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Traffic-Aware Cell Management for

Green Ultra-dense Small Cell Networks
Zhehan Li, David Grace, Senior Member, IEEE, and Paul Mitchell, Senior Member, IEEE

Abstract—To reduce the power consumption of 5G ultra-
dense small cell networks, base stations can be switched to
low power sleep modes when local traffic levels are low. In
this paper, a novel sleep mode control algorithm is proposed
to control such sleep modes. The algorithm innovates a concept
called Traffic-Aware Cell Management (TACM). It involves cell
division, cell death and cell migration to represent adaptations of
networks, where state transitions of base stations are controlled.
Direction of arrival is adopted for distributed decision making.
The TACM algorithm aims at reducing the network power
consumption while alleviating the impacts of applying sleep
modes, such as mitigating system overheads and reducing user
transmission power. The TACM algorithm is compared with a
recent consolidated baseline scheme by simulation on networks
with unbalanced traffic distributions and with base stations at
random locations. In contrast, the TACM algorithm shows a
significant improvement in mitigating system overheads due to
no load information exchange overhead and up to 72 times less
switching frequency. Up to 81% network power consumption can
be reduced compared with the baseline scheme if considering high
energy consumption of switching transient states. In addition,
at a low traffic level, average uplink transmission power is
reduced by 79% comparatively. Furthermore, the impact of
important performance governing parameters of the TACM
algorithm is analysed. The insensitivity to the estimation accuracy
of direction of arrival is also demonstrated. The results show that
the proposed TACM algorithm has a comprehensive advantage
of power reduction and overhead mitigation over the baseline
scheme.

Index Terms—Energy saving, random topology, sleep modes,
ultra-dense small cell networks

I. INTRODUCTION

W
ITH the proliferation of the mobile device market, the

dramatically increasing demand of mobile data services

is imposing great pressure on existing wireless networks. As

predicted in [1], global mobile data traffic is expected to grow

at a compound annual growth rate of 61 percent from 2013

to 2018. One promising solution to cope with this trend is

deployment of ultra-dense Small Cell Networks (SCNs) to

increase system capacity in highly populated locations [2].

In SCNs, cell sizes are reduced to enhance spatial frequency

reuse, meaning that there are higher densities of base stations

which need to be lower power and cost less. Therefore, users

can handover more frequently to obtain services from local

base stations and use lower transmit power.
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Although small cell base stations are relatively low-power,

the overall network power consumption is still consider-

able, given the rising quantity of base stations required.

To reduce the operational expenditure (OPEX) of electricity

consumption, operators are very interested in lowering the

overall network power consumption while boosting the system

capacity [3]. As a result, SCNs are not only required to

be environmentally friendly, they can also be economically

lucrative. To address the power consumption challenge, it

is essential to consider various techniques such as energy

efficient base station deployments, energy efficient protocols

and architecture designs, opportunistic network access, smart

grids [4], [5], etc. Another promising solution is the appli-

cation of low-power sleep modes, which deactivate hardware

modules within base stations for energy saving. As real traffic

distributions are temporally and spatially variable in reality,

it is possible to switch some Evolved Node Bs (eNBs) in a

SCN to sleep modes where and when the local traffic levels

are low. The former coverage areas of the sleeping eNBs are

then compensated for by the other active eNBs.

A. Prior Work

Regarding the network components performing the compu-

tation, sleep mode control schemes can be categorised into

centralised schemes and distributed schemes. When consid-

ering distributed solutions, there are also various approaches

and different requirements about the infrastructure and the

functionality of the sleep modes [6]. Activation and deacti-

vation decisions of eNBs can either be made by eNBs them-

selves, their neighbour eNBs or their local User Equipment

(UEs). Among these solutions, the design of sleep modes

and the number of active hardware modules during sleep

modes depend on whether sleeping eNBs are required to

perform computation. We notice that some research has been

carried out to suit the preferred distributed manner due to the

inefficient management of centralised schemes. For example

in [7], authors propose a distributed scheme that requires both

active and sleeping base stations to receive load information

from neighbour eNBs and control state transitions based on

capacity thresholds. In [8], a similar algorithm is presented

to control sleep modes in conventional cellular networks also

needs load information exchange. In addition to the exchanged

load information, coverage information is also required for

decision making in a sleep mode control algorithm in [9].

A more consolidated scheme is proposed and analysed in

[10], where an eNB considers both the load information

of its neighbour eNBs and the handover information of the

associated UEs to make switch-off decisions. Activation de-

cisions are made by neighbour eNBs based on their load
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conditions. However, all these schemes mentioned need some

form of information exchange among neighbour eNBs, such

as load information, which yields additional system overheads.

The system overheads are not accordingly evaluated and not

intended to be reduced.

In addition to the extra system overheads, the other cost is

on the UE side, which is the increase of the average uplink

transmission power. With the application of sleep modes, there

are fewer active eNBs in a network so that the average distance

between UEs and their corresponding associated eNBs is

longer. This drives UEs to increase the transmission power

to compensate for the path loss, which reduces their battery

lives. Although the SCNs with much smaller cell sizes have

reduced the transmission power of UEs dramatically, and the

increase of the UE transmission power is negligible compared

with the significant power reduction at the eNB side, it is

essential to minimise this effect by making the active eNBs

closer to UEs overall when designing a sleep mode control

algorithm. However, this is rarely considered in prior work.

The aforementioned schemes have mostly been investigated

on networks with a grid topology or other specific layouts.

These network models are too idealised, especially for future

self-organised SCNs, where more random placement should

be introduced to verify the effectiveness of a specific sleep

mode control scheme. On the other hand, based on the random

placement of eNBs, crucial system configurations for sleep

mode control such as Neighbour Cell List (NCL) should be

initially self-configured by the eNBs autonomously when there

is a change in the system, e.g. deployment of new eNBs.

This is especially important for sleep mode control to be

realised in a distributed way. As part of self-organisation, self-

configuration is used to avoid manual configuration of a large

number of eNBs in a SCN, which becomes more and more

time-consuming and costly. However, the importance of NCL

set-up for sleep mode control in SCNs of random topologies

has only drawn limited attention in recent research.

B. Main Contributions

When designing a sleep mode control algorithm, the fol-

lowing issues have to be addressed:

• Determination of the best time to switch on-off

• Reduction of associated system overheads including in-

formation exchange overhead and switching overhead

• Placing active eNBs where the increase of the UE uplink

transmission power can be minimised

The main contributions of the paper are summarised as:

• DOA Utilisation: In the novel sleep mode control algo-

rithm proposed in this paper, Direction of Arrival (DOA)

information of the UEs is used as one of the decision

making criteria. DOA estimation has been studied over

the past few decades and is widely used for smart

antenna beamforming, which is expected to have more

performance benefit in future networks. With the spread

of multiple antenna systems, the availability of DOA in-

formation can be guaranteed and be used for sleep mode

control in the SCNs investigated. Conventionally, DOA

can be estimated by uniform sensor arrays as well as

either isotropic or directional antenna arrays using various

algorithms, e.g. MUSIC [11], which is compared and

analysed with other algorithms in [12]. The experimental

work done is as rich as the theoretical algorithms. For

instance in [13], MUSIC is evaluated with an antenna

array of 6 parasitic elements, which achieves an error of

less than one degree under the conditions of a 20 dB

signal-to-noise ratio (SNR), 1000 snapshots and a 500

kHz sampling rate. In spite of this, attention still has to be

paid to the resolution property of DOA estimation which

depends upon the SNR, the number of elements in the

array, the number of snapshots, the array geometry and

so on [12]. Although, DOA estimation is more effective

for line-of-sight (LOS) paths, research is also ongoing

to deal with the influence of non-line-of-sight (NLOS)

paths [14], [15]. In the SCN scenario investigated in this

paper, the transmission path between a UE and an eNB

is usually short and is more likely to be LOS so that

DOA estimation can potentially have high accuracy. The

DOA estimation error is also quantified to demonstrate

its effects on the algorithm performance are limited.

