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Understanding the origin of large-scale structures in high Reynolds number wall tur-
bulence has been a central issue over a number of years. Recently, Rawat et al. (J.
Fluid Mech., 2015, 782, p515) have computed invariant solutions for the large-scale
structures in turbulent Couette flow at Reτ ≃ 128 using an over-damped LES with the
Smagorinsky model to account for the effect of the surrounding small-scale motions.
Here, we extend this approach to an order of magnitude higher Reynolds numbers in
turbulent channel flow, towards the regime where the large-scale structures in the form
of very-large-scale motions (long streaky motions) and large-scale motions (short vortical
structures) energetically emerge. We demonstrate that a set of invariant solutions can
be computed from simulations of the self-sustaining large-scale structures in the minimal
unit (domain of size Lx = 3.0h streamwise and Lz = 1.5h spanwise) with midplane
reflection symmetry at least up to Reτ ≃ 1000. By approximating the surrounding small
scales with an artificially elevated Smagorinsky constant, a set of equilibrium states are
found, labelled upper- and lower-branch according to their associated drag. It is shown
that the upper-branch equilibrium state is a reasonable proxy for the spatial structure
and the turbulent statistics of the self-sustaining large-scale structures.

1. Introduction

The discovery of very-large-scale motions (VLSMs) has attracted significant interest in
wall-bounded turbulence research over the past decade (e.g. Hutchins & Marusic 2007).
The VLSM features as a long streaky motion of streamwise turbulent kinetic energy in
the outer region, and it is typically very energetic at sufficiently high Reynolds numbers
(Reτ & O(103) where Reτ is the friction Reynolds number). It was initially proposed
that this long streaky structure may be formed by the concatenation of the large-scale
vortical structures, known as the large-scale motions (LSMs) (Kovasznay et al. 1970),
which themselves were speculated to be formed by merger and/or growth of near-wall
hairpin vortices via a ‘bottom-up’ process (for further details, the reader may refer to a
recent summary on this proposition by Adrian 2007). However, there has been a growing
body of recent evidence that the outer structures are largely independent of the near-wall
process: for instance, disruption of the near-wall process with wall roughness affects the
outer statistics very little (Flores et al. 2007).
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We have recently shown that the coherent structures in the outer region sustain
themselves, even in the absence of the motions in the near-wall and logarithmic regions
(Hwang & Cossu 2010b; Rawat et al. 2015). The self-sustaining outer structure is
composed of two structural elements, a long streak and short quasi-streamwise vortices
which respectively correspond to the VLSM and the LSMs (Hwang 2015). The self-
sustaining process was also found to be almost identical to that in the near-wall region:
1) the streaky structure (VLSM) is amplified by the vortical structures (LSMs) via the
lift-up effect (e.g. Cossu et al. 2009; Pujals et al. 2009; Hwang & Cossu 2010a; Willis et al.
2010); 2) the amplified streak undergoes rapid streak meandering motion via secondary
instability or transient growth (Park et al. 2011); 3) the following nonlinear regeneration
of the streamwise vortical structures (Hwang & Bengana 2016).
The existence of a self-sustaining process at large scale in the outer region is of

particular theoretical importance, as it indicates that the outer structures are probably
organized around invariant solutions of the system, often referred to as ‘exact coherent
structures’ (e.g. Nagata 1990; Waleffe 2001; Faisst & Eckhardt 2003; Wedin & Kerswell
2004; Hall & Sherwin 2010; Park & Graham 2016, and many others). The simplest
non-trivial exact solutions of the Navier-Stokes equations are typically in the form of
a stationary or travelling wave, being equilibria or relative equilibria in phase space.
Together with unstable periodic and/or relative periodic orbits (e.g. Kawahara & Kida
2001), these invariant solutions have been shown to form a skeleton for solution trajecto-
ries in phase space (Gibson et al. 2008; Willis et al. 2013, 2016), and their understanding
from a dynamical systems viewpoint has been at the heart of recent advancement in the
understanding of bypass transition and low-Reynolds-number turbulence.
The goal of the present study is to demonstrate that such invariant solutions are

