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and 2-2 single electrolytes at 25 oC 
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ABSTRACT The Pitzer model is one of the most important thermodynamic models to predict the 

behavior of aqueous electrolyte solutions, especially at high ionic strengths. However, most of the 

parameters in the Pitzer equations have to be obtained experimentally and this represents an important 

drawback to this model. Therefore, in order to make the Pitzer equations less dependent on experimental 

data and more dependent on the properties of the solution, new equations that correlate the Pitzer 

equations with the properties of the solution have been successfully developed for 1-1, 2-1, 3-1, 4-1 and 

2-2 electrolytes. In particular, these equations were developed for two cases: (i) considers the original 

Pitzer equations and (ii) considers some simplifications to the Pitzer equation 

(assuming C୑ଡ଼ ǡ B୑ଡ଼ ሺଶሻ and ଶ ൌ Ͳ). In particular, for case (ii), the second virial coefficients B୑ଡ଼ሺ଴ሻ  and B୑ଡ଼ሺଵሻ
  

of the Pitzer equations were re-estimated using published experimental data of the osmotic coefficient 

obtained from the literature. As a conclusion, both the simplified and the original Pitzer equations 

presented a very good match with this published experimental data for the osmotic coefficients. 

Additionally, the second virial coefficients B୑ଡ଼ሺ଴ሻ  and B୑ଡ଼ሺଵሻ
 for both cases were successfully correlated 

with the ionic radius and the ionic charge, and this is confirmed by the very high coefficients of 



determination achieved (R
2
>0.96). However, these new equations are valid only to cases in which no 

significant ion association occurs, which is also the basic premise of the original Pitzer model. 

INTRODUCTION 

The Pitzer model is a semi-empirical model that is very important for the understanding of the 

behavior of ions dissolved in water. This model was first described by the chemist Kenneth Pitzer and it 

characterizes interactions amongst the ions and the solvent through linear combinations of parameters 

involving a virial expansion of the excess Gibbs free energy
1
. Moreover, this model is very efficient at 

predicting the behavior of the electrolyte solutions ranging from infinitely diluted solutions to very 

concentrated ones, up to a molality of 6mol/kg 
2
. On the other hand, the Pitzer model is largely 

empirical and the virial parameters representing short-range interactions cannot be directly correlated to 

the properties of the solution, and thus cannot be extrapolated for different cases. In fact, this is an 

important drawback of the Pitzer model since in many cases the experiments required to obtain the 

parameters in the Pitzer equations are very difficult to perform, e.g. experiments involving radioactive 

species
3
. Therefore, finding a way to correlate the virial terms in the Pitzer equation with the properties 

of the solution is highly important. 

Some attempts at describing the dependence of the second virial coefficients on the properties of the 

solution, especially with regards to the ionic radii, can be found in the literature. Weian et al.
4
 reformed 

the Pitzer osmotic equation in order to obtain relationships between the second virial parameters and the 

ionic radii, and the equations obtained could satisfactorily predict the parameters B୑ଡ଼ሺ଴ሻ  and B୑ଡ଼ሺଵሻ
 in the 

Pitzer equations for some 1-1 electrolytes. However, the values of ionic radii used by Weian et al.
4
 to 

calculate the second virial parameters were not the ones available in the literature, but rather values 

adjusted to fit the experimental data for the osmotic and activity coefficient. Consequently, this model 

cannot be easily extended to different electrolytes, since the values of the ionic radii found by Weian et 

al. 
4
 do not coincide with the tabulated values of ionic radii and hydrated radii available in the literature, 

e.g. Marcus
5
. 



Another attempt to correlate the virial coefficients in the Pitzer equation with the properties of the 

solution was made by Rosenberg et al.
3
. They estimated the second and third virial coefficients for 

RaBr2, RaCl2 and RaSO4 as a function of the hydrated radii of the ions using a linear regression 

involving chlorides of magnesium, calcium, barium and strontium, which belong to the same group of 

the periodic table as the radium ion. Despite a very clear linear trend between the parameter B୑ଡ଼ሺ଴ሻ
 and the 

hydrated radii of the ions being achieved, the parameters B୑ଡ଼ሺଵሻ
 and C୑ଡ଼

 presented a poor linear 

correlation. However, this was considered a reasonable approach by Rosenberg et al.
3
 due to the 

unavoidable lack of experimental data. 

Finally, Zareen et al.
6
 used the dielectric constants of the water at different temperatures as well as the 

ionic radii to estimate the activity coefficients of salt mixtures by a Monte Carlo Simulation procedure. 

The good agreement with experimental data achieved reinforces the strong connection between the ionic 

radii and the activity coefficients of the species for concentrated solutions, which indicates that the 

second virial parameters of the Pitzer equations may also have a strong connection with the ionic radii 

of the species. 

In terms of the properties of the solution, it is important to note that diluted solutions (in this study, 

diluted solutions refers to the maximum ionic strength that can be covered by the Debye-Huckel model, 

i.e. approximately 0.01 molal) behave differently from concentrated solutions. While the diluted 

solutions can be well explained by the Debye-Huckel theory, which assumes that ions are geometrical 

points that have no volume of exclusion and these ions do not come into contact with each other
7
, 

concentrated solutions require a more complex analysis, and this can be attributed to the fact that the 

point ion assumption is no longer valid. This is because ions can now come into contact with each other, 

and the cloud of orbiting electrons surrounding their nuclei creates a harsh repulsive core that does not 

allow overlapping
7
. On top of this, other properties of the solution become more and more relevant as 

the solution shifts from diluted to concentrated, such as the effect of the hydration by the shell of water 

molecules surrounding the ions, the ion pairing, the geometry of the ion that is not always spherical, the 

dispersion forces, the predominance of repulsive or attractive short-range forces, the structure maker 



and structure breaker character of a particular ion, etc. Considering all of these important properties, the 

second virial coefficients can be interpreted as a result of the combination of all of these properties 

together, but the weighting of each property to the final numerical value of the virial coefficients may 

vary from case to case. Nevertheless, it is evident that the size of the ions may have a distinguishable 

importance, since all the relevant properties of the solution mentioned are to some degree linked to the 

dimension of the ion, e.g. hydration, ion pairing and dispersion forces. 

Therefore, this study aims to find the correlations between the Pitzer equation parameters and the 

properties of the solution, as well as the understanding of the physical meaning of these interaction 

parameters. To achieve this, two cases are analyzed, in the first case considering the original Pitzer 

equation for the osmotic coefficient and in the second case by considering some simplifications to this 

equation. For the simplified case, the second virial coefficients B୑ଡ଼ሺ଴ሻ  and B୑ଡ଼ሺଵሻ
 were re-estimated using 

the available published data on the osmotic coefficient. 

 

THERMODYNAMIC MODEL AND SIMPLIFICATIONS TO THE PITZER EQUATIONS 

The Pitzer Model 

The Pitzer model was developed in order to incorporate the effect of short-range forces between pairs 

of ions as well as the dependence of these forces on the ionic strength
1
. The Pitzer equation for the 

osmotic coefficient of single electrolytes can be expressed as follows
1
: 

୑ଡ଼ െ ͳ ൌ ȁz୑zଡ଼ȁf ൅ ʹm ቀ౉౔


ቁ B୑ଡ଼ ൅ ʹmଶ ቂሺ౉౔ሻయȀమ


ቃ C୑ଡ଼
     (1) 

 

where the terms f and B୑ଡ଼
 are given as follows 

8
: 

f ൌ െA ቂ ξ୍ଵାଵǤଶξ୍ቃ           (2) 

 B୑ଡ଼ ൌ B୑ଡ଼ሺ଴ሻ ൅ B୑ଡ଼ሺଵሻ exp൫െȽଵIଵȀଶ൯ ൅ B୑ଡ଼ሺଶሻ exp൫െȽଶIଵȀଶ൯      (3) 

 I ൌ ͲǤͷሺm୑z୑ଶ ൅ mଡ଼zଡ଼ଶሻ          (4) 



 

 ൌ ୑ ൅ ଡ଼            (5) 

 

For all the electrolytes, except 2-2 electrolytes
9
: 

ଵ ൌ ʹ and  ଶ ൌ Ͳ           (6) 

 

For the 2-2 electrolytes
8
: 

ଵ ൌ ͳǤͶ and  ଶ ൌ ͳʹ          (7) 

 

Simplifying the Pitzer Equation for the Osmotic Coefficient  

The correlation of the Pitzer parameters with the properties of the solution is not a simple task, since 

this equation requires a large number of parameters (B୑ଡ଼ሺ଴ሻ ǡ  B୑ଡ଼ሺଵሻ ǡ  B୑ଡ଼ሺଶሻ
, C୑ଡ଼ ǡ Ƚଵ and  Ƚଶ) to be 

determined in order to accurately represent the behaviour of the various electrolytes in aqueous 

solutions. Thus, the elimination of the parameters that do not significantly impact on the precision of the 

Pitzer equation would be very convenient and useful, since this simplification would allow the 

estimation of the activity and osmotic coefficients in a much simpler way. In this context, there are three 

parameters that appear to be the most promising candidates to set to zero, namely the 

parameters B୑ଡ଼ሺଶሻ ǡ  C୑ଡ଼  and Ƚଶ, for the following reasons: 

- The parameters B୑ଡ଼ሺଶሻ  and Ƚଶ are only required for 2-2 electrolytes, and they represent 

corrections for the anomalous behavior of these 2-2 electrolytes considering concentrations 

lesser than 0.1M
8
. Moreover, Pitzer

10
 stated that the omission of  B୑ଡ଼ሺଶሻ

 introduce systematic 

errors at high concentrations. Therefore, this approximation would be suitable only when 

intermediate molalities are the range of interest. This maximum molality to which this 

approximation is valid is evaluated in the discussion section. 



- The effect of the third virial coefficient C୑ଡ଼
 is small and sometimes negligible according to 

Pitzer et al.
9
, and for this reason eliminating this coefficient appears also to be a promising 

option to be analyzed. 