• Algorithm Design: To exempt the load information ex-

change between neighbour eNBs, DOA is used to make

eNBs aware of the directions of areas with high traffic

levels. In the algorithm, DOAs are classified, and dis-

tributed weight memories are created at all the eNBs. The

memory of an eNB is cumulatively updated through its

past experience. An activation decision of a sleeping eNB

is made by an active eNB only based on its own historical

DOA perception and its own average load estimation,

which does not require the load information of neighbour

eNBs and therefore mitigates the information exchange

overhead. Deactivation decisions are also made by eNBs

themselves without the necessity of considering the loads

of neighbour eNBs. A hysteresis time is applied to ensure

that cursory decisions are not made based on temporarily

fluctuating traffic levels, which also reduces the switch

on-off frequency. The algorithm enables actions to be

taken according to the locations of hotspot areas where

eNBs are more likely to be activated, reducing the

average UE connecting distance and the average uplink

transmission power as a result. With the joint efforts of

all eNBs in a SCN, the SCN can therefore manage its

cell configurations according to the varying environment.

A comparison of the proposed algorithm is made to

a recent consolidated scheme introduced in [10]. The

virtues of our design over the comparison scheme, which

are reducing system overheads and uplink transmission

power, are examined. The potential reduction of the

network power consumption contributed by the switching

transient states is also evaluated.

• Practical Aspects: The algorithm is based on our early

work [16] and is significantly generalised to suit the

future SCNs with random placement of eNBs, based on

which the NCLs are carefully defined. A mathematical

model capturing this feature is adopted to model the

network architecture. The logical diagram of the network

structure is shown as in Fig. 1, where the ultra-dense
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Fig. 1. The investigated ultra-dense SCN structure.

SCNs are of the distributed structure and X2 air interface

among eNBs is defined for sending messages. Further-

more, a nonuniform UE distribution model is chosen

to reflect the existence of hotspots areas. Beyond the

analysis in [16], the system overheads of implementing

a sleep mode algorithm and the increase of UE trans-

mission power are extensively evaluated. Owing to fewer

active eNBs in a SCN, the impact on Quality of Service

(QoS) of various traffic levels is considered. As reducing

network power consumption and maintaining global QoS

delivered by a SCN become two conflicting goals, the

trade-offs are also analysed.

The remainder of the paper is organised as follows. In

Section II, the details of the proposed Traffic-Aware Cell

Management algorithm including DOA classification, weight

update, cell management are described. The system models

and assumptions are presented and illustrated in Section III.

Section IV presents the simulation set-up and results of the

proposed algorithm and the comparative schemes followed by

explanation and analysis. Finally, conclusions are drawn in

Section V.

II. TRAFFIC-AWARE CELL MANAGEMENT

The key point of designing a sleep mode control algorithm

to achieve energy saving is to ensure that a SCN always

provides just enough resources in appropriate areas in pace

with the temporal and spatial traffic variations. Therefore,

it is vital to only locate active eNBs delivering services at

places with high service demands, which also prevents UEs

from connecting far away causing severe interference and

wasting transmission power. While meeting this requirement,

information exchange should be reduced and the algorithm

should be insensitive to temporary short-time traffic variations.

The Traffic-Aware Cell Management (TACM) algorithm

proposed here is dedicated to achieving the above objectives.

In the TACM algorithm, an eNB observes and updates its

memory, based on which actions are taken from the action set

consisting of cell division, cell migration and cell death. The

details of the TACM algorithm are introduced in this section.

A. Observation

This observation process requires only active eNBs to

estimate the DOAs of their admitted UEs. When UEs are

preparing for file transmissions, DOA estimations are per-

formed based on control signals containing different UE

identifications. As noted earlier, DOA estimation is assumed

to be ideal. The example in Fig. 2 (a) assumes that the eNB

estimates the DOAs of all the UEs, each of which has one file

arrival. The counted number of DOAs with 1 degree resolution

as an example is plotted in Fig. 2 (b). It is obvious that the

estimation of DOAs yields an angular distribution of the traffic

perceived by the eNB and indicates the directions of higher

traffic levels.

B. Memory Update

The memory update process is executed every time a new

DOA estimation is performed. The DOA is further classified

and the corresponding metrics are updated. In this process, an

eNB can determine the directions of the areas with high traffic

levels and take them as part of the decision making criteria.

The eNBs in a SCN network are denoted by a set B =

{B1,B2, . . . ,Bi } (i ∈ N∗) and the neighbour eNBs of a eNB

Bi are represented by a set Ni = {Ni,1,Ni,2, . . . ,Ni, j }, where

j ∈ N∗. To quantify the captured DOAs for each Bi , a weight

memory (Wi = {Wi,1,Wi,2, . . . ,Wi, j }) is needed and each

memory unit in the weight memory is mapped to one of the

neighbour eNBs Ni, j ∈ Ni of Bi :

∀Wi, j ∈ Wi : Wi, j 7→ Ni, j . (1)

When Bi creates its own NCL, the angle of each Ni, j relative

to Bi , Di, j ∈ [0,360) is acquired and recorded in degrees.

Then for DOA classification, an interval Ii, j for each Wi, j

representing a sector with its angular bisector threading Ni, j

is generated and its centrally symmetric sector represented by

an interval I∗
i, j

is created as well:

Ii, j = (Di, j −
∆θ

2
,Di, j +

∆θ

2
), (2)

I∗
i, j = (Di, j −

∆θ

2
+ 180,Di, j +

∆θ

2
+ 180), (3)

where ∆θ ∈ (0,180] is a predefined parameter in degree

representing the interval length (the effects of varying this

parameter are further analysed in Section IV D3). In this

way, Bi updates a weight Wi, j for every neighbour eNB

Ni, j , reflecting the traffic level in its representing direction

relative to Bi . Like the example given in Fig. 3, B3 denotes

its first neighbour eNB B2 as N3,1 and creates an interval

I3,1 for it. The angle of B2 relative to B3 is 354°, then I3,1

becomes (324°,384°) according to Equation 2 with I∗
3,1

being

(504°,564°) according to Equation 3 if ∆θ
2

is 30°.

