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Conformally coupled scalar solitons and black holes with negative cosmological

constant
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We present arguments for the existence of both globally regular and black hole solutions of the
Einstein equations with a conformally coupled scalar field, in the presence of a negative cosmological
constant, for space-time dimensions greater than or equal to four. These configurations approach
asymptotically anti-de Sitter spacetime and are indexed by the central value of the scalar field.
We also study the stability of these solutions, and show that, at least for all the solutions studied
numerically, they are linearly stable.

PACS numbers: 04.20.Jb, 04.40-.b, 04.70.Bw

I. INTRODUCTION

Within the various theories violating the no-hair conjecture, the case of a conformally coupled scalar field is of
particular interest. In asymptotically flat space with no scalar self-interaction potential, this theory admits an exact,
closed form black hole solution, which has a scalar field diverging on the event horizon [1]. However, it is known that
this solution is unstable [2], and cannot be considered as a valid example of a black hole with scalar hair. There are
also a number of theoretical results as well as numerical evidence against the existence of black holes with scalar field
hair (with various couplings to the Ricci scalar curvature) in asymptotically flat spacetime (see, for example, [3] for
a recent discussion).

In an unexpected development, hairy black hole solutions have been found in both theories with minimally as well
as nonminimally coupled scalar fields by considering asymptotically anti-de Sitter (AAdS) boundary conditions [4, 5].
Moreover, some of these solutions are found to be stable. Exact four-dimensional black hole solutions of gravity with
a minimally coupled self-interacting scalar field have been presented by Martinez, Troncoso and Zanelli (MTZ) [6]
and Zloshchastiev [7].

However, in many other theories admitting hairy black hole solutions, these configurations survive in the limit of
zero event horizon radius, yielding particle-like, globally regular configurations. Motivated by this observation, we
consider in this paper the case of a conformally coupled scalar field in an n−dimensional AAdS spacetime (with n ≥ 4)
and look for both globally regular and black hole solutions. In the black hole case, we extend the results of Ref. [5] by
considering higher dimensional configurations. Since a negative cosmological constant allows for the existence of black
holes whose horizon has nontrivial topology, we consider, apart from spherically symmetric solutions, topological black
holes also. We find that the spherically symmetric solutions admit a nontrivial regular limit, representing gravitating
scalar solitons. These configurations are indexed by the central value of the scalar field and are found to be stable
against linear fluctuations.

The outline of this paper is as follows: in Section II we introduce our model, the numerical results being presented
in Section III. The stability of our solutions is addressed in Section IV. Our conclusions are presented in Section V.
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II. THE MODEL

A. The ansatz and field equations

We consider the following action, which describes a self-interacting scalar field φ with non-minimal coupling to
gravity in n−dimensions (throughout this paper we will use units in which c = 8πG = 1)

S =

∫

dnx
√−g

[

1

2
(R− 2Λ) − 1

2
(∇φ)

2 − 1

2
ξRφ2 − V (φ)

]

, (1)

where R is the Ricci scalar curvature, Λ = −(n − 2)(n − 1)/2ℓ2 is the cosmological constant and ξ is the coupling
constant. For a minimally coupled scalar field ξ = 0 and for conformal coupling (which is the focus of this paper)
ξ = ξc = (n− 2)/4(n− 1).

The field equations are obtained by varying the action (1) with respect to field variables gµν and φ

(

1 − ξφ2
)

Gµν + gµνΛ = (1 − 2ξ)∇µφ∇νφ+

(

2ξ − 1

2

)

gµν (∇φ)2

−2ξφ∇µ∇νφ+ 2ξgµνφ∇2φ− gµνV (φ), (2)

∇2φ− ξRφ− dV

dφ
= 0. (3)

The Ricci scalar expression which follows from these equations is

R = −
2(n− 1)(ξ − ξc)(∇φ)2 + 2ξ(n− 1)φdV

dφ − n(V (φ) + Λ)

n/2 − 1 + 2(n− 1)ξ(ξ − ξc)φ2
. (4)

Since for a negative cosmological constant topological black holes may appear (with a nonspherical topology of the
event horizon), we consider a general metric ansatz

ds2 =
dr2

H(r)
+ r2dσ2

d−2,k −H(r)e2δ(r)dt2, (5)

where dσ2
n−2,k = dψ2+f2

k (ψ)dΩ2
2 denotes the line element of an (n−2)-dimensional space Σk with constant curvature.