 

For the condition C୑ଡ଼ ǡ  B୑ଡ଼ሺଶሻ  and Ƚଶ all zero, eq 1 can be simplified as follows: 

 

୑ଡ଼ െ ͳ ൌ ȁz୑zଡ଼ȁf ൅ ʹm ቀ౉౔


ቁ ቀB୑ଡ଼ሺ଴ሻ ൅ B୑ଡ଼ሺଵሻ exp൫െȽଵIଵȀଶ൯ቁ     (8) 

 

Re-estimating the Second Virial Coefficients in the Pitzer Equation for the Osmotic Coefficient 

The re-estimation of the second virial coefficients of the Pitzer equations is important because it 

allows the estimation of the impact of eliminating the parameters B୑ଡ଼ሺଶሻ ǡ  C୑ଡ଼  and Ƚଶ in the accuracy of 

the Pitzer model. In contrast to Pitzer et al.
9
, who estimated the second virial coefficients based mainly 

on the experimental data of the osmotic and activity coefficients recommended by Robson and Stokes
11–

15
, which were obtained in the 1960s, this study also includes newer published data for the osmotic 

coefficients, e.g.
16,17,18,19,20,21,22,23

 as well as data from some secondary sources, such as Goldberg et 

al.
24–27

 and Hamer et al.
28

. These sources are secondary sources in the sense that their work includes 

tables of recommended values rather than experimental data. Particularly, these secondary sources were 

used because these authors performed a very rigorous selection of consistent experimental data for the 

osmotic coefficient from the literature, including several sources and different measurement methods, 

e.g. isopiestic, vapor pressure measurements, freezing point depression, etc. Then, the measurements 

that presented large uncertainties were eliminated, and hence only reliable values were used to generate 

the tables of recommended values for the osmotic coefficients. 

The second virial coefficients were re-estimated by reforming eq 8 to the Y=AX+B format, as follows: 

౉౔ିଵିȁ୸౉୸౔ȁ୤ଶ୫ቀ౉౔


ቁ ൌ B୑ଡ଼ሺ଴ሻ ൅ B୑ଡ଼ሺଵሻ exp൫െȽଵIଵȀଶ൯        (9) 

 



where: Y ൌ ౉౔ିଵିȁ୸౉୸౔ȁ୤ଶ୫ቀ౉౔


ቁ            (10) 

 X ൌ exp൫െȽଵIଵȀଶ൯           (11) 

 A ൌ B୑ଡ଼ሺଵሻ
            (12) 

 B ൌ B୑ଡ଼ሺ଴ሻ
            (13) 

       

Therefore, a plot of Y as a function of X can be used to obtain the second virial coefficients B୑ଡ଼ሺ଴ሻ
 

and B୑ଡ଼ሺଵሻ
. 

Correlation accuracy relative to the uncertainty of the data 

The majority of the data for the osmotic coefficients used in this study were taken from Hamer et al.
28

, 

Goldberg et al. 
24–27

, Robinson and Stokes
11–14

 and Stokes
15

. While the data from Robinson and 

Stokes
11–14

 and Stokes
15

 was based only on the isopiestic method, Hamer et al.
28

 and Goldberg et al. 
24–

27
also included other measurement methods to generate their tables of recommended values for the 

osmotic coefficients, e.g. vapor-pressure lowering, electromotive forces (emfs) of galvanic cells without 

liquid junctions, emfs of galvanic cells with transference, freezing point depression, etc.  

In terms of these measurement methods, the isopiestic vapor pressure method is very accurate, being 

better than 1% at molalities above approximately 0.1 mol/kg, but this method is not very precise for 

more dilute solutions
29

. In this case, the freezing point depression is the most precise method, but this 

method has the disadvantage that additional calculations are required to convert the value found at lower 

temperatures to higher temperatures
30

. Regarding direct vapor pressure measurements, this method is 

less accurate than is the isopiestic method since these vapor pressure measurements are more sensitive 

to temperature variations than the isopiestic method
31

. Finally, Emf measurements can yield very 



accurate results near room temperature for systems where reversible and reproducible electrodes have 

been developed
29

.  

In terms of reliability, the tables of activities and osmotic coefficients from Robinson and Stokes
11–14

 

and Stokes
15

 are well-known and widely accepted and used in the chemical literature
32

, and thus these 

tables represent a consistent source of information. Likewise, the tables of activities and osmotic 

coefficients generated by Hamer et al.
28

, Goldberg et al. 
24–27

 are very reliable because as mentioned just 

above, these authors performed a very rigorous selection of consistent experimental data (including in 

several cases the data from Robinson and Stokes
11–14

 and Stokes
15

), comprising several sources and 

different measurement methods, in order to finally come up with the best values for the osmotic 

coefficients.  

Therefore, based on the high accuracy of the methods to estimate the osmotic coefficients as well as 

the high reliability of the sources of information used in this work, it appears that the impact of the 

uncertainty of the data in the correlation accuracy is low. 

 

RESULTS 

Re-estimating the Second Virial Coefficients for the Simplified Pitzer Equation 

Table 1 shows the re-estimated second virial coefficients B୑ଡ଼ሺ଴ሻ
 and B୑ଡ଼ሺଵሻ

 based on the assumption 

that C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ are zero, as well as the standard deviations associated with the estimation of these 

parameters, which were calculated as follows
33

: 

Ɂ ൌ ቈσ ቀ஦౟౛౮౦ି஦౟ౙ౗ౢౙቁమ౤౟ ୬ ቉ଵȀଶ
          (14)

  

Table 1 also shows the maximum molality to which the calculations for the simplified case presented 

are in very good agreement with the experimental data, with less than 3% difference between the 

calculated osmotic coefficient and the experimental osmotic coefficient in most cases. Furthermore, 

Table 1 shows the coefficients B୑ଡ଼ሺ଴ሻ ǡ  B୑ଡ଼ሺଵሻ ǡ B୑ଡ଼ሺଶሻ  and C୑ଡ଼
, as well as the standard deviations and 



maximum molalities related to the original Pitzer equation for the osmotic coefficient, and these values 

were obtained from the literature
8,9,10,16,23,10,34

. Finally, Table 1 includes the classification of each ion in 

terms of its effects on the structure of water, which can be either by increasing the stability of the water-

water interactions (structure makers or kosmotropes) or by disrupting it (structure breakers or 

chaotropes). Ions that have strong interactions with water can increase its structuring and, thus, they are 

structure-makers or kosmotropes, whereas some ions that have weak interactions with water tend to 

decrease its structuring and, therefore, they are structure breakers or chaotropes
35

. Normally, chaotropes 

are large and of low charge and kosmotropes are small and highly charged
35

. The classification adopted 

in this study was based on the criteria established by Marcus
36

, which is a function of the Gibbs free 

energy accounting for the effect of the solute on the number of hydrogen bonds in which a water 

molecule participates. 

A comparison between the estimations considering the simplified and the complete Pitzer equation 

can be visualized in figure 1. This figure shows that on one hand the original Pitzer equation fits more 

accurately the experimental data than the simplified equation, but on the other hand it shows the 

simplified Pitzer equation can also provide a very satisfactory match with the experimental data of 

osmotic coefficient. Therefore, the simplifications to the Pitzer equation appear to be acceptable and 

only slightly less accurate than the original Pitzer equation. 



 

Figure 1. Standard deviation of different electrolytes calculated using the original Pitzer equation and 

the simplified Pitzer equation. The electrolyte number follows the order of the electrolyte appearance in 

Table 1 (: original Pitzer equation, +: simplified Pitzer equation). 

 

 

 

 

 

 

 

 



Table 1. Re-estimated second virial coefficients Bୡୟሺ଴ሻ
 and Bୡୟሺଵሻ

 for 1-1, 2-1, 3-1, 4-1, 1-2 and 2-2 

electrolytes at 25 
o
C. The ionic radius of the ions (rc and ra) were taken from Marcus

5,37
, except for the 

perchlorate ion, which was taken from Roobottom
38

. 

 Simplified Pitzer Equation , with C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ൌ Ͳ  
Original Pitzer Equation, with C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ് Ͳ (data from the 

literature) 
    

Electrolyte 

B୑ଡ଼ሺ଴ሻ
 

 

B୑ଡ଼ሺଵሻ
 

 

Standard 

Deviation 

() 

Reference 

of ୑ଡ଼ୣ୶୮
 

Maximum 

molality 

(mol.kg-1) 

 B୑ଡ଼ሺ଴ሻ
 B୑ଡ଼ሺଵሻ

 B୑ଡ଼ሺଶሻ
  C୑ଡ଼

 

Standard 

Deviation 

() 

Reference 

Maximum 

molality 

(mol.kg-1) 

r୑ 

(Aሶ ) rଡ଼ 

(Aሶ ) 
Cation 

(kosm. 

or 

chao.) 

Anion 

(kosm. 

or 

chao.) 