When a UE is admitted by Bi for data transmission, the

memory size ψi , defined as the total entries of UEs, is

increased by 1 regardless of their DOAs. Meanwhile, the

estimated DOA of the UE is represented by a relative angle

α ∈ [0,360). Afterwards, the entry of this UE is classified

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TVT.2016.2576404

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 0, NO. 0, JUNE 2016

eNB

Hotspot
UE

Background
UE

Hotspot
Centre

(a)

  25

  50

30

210

60

240

90

270

120

300

150

330

180 0

(b)

Fig. 2. DOA estimation. (a) The eNB estimates the DOAs of all the UEs;
(b) The angular distribution of the perceived traffic. The traffic level is the
number of DOAs in the corresponding directions with 1 degree resolution.

into the intervals which it belongs to and the corresponding

weights are updated respectively:

ψ
(t+1)
i

= ψ
(t )
i

+ 1, (4)

∃k ∈ {0,±1} : (α + 360k) ∈ Ii, j

⇒ W
(t+1)
i, j

= W
(t )
i, j

+ 1,
(5a)

∃k ∈ {0,±1} : (α + 360k) ∈ I∗
i, j

⇒ W
(t+1)
i, j

= W
(t )
i, j
− 1,

(5b)

∀k ∈ {0,±1} : (α + 360k) < (Ii, j ∪ I
∗
i, j )

⇒ W
(t+1)
i, j

= W
(t )
i, j
,

(5c)

where the superscript (t) is the prior time step of (t + 1). The

360k terms in Equation 5 exist in case that the ranges of Ii, j
or I∗

i, j
exceed 360° or fall below 0° (α + 360k is equal to

α). As a result, the corresponding weight is increased by 1

if a DOA is classified in Ii, j or decreased by 1 if a DOA is

classified in I∗
i, j

. Multiple weights may be updated for one

entry if it is classified into multiple overlapping intervals.

In one case, the weight Wi, j is relatively high if more DOAs

are classified into the interval Ii, j indicating that the traffic

level in the corresponding direction range Ii, j is high. In the

other case, fewer DOAs classified into the interval I∗
i, j

indicate

less traffic offered in the opposite direction range of the one

pointing to Ni, j , which also yields a higher weight Wi, j .

Implicitly, as active eNBs should stay close to where there

are high traffic levels, or stay far away from areas with low

traffic levels, a relatively higher weight Wi, j always implies

that the corresponding direction range Ii, j points to an area

where active eNBs should be located.

An example of DOA estimation and weight update is given

in Fig. 3. The newly arriving UE1, UE3 and UE4 are classified

to I1,1, I3,1 and I∗
3,1

according to the relative angles of the

DOAs and the reference zero angles. This is processed based

on Equation 5. After that at time step (t + 1), the weight

memory unit W
(t )

1,1
is increased by 1. W

(t )

3,1
remains the same

because of one step of increase contributed by UE3 and one

step of decrease contributed by UE4. However, UE2 is not

classified into any intervals and therefore no corresponding

weights are changed for this entry. On the other hand, ψ
(t )

1

and ψ
(t )

3
are both increased by 2 at time step (t + 1) according

to Equation 4.

For a certain eNB, its weights should be normalised to the

overall traffic supported by it if it is required to know the

relative traffic levels (irrespective of the absolute traffic level)

in different direction ranges pointing to its neighbour eNBs.

For this purpose, weight bias βi, j is defined as

β
(t )
i, j
=

W
(t )
i, j

ψ
(t )
i

. (6)

It is easy to find out that βi, j is also mapped to Ni, j because

of the association with Wi, j . βi, j also stands as a direction

indicator of hotspot areas like Wi, j , but with normalisation

reflecting the relative traffic level to a direction.

From the previous explanation, it is known that the direction

range Ii, j with a corresponding higher weight Wi, j points to

the area where more traffic arrives. By normalising Wi, j to

the memory size ψi , the relative trends of service demands in

areas in different directions are quantified by βi, j . A higher

value of bias signifies the direction where the cell supporter

should be.

As the state transitions of eNBs change the coverage areas

of the active eNBs, this may give rise to inconsistency between

the historical memory and the existing traffic loaded by an

eNB. To deal with this, the memory of an eNB should be

updated after the action has been taken, making the memory

more reliable for the next action to be taken. This is described

in the following subsections.

C. Cell Division

Cell division helps an overloaded eNB activate one of

its sleeping neighbour eNBs in the desired direction. It is

triggered based on the local traffic levels, after which the

updated memories help eNBs determine which neighbour eNB

to be activated. Whenever the load Li of Bi reaches a division

threshold DivLth for a continuous hysteresis duration Hdiv

timed by the hysteresis timer, cell division is triggered. The

hysteresis duration Hdiv is to prevent Bi from being perturbed

by temporary short-term traffic variations which may easily

make the load of Bi exceed the division threshold, DivLth.

This reduces the ping-pong effect and therefore reduces the

overall switching on-off frequency. As mentioned before,

through cumulative DOA estimation and weight update from

the past experience of Bi , a higher value of Wi, j indicates

that there is a high traffic level in the direction to Ni, j . After

cell division is triggered, Bi selects and activates only one

Ni, j ∈ N
off
i

mapped to the largest weight, where N off
i

is the

neighbour sleeping eNB set of Bi . As the NCL is already

initialised after deployment, Bi sends an activation message

via the air interface to its selected neighbouring eNB. A

sleeping neighbour eNB has a minimum message receiving

capability for control purposes and is activated when receiving
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Fig. 3. An example of interval creation, DOA classification and weight update. B2 is denoted as N1,1 and N3,1, indicating that it is the first neighbour
eNB of B1 and B3, respectively. The intervals for neighbour eNBs are built. For instance, the angle of B2 relative to B3 is 354°, then I3,1 is (324°, 384°)

according to Equation 2 with I∗

3,1 being (504°, 564°) according to Equation 3 assuming ∆θ
2

to be 30°. UE1 and UE2 are admitted by B1 while UE3 and UE4

are admitted by B2. UE1 is classified to I1,1 of B1 while UE3 and UE4 are classified to I3,1 and I∗

3,1 according to the relative angles of the DOAs and the

reference zero angles according to Equation 5. Equation 5 is used for classification. Such as for UE3 with 14° DOA, it is classified to I3,1, (324°, 384°), as
14 plus 360 is 374 with k = 1 from Equation 5b.

such messages. It is worth mentioning that such messages

are only transmitted when an activation occurs and do not

require the eNBs to frequently communicate with each other.

Then, the activated eNB recovers normal operation and starts

to broadcast reference signals to serve UEs again.

To provide sufficient resources by having more cells in a

SCN, cell division occurs by activating one of the neighbour

sleeping eNBs of an overloaded eNB. Then, Bi resets every

element inWi and ψi to zero, and empties the hysteresis timer.

As shown in the example in Fig. 4 (a), B1 is overloaded by

its local traffic load and perceives a high traffic level from

its right. It activates its right neighbour eNB B3 to support

the high traffic level. Consequently, B1 and B3 adjust their

coverage areas following a certain UE association policy and

more resources are delivered to the previous overloaded local

area.

D. Cell Migration

Due to the lack of logical interfaces between non-neighbour

eNBs in a distributed SCN, only neighbour eNBs can be acti-

vated in cell division to satisfy the neighbour areas in demand.

Therefore, eNBs can be activated in the required directions

but not at the expected distances. Moreover, SCNs only have

spatial traffic variations sometimes so that only the locations

of active eNBs have to be adjusted and the overall number of

active eNBs may remain the same. By guaranteeing the correct

locations of active eNBs, a combination of both desirable

directions and distances, the average distance between UEs

and eNBs and the resulting average UE uplink transmission

power can be minimised.

