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Instability of a four-dimensional de Sitter black hole with a conformally coupled scalar

field

Tom J.T. Harper, Paul A. Thomas, Elizabeth Winstanley,∗ and Phil M. Young
Department of Applied Mathematics, The University of Sheffield,

Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom.

(Dated: July 31, 2013)

We study the stability of new neutral and electrically charged four-dimensional black hole solutions
of Einstein’s equations with a positive cosmological constant and conformally coupled scalar field [1].
The neutral black holes are always unstable. The charged black holes are also shown analytically to
be unstable for the vast majority of the parameter space of solutions, and we argue using numerical
techniques that the configurations corresponding to the remainder of the parameter space are also
unstable.

PACS numbers: 04.20.Jb, 04.40.Nr, 04.70.Bw

I. INTRODUCTION

Black hole solutions of the four-dimensional Einstein-
scalar field system have been extensively studied for over
thirty years, with a particular focus on proving unique-
ness (“no-hair”) theorems in various models (see, for ex-
ample, [2] for a review). Within these models, conformal
coupling of the scalar field is of particular interest, both
with and without an additional coupling to the Maxwell
field (see, for example, [3] for a brief review of work on
this situation). In asymptotically flat space, with no
scalar self-interaction potential, there is an exact, closed
form solution (the BBMB solution) [4, 5, 6], which has
not been without controversy [7] because the scalar field
diverges on the event horizon. Furthermore, it is known
that this solution is unstable [8]. For space-times which
are asymptotically anti-de Sitter, with zero potential or a
quadratic scalar field potential, numerical solutions exist
in four dimensions [3], of which at least some are linearly
stable under spherically-symmetric perturbations. Inter-
estingly, the corresponding three-dimensional black hole
solution is known in closed form [9], but is unstable [10].

Asymptotically de Sitter geometries are the focus of
this paper. For minimally coupled scalar fields, non-
trivial scalar field hair is possible if the scalar field poten-
tial is non-convex [11, 12], although the hair is unstable
[12]. For conformally coupled scalar fields, if the scalar
field potential is zero or quadratic, then there are no non-
trivial black hole solutions [3]. However, in the presence
of a quartic self-interaction potential there is an exact,
closed-form solution for both charged and neutral black
holes found recently by Martinez, Troncoso and Zanelli
[1], which we shall refer to hereafter as the MTZ solution.
This solution is the de Sitter analogue of the BBMB so-
lution, although the scalar field is regular on and outside
the event horizon. The purpose of this paper is to dis-
cover whether, like the BBMB solution, the MTZ black
hole is unstable.

∗Electronic address: E.Winstanley@shef.ac.uk

The outline of this paper is as follows. In section II we
briefly review the neutral and electrically charged MTZ
solutions [1], whose stability is then studied using linear
perturbation theory in sections III and IV respectively.
In the appendix we outline the proof of a result needed
for the stability analysis of the charged solutions. Finally,
we present our conclusions in section V. The metric has
signature (−+++) and we use units in which c = 8πG =
1 throughout.

II. THE MTZ SOLUTION

We begin with the action for gravity with a confor-
mally coupled scalar field with a quartic self-interaction
potential and an electromagnetic field [1]:

S =
1

2

∫

d4x
√−g

[

R − 2Λ − gµν∂µφ∂νφ − 1

6
Rφ2

−2αφ4 − 1

8π
FµνFµν

]

; (1)

where α is the coupling constant. For neutral black holes,
the electromagnetic field is absent. The Einstein and
scalar field equations derived from this action are

Gµν + Λgµν − T φ
µν − T EM

µν = 0; (2a)

�φ − 1

6
Rφ − 4αφ3 = 0; (2b)

where � ≡ gµν∇µ∇ν , and the scalar and electromagnetic
stress energy tensors are

T φ
µν = ∂µφ∂νφ − 1

2
gµνgαβ∂α∂βφ

+
1

6
[gµν� −∇µ∇ν + Gµν ] φ2 − αgµνφ4;

T EM
µν =

1

4π

(

gαβFµαFνβ − 1

4
gµνFαβFαβ

)

.