The discrete parameter k takes the values 1, 0 and −1 and implies the following form of the function fk(ψ):

fk(ψ) =







sinψ, for k = 1
ψ, for k = 0
sinhψ, for k = −1.

(6)

When k = 1, the hypersurface Σ1 represents a sphere, for k = −1, it is a negative constant curvature space and it could
be a closed hypersurface with arbitrarily high genus under appropriate identifications. For k = 0, the hypersurface
Σ0 is a (n− 2)-dimensional Euclidean space (see e.g. the discussion in [8]).

A convenient parametrization of the metric function H is

H(r) = k − 2m(r)

rn−3
+
r2

ℓ2
. (7)

Although a rigorous computation of the solutions’ mass and action is a nontrivial task for ξ 6= 0, we assume that the
asymptotic value of m(r) corresponds to the mass of our configurations, up to some n−dependent factor.

Within this ansatz, we find the resulting equations (where a prime denotes the derivative with respect to r)

n− 2

2r
(1 − ξφ2)

[

H ′ − n− 3

r
(k −H)

]

−
(

2ξ − 1

2

)

Hφ′2 + ξφφ′(H ′ + 2Hδ′) − 2ξφ∇2φ+ V (φ) + Λ = 0,

n− 2

r
(1 − ξφ2)δ′ − (1 − 2ξ)φ′2 − 2ξφ(δ′φ′ − φ′′) = 0,

Hφ′′ + φ′
(

Hδ′ +H ′ +H
n− 2

r

)

− ξRφ− dV (φ)

dφ
= 0. (8)
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B. Boundary conditions

The asymptotic solutions to these equations can be systematically constructed in both regions, near the origin (or
event horizon) and for r ≫ 1.

The corresponding expansion as r → 0 is (globally regular solutions may exist for k = 1 only):

H(r) = 1 +
2(−2ξ2φ2

0R0 + Λ + V0 − 2ξφ0V
′
0)

(n− 1)(n− 2)(ξφ2
0 − 1)

r2 +O
(

r4
)

,

δ(r) = δ0 +
ξφ0(ξφ0R0 + V ′

0)

(n− 1)(n− 2)(ξφ2
0 − 1)

r2 +O
(

r4
)

,

φ(r) = φ0 +
ξφ0R0 + V ′

0

2(n− 1)
r2 +O

(

r4
)

, (9)

where

R0 =
n(V0 + Λ) − 2ξ(n− 1)φ0V

′
0

n/2 − 1 + 2(n− 1)ξ(ξ − ξc)φ2
0

(10)

is the Ricci scalar evaluated at the origin and V0 = V (φ0), V
′
0 = dV/dφ|φ=φ0 .

For black hole configurations with a regular, nonextremal event horizon at r = rh, the expression near the event
horizon is

H(r) = H ′(rh)(r − rh) +O (r − rh)2 ,

δ(r) = δh + δ′(rh)(r − rh) +O (r − rh)
2
,

φ(r) = φh + φ′(rh)(r − rh) + φ2(r − rh)2 +O (r − rh)
3
, (11)

where

H ′(rh) = (n− 3)
k

rh
+

2rh
(

Λ + Vh − ξφh(ξφhRh + V ′
h)

)

(n− 2)(ξφ2
h − 1)

,

φ′(rh) =
ξRhφh + V ′

h

H ′(rh)
,

φ2 =
φ′(rh)

2rh

{

−1 +
1

2H ′
hrh

[

r2h(ξRh + V ′′
h ) + 2k(n− 3)

]

}

+
1

(ξφ2
h − 1)

{

(2ξ − 1)φ′(rh)2rhV
′
h

2(n− 2)H ′(rh)

+ξφhφ
′(rh)

[

1 − k(n− 3)

2rhH ′(rh)
+

rh
2(n− 2)H ′(rh)

(3ξRh + V ′′
h )

]}

,

δ′(rh) =
rh[(2ξ − 1)φ′(rh)2 + 4ξφhφ2]

(n− 2)(ξφ2
h − 1) + 2ξφhφ′(rh)rh

, (12)

and

Rh =
n(Vh + Λ) − 2ξ(n− 1)φhV

′
h

n/2 − 1 + 2(n− 1)ξ(ξ − ξc)φ2
h

(13)

is the Ricci scalar evaluated at the event horizon; noting that V
(k)
h = V (k)(φ)

∣

∣

φ=φh

.