1-1 electrolytes 

AgNO3 -0.0576 -0.1489 0.010 28 5.00  -0.0856 0.0025 0.00 0.0059 0.001 9 6.00 1.15 1.79 c c 

CsBr 0.0276 0.0195 0.003 28 5.00  0.0279 0.0139 0.00 0.0000 0.002 9 5.00 1.7 1.96 c c 

CsCl 0.0307 0.0717 0.004 28 8.50  0.0300 0.0558 0.00 0.0004 0.002 9 5.00 1.7 1.81 c c 

CsF 0.1138 0.3346 0.004 28 3.50  0.1306 0.2570 0.00 -0.0043 0.002 9 3.50 1.7 1.33 c k 

CsI 0.0121 0.1124 0.002 28 3.00  0.0244 0.0262 0.00 -0.0037 0.001 9 3.00 1.7 2.2 c c 

CsNO2 0.0203 0.1518 0.006 39 5.00  0.0427 0.0600 0.00 -0.0051 0.004 9 6.00 1.7 1.92 c c 

CsNO3 -0.0741 -0.0794 0.003 28 1.50  -0.0758 -0.0669 0.00 0.0000 0.002 9 1.40 1.7 1.79 c c 

CsOH 0.1313 0.4219 0.001 28 1.20  0.1500 0.3000 0.00 0.0000 - 9 1.20 1.7 1.33 c k 

HBr 0.2180 0.2692 0.004 28 3.00  0.1960 0.3564 0.00 0.0083 - 9 3.00 0.3 1.96 k c 

HCl 0.1788 0.2936 0.006 28 8.00  0.1775 0.2945 0.00 0.0008 - 9 6.00 0.3 1.81 k c 

HClO4 0.2133 0.0306 0.017 28 5.50  0.1747 0.2931 0.00 0.0082 0.002 9 5.50 0.3 2.25 k c 

HI 0.2373 0.4291 0.004 28 4.00  0.2362 0.3920 0.00 0.0011 - 9 3.00 0.3 2.2 k c 

HNO3 0.0995 0.4008 0.006 28 3.50  0.1119 0.3206 0.00 0.0010 0.001 9 3.00 0.3 1.79 k c 

KBr 0.0485 0.2805 0.003 28 5.50  0.0569 0.2212 0.00 -0.0018 0.001 9 5.50 1.38 1.96 c c 

KBrO3 -0.1221 0.2435 0.002 28 0.50  -0.1290 0.2565 0.00 0.0000 0.001 9 0.50 1.38 1.91 c c 

KCl 0.0451 0.2268 0.001 28 4.84  0.0484 0.2122 0.00 -0.0008 0.0005 9 4.80 1.38 1.81 c c 

KClO3 -0.0946 0.2485 0.0003 28 0.70  -0.0960 0.2481 0.00 0.0000 0.001 9 0.70 1.38 2 c c 

KF 0.0842 0.2052 0.014 28 14.00  0.0809 0.2021 0.00 0.0009 0.001 9 2.00 1.38 1.33 c k 

KH2PO4 -0.0685 -0.1035 0.003 28 1.80  -0.0678 -0.1042 0.00 0.0000 0.003 9 1.80 1.38 2.38 c c 

KHCO3 -0.0188 0.0730 0.001 16 1.00  -0.0220 0.0900 0.00 0.0000 - 16 1.00 1.38 1.85 c c 

KI 0.0573 0.3689 0.005 28 4.50  0.0746 0.2517 0.00 -0.0041 0.005 9 4.50 1.38 2.2 c c 

KNO2 0.0087 0.0967 0.003 39 6.00  0.0151 0.0150 0.00 0.0007 0.003 9 5.00 1.38 1.92 c c 

KNO3 -0.0592 -0.0451 0.006 28 3.50  -0.0816 0.0494 0.00 0.0066 0.006 9 3.50 1.38 1.79 c c 

KOH 0.1457 0.1971 0.025 28 14.00  0.1298 0.3200 0.00 0.0041 - 9 5.50 1.38 1.33 c k 

KSCN 0.0303 0.3086 0.003 28 5.00  0.0416 0.2302 0.00 -0.0025 0.001 9 5.00 1.38 2.13 c c 

LiBr 0.1998 0.2022 0.018 28 7.00  0.1748 0.2547 0.00 0.0053 0.002 9 2.50 0.69 1.96 k c 

LiBrO3 0.0882 0.2541 0.002 20 5.00  0.0893 0.2157 0.00 0.0000 0.001 10 5.00 0.69 1.91 k c 

 

 

 



 Table 1. continued 

  

 Simplified Pitzer Equation , with C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ൌ Ͳ  Original Pitzer Equation, with C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ് Ͳ (data from the literature)     

Electrolyte 

B୑ଡ଼ሺ଴ሻ
 

 

B୑ଡ଼ሺଵሻ
 

 

Standard 

Deviatio

n 

() 

Reference 

of ୑ଡ଼ୣ୶୮
 

Maximum 

molality 

(mol.kg-1) 

 B୑ଡ଼ሺ଴ሻ
 B୑ଡ଼ሺଵሻ

 B୑ଡ଼ሺଶሻ
  C୑ଡ଼

 

Standard 

Deviation 

() 

Reference 

Maximum 

molality 

(mol.kg-1) 

r୑ 

(Aሶ ) rଡ଼ 

(Aሶ ) 
Cation 

(kosm. 

or chao.) 

Anion 

(kosm. 

or 

chao.) 

LiCl 0.1667 0.2465 0.032 28 13.00  0.1494 0.3074 0.00 0.0036 0.001 9 6.00 0.69 1.81 k c 

LiClO3 0.1526 0.3131 0.008 20 4.20  0.1705 0.2294 0.00 -0.00524 0.002 10 4.20 0.69 2 k c 

LiClO4 0.1950 0.4307 0.007 28 4.50  0.1973 0.3996 0.00 0.0008 0.002 9 3.50 0.69 2.25 k c 

LiI 0.1990 0.4795 0.013 28 3.00  0.2104 0.3730 0.00 0.0000 0.006 9 1.40 0.69 2.2 k c 

LiNO2 0.1075 0.3906 0.017 39 6.00  0.1336 0.3250 0.00 -0.0053 0.003 9 6.00 0.69 1.92 k c 

LiNO3 0.1153 0.4488 0.011 28 5.50  0.1420 0.2780 0.00 -0.0055 0.001 9 6.00 0.69 1.79 k c 

LiOH 0.0457 -0.1257 0.005 28 3.00  0.0150 0.1400 0.00 0.0000 - 9 4.00 0.69 1.33 k k 

NaBr 0.1005 0.2720 0.010 28 9.00  0.0973 0.2791 0.00 0.0012 0.001 9 4.00 1.02 1.96 c c 

NaBrO3 -0.0046 0.1201 0.006 28 2.50  -0.0205 0.1910 0.00 0.0059 0.001 9 2.50 1.02 1.91 c c 

NaCl 0.0798 0.2677 0.008 28 6.14  0.0765 0.2664 0.00 0.0013 0.001 9 6.00 1.02 1.81 c c 

NaClO3 0.0257 0.2373 0.002 28 3.50  0.0249 0.2455 0.00 0.0004 0.001 9 3.50 1.02 2 c c 

NaClO4 0.0505 0.2952 0.004 28 6.00  0.0554 0.2755 0.00 -0.0012 0.001 9 6.00 1.02 2.25 c c 

NaF 0.0197 0.2237 0.0004 28 0.983  0.0215 0.2107 0.00 0.0000 0.001 9 1.00 1.02 1.33 c k 

NaH2PO4 -0.0246 -0.1126 0.009 28 3.50  -0.0533 0.0396 0.00 0.0080 0.003 9 6.00 1.02 2.38 c c 

NaHCO3 0.0290 0.0380 0.000 34 1.00  0.0277 0.0411 0.00 0.0000 - 34 1.00 1.02 1.85 c c 

NaI 0.1259 0.3038 0.009 28 11.00  0.1195 0.3439 0.00 0.0018 0.001 9 3.50 1.02 2.2 c c 

NaNO2 0.0478 0.1776 0.003 39 3.00  0.0641 0.1015 0.00 -0.0049 0.005 9 5.00 1.02 1.92 c c 

NaNO3 0.0036 0.1978 0.001 28 6.00  0.0068 0.1783 0.00 -0.0007 0.001 9 6.00 1.02 1.79 c c 

NaOH 0.1080 0.1927 0.009 28 6.00  0.0864 0.2530 0.00 0.0044 - 9 6.00 1.02 1.33 c k 

NaSCN 0.0952 0.3609 0.004 28 7.00  0.1005 0.3582 0.00 -0.00303 0.001 9 4.00 1.02 2.13 c c 

NH4Br 0.0505 0.2350 0.001 21 2.50  0.0624 0.1947 0.00 -0.0044 0.001 9 2.50 1.48 1.96 c c 

NH4Cl 0.0399 0.2661 0.002 28 4.00  0.0522 0.1918 0.00 -0.0030 0.001 9 6.00 1.48 1.81 c c 

NH4ClO4 -0.0064 -0.0648 0.005 40 2.10  -0.0103 -0.0194 0.00 0.0000 0.004 10 2.00 1.48 2.25 c c 

NH4H2PO4 -0.0455 -0.5631 0.009 41 3.50  -0.0704 -0.4156 0.00 0.0067 0.003 10 3.50 1.48 2.38 c c 

NH4I 0.0463 0.3583 0.004 22 4.00  0.0570 0.3157 0.00 -0.0031 0.002 10 7.50 1.48 2.2 c c 

NH4NO3 -0.0140 0.0895 0.004 28 11.00  -0.0154 0.1120 0.00 0.0000 0.001 10 6.00 1.48 1.79 c c 

NH4SCN 0.0174 0.3320 0.004 23 5.00  0.0245 0.2615 0.00 -0.0013 0.001 23 8.00 1.48 2.13 c c 

RbBr 0.0331 0.2057 0.002 28 5.00  0.0396 0.1530 0.00 -0.0014 0.001 9 5.00 1.49 1.96 c c 

RbCl 0.0382 0.1827 0.003 28 6.00  0.0441 0.1483 0.00 -0.0010 0.001 9 5.00 1.49 1.81 c c 

RbF 0.0834 0.4198 0.005 28 2.50  0.1141 0.2842 0.00 -0.0105 0.002 9 3.50 1.49 1.33 c k 

RbI 0.0346 0.1786 0.002 28 5.00  0.0397 0.1330 0.00 -0.0011 0.001 9 5.00 1.49 2.2 c c 

RbNO2 0.0054 0.0557 0.002 39 6.00  0.0269 -0.1553 0.00 -0.0037 0.002 9 5.00 1.49 1.92 c c 

RbNO3 -0.0629 -0.0909 0.005 28 3.00  -0.0789 -0.0172 0.00 0.0053 0.001 9 4.50 1.49 1.79 c c 



 Table 1. continued 

  

 Simplified Pitzer Equation , with C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ൌ Ͳ  Original Pitzer Equation, with C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ് Ͳ (data from the literature)     

Electrolyte 

B୑ଡ଼ሺ଴ሻ
 

 

B୑ଡ଼ሺଵሻ
 

 

Standard 

Deviatio

n 

() 

Reference 

of ୑ଡ଼ୣ୶୮
 

Maximum 

molality 

(mol.kg-1) 

 B୑ଡ଼ሺ଴ሻ
 B୑ଡ଼ሺଵሻ

 B୑ଡ଼ሺଶሻ
  C୑ଡ଼

 

Standard 

Deviation 

() 

Reference 

Maximum 

molality 

(mol.kg-1) 

r୑ 

(Aሶ ) rଡ଼ 

(Aሶ ) 
Cation 

(kosm. 

or chao.) 