For charged black holes, we also have the Maxwell equa-
tions

∇µFµν = 0; F[µν;λ] = 0. (3)

http://arxiv.org/abs/gr-qc/0312104v2
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For both the charged and electrically neutral cases, the
field equations are solved by the spherically symmetric
metric

ds2 = −N(r)dt2 + N(r)−1dr2 + r2
(

dθ2 + sin2 θ dϕ2
)

;
(4)

where

N(r) = −Λ

3
r2 +

(

1 − M

r

)2

;

and the scalar curvature is a constant given by

R = 4Λ.

The geometry (4) is that of the Reissner-Nordström-de
Sitter black hole with inner, event and cosmological hori-
zons at values of the radial co-ordinate r given by, respec-
tively,

r− =
l

2

[

−1 +

√

1 +
4M

l

]

;

r+ =
l

2

[

1 −
√

1 − 4M

l

]

;

r++ =
l

2

[

1 +

√

1 − 4M

l

]

; (5)

where l =
√

3/Λ. From (5), it is clear that the solution
is defined only for 0 < M < Mmax = l/4.

The form of the scalar field is different for the elec-
trically neutral and charged models. In the case with
no electromagnetic field, there is a solution only if the
coupling constant α is given by

α = − 1

36
Λ;

and then the scalar field takes the form

φ(r) =

√
6M

r − M
; (6)

which has a pole at r = M < r+, lying inside the event
horizon.

For charged black holes, the only non-vanishing com-
ponent of the electromagnetic field is

Ftr = −∂rAt =
Q

r2
;

where the charge-to-mass ratio is given by
(

Q

M

)2

= 8π

(

1 +
Λ

36α

)

; (7)

and the scalar field in this case is

φ(r) =

√

− Λ

6α

M

r − M
. (8)

This latter solution only exists provided α satisfies the
bound

36α < −Λ.

III. INSTABILITY OF THE MTZ SOLUTION:

NEUTRAL CASE

We now analyze the stability of the MTZ black holes
using linear perturbation theory. The electrically neutral
and charged solutions need to be considered separately,
and we begin with the neutral case since this is the sim-
pler. In this and the following section, we consider only
spherically symmetric perturbations since these are suf-
ficient to show instability. Many calculations were per-
formed using the GRTensorII [13] routine linpert [14].

The perturbed spherically symmetric metric takes the
form:

ds2 = −N(t, r)e2εδ̂(t,r)dt2 + N−1(t, r)dr2

+r2(dθ2 + sin2 θ dϕ2); (9)

where

N(t, r) = N(r) + εN̂(t, r); (10)

and ε is a small parameter. The scalar field is perturbed
as

φ(t, r) = φ(r) + εφ̂(t, r). (11)

The ansatz (9-11) can then be substituted into the Ein-
stein and scalar field equations (2a) and (2b), the equa-

tions then linearized and the metric perturbations N̂ and

δ̂ eliminated to yield a single perturbation equation for

the perturbed scalar field φ̂. While this is possible in
principle, in practice the algebra becomes somewhat un-
wieldy, even using a computer algebra package.

We therefore employ a transformation to a simpler sys-
tem which makes the calculations more tractable, and
then substitute back the original perturbations. Under
the following conformal transformation [15] (see also [3]
for more details),

g̃µν = Ω2gµν ; (12)

where

Ω =

(

1 − 1

6
φ2

)
1

2

;

the action (1) becomes that of a minimally coupled scalar
field Φ with potential V (Φ), with

Φ =
√

6 tanh−1

(

φ√
6

)

; (13)

and

V (Φ) = 2Λ sinh2

(

Φ√
6

)

.

At this stage we should comment that, from Eq. (6),
there is always a point (r = 2M) between the event and
cosmological horizons at which 1− 1

6φ2 = 0, and therefore
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the conformal transformation (12) breaks down at this
point. However, since this is only a single point, and not
an open set, this does not render the theory completely
ill-defined (see, for example, the discussion in Ref. [16]).
In addition, the transformed variables have no physical
significance; the only purpose of the transformation is to
simplify the algebra, in particular to derive the master
perturbation equation, as in the analysis of Ref. [8]. Our
conclusions will be drawn only once the perturbations of
the original system have been substituted.