Motivated by the above requirements, cell migration is

designed. In cell migration, if an eNB perceives a relatively

high traffic level in the direction interval mapped to a neigh-

bour eNB, it will activate this neighbour eNB and switch

off itself. In this way, the newly activated eNB is located

nearer to the area with a higher traffic level. The migration

process can be triggered taking βi, j into consideration when

the local traffic level in a cell is not high, but of a biased

angular distribution. More specifically, migration of a cell

supported by Bi happens when there is a βi, j exceeding a bias

threshold βth and Ni, j ∈ N
off
i

. Meanwhile, the memory size

ψi should be over a threshold ψth ensuring that a sufficiently

large number of DOAs and a reliable past experience for

reasoning are captured. After satisfying the conditions, the

corresponding mapped neighbour eNB Ni, j is activated by Bi .

If there are multiple βi, j exceeding the bias threshold βth with

their mapped eNBs currently in sleep modes, Bi chooses the

neighbour eNB with the largest βi, j . Then Bi resets every

element in Wi and ψi , and the hysteresis timer to zero. Bi

switches to sleep mode afterwards.

After a migration step, the newly activated eNB supporting

the cell may perceive less biased traffic because of the changes

in DOAs. In another case, the migration process may have

several steps until a closest eNB relative to the hotspot area is

activated. However, finally, due to less biased traffic perceived

by the newly activated eNB, the cell migration chain will

stop and the network becomes stable again. In the example

given in Fig. 4 (b), a weight bias of B3, which is mapped

to its neighbour eNB B1, is over the threshold, indicating the

hotspot area is to its left. B3 activates B1 and deactivates itself,

making the active eNBs located nearer to the area with a higher

traffic level. The cell migration and the changed DOAs of UE2

and UE4 reduce the bias of the traffic distribution relative to

the new cell supporter, B1. This forms a feedback loop from

the network adaptations and the gradual migration process is

terminated until angularly uniform traffic is perceived by the

new cell supporter.

E. Cell Death

To provide just enough resources in a SCN, fewer eNBs

should be active when the overall traffic level is low. Cell death

enables eNBs with low loads to be switched off in order to

reduce the overall network power consumption. As an inverse

process of cell division, when the load Li of Bi is not greater

than a death threshold DieLth for a continuous hysteresis

duration Hdie timed by the hysteresis timer, Bi switches itself

to sleep mode, removing the cell supported by it. Similarly,

Hdie exists to prevent perturbation from temporary short-term

traffic variations. With DieLth, it can be chosen as a pair for

cell death when considering DivLth and Hdiv as a pair of

parameters for cell division. After cell death, Bi resets every

element in Wi and ψi , and clears the hysteresis timer to zero
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Fig. 4. The examples of the moments of the actions in the TACM algorithm.
(a) Cell division: B1 activates B3, dividing the bigger cell into two small cells
when B1 is overloaded and perceives that the hotspot area is to the right; (b)
Cell migration: B3 perceives that the angular traffic distribution is biased to
the left, then it activates B1 and deactivates itself, moving the cell supporter
closer to the hotspot area; (c) Cell death: B1 switches to sleep mode when it
has little load, killing the cell it served.

before switching to sleep mode. Before switching to sleep

mode, Bi broadcasts a sleeping message. Any eNBs receiving

such message will mark it as in sleep mode if it is in their

NCLs. Fig. 4 (c) shows an example of cell death, in which B1

is of a low load, and deactivates itself, reducing the overall

network power consumption. It is worth mentioning that the

death of a cell may also lead to cell migration owning to the

biased traffic perceived by other eNBs.

F. Algorithm Summary

As a result of the mechanism introduced, active eNBs ob-

serve the SCN situation by estimating DOAs and cumulatively

update their respective memories, which quantify the historical

experiences of the eNBs. Network adaptation decisions are

made in a distributed way and each eNB reasons the action to

be taken independently without exchanging load information

among neighbour eNBs, which mitigates the system overheads

and becomes one of the virtues of the algorithm. Moreover,

the existence of hysteresis timers reduces the ping-pong effect

caused by temporary short-term traffic variations, resulting

in a lower switching on-off frequency, which can potentially

reduce the energy consumption of transient states. Another

advantage of TACM is contributed by the directional division

and migration, which move active eNBs closer to hotspot

areas with higher service demands and therefore reduce the

UE average transmission power.

The TACM algorithm is summarised in the pseudo code as

given below:

1: for a Bi ∈ B
on, Bi do

2: Estimate DOA of the admitted UE with service request

3: if ∃k ∈ {0,±1} : (α + 360k) ∈ Ii, j then

4: W
(t+1)
i, j

← W
(t )
i, j

+ 1

5: else if ∃k ∈ {0,±1} : (α + 360k) ∈ I∗
i, j

then

6: W
(t+1)
i, j

← W
(t )
i, j
− 1

7: else

8: W
(t+1)
i, j

← W
(t )
i, j

9: end if

10: ψ
(t+1)
i

← ψ
(t )
i

+ 1

11: β
(t+1)
i, j

←
W

(t+1)
i, j

ψ
(t+1)
i

12:

13: Cell Division (for Bon):

14: if Li ≥ DivLth continuously for Hdiv then

15: if N off
i
, ∅ then

16: Find Ni,aim ← arg maxNi, j ∈N
off
i

W
(t+1)
i, j

17: Activate Ni,aim

18: Bi resets every element inWi and ψi , and the hys-

teresis timer to zero which initialises the memory

19: else

20: Bi resets the hysteresis timer to zero

21: end if

22: end if

23:

24: Cell Migration (for Bon):

25: if (ψ
(t+1)
i

≥ ψth) ∧ (N off
i
, ∅) then

26: Find β
(t+1)
i,max

← maxNi, j ∈N
off
i
β

(t+1)
i, j

27: if β
(t+1)
i,max

> βth then

28: Find Ni,aim ← arg maxNi, j ∈N
off
i
β

(t+1)
i, j

29: Bi activates Ni,aim

30: Bi resets every element inWi and ψi , and the hys-

teresis timer to zero which initialises the memory

31: Bi switches to sleep mode

32: end if

33: end if

34:

35: Cell Death:

36: if Li ≤ DieLth continuously for Hdie then

37: Bi resets every element in Wi and ψi , and the

hysteresis timer to zero which initialises the memory

38: Bi switches to sleep mode

39: end if

40: end for

41:

42: Cell Division and Migration (for Boff):

43: for a Bi ∈ B
off, Bi do

44: if Bi receives activation message from Bj where Bi ∈

Nj then

45: Bi switches to active mode

46: end if

47: end for

III. SYSTEM MODELS AND ASSUMPTIONS

A. Network Architecture

The network investigated in this paper is in a bounded

square area A ⊂ R2. To introduce the randomness of actual

base station deployment which better reflects practical net-

works, especially SCNs, a 2D Poisson Point Process (PPP)

with the intensity λp can be considered to model the spatial
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distribution of the eNBs in SCNs [17], [18]. However, as

a significant weakness, the independence of PPP may allow

eNBs to be located very close to each other, which is not

practical in reality. To solve this problem, we apply a repulsive

dependent thinning to PPP the same as the one in [19],

rendering a type II Matérn Hard-core Process (MHP) with

a hard-core distance σb as a result [19]–[21]. Therefore, |B|,

the cardinality mean of B can be calculated as

|B| =
|A| [1 − exp(−λpπσ

2
b
)]

πσ2
b

, (7)

where |A| is the area of A.