also the driving mathematical mechanism of the large-scale outer structures given with
the VLSMs and the LSMs in high-Reynolds-number turbulent channel flow. This task
has, however, often been understood to be challenging. The principal difficulty lies in
the emergence of a huge number of invariant solutions, which significantly hampers
identification of which solutions are most relevant to given coherent structures of interest.
Furthermore, the computation of the invariant solutions at such a high Reynolds number
is often numerically very sensitive and expensive, yielding a substantial technical barrier.
To bypass these difficulties, Rawat et al. (2015, 2016) recently computed a set of coherent
invariant solutions at Reynolds numbers up to Reτ = 128 by modelling all the smaller-
scale structures around the structure of interest via large-eddy simulations with the
Smagorinsky model. In these studies, the Smagorinsky constant Cs was taken as a
continuation parameter to replace the surrounding unsteady smaller-scale motions with
an elevated eddy viscosity, as in Hwang & Cossu (2010b, 2011). Here, we extend this
approach to a different regime of much higher Reynolds numbers up to Reτ ≃ 1000, at
which the VLSMs and the LSMs energetically emerge in the flow domain, and show that
the invariant solutions are directly linked with the formation of the large-scale structures.

2. Numerical method

We consider a turbulent channel, with the half height h, in which x, y and z denote the
streamwise, wall-normal and spanwise direction respectively. The two walls are located
at y = 0 and y = 2h. We use a Navier–Stokes solver that is well documented in Bewley
(2014). In this solver, the streamwise and spanwise directions are discretised using Fourier
series with 2/3 dealiasing rule, whereas the wall-normal direction is discretised using
second-order central difference. A set of LESs are considered with the static Smagorinsky
model, as in previous studies (e.g. Hwang & Cossu 2010b, 2011; Rawat et al. 2015,
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Simulation Rem Reτ Lx/h Ly/h Lz/h Nx ×Ny ×Nz Uc/Um Cs

F550 20133 539 3.0 1.0 1.5 32× 33× 32 1.15 0.05
S550 20133 584 3.0 1.0 1.5 32× 33× 32 1.13 0.20

F950 38133 958 3.0 1.0 1.5 48× 41× 48 1.13 0.05
S950 38133 1189 3.0 1.0 1.5 48× 41× 48 1.13 0.30

Table 1. Simulation parameters in the present study (before dealiasing). Here, Rem = 2Umh/ν
where Um is the bulk velocity. Note that Um = 2/3Ul where Ul is the centreline velocity of the
corresponding laminar flow with the same volume flux. The simulations tagged with ‘F ’ indicate
full simulations resolving near-wall motions, while those tagged with ‘S’ are simulations with
only self-sustaining outer motions by increasing the Smagorinsky constant Cs.

2016): i.e. τ̃ij − δij/3τ̃kk = −2νtS̃ij with νt = (Cs∆̃)2S̃D, where ·̃ denotes the filtered

quantity, Sij the strain rate tensor, Cs the Smagorinsky constant, ∆̃ = (∆̃1∆̃2∆̃3)
1/3

the nominal filter width, S̃ = (2S̃ij S̃ij)
1/2 the norm of the strain rate tensor, and D =

1− exp[−(y+/A+)3] with A+ = 25 is the van Driest damping function. The Smagorinsky
constant for turbulent channel flow is typically set in the range between Cs = 0.05 and
Cs = 0.10 (e.g. Moin & Kim 1982; Härtel & Kleiser 1998). In particular, Cs = 0.05 has
been shown to provide the best performance in terms of accurate generation of first- and
second-order turbulent velocity statistics (posterior test), while Cs = 0.10 is known for
the model to provide the best turbulent dissipation in comparison to the true value one
obtained in a DNS (priori test) (Härtel & Kleiser 1998; Meneveau & Katz 2000). Mason
& Cullen (1986) showed that the Smagorinsky constant Cs actually acts as the filter
width of the LES. Therefore, artificially increasing Cs allows one to damp the small-
scale motions without losing actual resolution of the the large scale structures, as also
demonstrated in Hwang & Cossu (2010b). It is also important to note that the static
Smagorinsky model prevents any energy transfer from the modelled residual stress to the
resolved motions, ensuring that the resolved motions sustain themselves at the increased
Cs. All the simulations in this study are performed by imposing constant volume flux
across the channel.
In the present study, computation of the invariant solutions is restricted to the minimal