The new metric (12) takes the form [3]:

ds̃2 = −N e2∆dt2 +N−1dx2 +x2(dθ2 +sin2 θ dϕ2); (14)

where we have transformed the radial coordinate by

x =

(

1 − 1

6
φ2

)
1

2

r;

and the metric quantities N and ∆ are related to the
original metric variables by [3]:

N = N

(

1 − 1

6
φ2 − 1

6
rφφ′

)2(

1 − 1

6
φ2

)

−2

;

e∆ =

(

1 − 1

6
φ2 − 1

6
rφφ′

)

−1(

1 − 1

6
φ2

)
3

2

.

Note that ∆ 6= 0 in the new metric. The transformed
variables N , ∆ and Φ are perturbed as follows:

N (t, x) = N (x) + εN̂ (t, x);

∆(t, x) = ∆(x) + ε∆̂(t, x);

Φ(t, x) = Φ(x) + εΦ̂(t, x).

These expressions are substituted into the new Einstein
and scalar field equations (a tilde denotes quantities cal-
culated using the transformed metric (14)):

0 = G̃µν + Λg̃µν − ∇̃µΦ∇̃νΦ +
1

2
g̃µν(∇̃Φ)2

+g̃µνV (Φ);

0 = �̃Φ − ∂V

∂Φ
;

only terms linear in the parameter ε are retained, and
the metric perturbations can then be eliminated. A sin-
gle perturbation equation is then found for the variable

φ̂. For periodic perturbations φ̂(t, x) = eiσtφ̂(x), this
equation takes the form:

−∂2φ̂

∂x2
∗

−Q1
∂φ̂

∂x∗

−Q2φ̂ + U φ̂ = σ2φ̂; (15)

where we have introduced the usual “tortoise” co-
ordinate x∗ defined by

dx∗

dx
=

1

N e∆
; (16)

so that

dx∗

dr
=

1

N
; (17)

and the region between the event and cosmological hori-
zons r+ < r < r++ becomes −∞ < x∗ < ∞. The
quantities Q1 and Q2 are given by

Q1 =
2N

r
A−1D;

Q2 =
N

r

[

dN

dr
A−1D +

1

2
NA−2Dφ

dφ

dr
+ NA−1 dD

dr

]

;

and the perturbation potential U takes the form

U =
N

r2

[

1 − NA−2B2 − r2

(

dφ

dr

)2

B−2

+
4

3
Λr3φ

dφ

dr
B−1 + Λr4

(

dφ

dr

)2

B−2

(

1 +
1

6
φ2

)

−1

3
Λr2

(

1 +
1

6
φ2

)]

; (18)

where

A = 1 − 1

6
φ2;

B = 1 − 1

6
φ2 − 1

6
rφ

dφ

dr
;

D = 1 − 1

6
φ2 +

1

6
rφ

dφ

dr
. (19)

It should be stressed that the equation (15) could equally
well have been derived directly, without using the confor-
mal transformation (12), but that our method has simpli-
fied the algebra considerably. Furthermore, the equation
(15) holds everywhere, although the conformal transfor-
mation (12) is defined only for those values of r for which
φ2 < 6.

The perturbation equation (15) has a regular singular
point at r = r0 = 2M , where φ2 = 6. Using the standard

Frobenius method, near this point φ̂ behaves like

φ̂ ∼ (r − r0) [C1 + C2 log (r − r0)] (20)

for constants C1 and C2. The presence of the regular sin-
gular point means that it is not possible to define a non-
singular transformation of (15) to standard Schrödinger
form, as, for example, was possible for three-dimensional
black holes in Ref. [10].

In order to cast the perturbation equation (15) into
standard Schrödinger form, we define a new perturbation
variable Ψ as follows [8, 10]:

Ψ = r

∣

∣

∣

∣

1 − 1

6
φ2

∣

∣

∣

∣

−
1

2

φ̂, (21)

so that the equation (15) then takes the form

−∂2Ψ

∂x2
∗

+ UΨ = σ2Ψ; (22)



4

Radius

P
ot

en
tia

l

Potential for a black hole configuration inside ℜ

r
+
 r

++
 

r=r
0
 

0

FIG. 1: Form of the potential U for the neutral MTZ black
holes. The potential has a double pole at r = r0 = 2M . This
is also the form of the potential for the charged MTZ black
holes configurations corresponding to points within the region
ℜ, see section IV.