To reflect the spatially heterogeneous distribution of the

traffic in reality, the UE distribution is modelled by two tiers,

the background tier and the hotspot tier, with a hotspot ratio

γ. In the background tier, 1 − γ of the total active UEs are

scattered randomly and uniformly in A as the background

UEs. In the hotspot tier, UEs are further equally divided into

several hotspot groups and UEs in each group independently

conform to a 2D normal distribution truncated into A, of

which the standard deviation is denoted as σn. Each group

centre is randomly and uniformly scattered in A and keeps

at least σn away from the network boundary and σh metres

away from other group centres.

In Fig. 5, an example instance of the network architecture is

shown, where the small circles representing eNBs are scattered

in the square area A. The background UEs are depicted as

squares and the hotspot UEs are represented as dots with the

centres of their own hotspot groups represented as crosses.

The convex hulls of the point sets of the hotspot groups are

depicted as polygons for the recognition of each hotspot group.

The related parameters of the example and the simulation set-

up are given in Section IV. The other aspects of the figure are

illustrated in the following subsections.

B. Neighbour Cell List

As mentioned before, the algorithm proposed relies on acti-

vating neighbour eNBs, which should be carefully determined

especially in a SCN with a random topology. In recent practice,

the Neighbour Cell List (NCL) is manually configured when

deploying a new network, which has many drawbacks due

to the sensitivity and the dynamics of the radio propagation

environments [22]. Furthermore, to construct a self-organised

network as one of the future requirements, a newly deployed

eNB has to be capable of automatically self-configuring the

NCL and continuously self-optimising it. Among the most

common algorithms for this purpose, an eNB autonomously

scans the broadcast pilot signals from adjacent cells and

creates an initial NCL based on the signal-to-interference-plus-

noise ratio (SINR) [23], [24], after which the eNB maintains

the NCL based on the SINR and other information collected by

UEs [24], [25]. Since the self-organisation of the NCL goes

beyond the scope of the study in this paper, it is assumed

that each eNB Bi ∈ B initialises the NCL Ni of Bi based

on the pilot signals and the NCL is not updated during the

lifetime of Bi . Specifically, Bi determines the six strongest

pilot signals and selects the corresponding six eNBs as the

eNB

A target
eNB

Hotspot
Centre

Background
UE

Hotspot
UE

Neighbour eNB of
the target eNB

Fig. 5. A network example: The side length of the square area A is 100
metres. The small circles represent the eNBs. The small solid circles are
the neighbour eNBs of the big solid circle. Background UEs are depicted as
squares and 10 groups of hotspot UEs are depicted as dots. Hotspot UEs in
each hotspot group are encircled by the corresponding convex hull depicted
by the polygons. The crosses are the centres of the hotspot groups.

neighbour eNBs, which is equivalent to seeking the six eNBs

with the lowest path loss. These six neighbour eNBs constitute

the NCL Ni = {Ni,1,Ni,2, . . . ,Ni, j , . . . ,Ni,6}, which has the

same size as the one in an ideal hexagonal grid architecture.

In Fig. 5 for example, the eNBs marked by the solid small

circles are added to the NCL of the eNB denoted by the big

solid circle.

C. Antenna Model, Link Model and DOA Related Assumptions

To distinguish the DOAs coming from two opposite direc-

tions, eNBs can be equipped with circular antenna arrays, or

sectorised with multiple antenna chains. Other antenna array

solutions to enable discriminability for opposite directions are

also available. The antenna arrays are assumed to contain

a sufficient number of antenna elements for the DOA esti-

mation capability of resolving multiple users simultaneously.

However, as strategies of antenna selection of eNBs or smart

antenna beamforming are beyond the scope of this paper, the

circular antenna arrays are assumed to have omnidirectional

and azimuthal radiation patterns. On the other hand, all the

UEs are assumed to use isotropic antennas.

The SCNs investigated are assumed to be deployed in urban

areas such as stations and airports, so the WINNER II model

B3 in [26] is used for path loss calculation. As the average

inter-site distance of eNBs in SCNs is ultra-small (10 metres

in the investigated case), it can be known from the link model

that the probability of having NLOS is very low. Hence, the

effect of NLOS paths is neglected in DOA estimation in the

proposed algorithm. The effective range of the path loss model

is from 5 to 100 metres. Although there are cases that UEs

are located at the distances lower than the five-metre bound,

this path loss model is the best we can find for the ultra-

dense small cell scenario investigated. Moreover, in terms of

the main issue investigated (sleep mode operation), such a

range does not have significant impacts on the results. Thus,
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we assume that a transmitter has sufficient transmission power

to send accurate messages to a receiver at such distances.

D. Power Consumption Model

For network power consumption evaluation, the base station

power model in [27] is adopted. As a single transceiver chain is

assumed, the eNB power consumption model can be simplified

to

Pi =



P0 + ∆pPout, if active,

Ps, if asleep,
(8)

where Pi is the instantaneous power of an eNB, Bi , which

depends on its state and load. P0 is the static power of

the active mode and Ps is the sleep mode power. ∆p is the

slope of the load-dependent power consumption, Pout, which

is assumed linear to the eNB load and reaches Pmax at the

maximum load. The power model here is an approximation of

the power consumption of all hardware modules, e.g. power

amplifiers, radio fronts, baseband processing, DC-DC and

main supply. The data of femtocell base stations in [27] is

used (P0 = 4.8 W , Ps = 2.9 W , ∆p = 8.0, Pmax = 0.05 W ),

for the SCNs investigated. Then, the instantaneous power Pi

calculated with the assigned values is used for evaluating the

instantaneous network power consumption, defined as

Pnet =

∑|B |

i=1
Pi

|A|
. (9)

As handover is not introduced, when an eNB is to be switched

to a sleep mode, it waits until the end of the data transmission

and stops to admit future UEs. During this state, P0 should be

used to model the instantaneous power. The energy consumed

during transient states can also been considered. The transient

states are short-period states before an eNB is completely

switched on or completely switched to sleep modes. The

switch-on transient state is modelled by a constant power

consumption Pon
tran and the total time needed to complete the

switch-on transition Ton
tran. On the other hand, the transient state

of turning an eNB to a sleep mode can be modelled by a

power consumption Poff
tran and the required time Toff

tran [28]. Then

the network power consumption without considering transient

states (Equation 9) can be updated by taking the switching

times into account:

Pnet =

∫ T

0 Pnet(t) |A| dt + nonPon
tranTon

tran + noffP
off
tranToff

tran

T |A|
, (10)

where T is a period of time under consideration, non and noff

are the times of switching on and switching to sleep modes

in the network during T , respectively.