Anion 

(kosm. 

or 

chao.) 

1-2 electrolytes 

(NH4)2SO4 0.0349 0.6801 0.007 17 5.00  0.0409 0.6585 0.00 -0.0012 0.004 9 5.50 1.48 2.4 c c 

K2SO4 0.0481 0.8619 0.006 17 0.80  0.0500 0.7793 0.00 0.0000 0.002 9 0.70 1.38 2.4 c c 

Li2SO4 0.1231 1.4417 0.008 17 3.00  0.1363 1.2705 0.00 -0.0040 0.002 9 3.00 0.69 2.4 k c 

Na2SO4 0.0366 0.9084 0.007 17 3.00  0.0196 1.1130 0.00 0.0050 0.003 9 4.00 1.02 2.4 c c 

2-1 electrolytes 

Ba(ClO4)2 0.2960 1.8167 0.015 12 1.60  0.3614 1.5758 0.00 -0.0313 0.003 9 2.00 1.36 2.25 k c 

BaBr2 0.2716 2.0187 0.013 26 2.30  0.3146 1.5698 0.00 -0.0160 0.001 9 2.00 1.36 1.96 k c 

BaCl2 0.2246 1.7213 0.014 26 1.79  0.2628 1.4963 0.00 -0.0194 0.001 9 1.79 1.36 1.81 k c 

BaI2 0.3861 1.9611 0.011 26 2.00  0.4219 1.6868 0.00 -0.0174 0.003 9 1.80 1.36 2.2 k c 

Ca(ClO4)2 0.4273 1.9530 0.029 12 5.00  0.4511 1.7565 0.00 -0.0050 0.005 9 2.00 1 2.25 k c 

CaBr2 0.3795 1.7029 0.012 26 3.25  0.3816 1.6133 0.00 -0.0026 0.002 9 2.00 1 1.96 k c 

CaCl2 0.3118 1.7044 0.024 26 6.00  0.3159 1.6140 0.00 -0.0003 0.003 9 2.50 1 1.81 k c 

CaI2 0.4357 1.8225 0.002 26 1.90  0.4379 1.8068 0.00 -0.0008 0.001 9 2.00 1 2.2 k c 

Co(ClO4)2 0.5493 1.6522 0.035 27 3.50  0.5303 1.9643 0.00 0.0076 0.015 this study 3.50 0.75 2.25 k c 

Co(NO3)2 0.2815 1.7480 0.020 27 3.25  0.3119 1.6905 0.00 -0.0076 0.003 9 5.50 0.75 1.79 k c 

CoBr2 0.3986 1.9156 0.021 27 3.75  0.4270 1.6598 0.00 -0.0007 0.002 9 2.00 0.75 1.96 k c 

CoCl2 0.3113 1.7699 0.020 27 3.00  0.3643 1.4753 0.00 -0.0152 0.004 9 3.00 0.75 1.81 k c 

CoI2 0.5108 1.7666 0.028 27 4.25  0.5213 1.6725 0.00 -0.0047 0.010 9 2.00 0.75 2.2 k c 

Cu(ClO4)2 0.5138 1.8475 0.029 24 3.50  0.5076 1.8749 0.00 0.0044 0.010 this study 3.50 0.73 2.25 k c 

Cu(NO3)2 0.2477 1.8031 0.022 24 3.50  0.3168 1.4303 0.00 -0.0219 0.002 9 2.00 0.73 1.79 k c 

CuBr2 0.3408 1.9977 0.009 24 1.25  0.3616 1.8575 0.00 -0.00902 0.007 this study 1.25 0.73 1.96 k c 

CuCl2 0.2513 1.5432 0.006 24 1.00  0.3080 1.3763 0.00 -0.0404 0.003 9 2.00 0.73 1.81 k c 

FeCl2 0.3155 1.7278 0.008 27 2.00  0.3359 1.5323 0.00 -0.0086 0.002 9 2.00 0.78 1.81 k c 

Mg(ClO4)2 0.5230 1.9144 0.021 15 3.00  0.4961 2.0085 0.00 0.0096 0.002 9 2.00 0.72 2.25 k c 

MgBr2 0.4470 1.6462 0.026 26 5.50  0.4327 1.7528 0.00 0.0031 0.004 9 5.00 0.72 1.96 k c 

MgCl2 0.3765 1.5968 0.024 26 4.50  0.3524 1.6815 0.00 0.0052 0.003 9 4.50 0.72 1.81 k c 

MgI2 0.5267 1.4252 0.045 26 5.00  0.4902 1.8041 0.00 0.0079 0.003 9 5.00 0.72 2.2 k c 

Mn(ClO4)2 0.5518 1.7120 0.021 24 3.50  0.5316 2.1996 0.00 0.0061 0.013 this study 3.50 0.83 2.25 k c 

MnBr2 0.3747 2.0363 0.015 24 2.50  0.3971 1.7686 0.00 -0.0070 0.011 this study 2.50 0.83 1.96 k c 

MnCl2 0.2919 1.6033 0.010 24 1.50  0.3272 1.5503 0.00 -0.0205 0.003 9 2.50 0.83 1.81 k c 

Ni(ClO4)2 0.5453 1.7027 0.022 27 2.75  0.5273 1.9156 0.00 0.0089 0.019 this study 3.50 0.69 2.25 k c 

Ni(NO3)2 0.2970 2.1632 0.025 42 4.00  0.3037 2.1307 0.00 -0.0032 0.015 this study 5.00 0.69 1.79 k c 

NiBr2 0.4181 1.7725 0.018 27 4.25  0.4181 1.7725 0.00 0.0000 0.018 this study 4.25 0.69 1.96 k c 



 Table 1. continued 

  

 Simplified Pitzer Equation , with C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ൌ Ͳ  Original Pitzer Equation, with C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ് Ͳ (data from the literature)     

Electrolyte 

B୑ଡ଼ሺ଴ሻ
 

 

B୑ଡ଼ሺଵሻ
 

 

Standard 

Deviatio

n 

() 

Reference 

of ୑ଡ଼ୣ୶୮
 

Maximum 

molality 

(mol.kg-1) 

 B୑ଡ଼ሺ଴ሻ
 B୑ଡ଼ሺଵሻ

 B୑ଡ଼ሺଶሻ
  C୑ଡ଼

 

Standard 

Deviation 

() 

Reference 

Maximum 

molality 

(mol.kg-1) 

r୑ 

(Aሶ ) rଡ଼ 

(Aሶ ) 
Cation 

(kosm. 

or chao.) 

Anion 

(kosm. 

or 

chao.) 

NiCl2 0.3306 1.6622 0.014 27 3.25  0.3479 1.5810 0.00 -0.0037 0.002 9 2.50 0.69 1.81 k c 

Sr(ClO4)2 0.3879 1.8158 0.013 12 2.50  0.4269 1.5668 0.00 -0.0131 0.002 9 2.50 1.13 2.25 k c 

Sr(NO3)2 0.0992 1.6050 0.005 15 1.00  0.1346 1.3800 0.00 -0.0199 0.002 9 2.00 1.13 1.79 k c 

SrBr2 0.3321 1.7626 0.002 26 2.00  0.3311 1.7115 0.00 0.0012 0.001 9 2.00 1.13 1.96 k c 

SrCl2 0.2823 1.5771 0.009 19 3.80  0.2858 1.6673 0.00 -0.0013 0.003 9 4.00 1.13 1.81 k c 

SrI2 0.4043 1.9170 0.004 26 2.00  0.4013 1.8600 0.00 0.0027 0.001 9 2.00 1.13 2.2 k c 

Zn(ClO4)2 0.5444 1.6016 0.031 25 3.25  0.5060 1.7970 0.00 0.0113 0.003 9 2.00 0.75 2.25 k c 

Zn(NO3)2 0.2990 1.9419 0.018 25 3.00  0.3481 1.6913 0.00 -0.0157 0.001 9 2.00 0.75 1.79 k c 

ZnBr2 0.3378 2.0164 0.008 25 0.80  0.4660 1.6343 0.00 -0.1079 0.007 9 1.60 0.75 1.96 k c 

ZnCl2 0.0959 2.2348 0.031 25 13.00  0.2602 1.6425 0.00 -0.0880 0.006 9 1.20 0.75 1.81 k c 

ZnI2 0.4536 2.1785 0.013 25 1.00  0.4821 1.9455 0.00 -0.0143 0.002 9 0.80 0.75 2.2 k c 

2-2 electrolytes 

CdSO4 0.2358 2.3479 0.010 13 3.50  0.2053 2.6170 -48.07 0.0114 0.002 8 3.50 0.95 2.4 k c 

CuSO4 0.2347 2.4875 0.004 17 1.40  0.2358 2.4850 -47.35 -0.0012 0.003 8 1.40 0.73 2.4 k c 

MgSO4 0.2842 2.8749 0.009 17 2.50  0.2210 3.3430 -37.23 0.0250 0.004 8 3.00 0.72 2.4 k c 

MnSO4 0.2414 2.6899 0.011 17 2.50  0.2010 2.9800 0.00 0.0182 0.003 8 4.00 0.83 2.4 k c 

NiSO4 0.2268 2.6082 0.008 17 1.60  0.1702 2.9070 -40.06 0.0366 0.005 8 2.50 0.69 2.4 k c 