with potential U given by (18). It is straightforward to
show that the quantity B (19) is regular and non-zero
everywhere between the event and cosmological horizons.
Therefore, the potential (18) is regular for all x∗ apart
from the second term, which has a double pole at r =
r0 = 2M (where φ2 = 6). Near r = r0 = 2M , the
potential has the behaviour

U = −1

4
[N(r0)]

2 (r − r0)
−2 + O (r − r0)

−1 ;

and U → 0 as x∗ → ±∞. The form of the potential is
sketched in Fig. 1. Like the original equation (15), the
new perturbation equation (22) has a regular singular
point at r = r0, and a Frobenius expansion about this
point gives the behaviour of Ψ to be

Ψ ∼ (r − r0)
1

2

[

C̃1 + C̃2 log (r − r0)
]

,

where C̃1 and C̃2 are constants. Using equation (20), it
can be seen that the transformation (21) yields precisely
the correct behaviour for Ψ, so that the two perturbation
equations (15) and (22) are equivalent, in particular they
have the same number of negative eigenvalues.

Using a standard result in quantum mechanics [8], po-
tentials of this form have an infinite number of bound
states corresponding to σ2 < 0, that is, an infinite num-
ber of unstable modes. Therefore we also have an infinite
number of unstable modes of the original perturbations.
This is the same behaviour as found for the BBMB black
hole [8].

IV. INSTABILITY OF THE MTZ SOLUTION:

CHARGED CASE

The perturbation analysis of the electrically charged
black holes is considerably more complicated, and al-

though we shall again make use of the conformal transfor-
mation (12) to simplify the algebra, the untransformed
perturbations themselves can be simplified first.

Making a choice of gauge to set Ar = 0, the gauge
potential giving rise to the electromagnetic field is per-
turbed as below:

At =
Q

r
+ εÂt(t, r);

Ar = 0;

Aθ = εÂθ(t, r);

Aϕ = εÂϕ(t, r) sin θ;

so that the second of the Maxwell equations (3) is auto-
matically satisfied. The metric and scalar field are per-
turbed in the same way as for the neutral black holes
(9–11). The (tθ), (rθ), (tϕ) and (rϕ) components of the
Einstein field equation (2a) give

∂Âθ(t, r)

∂r
=

∂Âθ(t, r)

∂t
=

∂Âϕ(t, r)

∂r
=

∂Âϕ(t, r)

∂t
= 0;

and since we can remove an arbitrary constant from the
gauge potential without changing the resulting electro-
magnetic field we can, without loss of generality, assume
that

Âθ = Âϕ = 0.

The t and r components of the first Maxwell equation
(3) then take the form:

0 =
∂

∂r
δ̂(t, r)Q + r2 ∂2

∂r2
Ât(t, r) + 2r

∂

∂r
Ât(t, r);

0 =
∂2

∂t∂r
Ât(t, r)r

2 +
∂

∂t
δ̂(t, r)Q.

These two equations are compatible and can be inte-
grated to give

δ̂(t, r) = −r2

Q

∂

∂r
Ât(t, r);

where we have absorbed the arbitrary constant of inte-
gration into the time co-ordinate. With the form of the
electromagnetic potential now fixed, the (tr) component
of the Einstein equations can readily be integrated to
yield

N̂ = r

[

−2

3
N

dφ

dr
φ̂ − 1

6

dN

dr
φφ̂ +

1

3
Nφφ̂ + F(r)

]

×
(

1 − 1

6
φ2 − 1

6
rφφ′

)

−1

; (23)

where F is an arbitrary function of r. Incidentally, equa-
tion (23) also holds for the neutral black holes.

At this point, the perturbation equations are again too
complicated to readily be simplified and we employ the
conformal transformation as in the previous section. As
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in section III, we regard the transformation as a conve-
nient algebraic tool with no physical significance [8].

The transformations of the metric and scalar field are
the same as before (12–13), but now the electromagnetic
field also transforms [17]:

F̃µν = Fµν ; F̃µν = Ω−4Fµν ;

leaving the electromagnetic stress-energy tensor invari-
ant. The transformed metric variables and scalar field
are perturbed in the same way as in the previous sec-
tion. The only non-zero component of the transformed
electromagnetic field is F̃tx, which we write as

F̃tx(t, x) = F (x) + εF̂ (t, x);

where

F (x) =
Q

x2
e∆.