The average transmission power of UEs PTx
UE

over T is

defined as

PTx
UE
=

∑M
m=1

∑Lm

l=1
pm,l tm,l

∑M
m=1

∑Lm

l=1
tm,l

, (11)

where pm,l is the transmission power of UEm during the

transmission of the file l and tm,l is its corresponding elapsed

time during file transmission. Lm is the number of files

transmitted by UEm during T and M is the number of UEs in

the network.

IV. PERFORMANCE EVALUATION

A. Simulation Set-up

The simulation of a specific sleep mode operation scheme

mainly consists of two parts: the radio resource management

and the switching mechanism. The metrics to evaluate the

effectiveness of these two parts are the delivered QoS and

the sleep mode related performance. As the radio resource

management for QoS improvement falls out the scope of the

paper and the sleep mode operation focused on does not show

significant differences between the uplink and the downlink,

only the uplink is simulated. The downlink transmission power

is modelled assuming that the downlink load is the same as

the uplink. As standardised in [29], the minimum resource

allocation unit is a Physical Resource Block (PRB), which is

mapped to a Virtual Resource Block (VRB). Four consecutive

VRBs selected as a spectrum bundle are assigned to a UE

during data transmission. The spectrum resource bundle with

the highest SINR is allocated. A UE is blocked if there are

no free resource bundles with SINR above a threshold. After

successful spectrum allocation, the UE occupies the resource

bundle assigned by the eNB until the completion of the file

transmission.

Active eNBs are required to broadcast reference signals and

UEs estimate the received power. Then they are associated

with, and acquire resources from, the active eNBs sending

the reference signals with the strongest received power. In

this way, the cell sizes are automatically adjusted after an

activation or a deactivation process. UE handover is assumed

to take place when there is no file being transmitted and the

basic strongest received power policy is adopted. Handover

of UEs during data transmission is not explicitly considered

in this paper, but in any case will not fundamentally change

the impact of the sleep mode operation algorithm. Therefore,

when an eNB determines that it needs to switch into the

sleep mode, it stops broadcasting the reference signal. Thus,

it ceases associating with the newly arriving UEs and waits

until the data transmission of all currently associated UEs has

finished.

To create temporal variations of the hotspot traffic, the

simulation duration is divided into 10 periods, during each

of which half of the hotspot groups are randomly chosen to

be active with files arriving according to the aforementioned

traffic model while the others remain inactive. The total

number of active hotspot UEs in the network is fixed at any

time point during the simulation (γ of the total active UEs).

The mean file arrival rate in the traffic model is varied to

get different traffic load levels. The parameters of the system

models and the simulation are summarised in Table I.

The proposed Traffic-Aware Cell Management (TACM)

algorithm is simulated based on the models introduced in

Section III and the above simulation set-up. The arguments

of the TACM are selected to get a similar QoS in terms of

blocking probability and delay as the system with all eNBs

always active. The values of the parameters of the algorithm

are listed in Table III. It is also compared with a consolidated

baseline scheme of sleep mode control proposed in [10] to

demonstrate the advantages of the TACM algorithm.
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TABLE I
THE PARAMETERS OF THE SYSTEM MODELS AND THE SIMULATION SET-UP

A side length 100 metres

λp 20000/km2

σb 5 metres

Average inter-site distance 10 metres

λa 150000/km2

γ 0.8

σn 5 metres

σh 25 metres

Number of hotspot groups 10

eNB antenna gain 5 dBi

Link level evaluation Truncated Shannon bound [30]

Carrier frequency 3.5 GHz

System bandwidth 20 MHz

Number of PRBs 100

PRB bandwidth 180 kHz

Uplink resource allocation Type 0 [29]

Minimum SINR 5 dB

Power control Open loop, 25 dB SNR

Noise figure 5 dB

Temperature 300 K

Noise floor -96 dBm

Traffic Model Poisson process, 4 Mbits file size [31]

Number of simulation run 100

The comparative baseline scheme is transplanted to suit the

self-organised SCN with the random topology. To achieve best

energy saving, the load information of neighbour eNBs and

the handover information coming from associated UEs are

needed so that a notion of network impact can be defined and

calculated. It requires active eNBs to get load information from

their neighbour eNBs, which needs frequent load information

exchange and therefore yields additional system overhead. In

the scheme, an eNB determines to switch off when the network

impact is below a level computed by a load threshold minus

a half of a hysteresis margin, where the load threshold is

set to 12% and the hysteresis margin is 16% to mitigate the

inefficient switching on-off [10]. An eNB decides to activate

a neighbour sleeping eNB when the load of itself exceeds half

of the hysteresis margin plus its corresponding recorded load.

The values are chosen to make the provided QoS similar to

the system with no sleep mode control and achieve reduction

of inefficient switching on-off to some extent. More details

about the baseline scheme can be found in [10].

B. System Overhead Comparison

Two aspects of system overheads generated by the TACM

algorithm and the baseline algorithm are compared. As ex-

changing information among eNBs is always accompanied by

the requirement of additional signalling, including information

messages themselves and control signals, the frequency of the

load information transmission is quantified in Section IV B1.

Additionally in Section IV B2, the switching on-off frequency

is also investigated since state transitions of an eNB take time

and may consume extra energy. The state transitions of an

eNB also compel other eNBs around to change their operating

parameters, creating extra system overheads.

1) Load Information Transmission Overhead: As load in-

formation acquirement among neighbour eNBs is assumed

in the baseline scheme, the frequency of load information

transmission is quantified by assuming that an eNB sends

the load message whenever its load is varied and sending a

message from an eNB to a neighbour eNB is counted as one

process of load information transmission. In Fig. 6 (a), the

average frequency of load information transmission is plotted

against the average network traffic density, where the curve

of the baseline algorithm shows an increasing trend because

there are more load variations at an eNB when the overall

traffic level increases. Obviously, the TACM algorithm does

not require any load information exchange among neighbour

eNBs so that the frequency is always zero, the same as the

system without sleep mode operation. The TACM algorithm

surpasses the baseline algorithm prominently in this aspect.

2) On-off Switching Overhead: Fig. 6 (b) shows the average

frequency of switching on-off where either switching on or

switching off is counted. Although all sleep mode control

schemes produce some system overheads due to the switching

of eNBs, it can be reduced if an algorithm is comprehensively

better. As can be seen from the simulation results, even

with the application of the hysteresis margin in the baseline

algorithm, the switching on-off frequency is very large. This

is because that without averaging the load of an eNB over

a period of time, the instant load can easily exceeds or falls

below certain levels. With hysteresis durations predefined in

the TACM algorithm, eNBs monitor their loads and make

sure they are continuously above or below the corresponding

thresholds in the hysteresis durations. In this way, TACM

algorithm achieves up to 72 times less switching frequency

compared with the baseline scheme, which thereby mitigates

the system overhead dramatically.

C. Power Comparison

As one of the major metrics concerned in the conventional

research into sleep mode control, network power consumption

of both two algorithms is compared in Section IV C1. More-

over, as power control is involved in the system, the increase of

UE transmission power on account of fewer active eNBs in the

SCN along with sleep mode operation should be minimised,

which is also investigated and illustrated in Section IV C2.