ZnSO4 0.2565 2.4986 0.005 17 2.00  0.1949 2.8830 -32.81 0.0290 0.004 8 3.50 0.75 2.4 k c 

3-1 electrolytes 

AlCl3 0.7047 5.7690 0.010 13 1.80  0.6993 5.8447 0.00 0.0027 0.005 9 1.60 0.53 1.81 k c 

CeCl3 0.5562 5.5669 0.043 13 1.80  0.6125 5.4847 0.00 -0.0311 0.010 9 1.80 1.01 1.81 k c 

Cr(NO3)3 0.6136 5.6223 0.024 13 1.20  0.7040 5.1847 0.00 -0.0590 0.004 9 1.40 0.62 1.79 k c 

CrCl3 0.6661 5.7568 0.018 13 1.20  0.7364 5.2553 0.00 -0.0451 0.005 9 1.20 0.62 1.81 k c 

EuCl3 0.5742 5.7733 0.033 13 1.80  0.6247 5.5900 0.00 -0.0264 0.007 9 1.80 0.95 1.81 k c 

LaCl3 0.5495 5.7110 0.039 13 1.80  0.6105 5.4873 0.00 -0.0320 0.007 9 1.80 1.05 1.81 k c 

NdCl3 0.5592 5.5343 0.027 13 1.60  0.6117 5.4027 0.00 -0.0284 0.007 9 2.00 0.98 1.81 k c 

PrCl3 0.5497 5.6079 0.026 13 1.60  0.6020 5.4540 0.00 -0.0280 0.006 9 2.00 1 1.81 k c 

ScCl3 0.6426 5.5572 0.029 13 1.60  0.7000 5.3187 0.00 -0.0323 0.005 9 1.80 0.75 1.81 k c 

SmCl3 0.5697 5.6701 0.027 13 1.60  0.6220 5.5153 0.00 -0.0280 0.010 9 1.80 0.96 1.81 k c 

YCl3 0.5989 5.5042 0.031 13 1.80  0.6399 5.4440 0.00 -0.0226 0.007 9 1.80 0.9 1.81 k c 

4-1 electrolytes 

Th(NO3)4 0.8148 12.0772 0.012 11 0.40  0.9663 11.3875 0.00 -0.1846 0.010 9 1.00 0.94 1.81 k c 

ThCl4 0.9008 14.7995 0.050 13 1.00  1.0138 13.3313 0.00 -0.1034 0.006 9 1.00 0.94 1.79 k c 

 



The trends between the second Virial coefficients in the Pitzer equations and the properties of 

the solution 

On considering the simplifications applied to the Pitzer equation for the osmotic coefficient, only two 

parameters need to be correlated with the properties of the solution, namely B୑ଡ଼ሺ଴ሻ
 and B୑ଡ଼ሺଵሻ

. However, 

before starting these correlations, it is important to identify which electrolytes are likely to form ion 

pairs or complexes. This is because the second virial coefficients were estimated assuming that ions are 

completely dissociated (or slightly associated) in the aqueous media and this assumption is not valid for 

some of the electrolytes listed in Table 1. 

According to Marcus et al.
43

, the difference between ion pairs and complexes is that the ion pairs are 

held by long-range, non-directional electrostatic forces, whereas the complexes are formed by short-

range, spatially directed covalent interactions. On the other hand, Marcus et al.
43

 state that this 

difference is largely semantic because there is no method for determining the origins of the attractive 

forces that hold the species together and thus complexes and ion pairs should be seen as essentially 

indistinguishable. Therefore, no effort will be employed in order to rigorously group species in ion pairs 

or complexes. 

The following electrolytes from Table 1 were identified in the literature as electrolytes that could form 

ion pairs or complexes 
44,45

: 

- 1-1 electrolytes: According to Collins
44

, combinations of kosmotrope cations with kosmotrope 

anions as well as chaotrope cations with chaotrope anions tend to lead to the formation of ion 

pairs, because the association in this case is energetically favorable. Therefore, only 

combinations of chaotrope-kosmotrope and kosmotrope-chaotrope will be considered for the 

1-1 electrolytes, with the exception of NaF, which forms ion pairs
45

. 

- All the 1-2 electrolytes listed in Table 1
45

. 

- The following 2-1 electrolytes
45

: Co(NO3)2, Cu(NO3)2, CoCl2, CuBr2, CuCl2, MnCl2, 

Ni(NO3)2, NiBr2, NiCl2, Sr(NO3)2, Zn(NO3)2 ZnBr2, ZnCl2, ZnI2.  



- All the 2-2 electrolytes listed in Table I tend to form complexes
45,8

. However, Pitzer et al.
8
 

stated that these 2-2 electrolytes could be well represented without the assumption of 

association equilibrium, and for this reason these electrolytes will be retained in the analysis. 

- 3-1 electrolytes: it was not identified any electrolyte forming ion pairs/complexes. 

- 4-1 electrolytes: Th(NO3)4
46

. 

After eliminating the electrolytes that are more likely to form ion pairs or complexes, now the 

attention can be focused on the trends between the second virial coefficients and the properties of the 

solution. The properties of the solution investigated were: zM, zX, rM, rX, rhM and rhX. Several trials were 

performed to fit the second virial coefficients of the Pitzer equation with these properties and finally it 

was found that both B୑ଡ଼ሺ଴ሻ
 and B୑ଡ଼ሺଵሻ

 have strong correlations with zM, zX and |rM-rX|, as illustrated in 

figures 2, 3, 4 and 5. Figures 2 and 3 contain the relationships for  B୑ଡ଼ሺ଴ሻ
 considering the simplified Pitzer 

equation (C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ൌ Ͳ) and the original Pitzer equation (C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ് Ͳ) respectively, 

whereas figures 4 and 5 contain the relationships for B୑ଡ଼ሺଵሻ
 considering these two same cases, 

respectively. As it can be seen in figures 2 and 3, a very good correlation among the B୑ଡ଼ሺ଴ሻ
, the ionic 

charge and the ionic radius was found, and this is reflected in the high coefficients of determination 

achieved (R
2
=0.96 for the simplified Pitzer equation, R

2
=0.97 for the original Pitzer equation). 

Likewise, in figures 4 and 5, it is possible to observe that the parameter B୑ଡ଼ሺଵሻ
 also has a very strong 

correlation (R
2
=0.99 for both the simplified and the original Pitzer equation) with the ionic charge and 

the ionic radius, but with a quadratic correlation rather than a linear one. Furthermore, it can be 

observed that there are no significant differences between the curves considering the simplified and the 

original Pitzer equation and this means that the elimination of the parameters B୑ଡ଼ሺଶሻ
,  C୑ଡ଼ ǡ  ଶ did not 

cause significant changes in the values of  B୑ଡ଼ሺ଴ሻ
 and  B୑ଡ଼ሺଵሻ

.  

To summarize, the second virial coefficient  B୑ଡ଼ሺ଴ሻ
 for the simplified Pitzer equation and for the original 

Pitzer equation can be respectively expressed as follows: B୑ଡ଼ሺ଴ሻ ൌ ͲǤͲͶͶ͵ʹ z୑ଵǤ଺ଶzଡ଼ି ଵǤଷହȁr୑ െ ͳǤͷrଡ଼ȁଵǤଶ ൅ ͲǤͲͷ͹ͷͺ      (15) 



 B୑ଡ଼ሺ଴ሻ ൌ ͲǤͲͶͺͷͲ z୑ଵǤ଺ଶzଡ଼ି ଵǤଷହȁr୑ െ ͳǤͷrଡ଼ȁଵǤଶ ൅ ͲǤͲ͵ͺͻͺ      (16) 

 

 Also, the second virial coefficient B୑ଡ଼ሺଵሻ
 for the simplified Pitzer equation and for the complete 

Pitzer equation can be respectively expressed as follows: 

B୑ଡ଼ሺଵሻ ൌ ͲǤͲͳͲͲͳzଡ଼ି ଴Ǥସ ቀz୑ଶ zଡ଼଴Ǥ଺ሺͳ ൅ ȁr୑ െ ͳǤʹrଡ଼ȁ଴Ǥଶሻቁଶ ൅ ͲǤͳʹͲͳ͹z୑ଶ zଡ଼଴Ǥଶሺͳ ൅ ȁr୑ െ ͳǤʹrଡ଼ȁ଴Ǥଶሻ ൅ͲǤͲͷʹʹ͸zଡ଼ି ଴Ǥସ            (17) B୑ଡ଼ሺଵሻ ൌ ͲǤͲͲ͹͵ͺzଡ଼ି ଴Ǥସ ቀz୑ଶ zଡ଼଴Ǥ଺ሺͳ ൅ ȁr୑ െ ͳǤʹrଡ଼ȁ଴Ǥଶሻቁଶ ൅ ͲǤͳ͸ͺͲͲz୑ଶ zଡ଼଴Ǥଶሺͳ ൅ ȁr୑ െ ͳǤʹrଡ଼ȁ଴Ǥଶሻ െͲǤͲͻ͵ʹͲzଡ଼ି ଴Ǥସ            (18) 

 

 

Figure 2. Relationship between the second virial coefficient B୑ଡ଼ሺ଴ሻ
, the ionic charge and the absolute 

difference between the ionic radius of the cation and the anion for the simplified Pitzer equation, i.e.  C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ൌ Ͳ (: 1-1 electrolytes, +: 2-1 electrolytes, : 2-2 electrolytes, : 3-1 electrolytes, 

: 4-1 electrolytes, dashed line: linear regression). 



 

Figure 3. Relationship between the second virial coefficient B୑ଡ଼ሺ଴ሻ
, the ionic charge and the absolute 

difference between the ionic radius of the cation and the anion for the original Pitzer equation, i.e.  C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ് Ͳ (: 1-1 electrolytes, +: 2-1 electrolytes, : 2-2 electrolytes, : 3-1 electrolytes, 

: 4-1 electrolytes, dashed line: linear regression). 