The electromagnetic and Einstein equations can be
used to find the following simple expressions for the per-
turbations of the transformed metric:

N̂ = −xN dΦ

dx
Φ̂ + S(x);

∆̂ =
F̂

F
; (24)

where S is an arbitrary function of x. With these ex-
pressions, the (tt) component of the linearized Einstein
equation gives an equation of the form

X F̂ + YΦ̂ + GS(x) + H∂S(x)

∂x
= 0; (25)

where X , Y, G and H are functions of x only. Using
the equilibrium field equations, it can be shown that X
vanishes, and

Y = −2
∂∆

∂x
+ x

(

∂Φ

∂x

)2

. (26)

Furthermore, it can be shown that Y = 0 by writing the
right-hand-side of (26) in terms of the original variables
and radial coordinate r. Equation (25) can then be inte-
grated to give

S = K exp

(

−
∫ G

Hdx

)

=
K

e∆x
;

where K is an arbitrary constant. Now, using the bound-
ary conditions that F̂ = Φ̂ = 0 at the event horizon, it
must be the case that K = 0 and so S(x) = 0 identically.
Using this result, the (xx) component of the linearized
Einstein equations reduces to a relationship between the
electromagnetic field and scalar field perturbations:

F̂
∂F

∂x
− ∂F̂

∂x
F = xF 2 ∂Φ

∂x

∂Φ̂

∂x
. (27)

Relations (24,27) are sufficient to eliminate the met-
ric and electromagnetic perturbations from the linearized
scalar field equation. Using the “tortoise” co-ordinate
(16–17), and following the method of section III, we fi-
nally arrive at the Schrödinger-like equation

−∂2Ψ

∂x2
∗

+ CΨ = σ2Ψ; (28)

where Ψ is given by (21) and we are once again con-
sidering periodic perturbations. As might be expected,
the potential C is more complicated than for the neutral
black holes:

C =
N

r2

[

1 − NA−2B2 − 2Λr2 − 48αr2 − 12αr2A

+60αr2A−1 +
5

3
Λr2A−1 − 1

r2
M2A−1

− 1

36r2

Λ

α
M2A−1 − r2

(

dφ

dr

)2

B−2

+αr4φ4

(

dφ

dr

)2

A−1B−2 + Λr4

(

dφ

dr

)2

A−1B−2

+M2

(

dφ

dr

)2

A−1B−2 +
1

36

Λ

α
M2

(

dφ

dr

)2

A−1B−2

+8αr3φ3 dφ

dr
A−1B−1 +

4

3
Λr3φ

dφ

dr
A−1B−1

]

; (29)

with A and B as before (19). As in the case of neutral
black holes, the Schrödinger equation (28) with poten-
tial (29) could have been derived directly without using
the conformal transformation (12). However, our method
has made the computations required significantly more
tractable.

The potential C (29) reduces, in the limit α → −Λ/36,
to the potential U for the neutral black holes. This is
as expected, since in this limit the charge Q of the black
hole tends to zero.

It is again straightforward to show that φ, dφ/dr and
B are all regular and non-zero everywhere between the
event and cosmological horizons. However, unlike in the
neutral case, for the charged MTZ black holes it is no
longer necessarily the case that A vanishes for some r
lying between r+ and r++. Putting φ =

√
6 at r = r0

in (8) and using the inequalities M < l
4 ; r+ < r0 < r++

and 0 < −Λ
36α

≤ 1, together with (5), gives the condi-
tion that A vanishes somewhere between the event and
cosmological horizons if and only if

M < (−12α)−
1

2

(

1 +
1

6

√

−Λ

α

)

−2

. (30)

When Q = 0 we have from (7) that α = − Λ
36 and (30)

becomes M < l
4 , which is always satisfied, retrieving

the result of section III. Similarly, in the limit Λ →
0, the inequality (30) is trivially satisfied for all M , in
accordance with the results for the BBMB black hole [8].
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FIG. 2: The region ℜ, described by Eq. (31). Inside ℜ,
the potential C has a pole (see Fig. 1), and the corresponding
black holes are unstable. Outside ℜ, the potential C is regular
(see Fig. 3), and numerical methods are necessary to show
that the black holes are unstable.