1) Network Power Consumption: Network power consump-

tion investigated in Fig. 7 (a) and (b) is defined as the

overall average power consumed by eNBs in the network per

square kilometre, which is computed using the network power

consumption model introduced in Section III D. As there is

a trade-off between QoS and network power consumption,

both schemes are first configured to ensure that the QoS is

not degraded compared with no sleep mode application and

then the power reduction is maximised (more details are given

in Section IV D1). It is noticeable from Fig. 7 (a) that the

network power consumption reduced by the TACM algorithm

is more than 34% (equivalent to 86% less overall active time

on average) when the traffic level is below 0.1 Gbps/MHz/km2
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Fig. 6. Comparisons of the TACM algorithm and the baseline algorithm on
system overheads. (a) The average frequency of load information transmission
against network traffic density; (b) The average frequency switching on-off
against network traffic density.

compared with no sleep mode control. Without the necessity

of load information exchange, however, the TACM algo-

rithm also reduces more network power consumption than

the baseline algorithm, which is up to 81% more around

0.36 Gbps/MHz/km2. This result is obtained by assuming

a relatively high energy consumption during transient states

(with parameters given in Table II). As can be seen from

Fig. 7 (b), the average network power consumption of the

baseline scheme is strongly affected by how much energy

is consumed during transient states since its corresponding

switching frequency is very high. Comparatively, the network

power consumption generated by the TACM algorithm does

not vary a lot versus the energy consumption of transient states

(only the high level version is shown for clarity) since it

mitigates the switching on-off overheads significantly while

the high switching frequency of the baseline scheme may

increase the overall network power consumption if the energy

consumption of transient states are not negligible. Therefore,

the proposed TACM algorithm also outperforms the baseline

algorithm in terms of the switching frequency reduction and

the resulting robustness to the potential cost of the energy

consumption introduced by transient states.

It is worth mentioning that the algorithm can still save some

power even when the overall network load is heavy. This is

because the spatial traffic distribution in the SCN is extremely

TABLE II
ASSUMPTIONS OF THE TRANSIENT STATES

Level of Energy

Consumption
Pon

tran T on
tran Poff

tran T off
tran

High 2P0 2 s P0 0.2 s

Medium 2P0 1 s P0 0.1 s

None 2P0 0 s P0 0 s

heterogeneous in the investigated scenario with hotspot ratio γ

equal to 0.8 so that some of the eNBs can be switched to sleep

modes without affecting the overall QoS if the traffic levels are

not high in their local areas. The network power consumption

with all eNBs deactivated is denoted by the dashed line at

the bottom of Fig. 7 (a), which actually represents the lower

bound of the network power consumption.

2) UE Transmission Power: Since the application of a

sleep mode results in fewer active eNBs in the network,

UEs increase their transmission power on average as a result

of connecting to more distant eNBs during file transmission

due to power control. Therefore, the average transmission

power of UEs in this case is greater than that when sleep

modes are not applied. To explore whether it is considerable

compared to the power consumed by the eNBs, the average

transmission power of UEs is plotted in Fig. 7 (c) using

the UE transmission power model mentioned in Section III

D. As observed in the figure, for each sleep mode control

algorithm, fewer active eNBs in the network correspond to

higher average UE transmission power, implying a larger

mean distance between eNBs and UEs. This signifies that

there is trade-off between the reduction in the network power

consumption and the UE transmission power for a specific

algorithm. However, although the transmission power of UEs

is higher on average than the scheme with no sleep mode

control when the traffic level is low, the energy radiated by all

the UEs in the network during a certain period of time never

exceeds 0.2% of the energy consumed by all the eNBs for both

algorithms, meaning that the overall UE transmission power

consumption is negligible relative to the amount of power

consumption reduced by the sleep mode control algorithms.

On the other hand, considering the battery lifetime of the

mobile devices, the increase of UE transmission power should

be minimised by reducing the average distance between eNBs

and UEs. Thanks to the directional activation and migration of

the TACM algorithm, it is more likely to locate active eNBs

at the places with high data service demands than the baseline

algorithm. For this reason, the average transmission power of

UEs can be 79% (computed with power in mW) less than

that of the baseline algorithm at a low traffic level, which

significantly improves the user experience.

D. Impact of Performance Related Parameters

In this section, the impact of the parameter variations of

the TACM algorithm are demonstrated. The tuning parameters

of the TACM algorithm are varied to reveal the trade-off

between QoS and network power reduction. The other critical

parameters are also varied to observe how they influence the
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Fig. 7. Comparisons of the TACM algorithm and the baseline algorithm on
power consumption. (a) Average network power consumption against network
traffic density; (b) Average network power consumption assuming different
energy consumptions during transient states against network traffic density;
(c) Average UE transmission power against network traffic density.

effectiveness of the TACM algorithm. The resulting impact

in each case is classified into easy migration and limited

awareness. Easy migration indicates that the cell migration

process occurs too frequently due to the lower thresholds, ψth

and βth. Limited awareness means that the awareness of an

eNB about the correct directions of areas with high traffic

levels is limited because of the inappropriate angular interval,

∆θ. The effects of DOA estimation error on the awareness of

eNBs are also analysed.

The QoS performance is shown in Fig. 8. Since the UE

average transmission power shows an inverse trend with the

network power consumption as demonstrated before, only the

network power consumption is shown in Fig. 9. Due to the

exemption of load information exchange delivered by the

TACM algorithm, only the switching on-off frequency is taken

into account when analysing system overheads in Fig. 10. The

details of the figures are explained later in this section. All the

parameters for each variation are summarised in Table III.

1) Impact of the Tuning Parameters: The tuning parameters

are Hdiv, DivLth, Hdie and DieLth. Hdiv and DivLth are

designed as a pair to control the cell division while Hdie and

DieLth control the cell death as a pair. To summarise, bigger

Hdiv and DivLth make cell division less likely to happen,

leading to fewer active eNBs in a SCN. Bigger Hdie and

smaller DieLth make cell death harder to be triggered, leading

to fewer sleeping eNBs in a SCN. The tuning parameters in

the simulation are varied to first ensure the QoS (blocking

probability and delay) is similar to the no sleep mode case.

Then they are varied to reduce more power consumption until

QoS just starts to degrade. In practical networks, this can

be easily done through a software defined architecture with

a feedback of the QoS measurements.

In the better QoS version of TACM with the arguments

given in Table III, these pairs of parameters are varied to

keep more eNBs active in the network. As shown in Fig. 8,

the blocking probability and delay is improved a little at the

cost of highly increased network power as shown in Fig. 9

compared with the less power version of the TACM algorithm.

This is achieved by making cell division happen more easily

and making cell death a little harder to be triggered. More

remarkable is the fact that the QoS improvement gain brought

by more active eNBs in the network is limited compared with

the larger network power consumption.

2) Impact of Easy Migration: As illustrated before, ψth

is defined to ensure that cell migration is only triggered

based on a sufficiently large amount of DOA records. Like

βth, it also controls the frequency of cell migration. When

ψth and βth are set to low values such as the example of

easy migration (as shown in Table III) based on the better

QoS version, weight bias and memory size may exceed the

thresholds more easily due to small random traffic variations

and easy migration occurs then. As shown in Fig. 8, easy

migration makes the original TACM degrade the QoS and

switch more eNBs to sleep modes (as shown in Fig. 9).