  

Figure 4. Relationship between the second virial coefficient B୑ଡ଼ሺଵሻ
, ionic charge and the absolute 

difference between the ionic radius of the cation and the anion for the simplified Pitzer equation, 

i.e. C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ൌ Ͳ (: 1-1 electrolytes, +: 2-1 electrolytes, : 2-2 electrolytes, : 3-1 

electrolytes, : 4-1 electrolytes, dashed line: polynomial regression). 



 

Figure 5. Relationship between the second virial coefficient B୑ଡ଼ሺଵሻ
, ionic charge and the absolute 

difference between the ionic radius of the cation and the anion for the original Pitzer equation, i.e.  C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ് Ͳ (: 1-1 electrolytes, +: 2-1 electrolytes, : 2-2 electrolytes, : 3-1 electrolytes, 

: 4-1 electrolytes, dashed line: polynomial regression). 

DISCUSSION 

As mentioned before in the introduction section, the Pitzer equation coefficients can be interpreted as 

being the combination of several properties of the solution with different weighting factors. As shown 

before in the results section, the Pitzer equation can be satisfactorily simplified to an equation 

containing only the two second virial coefficients B୑ଡ଼ሺ଴ሻ
 and B୑ଡ଼ሺଵሻ

, and these coefficients were shown to be 

strongly dependent on the ionic radii of the species as well as the ionic charge, see figures 2, 3, 4 and 5. 

In addition to this, some other important aspects related to the properties of the aqueous solution are 

discussed below. 

Comparison plots involving the original Pitzer model, the simplified Pitzer model, the 

correlation equations and the experimental data 

1-1 electrolytes 

The comparison plots related to the 1-1 electrolytes can be visualized in figures 6 and 7. As it can be 

seen in these figures, all electrolytes analyzed can be well described by both the simplified Pitzer model 



and the original Pitzer model, but the original Pitzer model is slightly more accurate in general. 

Likewise, the correlating equations (eqs 15 and 17) predict very well the behavior of the chlorides, 

bromides, iodides and perchlorates, but these equations generally fail to predict the properties of 

bromates, nitrates, nitrites, hydroxides and fluorides, and this is probably due to the high tendency of 

these ions to form ion pairs or complexes. 

1-2 electrolytes 

The comparison plots related to the 1-2 electrolytes can be visualized in figure 8. Since these 

electrolytes form ion pairs
45

, hence only the simplified Pitzer equation and the original Pitzer equation 

were included in comparison with the experimental data. This figure shows that all electrolytes analyzed 

can be well described by both the simplified Pitzer model and the original Pitzer model, but the original 

Pitzer model is slightly more precise in general. 

2-1 electrolytes 

The comparison plots related to the 2-1 electrolytes can be visualized in figure 9. Since the nitrates, 

nitrites, bromates were excluded from the analysis due to the formation of ion pairs (please refer to the 

results section to more details), then only chlorides, bromides, iodides and perchlorates were used to 

estimate the correlating equations (eqs 15 and 17). As stated previously in the analysis of 1-1 

electrolytes, the chlorides, bromides, iodides and perchlorates can be well predicted not only by the 

simplified Pitzer equation and the original Pitzer equation, but also by the correlating equations (eqs 15 

and 17). It is possible to confirm this good agreement between the three equations and the experimental 

data in figure 9. 

2-2 electrolytes 

The comparison plots related to the 2-2 electrolytes can be visualized in figure 10. This figure shows 

that the original Pitzer model predicts well the behavior of the electrolytes over the entire range of 

concentration, in contrast to the simplified Pitzer model and the correlating equations (eqs 15 and 17), 

which are able to predict the behavior of the electrolytes only up to a molalitity of 2 mol/kg.  In fact, the 

superiority of the original Pitzer model is not unexpected, because this model contains more parameters 



than the other two models to account for different interactions, e.g. ion-pairing. Moreover, the fact that 

the simplified equation was not able to explain molalities above 2 mol/kg can be attributed to the 

omission of the term B୑ଡ଼ሺଶሻ
, which according to Pitzer

10
 introduces a systematic error in the calculated 

values at high concentrations. 

It is also possible to see in figure 10 that in some cases the correlating equations (eqs 15 and 17) did not 

produce results as accurate as the simplified Pitzer model and the original Pitzer model, e.g. MgSO4 and 

NiSO4, but the error did not exceed 10% in any molality analyzed. Nevertheless, in most cases the 

correlating equations (eqs 15 and 17) agreed well with the experimental data. 

3-1 electrolytes 

The comparison plots related to the 3-1 electrolytes can be visualized in figure 11. This figure shows 

that the original Pitzer model is slightly more accurate than the simplified Pitzer model and the 

correlating equations (eqs 15 and 17).  Moreover, this figure shows systematic errors at molalities above 

1 mol/kg for both the simplified Pitzer equation and the correlating equations (eqs 15 and 17), and these 

errors can be attributed to the omission of the term  C୑ଡ଼
 in these equations, which accounts for 

interactions between triplets of ions. Nevertheless, the only case that the correlating equations (eqs 15 

and 17) were not able to fit the experimental data within a 6% precision was relative to the Cr(NO3)3, 

and this is expected since nitrates normally tend towards the ion-pair formation. 

4-1 electrolytes 

The comparison plot related to the 4-1 electrolytes can be visualized in figure 12. This figure shows 

that neither the original Pitzer model nor the simplified Pitzer model and the correlating equations (eqs 

15 and 17) fit very well the experimental data. In fact, more 4-1 electrolytes would need to be 

investigated in order to come to any conclusion regarding the accuracy of the models analyzed. 

However, information about 4-1 electrolytes is limited in the literature. 

 



(a) (b)  

(c) (d) 

(e)  (f)  

(g)  (h)  

Figure 6. Comparison plots of 1-1 electrolytes involving chlorides, bromides, iodides and perchlorates: 

(a) HCl, (b) LiCl, (c) HBr, (d) CsBr, (e) RbBr, (f) HI, (g) HClO4, (h) LiClO4 (: Experimental data for 

the osmotic coefficient from the literature (see references in Table 1), solid lines: original Pitzer model, 

dashed lines: simplified Pitzer model, dotted lines: correlating equations (eqs 15 and 17)). 



(a)  (b)  

(c) (d)  

(e)  (f)  

(g) (h)  

Figure 7. Comparison plots of 1-1 electrolytes involving nitrates, nitrites, bromates, hydroxides and 

fluorides: (a) HNO3, (b) LiBrO3, (c) LiNO2, (d) RbNO2, (e) CsF, (f) RbF, (g) KOH, (h) NaOH (: 

Experimental data for the osmotic coefficient from the literature (see references in Table 1), solid lines: 

original Pitzer model, dashed lines: simplified Pitzer model, dotted lines: correlating equations (eqs 15 

and 17)). 



(a) (b)  

(c) (d)  

Figure 8. Comparison plots comprising the following 1-2 electrolytes: (a) Na2SO4, (b) K2SO4, (c) 

(NH4)2SO4, (d) Li2SO4 (: Experimental data for the osmotic coefficient from the literature (see 

references in Table 1), solid lines: original Pitzer model, dashed lines: simplified Pitzer model). 

 

 

 

 

 

 

 

 

 

 



(a) (b)

(c) (d)  

(e)  (f)  

(g) (h)  

Figure 9. Comparison plots involving the following 2-1 electrolytes: (a) CaCl2, (b) MgCl2, (c) MgBr2, 

(d) CoBr2, (e) BaI2, (f) Cu(ClO4)2, (g) Zn(NO3)2, (h) Sr(ClO4)2 (: Experimental data for the osmotic 

coefficient from the literature(see references in Table 1), solid lines: original Pitzer model, dashed lines: 

simplified Pitzer model, dotted lines: correlating equations (eqs 15 and 17)). 



(a) (b)

(c) (d)

(e) (f)  

Figure 10. Comparison plots involving the following 2-2 electrolytes: (a) MgSO4, (b) NiSO4, (c) 

MnSO4, (d) CuSO4, (e) ZnSO4, (f) CdSO4 (: Experimental data for the osmotic coefficient from the 

literature (see references in Table 1), solid lines: original Pitzer model, dashed lines: simplified Pitzer 

model, dotted lines: correlating equations (eqs 15 and 17)). 

 

 



(a) (b)

(c) (d)  

Figure 11. Comparison plots involving the following 3-1 electrolytes: (a) AlCl3, (b) LaCl3, (c) EuCl3, 

(d) Cr(NO3)3 (: Experimental data for the osmotic coefficient from the literature (see references in 

Table 1), solid lines: original Pitzer model, dashed lines: simplified Pitzer model, dotted 

lines: correlating equations (eqs 15 and 17)). 

(a) (b)  

Figure 12. Comparison plots involving the following 4-1 electrolytes: (a) ThCl4, (b) Th(NO3)4 (: 

Experimental data for the osmotic coefficient from the literature (see references in Table 1), solid lines: 

original Pitzer model, dashed lines: simplified Pitzer model, dotted lines: correlating equations (eqs 15 

and 17)). 



Case study to demonstrate the predictability of the correlating equations (eqs 15 and 17) 

In order to demonstrate the good predictability of the correlating equations (eqs 15 and 17), a case 

study involving rare-earth perchlorates was analyzed. The experimental data for the osmotic coefficients 

related to these rare-earth perchlorates were taken from Libus et al.
47

. Moreover, the ionic radii used 

were taken from Marcus
5
, except for the perchlorate ion, which was taken from Roobottom

38
.  

The predicted values of B୑ଡ଼ሺ଴ሻ
  and B୑ଡ଼ሺଵሻ

 calculated by the correlating equations (eqs 15 and 17) are 

shown in Table 2. Also, the comparison between the osmotic coefficients calculated by the correlating 

equations (eqs 15 and 17) and the experimental osmotic coefficients related to these rare-earth 

perchlorates can be visualized in figure 13. Particularly, this figure shows a remarkable agreement 

between the predicted values and the experimental ones, and this confirms the good reliability of these 

equations to estimate the values of  B୑ଡ଼ሺ଴ሻ
  and B୑ଡ଼ሺଵሻ

. 