To analyze the r ≫ 1 region, we assume that the geometry approaches asymptotically the AdS spacetime and that
the function m(r) does not diverge in the same limit. These assumptions imply that limr→∞ φ(r) = 0 and

φ =
c1

rn/2−1
+

c2
rn/2

− c3
rn/2+1

+ . . . , H(r) = k − 2M

rn−3
− 2Λr2

(n− 2)(n− 1)
+ . . . , δ(r) =

δ2
rn

+ . . . , (14)

and also impose some constraints on the scalar potential (for example, in n = 4, the potential should satisfy as r → ∞
the condition V = V ′ = V ′′ = V ′′′ = 0). In the above relations c1, c2 and M are real constants which fix the values
of the other coefficients in the asymptotic expansion. In the simplest case of a vanishing self-interaction potential, we
find

c3 = −c1k(n− 1)(n− 2)2(n− 4)

16Λ
,

δ2 = −c
2
1(n− 1)(n− 2)3(n− 4)k + 8c22nΛ

16n(n− 1)(n− 2)Λ
. (15)
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C. Conformal transformation

The conformal transformation [1, 9]

ḡµν = Ω2/(n−2)gµν , with Ω = 1 − ξφ2 (16)

maps the original system (1) onto a much simpler one involving just a minimally coupled scalar field, but with a more
complicated potential (this transformation is valid only for those solutions with a nonvanishing Ω). For a conformally
coupled scalar field, the new action principle takes the form

S =

∫

dnx
√−ḡ

[

R̄− 2Λ

2
− 1

2

(

∇̄Φ
)2 − U(Φ)

]

, (17)

where a bar denotes quantities calculated using the transformed metric ḡ and we define a new scalar field Φ as (for
ξ = ξc):

Φ =
1√
ξc

arctanh
√

ξcφ, (18)

with a nonvanishing potential

U(Φ) = [Λ + V (φ)]
[

cosh(
√

ξcΦ)
]

2n

n−2 − Λ. (19)

The main advantage of the rescaled frame is that the field equations are much simpler. However, the potential (19)
is unphysical (for example, with V ≡ 0, it is negative everywhere).

In the transformed frame, the metric ḡµν takes the form (5), but with the quantities H and δ replaced by H̄ and δ̄

respectively. In addition, there is a new radial co-ordinate r̄ = Ω1/(n−2)r, which is a good co-ordinate as long as

A = (n− 2)Ω − 2rξcφφ
′ > 0. (20)

This is an additional constraint on the scalar field φ required for the conformal transformation to be valid. For all
our numerical solutions, the conditions Ω, A > 0 are satisfied.

III. NUMERICAL RESULTS

As analytic solutions to the coupled nonlinear equations (8) appear to be intractable for every dimension, except
for the n = 4, k = −1 black hole solution found in [6], the resulting system has to be solved numerically.

In this section we discuss mainly the case of a conformally coupled scalar field without a self-interaction potential.
Since for V (φ) = 0 the field equations are invariant under the transformation φ → −φ, only positive values of φi

are considered. Here φi denotes the initial value of the scalar field at the r = r0 (with r0 = (0, rh) for regular
and black hole solutions, respectively). Also, by rescaling the radial coordinate (together with m(r)), we can set
Λ = −(n− 1)(n− 2)/2 (i.e. ℓ = 1) without any loss of generality.

We follow the usual approach and, by using a standard ordinary differential equation solver, we evaluate the initial
conditions at r = r0 + 10−6 for global tolerance 10−12, and integrate towards r → ∞. In this way we find that
nontrivial solutions may exist in any dimension n ≥ 4 (both black hole and regular solutions exist also in three
spacetime dimensions; however, their properties are somewhat special and we do not discuss them here). Black hole
solutions seem to exist for any values of the parameters (k, φh, rh) satisfying H ′(rh) > 0.

Typical profiles are presented in Figure 1 for regular configurations and in Figures 2, 3 for black hole solutions.
The dependence of the mass parameter M and e2δ(r0) on φi is plotted in Figure 4-6 (note the occurrence of negative
values of M for k = −1 black holes, a common situation in topological black hole physics).