Since there is a trade-off between QoS and network power

reduction, it is more convincing to compare the TACM with

easy migration to the less power version of TACM, which is

configured by varying the tuning parameters without unreliable

migrations. Not surprisingly, the reduced power version of the

TACM algorithm shows both better QoS and higher network

power reduction than the TACM with easy migration. This

indicates that the tuning parameters should be used to tune

the relationship between QoS and network power reduction if

required instead of ψth and βth. Furthermore, as shown in Fig.

10, the redundant migration processes also increase the overall

switching on-off times, which add to the system overheads.

ψth should be set big to ensure a big database acquired, where

100 is enough and βth should be relatively high, say 0.1, to

reflect a high angular traffic bias. However, the performance
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Fig. 8. Comparisons of the different versions of the TACM algorithm on QoS.
(a) Average blocking probability against network traffic density; (b) Average
delay against network traffic density.
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Fig. 9. Comparisons of the different versions of the TACM algorithm on
network power consumption.

of the TACM algorithm is not that sensitive to the variations

of these two parameters. Only in the extreme case in the given

example, there are notable effects.

3) Impact of Limited Awareness: The other parameter,

∆θ, is critical to cell division and cell migration because it

determines how to classify the DOAs and how to update the

weights, which are decision-making materials of eNBs. A low

value of ∆θ leads to the situation that an eNB may be too

concentrated on the specific small direction ranges without

considering the traffic in the angularly adjacent directions.
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Fig. 10. Comparisons of the different versions of the TACM algorithm on
the switching on-off frequency.

TABLE III
SUMMARY OF THE TACM ALGORITHM PARAMETERS

TACM

Parameters

TACM -

Less

Power

TACM -

Better

QoS

TACM

with Easy

Migration

TACM

with Limited

Awareness

Hdiv 5s 4s 4s 4s

DivLth 8% 4% 4% 4%

Hdie 40s 50s 50s 50s

DieLth 0% 0% 0% 0%

∆θ 40° 40° 40° 4°

ψth 100 100 10 100

βth 0.1 0.1 0.01 0.1

Moreover, an eNB is easier to be enticed by the random traffic

spikes from the narrow direction ranges leading to useless cell

migration. Comparatively, an over-large ∆θ may result in too

large a interval Ii, j for Ni, j , which may not effectively reveal

the hotspot directions. This means that an eNB may consider

a wide direction range when classifying DOAs and update the

corresponding weight. This is likely to result in a situation

where an eNB regards the direction of a neighbour eNB as

the direction of the area with a high traffic level even if the

two directions are far apart. These two situations both affect

the accuracy of the orientational awareness about the areas

of high traffic levels, which are defined as limited awareness.

An example of the TACM with limited awareness is given by

setting a small ∆θ based on the better QoS version of TACM

and its arguments are listed in Table III. Similarly, comparing

it with the less power version, it shows slightly worse QoS

but significantly higher network power consumption as shown

in Fig. 8 and Fig. 9, respectively. This reveals the importance

of choosing a medium and appropriate ∆θ. However, there is

a relatively big range for choosing ∆θ and the performance

only begins to decline in extreme cases. Due to this feature,

the TACM algorithm is actually very strong in defending

inappropriate DOA classifications.

4) Impact of the DOA Estimation Error: In some appli-

cations in the past, the accuracy of DOA estimation has

proved problematic [14], [15]. However, as mentioned before,

the probability of having NLOS is low in the investigated
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SCN scenario and the accuracy of DOA estimation can be

very high. Moreover, the approach of using DOAs in the

TACM algorithm is somewhat different as a relatively coarse

estimation is required to identify the sectors which UEs are

located in. From the aforementioned performance discussion,

the TACM algorithm is shown to be fault-tolerant in terms

of DOA classification. To further check this assumption, the

impact of DOA estimation error is briefly investigated. A

normal distribution with zero mean is adopted to model the

DOA estimation error as an example. It is applied on the DOAs

which are intended to be classified into sectors with an angular

interval ∆θ (explained in section 2.2). Precision and recall are

utilised to evaluate the effect of the DOA estimation error.

Precision is defined as the number of ’true positives’ (i.e. the

number of DOAs correctly classified into the interval) divided

by the total number of DOAs classified into the interval. Recall

is defined as the number of ’true positives’ divided by the total

number of DOAs that actually ought to be classified into the

interval. In the case investigated, recall has the same tendency

as precision so that only precision is shown in Fig. 11 (a) and

(b).

Fig. 11 (a) gives an example of classification precision

against the variations of the standard deviation of the normal

distribution σe when setting the angular interval ∆θ to 40°.

From the figure, it is shown that the probability of having a

wrong DOA classification is low when the DOA estimation

error is low for a reasonable angular interval (40°), e.g. 80%

precision corresponds to a standard deviation of 10°. In Fig. 11

(b), classification precision is plotted against different angular

intervals revealing that precision of DOA classification is

always high if the angular interval is chosen to be medium

or high. With reasonable angular intervals chosen in the

TACM algorithm, the effect of DOA estimation errors is not

significant, meaning that an ideal DOA estimation assumption

is sufficient. This can be confirmed by setting ∆θ to an

appropriate value to avoid the low precision. If σe is 10°,

with ∆θ set to 40°, almost 99.7% of DOAs have absolute

errors smaller than 30 degrees.

With the error applied in the simulation, the resulting DOA

estimation error does not affect the performance of the original

TACM algorithm, but it starts to affect the overall performance

of its less power version, where the system overhead pro-

duced by switching on-off is especially exacerbated relatively.

However, generally speaking, as the effect of DOA estimation

error in the performance of the TACM algorithm is limited

even when σe is not small, the TACM proves robust against

the DOA estimation inaccuracy if ∆θ is properly chosen.

Furthermore, DOA estimation is not used for positioning UEs

in this case, but is used to reflect the relative arriving angles

of signals, which better reveal the radio environments.

V. CONCLUSION

This paper has proposed a novel distributed sleep mode

operation algorithm for 5G green ultra-dense Small Cell

Networks with a random topology. The algorithm employs

an innovative concept called Traffic-Aware Cell Management

(TACM) to control cell activities, either cell division, cell death
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Fig. 11. An investigation of DOA estimation precision. (a) Precision of
DOA classification affected by DOA estimation error with fixed classification
angular interval against the standard deviation of the error distribution; (b)
Precision of DOA classification affected by DOA estimation error with fixed
error standard deviation against the variations of the angular interval.

or cell migration, which accompany state transitions of eNBs.

The TACM algorithm enables each eNB to be aware of the

directions of hotspot areas with the application of Direction

of Arrival, which completely removes the necessity of load

information exchange for sleep mode control required by other

traditional sleep mode control schemes. The simulation results

based on Small Cell Networks with highly heterogeneous

traffic distributions show that the TACM algorithm achieves

more than 34% reduction in network power consumption when

the traffic level is low, which is equivalent to 86% less overall

active time compared with the system without sleep mode

control. Compared with a consolidated baseline algorithm, the

TACM algorithm significantly mitigates the system overheads

and notably reduces the increase of UE transmission power.

Assuming high energy consumption of transient states, the

TACM algorithm can reduce the network power consumption

by up to 81% compared with the baseline scheme. The TACM

algorithm is also shown to be insensitive to the direction of

arrival estimation inaccuracy.
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