 

Table 2. Estimated values of B୑ଡ଼ሺ଴ሻ
  and B୑ଡ଼ሺଵሻ

 using the correlating equations (eqs 15 and 17). 

Electrolyte    B୑ଡ଼ሺ଴ሻ
 B୑ଡ଼ሺଵሻ

 

Standard 

Deviation 

() 

Maximum 

molality 

(mol.kg-1) 

r୑ 

(Aሶ ) rଡ଼ 

(Aሶ ) 
La(ClO4)3    0.7808 5.9231 0.105 4.50 1.05 2.25 

Pr(ClO4)3    0.7995 5.9529 0.124 4.50 1 2.25 

Nd(ClO4)3    0.8070 5.9647 0.124 4.50 0.98 2.25 

Sm(ClO4)3    0.8145 5.9763 0.077 4.50 0.96 2.25 

Gd(ClO4)3    0.8220 5.9879 0.093 4.50 0.94 2.25 

Dy(ClO4)3    0.8333 6.0050 0.077 4.50 0.91 2.25 

Ho(ClO4)3    0.8371 6.0107 0.066 4.50 0.9 2.25 

Er(ClO4)3    0.8409 6.0163 0.063 4.50 0.89 2.25 

Tm(ClO4)3    0.8447 6.0219 0.065 4.50 0.88 2.25 

Yb(ClO4)3    0.8485 6.0275 0.065 4.50 0.87 2.25 

Lu(ClO4)3    0.8522 6.0331 0.033 4.00 0.86 2.25 

 



(a) (b) (c)  

(d)  (e)  (f)  

(g)  (h)  (i)  

(j)  (k)  

Figure 13. Comparison plots showing the predictability of the correlation equations (eqs 15 and 17) 

applied to rare-earth perchlorates: (a) La(ClO4)3, (b) Pr(ClO4)3, (c) Nd(ClO4)3, (d) Sm(ClO4)3, (e) 

Gd(ClO4)3, (f) Dy(ClO4)3, (g) Ho(ClO4)3, (h) Er(ClO4)3, (i) Tm(ClO4)3, (j) Yb(ClO4)3, (k) Lu(ClO4)3 

(: Experimental data of osmotic coefficients from the literature (see references in Table 1), dotted 

lines: correlating equations (eqs 15 and 17)). 



 

Simplified Pitzer equation versus original Pitzer equation 

It has been shown that the effects of the coefficients  C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ are small and it is in general a 

good approximation to estimate the activity and osmotic coefficients without these parameters.  

In terms of B୑ଡ଼ሺଶሻ  and ଶ, the elimination of these parameters cause systematic errors at molalities 

higher than 2 mol/kg, and hence this approximation should not be performed if the molality of interest 

exceeds this value. In the case of C୑ଡ଼
, this coefficient accounts for the short-range interaction of triplets 

of ions and the small influence of this parameter in the estimations of the osmotic coefficients suggests 

that these triplets of ions are not very abundant in the aqueous solution at moderate concentrations up to 

6 M. However, especially at higher values of ionic strength, the presence of the C୑ଡ଼
 in the Pitzer 

equation improves the accuracy of the results and this is because the ions become closer to each other 

and then the probability of interactions of triplets of ions increases. Therefore, if this parameter is 

available then there is no reason to disregard it, but if this value is not available, the analysis performed 

suggests that it is a good approximation to estimate the activity and osmotic coefficients without this 

coefficient. 

Repulsive and attractive forces 

According to Pitzer et al.
9
, the value of the second virial coefficient can be either positive or negative 

depending on the net predominance of the repulsive or attractive short-range forces. In other words, low 

values of  B୑ଡ଼ሺ଴ሻ
 and B୑ଡ଼ሺଵሻ

 indicates an important contribution of the short-range attractive forces to the net 

short-range forces, whereas high values of these coefficients indicate an important influence of short-

range repulsive forces. In this context, it is interesting to observe in figures 2, 3, 4 and 5 that the values 

of  B୑ଡ଼ሺ଴ሻ
 and B୑ଡ଼ሺଵሻ

 increase as the absolute difference between the ionic radii of the cation and the anion 

increases, and this suggests that combinations of ions with different sizes lead to a net predominance of 

short-range repulsive forces. This is in agreement with Pitzer et al.
9, who stated that “we expect a larger 

repulsive effect for like-charged ions when there is a difference in size”. Likewise, the values of the 



second virial coefficients increase with the  as the ionic charge of the cation increases, and this also 

indicates the predominance of repulsive forces. In contrast, the second virial coefficients decrease as the 

ionic charge of the anions increases and this indicates that the anions tend to contribute to the 

attenuation of the short-range repulsive forces. This is in agreement with the fact that all of the 1-2 and 

2-2 electrolytes investigated in this study are forming to some extent ion pairs or complexes, which is 

associated to the attractive short-range forces.
 

Ion pairing and complex formation 

The Pitzer equations were not originally created to deal with ion pairing or complex formation 

phenomena, except for 2-2 electrolytes where corrections for ion pairings were provided
8,9

. With the 

increased use of Raman spectroscopy and other investigation methods, it has been found that many of 

the electrolytes considered by Pitzer in his analysis as completely dissociated can actually form ion 

pairs/complexes in a significant scale, and thus these electrolytes require different theoretical treatments. 

Nevertheless, it is interesting to see how these excluded electrolytes behave in comparison with the 

electrolytes with smaller probability of forming ion pairs/complexes, and for this reason these two 

groups were plotted together in figures 14 and 15, which refer to the simplified Pitzer equation and the 

original Pitzer equation, respectively. In particular, it can be seen in both figures 14 and 15 that the 

values of B୑ଡ଼ሺ଴ሻ
 are lower for electrolytes that form ion pairs/complexes than for those that do not, and as 

mentioned before in the discussions of repulsive and attractive forces, these low values of B୑ଡ଼ሺ଴ሻ
 indicate 

an important contribution of the short-range attractive forces to the net short-range forces. 

Likewise B୑ଡ଼ሺ଴ሻ
, electrolytes forming ion pairs/complexes tend to have lower values of  B୑ଡ଼ሺଵሻ

, but this 

behaviour changes for the 2-1 electrolytes for the simplified Pitzer equation case, see figure 14. 

However, since the original Pitzer equation did not present this unexpected behavior in a significant 

proportion then this increase of  B୑ଡ଼ሺଵሻ
 for 2-1 electrolytes can be at least partially attributed to the 

absence of the factor C୑ଡ଼
. Also, this increase of  B୑ଡ଼ሺଵሻ

 for the 2-1 electrolytes can be explained by the 

presence of 2-2 electrolytes that are formed by speciation, e.g. the electrolyte ZnCl2 forms the 



species ZnClସଶି 
45

, that in association with Zn
2+

 add interactions of the type 2-2 to the aqueous system, 

and as shown in figure 4 these 2-2 electrolytes have higher values of  B୑ଡ଼ሺଵሻ
. 

To summarize, the knowledge of the values of B୑ଡ଼ሺ଴ሻ
 and  B୑ଡ଼ሺଵሻ

 and the comparison with the curve 

containing electrolytes that are unlikely to form ion pairs/complexes can give a good indication about 

the possible formation of ion pairs/complexes as well as formation of species of higher valence. 

(a) (b)  

Figure 14. The coefficients (a) B୑ଡ଼ሺ଴ሻ
, and (b) B୑ଡ଼ሺଵሻ

 with and without ion pairing/complex formation for 

the simplified Pitzer equation, i.e. C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ൌ Ͳ (+: ion pairing/complex formation, : highly 

dissociated electrolytes, dashed lines from (a) and (b): regression considering only highly dissociated 

electrolytes).  

 

 



(a) (b)  

Figure 15. The coefficients (a) B୑ଡ଼ሺ଴ሻ
, and (b) B୑ଡ଼ሺଵሻ

 with and without ion pairing/complex formation for 

the original Pitzer equation, i.e. C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ ് Ͳ (+: ion pairing/complex formation, : highly 

dissociated electrolytes, dashed lines from (a) and (b): regression considering only highly dissociated 

electrolytes). 

Structure breaking and structure making ions 

As mentioned before in the results section, according to the Collins
44

, ions with similar 

affinities with the water molecules tend to form stable ion pairs
48

. In particular, this rule was very 

important to systematically eliminate the 1-1 electrolytes that are more likely to form ion pairs. 

In fact, the low values of  B୑ଡ଼ሺ଴ሻ
 and B୑ଡ଼ሺଵሻ

 presented by all of the 1-1 electrolytes with similar 

affinities with the water molecules provides very strong evidence of the formation of ions pairs, 

and this is because as mentioned before in the discussions of repulsive and attractive forces, 

these low values indicate important contributions of the short-range attractive forces to the net 

short-range forces. Furthermore, Pitzer
9
  also observed that ions with similar affinities with the 

water molecules tend to have lower values of  B୑ଡ଼ሺ଴ሻ
 and B୑ଡ଼ሺଵሻ

. Finally, it is possible to find in the 

literature experimental and theoretical evidence of the formation of ion pairs for ions with similar 

affinities with water. For example, Moskovits et al.
49

 investigated the ion pair formation in alkali 

hydroxides using Raman Spectroscopy. Likewise, Gujt et al.
50

 studied ion pairing associated to 
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alkali metal halides using the electrical conductivity and the Monte Carlo computer simulation 

methods. In the same way, Chen et al.
51

 investigated ion pairing and cluster formation in strong 

1-1 electrolytes by making direct comparison of the results from detailed molecular dynamics 

simulations to experimentally observed properties of these 1-1 electrolytes. 

Geometry of the ions 

Most of the cations analyzed in this study are fairly spherical, and thus no conclusion can be 

made regarding the influence of the geometry of the cations on the values of the second virial 

coefficients based on the data analyzed. In fact, most of the cations with complex geometries 

were not investigated in this study due to the lack of data in the literature, especially with regards 

to the thermochemical/ionic radii as well as the ion pair formation.  