The properties of the configurations can be summarized as follows:

1. For n ≥ 4, AAdS solutions exist for any values of φi in the interval 0 < φi < 1/
√
ξc;

2. The scalar field interpolates monotonically between φi and zero and has no nodes;

3. The value of the metric function e2δ at the origin (event horizon respectively) decreases for an increasing φi and
approaches zero in the limit φi → 1/

√
ξc.
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As seen in Figure 4, for regular solutions M approaches a finite value in the same limit. In the black hole case, the
critical value of M increases very rapidly with rh, which makes its accurate determination a difficult task for large rh.
In the k = −1 case, the condition H ′(rh) > 0 implies the existence of a minimal value of the event horizon radius,

rh >
(n− 1)(n− 3)(1 − ξφ2

h)

[1 + n(n− 2)(1 − φ2
h/8)]1/2

. (21)

We have also found that non-trivial configurations may exist in the presence of a nonzero scalar potential. In this
case the scalar field equation (3) in a fixed AdS background has two exact solutions

φ =

[

1 +
r2

ℓ2

]p

, V (φ) = cφs, (22)

with p = (2−n)/4, c = −(n−2)3/8nℓ2, s = 2n/(n−2) in one case, and p = −n/4, c = −n3/8ℓ2(n+2), s = 2(n+2)/n
in the other.

However, we have restricted our analysis to the particular form V (φ) = 1/2µ2φn, which for n = 4 corresponds to
the case considered in [6]. These solutions share many properties with the zero-potential case, being also indexed by
the initial value of the scalar field φi. The shape of the solutions is similar to the µ = 0 case and we again found no
nodes in the scalar function. In Figure 1 we plotted a typical n = 4 regular solution with µ = 0.3. Similar solutions
exist also in the black hole case. In this context, we have found that the black hole solution found in [6] corresponds
to a n = 4, k = −1 configuration with a particular choice of (µ, φh).

As expected, the mass M of the solutions increases with µ while the maximal value of φi decreases. We will not
address here the question of the limiting solution for µ 6= 0, which seems to be an involved problem and a different
metric parametrization appears to be necessary. Our preliminary results indicate that for µ 6= 0 the metric function
δ(ri) remains finite in this limit, while the value of M diverges.

IV. ON THE STABILITY OF SOLUTIONS

A. Stability of the numerical solutions

Following the standard method, we consider spherically symmetric, linear perturbations of our equilibrium solutions,
keeping the metric ansatz as in (5), but now the functions H , δ and φ depend on t as well as r. The algebra is simplest
if we work in the transformed frame (see section 2.3), where we have a minimally coupled scalar field, and, once the
perturbation equations have been derived, transform back to the frame with a conformally coupled scalar field. The
metric perturbations can be eliminated to yield a single perturbation equation for

Ψ = r
(n−2)

2

(

1 − ξcφ
2
)− 1

2 δφ, (23)

where δφ is the perturbation in the conformally coupled scalar field. For periodic perturbations (δφ(t, r) = eiσtδφ(r),
etc), the perturbation equation takes the standard Schrödinger form

σ2Ψ = − d2

dr2∗
Ψ + VΨ, (24)

where we have defined the “tortoise” co-ordinate r∗ by

dr∗
dr

=
1

Heδ
. (25)

For regular solutions, r∗ has values in a finite interval [0, r∗1] for some r∗1 < ∞, while for black holes, r∗ ∈ (−∞, 0].
The perturbation potential V is given as follows (we write the formula explicitly only for the vanishing self-interaction
potential case, for simplicity):

V =
He2δ

r2

{

k

2
(n− 2)(n− 3) − A2H

(n− 2)2Ω2
− Λr2

Ω
+

2Λξcnr
2

(n− 2)2

[

2n

Ω
− (n+ 2)

]

+
4Λξcnφφ

′r3

AΩ

−k
2
(n− 2)3(n− 3)r2φ′2 +

Λ(n− 2)2r4φ′2

A2Ω

}

, (26)
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where Ω is given in (16) and A is given in (20).
As is often the case for AAdS solutions, care is needed in the use of boundary conditions to ensure that there is a self-

adjoint operator in the perturbation equation (24) (see, for example, the discussion in [10] for the Einstein-Yang-Mills
case). We consider black hole and soliton solutions separately in this regard.