unit for self-sustaining process of the outer structures in Hwang & Cossu (2010b): i.e.
Lx = 3.0h and Lz = 1.5h where Lx and Lz are the streamwise and spanwise domain size,
respectively. An important benefit of the minimal unit is that it realises a low-dimensional
dynamical set of coherent structures in the form of a VLSM (long outer streak) and
LSMs (short outer vortices) without significant distortion of turbulent statistics (Hwang
& Cossu 2010b; Rawat 2014; Hwang & Bengana 2016). Given the symmetry of turbulent
statistics around the channel midplane, we will also focus on seeking invariant solutions
with mirror symmetry about y = h. For this purpose, only the bottom half of the channel
is solved by imposing the symmetric boundary condition at the channel midplane (i.e.
∂u/∂y = 0, v = 0 and ∂w/∂y = 0 at y = h where u, v, and w are the streamwise, wall-
normal, and spanwise velocities, respectively). Except for this setting, all the simulation
parameters, including the number of grid points, at two Reynolds numbers considered,
Rem = 20133 and Rem = 38133, are the same as those in Hwang & Cossu (2010b, 2011),
as summarised in table 1. The artificially increased Cs values, by which the small-scale
structures are replaced with the eddy viscosity, but not the self-sustaining outer motions,
are therefore also the same as those in these works (see the parameters of S550 and S950
simulations in table 1). Finally, it should be noted that the two sets of grid points,
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Figure 1. (a) Mean velocity and (b) turbulent velocity fluctuations: , half channel
simulation with Cs = 0.05 (F950); - - - -, full channel simulation with Cs = 0.05 (Hwang &

Cossu 2011) ; , DNS at Reτ = 934 by del Álamo et al. (2004).

respectively for Rem = 20133 and Rem = 38133, in the present study are chosen such
that the standard LESs of the present study ensure good resolution for the small-scale
near-wall motions (Zang 1991, see also figure 1), as in our previous studies (Hwang &
Cossu 2010b, 2011). An examination of the energy spectra reveals that these numbers of
grid points are also found to provide good spatial resolution for the computed invariant
solutions at least for the elevated Cs. We also note that the resolution of the invariant
solution for Rem = 38133 is finer than that in Waleffe (2001).
A reference simulation is first performed to check turbulence statistics of the half-

channel LES simulation at Reτ ≃ 950, with the value Cs = 0.05 (F950) known to provide
the best statistical fit to the full DNS result (Hwang & Cossu 2010b). In figure 1, its first-
and second-order turbulence statistics are compared with those of full channel LES with
the same streamwise and spanwise computational domain (Hwang & Cossu 2011) as well
as those of DNS by del Álamo et al. (2004) at Reτ = 934. Overall, the half-channel
simulation generates fairly good turbulence statistics compared with those from the full
channel LES, which itself shows reasonable agreement with the data from full DNS.
The only appreciable difference between the half-channel and full-channel simulations
appears in the wall-normal velocity fluctuation very near the channel centre, due to
the symmetry condition. This indicates that the half-channel simulation does not lose
important physical features, except around the very centre of the channel, where mainly
dissipation of structures is expected due to the small shear in this region.

3. The invariant structures

3.1. Computation of invariant solutions

Now, we increase Cs such that the simulation contains only the large-scale self-
sustaining structures in the given computational domain (S550 and S950 simulations
in table 1). By doing so, all the structures smaller than the large-scale structures are
removed, while their roles are modelled with the artificially elevated eddy viscosity. It
is very important to note that the removal with an appropriate increase of Cs does
not significantly distort the statistics and the self-sustaining dynamics of the large-
scale structures themselves, as extensively discussed in the previous studies (Hwang &
Cossu 2010b; Hwang 2015; Rawat et al. 2015; Hwang & Bengana 2016). Therefore, the
computed invariant solutions at the artificially elevated Cs would conceptually represent
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the structures in the ‘presence of the surrounding small scales’, which is modelled by the
eddy viscosity, while enabling us to compute the invariant solutions with the relatively
low resolutions at high Reynolds numbers considered. The invariant solutions of the
system with the elevated Cs are sought in the subspace satisfying the so-called shift-
reflect symmetry