If equation (30) is satisfied, then the second term in
the potential C (29) has a double pole at r = r0 (see Fig.
1 for a typical potential in this case). Although there are
other terms in C which have a single pole at r = r0, these
will be sub-leading compared to the double pole. In this
case the behaviour of C near r = r0 is the same as for the
potential U (18):

C = −1

4
[N(r0)]

2
(r − r0)

−2
+ O (r − r0)

−1
.

As in the analysis of the neutral black holes, in this case
standard results in quantum mechanics [8] allow us to de-
duce that there are an infinite number of unstable modes.

It remains therefore to understand whether the in-
equality (30) is satisfied by any or all of the charged MTZ
black hole solutions. We express this inequality in terms
of the fractions of the maximum possible values of M
(l/4) and Q (l

√
π/

√
2) for any particular value of Λ, and

denote these model parameters by m and q respectively.
The region ℜ of the (m, q) phase space for which we have
shown the solution to be unstable is then

ℜ =

{

m(Λ), q(Λ), Λ : m <
4(1 − q2)

1

2

(1 + (1 − q2)
1

2 )2

}

. (31)

The region ℜ is shown in figure 2, where it can be seen
that it makes up the vast majority of the available param-
eter space. Only black holes carrying a very high charge,
or those nearly as large as their universe (so that the
event and cosmological horizons nearly coincide), are pa-
rameterized by variables (m, q) lying outside the region
ℜ. While it could be argued that such black holes are
unphysical, nevertheless for completeness we investigate
the phase space outside ℜ.

A typical potential for a point outside ℜ is shown in
Fig. 3. The potential is regular everywhere between
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0 

FIG. 3: Form of the potential C for charged MTZ black hole
configurations given by parameters (m, q) lying outside the
region ℜ. The potential is regular everywhere between the
event and cosmological horizons. It is positive close to the
event horizon, and then becomes negative. As the values of
(m,q) approach the boundary of the region ℜ, the positive
peak close to the event horizon becomes larger and larger.

the event and cosmological horizons, where it vanishes.
There is a region close to the event horizon where the
potential is positive; elsewhere it is negative. For black
holes described by parameters (m, q) lying close to the
boundary of the region ℜ, the positive peak close to the
event horizon becomes very large.

We show in the appendix that potentials of this form
with

∫

∞

−∞

C dx∗ < 0; (32)

must have at least one bound state, and therefore the
corresponding black holes will be unstable. We have cal-
culated numerically the integral on the left-hand-side of
(32), and some typical results are shown in Fig. 4. We
find that for most configurations outside ℜ, the integral
(32) is indeed negative, so that those black holes are un-
stable.

However, for black hole configurations very close to the
boundary of ℜ, we find that the integral becomes posi-
tive (due to the large positive peak in the potential close
to the event horizon). For such black holes their stabil-
ity has to be investigated numerically, each configuration
being considered separately. A simple way to check the
existence of negative eigenvalues of (28), without actually
finding the values of these eigenvalues, is to apply conti-
nuity arguments of the type outlined in Ref. [18]. If, for
some σ2 < 0 (which is not necessarily an eigenvalue of
(28)), the solution of (28) satisfying the boundary con-
ditions at, say, x∗ → −∞ (r = r+) has one zero before
possibly diverging as x∗ → ∞ (r → r++), then there
is at least one negative eigenvalue of (28). We studied
various black holes corresponding to points (m, q) lying



7

Mass

In
te

gr
al

 o
f p

ot
en

tia
l

Integral of potential for fixed charge and 
varying mass lying outside ℜ             

0 

Maximum
Mass   

Boundary
of ℜ  

FIG. 4: The integral of the potential C at points lying outside
the region ℜ. In this case the charge is fixed to be 0.95 of the
maximum charge, and the values of the mass vary from the
value on the boundary of ℜ up to the maximum.

outside the region ℜ and such that the integral on the
left-hand-side of (32) is positive, and found, in each case,
a value of σ2 < 0 satisfying this condition. Therefore, for
all the cases we studied, there are negative eigenvalues of
(28), showing instability.