Firstly, for black hole solutions, it is convenient to change the independent variable to y = −r∗ so that y ∈ [0,∞).
In order to have a self-adjoint operator, we need to impose the boundary condition Ψ = 0 at y = 0, which corresponds
to r → ∞. Secondly, for the regular soliton solutions, boundary conditions need to be imposed at both r∗ = 0 and
r∗ = r∗1 as we are working on a finite interval. Suitable boundary conditions are Ψ = 0 at both the end-points, namely
at the origin and at infinity. In both these cases, it is straightforward to check that these boundary conditions are
sufficient to enable a self-adjoint operator to be constructed from the differential operator in (24) using the standard
techniques, found, for example, in section XIII:2 of [11].

Some typical perturbation potentials (26) are shown in Figures 7–10. We find a complicated behaviour of the per-
turbation potential depending on the values of the parameters Λ, φ0 and µ and the number of space-time dimensions.
As r → 0, we have

V ∼ (n− 4)(n− 1)

2r2
+O(1), (27)

so for n > 4 the potential diverges to infinity, like a standard central well potential with angular momentum (see
Figure 8). The potential V can also be seen to vanish at the black hole event horizon (provided A > 0 and Ω > 0
there), and, at infinity, the leading order behaviour is

V ∼ r2n(n− 4)

4ℓ4
+O(1), (28)

so for n > 4 the potential again diverges to infinity (see Figures 8 and 10). Turning on the self-interaction potential
V (φ) tends to increase the perturbation potential (Figure 7), as also observed in [5].

In a limited number of cases we find that the perturbation potential (26) is positive everywhere (see, for example,
some of the plots in Figure 10). In these cases, we can immediately conclude that the corresponding solutions are
(linearly) stable, since we have a self-adjoint operator in (24). However, for the majority of the solutions examined,
the potential is not positive everywhere, and in these cases we examine the zero mode solution of the perturbation
equation (24), namely the time-independent solution when σ2 = 0 (see [3] for further details of the zero mode method
applied to scalar field perturbations). For all the solutions we examined, the zero modes have no nodes (zeros). As
the operator in (24) is self-adjoint, we can apply standard theorems (see, for example, section XIII:7 of [11], or [12]),
which state that the number of nodes of the zero mode equals the number of eigenvalues σ2 of (24) which are less
than zero. Therefore there are no eigenmodes which grow exponentially in time and the solutions are linearly stable.
Our conclusion that our numerical solutions are stable is in accord with previous work [3, 4, 5], in which solutions
with a scalar field having no zeros were linearly stable.

B. Stability of the closed-form solutions

We can also study the stability of the exact, closed form solutions on pure AdS space, given by (22). In this case we
keep the background AdS metric fixed and perturb simply the scalar field. The equation for the “tortoise” co-ordinate
r∗ (25) can be explicitly integrated to give x = r∗/ℓ = tan−1 (r/ℓ), where x ∈ [0, π/2], and the perturbation equation
takes the form (24), for periodic perturbations, with r∗ replaced by x, and the perturbation potential is now

V = −1

4
(n− 2)

2
csc2(x) − 1

2
(n− 2) (n− 3) sec2(x) − 4p (p− 1) ; (29)

where 4p(p− 1) = (n− 2)(n+ 2)/4 for the first type of solutions, and 4p(p− 1) = n(n+ 4)/4 for the second type of
solutions. Since the perturbation potential is so simple in this case, we use an analytic, variational, method to study
the stability. We define a functional

F [Ψ] =

∫ π

2

x=0

[

−Ψ
d2Ψ

dx2
+ VΨ2

]

dx

=

[

−Ψ
dΨ

dx

]
π

2

x=0

+

∫ π

2

x=0

[

(

dΨ

dx

)2

+ VΨ2

]

dx, (30)
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where in the second line we have integrated by parts. If we can find a test function Ψ0 such that

∫ π

2

x=0

Ψ2
0 dx (31)

is finite, the boundary term in (30) vanishes and F [Ψ0] < 0, then there must be at least one bound state solution
of the perturbation equation (24) with σ2 < 0, rendering the solutions unstable. Using Ψ0(x) = sin(2x) as our test
function, the integral (31) is finite, the required boundary term does indeed vanish, and

F [Ψ0] =

{

1
16

[

−13n2 + 56n− 44
]

;
1
16

[

−13n2 + 52n− 48
]

;
(32)

for the first and second type of exact solutions, respectively. Both the quadratics above are negative for all n ≥ 4, so
our exact, closed form solutions are unstable. This instability is perhaps a little surprising given the stability of the
numerical solutions, however this may be understood as a result of the particular form of the (negative–) scalar field
potential. If we perturb the scalar field slightly, there is no nearby solution of the form (22) for it to become. The
nearest numerical solution will require a finite change in the scalar field at some value of r, and this shows up as a
linear instability. However, it might be reasonable to expect that the scalar field would settle on a stable, non-trivial
solution rather than radiating away to infinity.