Regarding the anions, some of them have complex geometries, including the anions NO2, SCN 

and NO3 that are not exactly spherical. Considering these three anions, the first two, NO2 and 

SCN, did not present any unexpected behavior, and this is in contrast to the nitrate ion that 

formed ion pairs/complexes in most of the cases analyzed. However, it is not possible to 

conclude that the geometry of the anion was the reason for this anomalous behavior of the nitrate 

ion, because the other two non-spherical ions NO2 and SCN behaved normally.  

Consequently, based on the set of data analyzed it is not possible to come to any conclusion 

about the influence of the geometry of the cations and anions on the values of the second virial 

coefficients.
 

Hydrated radius of the ions 

As mentioned before in the results section, several trials were performed to fit the second virial 

coefficients with the hydrated radii, but they all failed. On the other hand, it was found that there 

is a very good correlation between the second virial coefficients and the ionic radii (R
2
>0.96), 
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and this reinforces that the second virial coefficients are more strongly connected to the ionic 

radii than the hydrated radii.  

Dispersion forces 

Despite the fact that dispersion forces may have an influence on the values of the second virial 

coefficients, a more sophisticated analysis is required in order to account for these effects, but 

this is not within the scope of this study. 
 

Effects of temperature on Virial coefficients 

The effects of temperature on the virial coefficients are not known in general, but these effects 

are very important because many industrial processes deal with temperatures different from 25 

o
C.  However these effects are beyond the scope of the present study but could be the subject of 

future research work.
 

 

CONCLUSIONS 

Simplifications to the Pitzer equation 

Some simplifications to the Pitzer equation have been suggested and analyzed, and these 

include the elimination of the terms C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ  in the Pitzer equation. Both the simplified 

and the original Pitzer equation can estimate the activity and osmotic coefficients with very high 

degree accuracy, but the original Pitzer equation is slightly more precise. 

Estimation of the second Virial Parameters to the simplified Pitzer equation 

The second virial coefficients  B୑ଡ଼ሺ଴ሻ
 and B୑ଡ଼ሺଵሻ

 were re-estimated for 122 inorganic electrolytes 

using published experimental data for the osmotic coefficients, see Table 1. This re-estimation 

was performed only for the simplified Pitzer equation, and this was because most of the 

coefficients of the original Pitzer equation can be found in the literature. Nevertheless, it was 
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found that in most cases, the elimination of the factors  C୑ଡ଼ ǡ B୑ଡ଼ሺଶሻ  and ଶ  did not cause 

significant changes to the values of  B୑ଡ଼ሺ଴ሻ
 and B୑ଡ଼ሺଵሻ

.
 

Correlation between the second Virial coefficients, ionic radii and ionic charge 

The second virial coefficients  B୑ଡ଼ሺ଴ሻ
 and B୑ଡ଼ሺଵሻ

 were correlated with the properties of the 

solution, more particularly with the ionic charge and the ionic radii. This correlation found was 

very strong and this is confirmed by the high values of the coefficients of determination 

(R
2
>0.96). However, this correlation was only possible to be achieved after eliminating from the 

analysis the electrolytes that have high probability of forming ion pairs/complexes. In fact, the 

Pitzer equations were not originally created to account for ion pairs/complexes, and thus it is 

justifiable to eliminate these factors in order to understand the meaning of the second virial 

coefficients as well as how the formation of ion pairs/complexes influences the values of the 

second virial coefficients. 

The following relationships for  B୑ଡ଼ሺ଴ሻ
 were achieved for the simplified and for the original 

Pitzer equation, respectively: B୑ଡ଼ሺ଴ሻ ൌ ͲǤͲͶͶ͵ʹ z୑ଵǤ଺ଶzଡ଼ି ଵǤଷହȁr୑ െ ͳǤͷrଡ଼ȁଵǤଶ ൅ ͲǤͲͷ͹ͷͺ  (R
2
=0.96)    

   

 B୑ଡ଼ሺ଴ሻ ൌ ͲǤͲͶͺͷͲ z୑ଵǤ଺ଶzଡ଼ି ଵǤଷହȁr୑ െ ͳǤͷrଡ଼ȁଵǤଶ ൅ ͲǤͲ͵ͺͻͺ  (R
2
=0.97)     

  

Also, the following relationships for B୑ଡ଼ሺଵሻ
 were achieved for the simplified and for the original 

Pitzer equation, respectively: 

B୑ଡ଼ሺଵሻ ൌ ͲǤͲͳͲͲͳzଡ଼ି ଴Ǥସ ቀz୑ଶ zଡ଼଴Ǥ଺ሺͳ ൅ ȁr୑ െ ͳǤʹrଡ଼ȁ଴Ǥଶሻቁଶ ൅ ͲǤͳʹͲͳ͹z୑ଶ zଡ଼଴Ǥଶሺͳ ൅ ȁr୑ െ ͳǤʹrଡ଼ȁ଴Ǥଶሻ ൅ͲǤͲͷʹʹ͸zଡ଼ି ଴Ǥସ (R
2
=0.99)          
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B୑ଡ଼ሺଵሻ ൌ ͲǤͲͲ͹͵ͺzଡ଼ି ଴Ǥସ ቀz୑ଶ zଡ଼଴Ǥ଺ሺͳ ൅ ȁr୑ െ ͳǤʹrଡ଼ȁ଴Ǥଶሻቁଶ ൅ ͲǤͳ͸ͺͲͲz୑ଶ zଡ଼଴Ǥଶሺͳ ൅ ȁr୑ െͳǤʹrଡ଼ȁ଴Ǥଶሻ െ ͲǤͲͻ͵ʹͲzଡ଼ି ଴Ǥସ (R
2
=0.99)        

   

Comparison plots involving the original Pitzer model, the simplified Pitzer model, the 

correlation equations and the experimental data 

Comparison plots were generated in order to illustrate the agreement between the experimental 

data for the osmotic coefficients and the three models analyzed, i.e. the original Pitzer model, the 

simplified Pitzer model and the correlating equations (eqs 15 and 17). In summary, the three 

models agree well with the experimental data for the osmotic coefficients, being the original 

Pitzer model slightly more accurate, and this is because this model contains more parameters to 

account for the various types of ion interactions in the aqueous solutions. However, the 

correlating equations (eqs 15 and 17) failed to predict the behavior of bromates, nitrites, nitrates, 

hydroxides and fluorides, and this indicates that these anions are likely to form ion pairs.  

Case study to demonstrate the predictability of the correlating equations (eqs 15 and 17) 

A case study involving rare-earth perchlorates was analyzed in order to demonstrate the 

predictability of the correlating equations (eqs 15 and 17). As a conclusion, the predictions 

agreed remarkably well with the experimental data for the osmotic coefficients, and this 

reinforces the reliability of these equations to estimate the properties of single electrolytes in 

aqueous solutions. 

Correlation between the second Virial coefficients and the properties of the solution 

The second virial coefficients were discussed in terms of the properties of the solution, as 

follows: 
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- Attractive and repulsive forces: Low values of the second virial coefficients represent a 

significant contribution of the short-range attractive forces, whereas high values 

represent a significant contribution of the short-range repulsive forces. Also, short-

range repulsive forces are enhanced as the ionic charge of the cation increases. In 

contrast, the short-range repulsive forces are attenuated as the ionic charge of the anion 

increases, and good evidence of this is the formation of ion pairs/complexes for all of 

the 1-2 and 2-2 electrolytes analyzed, since the formation of ion pairs are related to 

short-range attractive forces. 

- Ion pairing/complex formation: The electrolytes analyzed that are more likely to form 

ion pairs/complexes presented in general lower values of   B୑ଡ଼ሺ଴ሻ
 and B୑ଡ଼ሺଵሻ

 than 

electrolytes that are unlikely to form ion pairs, and these low values indicate important 

contributions of the attractive short-range forces to the net short-range forces.  

- Structure breakers and structure makers: It has been shown that ions with similar 

affinity with water tend to form stable ion pairs. 

- Geometry: Since most of the ions analyzed are almost spherical, it was not possible to 

precisely identify the influence of the geometry of the ions on the values of the second 

virial coefficients. 

- Hydrated radius: No strong correlation between the second virial coefficients and the 

hydrated radius was achieved. 

- Dispersion forces: The effect of the dispersion forces on the values of the second virial 

coefficients could not be identified based on the data analyzed, and a more 

sophisticated analysis would need to be performed in order to account for these effects. 
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- Temperature: The effects of temperature on the virial coefficients are not known in 

general, but they are very important in numerous practical situations.  However, these 

effects are beyond the scope of the present study but could be the subject of future 

research work.
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ABBREVIATIONS 

Latin Symbols A, Debye Huckel coefficient for the osmotic coefficient B୑ଡ଼
, second virial Coefficient for the osmotic coefficient B୑ଡ଼ሺ଴ሻ
, B୑ଡ଼ሺଵሻ

, B୑ଡ଼ሺଶሻ
, second virial Coefficients representing short-range binary interactions 

c, chaotrope C୑ଡ଼
, third virial Coefficient representing short-range interaction of triplets of ions 
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f, function of the ionic strength representing long range forces 

k, kosmotrope 

m, molality 

n, number of experimental data points 

I, ionic strength r୦୑, hydrated radii of the cation r୦ଡ଼, hydrated radii of the anion r୑, ionic radii of the cation rଡ଼, ionic radii of the anion z୑, charge of the cation zଡ଼, charge of the anion 

Greek Symbols 

ଵ, constant of the Pitzer equation related to B୑ଡ଼
 

ଶ, constant of the Pitzer equation related to B୑ଡ଼
 

, standard deviation 

୑ଡ଼, osmotic coefficient of the electrolyte  

, number of cationic and anionic species 

୑, number of cationic species 

ଡ଼, number of anionic species 

Subscripts 

h, hydrated 

M, cation 

X, anion 
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Superscripts 

calc, calculated 

exp, experimental 
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