V. CONCLUSIONS

We have investigated the stability of the de Sitter black
hole solutions of Einstein’s equations due to Martinez et
al [1]. The model contains a conformally coupled scalar
field with a quartic self-interaction potential and also an
electromagnetic field in the case that the black holes are
charged. We have shown by analytic methods that all the
neutral black holes are unstable, as are the charged black
holes in the vast majority of the phase space. Outside this
region of phase space, we have used numerical methods
to show that the black holes are unstable.

The analysis differs from that for the analogous,
asymptotically flat BBMB black holes, where the
analytic approach suffices for both the neutral and all
the charged configurations. However, the conclusions
are the same, that the neutral and charged MTZ black
holes, like the BBMB black holes are unstable. We are
therefore able to complete the following table, describing
the behaviour of conformally coupled scalar field black
hole hair (cf. that in Ref. [3]):

Λ = 0 Unstable hair
Λ > 0 Unstable hair
Λ < 0 Stable hair
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APPENDIX: INSTABILITY IF THE INTEGRAL

OF THE POTENTIAL IS NEGATIVE

In this appendix we shall prove a result needed in the
stability analysis of the charged MTZ solutions in section
IV; namely that if

∫

∞

−∞

C dx∗ < 0; (A.1)

then there is at least one negative eigenvalue of (28), and
the corresponding black hole configuration is unstable.

The starting point is a result from Ref. [19]: if
there exists a twice differentiable function f such that
f(−∞) = f(∞) = 0, and

∫

∞

−∞

[

(

df

dx∗

)2

+ Cf2

]

dx∗ < 0; (A.2)

then there is at least one negative eigenvalue of (28).
In this appendix we show that the condition (A.2) is

satisfied if (A.1) holds. The proof is straightforward, so
we shall just briefly outline the key steps.

We define a sequence of functions fk(x∗) : k ∈ N, such
that each fk(x∗) tends to zero as |x∗| → ∞, following
[20]:

fk(x∗) = Z
(x∗

k

)

; (A.3)

where

Z(u) = Z(−u);

Z(u) = 1 for u ∈ [0, p];

Z(u) = 0 for u > p + 1;

and

−q ≤ Z ′(u) ≤ 0 for u ∈ [p, p + 1];

where p and q are positive constants. Therefore fk(x∗) is
an even function stretched horizontally for increasing k.

Now dfk

dx∗

is non-zero only on the intervals

I1 = [−k(p + 1),−kp]; I2 = [kp, k(p + 1)];

and decreases linearly with k for corresponding points as

fk is scaled. Hence
(

dfk

dx∗

)2

correspondingly decreases as
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1
k2 , whereas the widths of the intervals I1 and I2 increase
linearly with k. It follows that

∫

∞

−∞

(

dfk

dx∗

)2

dx∗;

decreases proportionally as 1
k

as k increases, hence the
first term in (A.2) can be made arbitrarily small for suf-
ficiently large k.

We know that for black hole configurations correspond-
ing to points lying outside the region ℜ (defined in section
IV), the potential C is continuous and tends to zero as
x∗ → ±∞, or as r → r+ or r++. From this and the
definition of fk(x∗) (A.3) we deduce that

∣

∣

∣

∣

∫

∞

−∞

C dx∗ −
∫

∞

−∞

(fk(x∗))
2 C dx∗

∣

∣

∣

∣

<

∫

−pk

−∞

|C| dx∗ +

∫

∞

pk

|C| dx∗.

In addition, the potential C approaches zero linearly
with respect to r very near r+ and r++, so equation
(17) gives us that for large |x∗|, the potential |C| de-
creases to zero exponentially with |x∗|. Hence, both
∫

−pk

−∞
|C|dx∗ and

∫

∞

pk
|C| dx∗ decrease exponentially with

increasing k. Therefore,
∫

∞

−∞
C dx∗ will be arbitrarily

close to
∫

∞

−∞
Cf2

k dx∗ for sufficiently large k. This gives

us our result, that if
∫

∞

−∞
Cdx∗ is negative we can pick a

sufficiently large k such that equation (A.2) holds with
f = fk, and we have shown the solution to be unstable.
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