V. CONCLUSIONS

In this paper we have studied the Einstein-scalar system in various space-time dimensions, with a conformally
coupled scalar field and a negative cosmological constant. We find both regular and black hole solutions, generalizing
the black hole solutions of [5].

Both types of solutions are shown to be linearly stable, apart from some exact, discrete, closed-form solutions on
pure AdS, which are linearly unstable. As with previous solutions [3, 5], this stability can be readily understood in
terms of the Breitenlohner-Freedman bound [13], which, in n dimensions, states that scalar fields in pure AdS are
stable if their mass-squared satisfies the inequality [13]

m2
BF >

Λ(n− 1)

2(n− 2)
, (33)

noting that Λ < 0 so the bound is for negative mass-squared. In our case, with zero self-interaction potential, the
“effective” mass is given by

ξcR(r → ∞) =
Λn

2(n− 1)
. (34)

For all n ≥ 3, it is the case that ξcR(r → ∞) > m2
BF , implying the stability of our solutions.

There are various interesting applications of these solutions. The soliton solutions may be of interest in the
gravitational collapse of scalar fields in AAdS. Critical collapse of a conformally coupled scalar field has been studied
in flat space [14], but not, to date at least, in 3+1 dimensions in AAdS. Soliton solutions of the type found in this
paper do not occur in flat space, so their presence in AAdS may change the phenomenology of gravitational collapse,
since there are no longer just the end-point possibilities of empty space or a black hole. However, since the solitons we
have found here are stable, they cannot be the critical solutions, unlike the situation for Einstein-Yang-Mills solitons
in asymptotically flat space [15].

It would also be of interest to calculate the mass and action of these solutions, and to look for possible applications
within the context of the AdS/CFT correspondence. The thermodynamics of black holes with a conformally coupled
scalar field with a positive or zero cosmological constant has already yielded some surprises (see, for example, [16] for
a review), prompting a detailed study of the thermodynamics when the cosmological constant is negative.

Finally, it would be interesting to extend the results derived in [17] within the isolated horizon formalism, to the
more general case considered in this work.

We hope to return to these questions in a future publication.
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Figure 1. The functions m(r), e2δ(r) and φ(r) are plotted as functions of radius for two typical n = 4 regular solutions.
The scalar potential in one case is V (φ) = µ/2φ4, with µ = 0.3, while V (φ) = 0 for the second solution. The central
value of the scalar field is φ0 = 2.
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Figure 2. The functions m(r), e2δ(r) and φ(r) are plotted as functions of radius for n = 4 black hole solutions with
φ0 = 2.1 and V (φ) = 0.
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Figure 3. The functions m(r), e2δ(r) and φ(r) are plotted as functions of radius for n = 5 black hole solutions with
φ0 = 1.8 and V (φ) = 0.
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Figure 4. The parameters M and gtt(0) = −e2δ(0) are shown as a function of φ(0) for spherically symmetric
regular solutions in several spacetime dimensions. Here and in Figures 5, 6 the value of the cosmological constant is
Λ = −(n− 1)(n− 2)/2 and V (φ) = 0.
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Figure 5. The parameters M and e2δ(rh) are shown as a function of φ(rh) for spherically symmetric black
hole solutions in several spacetime dimensions.
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Figure 6. The parameters M and e2δ(rh) are shown as a function of φ(rh) for k = −1 topological black hole
solutions in several spacetime dimensions.
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Figure 7. The perturbation potential (26) is plotted for the typical n = 4 regular solutions shown in Figure
1.
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Figure 8. The perturbation potential (26) is plotted for two typical n = 5, 6 regular solutions. For both the
solutions, the scalar potential V (φ) = 0, and the central value of the scalar field is φ0 = 2.
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Figure 9. The perturbation potential (26) is plotted for the typical n = 4 black hole solutions shown in
Figure 2.
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Figure 10. The perturbation potential (26) is plotted for typical n = 5, 6 black hole solutions with the value
of the scalar field on the event horizon φ0 = 1.8.
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