[u, v, w, p](x, y, z) = [u, v,−w, p](x− Lx/2, y,−z), (3.1)

where p is the pressure, together with the mirror symmetry about y = 0. It should
be mentioned that this specific symmetry is intentionally posed to find the invariant
solutions containing the ‘sinuous’ mode of streak instability (i.e. streak meandering
motions along the streamwise direction). The sinuous mode of streak instability has been
consistently found as the dominant mechanism of the streak breakdown in our previous
theoretical analysis (Park et al. 2011) as well as the minimal channel simulation for the
outer structures (Hwang & Bengana 2016). Indeed, in this study, we have also found that
imposing the symmetry (3.1) in the present half-channel simulation with the increased
Cs (S550 and S950) does not engender any significant difference from the simulation
without this symmetry (see figure 4). It is worth mentioning that Waleffe (2001) also
imposed this symmetry for computation of his invariant solutions for the same reason.

To compute the invariant solutions, we have implemented a Newton-Krylov-Hookstep
method and applied it to the present LES solver. Details of the method are given in
Willis et al. (2013), which is similar to that proposed by Viswanath (2007). This method
computes an invariant solution by minimising the relative error between an initial guess
for an initial flow field and the same field time-stepped an interval T and shifted in
the streamwise direction a distance −lx. For an equilibrium state the choice of T is
arbitrary, and the phase speed of the equilibrium is c = lx/T . Throughout this study,
the computation of the invariant solutions is carried out with T = 16.7h/Um. All the
solutions are computed to a relative-error tolerance of 10−7 − 10−8 between the initial
and shifted end state. Since some of the invariant solutions are expected to sit on the
so-called ‘edge’ state, which refers to the phase-space boundary manifold between the
basic and the chaotic state (e.g. Skufca et al. 2006), we start by computing the edge state
for the S550 simulation in the given subspace, using the standard bisection technique
to obtain a good initial guess for the Newton iteration (e.g. Duguet et al. 2008; Avila
et al. 2013). Several instantaneous flow fields on the edge state are given for initial guess
of the Newton solver, and we found an invariant solution propagating downstream with
a constant speed (i.e. a travelling wave) from S550. Numerical continuation in Cs is
subsequently performed, as in Rawat (2014) and Rawat et al. (2015).

Figure 2(a) shows the bifurcation of the invariant solutions with Cs by plotting Reτ
of each of the solutions. Here, we note that Reτ in this case is given as a measure of
the friction of each solution, revealing their relevance to high-Reynolds-number flows:
i.e. Reτ = 2uτ/UmRem. Therefore, Reτ given here is different for each invariant solution
and represents their friction. Continuation reveals that the invariant solutions experience
a saddle-node bifurcation as Cs is gradually lowered from a large value. Two invariant
solutions are found to emerge at the critical Cs(≃ 0.335), as often observed in transitional
Reynolds numbers: one has a low drag (lower-branch solution) and the other has a
high drag (upper-branch solution). The solutions obtained at Rem = 20133 are further
continued to a higher Reynolds number, Rem = 38133. Essentially, the same behaviour
with Cs is obtained at this Reynolds number, shown in figure 2(b).
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Figure 2. Bifurcation of invariant solutions with Cs: (a) Rem = 20133; (b) Rem = 38133. Here,
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Figure 3. Visualisation of the invariant solutions: (a) U950; (b) L950. In both (a) and (b), the
blue iso-surfaces indicate u+ = −2.96, and the green ones νt = 7.2ν. The red iso-surfaces in (a)
and (b) are Q+ = 3.6× 10−5 and Q+ = 2.0× 10−5, respectively.

3.2. Spatial structure of the invariant solutions

The computed invariant solutions are visualised in figure 3. Both of the upper-
and lower-branch solutions are characterized by a ‘wavy’ streak (blue iso-surfaces) and
streamwise vortices at its flank (red iso-surfaces), clearly reflecting their tight physical link
to the self-sustaining process of the outer coherent structures: i.e. the streak generation
via the lift-up effect with the vortices, and sinuous-mode streak instability with nonlinear
feeding of the vortices. The upper branch solution exhibits a strongly wavy streak and
intense streamwise vortices, while the lower branch solution is composed of a relatively
straight streak and weak streamwise vortices (see the levels of the red iso-surfaces in figure
3). This feature is consistent with that of the invariant solutions in e.g. Waleffe (2001).
The invariant solutions here, however, are obtained by modelling the surrounding small-
scale structures with an eddy viscosity. The eddy viscosity is typically found to be quite
strong around the streak where high local shear is expected (the green iso-surfaces in
figure 3), as also found by Rawat et al. (2015, 2016). However, here the related turbulent
dissipation is found to dominate over the kinematic viscosity due to the high Reynolds
numbers considered — the maximum eddy viscosities of the upper- and the lower-branch
solutions are respectively found as νt = 8.48ν and νt = 7.6ν, the values being an order of
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Case Rem Reτ Uc/Um c/Um c/Uc c+ Cs

U550 20133 597 1.29 0.86 0.66 14.5 0.20
U950 38133 1229 1.29 0.86 0.67 13.4 0.30

L550 20133 420 1.34 0.84 0.63 20.2 0.20
L950 38133 878 1.32 0.82 0.62 18.0 0.30

Table 2. Scaling of the speed of the invariant solutions. Here, c and Uc are the propagating
speed and the centreline velocity of each of the traveling wave solution, respectively. In the first
column, the U and the L respectively indicate the upper- and lower-branch solutions.

magnitude larger than those in Rawat et al. (2015, 2016). This follows from the higher
values of Cs and, in particular, the much higher Reynolds numbers considered here.

Table 2 summarises the propagating speed of the computed invariant solutions with
their friction velocity and centreline velocity at Rem = 20133 and Rem = 38133. The
propagating speeds of the upper- and the lower-branch solutions are respectively found to
be c ≃ 0.66Uc and c ≃ 0.62Uc, and they scale more closely with their centreline velocity
Uc than with their friction velocity uτ . Although the centreline velocity Uc of each of the
invariant solutions is not the same as that from full turbulent statistics given in figure 1,
this finding supports the observation by del Álamo & Jiménez (2009); Song et al. (2016),
who showed that the advection velocity of the outer structures scales with the centreline
velocity. This behaviour is quite intriguing, because the single turn-over time scale of
self-sustaining process of outer coherent structures has been found to scale well with the
friction velocity uτ (Hwang & Bengana 2016). It is currently too early to make any firm
conclusion, but this indicates that the propagation velocity scale of an outer structure
might not be the same as the turn-over time scale of the self-sustaining process.

The first- and second-order statistics of the two computed invariant solutions are
compared with those of simulation S950 in figure 4. Here, the data of S950 with the shift-
reflect symmetry (3.1) are plotted together. The good agreement between the statistics
of simulations S950 and S950 with (3.1) suggests that the present minimal unit for the
large-scale structures in the shift-reflect subspace does not greatly limit in the generation
of good statistics. The statistics of the upper-branch solution U950 is found to show
reasonably good agreement with that of S950 roughly below y ≃ 0.4 ∼ 0.5h, despite the
fact that the solution itself is a relative equilibrium, not able to fully describe the chaotic,
quasi-periodic dynamics of simulation S950 (i.e. bursting Flores & Jiménez 2010; Hwang
& Bengana 2016). We also note that the difference in statistics between an upper-branch
solution and full simulation is expected. This level of difference also appears in other
works that make the analogous comparison at low Reynolds numbers (e.g. Kerswell &
Tutty 2007; Schneider et al. 2007; Park & Graham 2016). As these authors indicate, this
observation suggests that computation of unstable time periodic orbits would be a more
promising way to represent the dynamics of coherent structures in the S950 simulation
(Kawahara & Kida 2001; Gibson et al. 2008; Willis et al. 2013). Also as expected, the
statistics of the lower-branch solution L950 do not show such a level of agreement — the
lower-branch solution sits on the edge state of S950 simulation. These results indicate
that only the upper-branch solution is statistically similar to S950 simulation.

Finally, the invariant solutions and the solution trajectories of S950 and the symmetry-
constrained S950 simulations are projected onto the Estreak-Evor and the I-D planes,
reported in figure 5. Here, Estreak and Evor respectively represent energy of the streak
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and of the streamwise vortices, and are defined by Estreak = 1/(2V )
∫
V
(u′/Um)2 dV and

Evor = 1/(2V )
∫
V
(v/Um)2+(w/Um)2dy, where u′ is the streamwise velocity fluctuation.

The I and D are respectively energy input and dissipation of the system, defined by I =
−1/V

∫
V
u ·∇p dV and D = −1/V

∫
V
u · (∇· ((νT /2)(∇u+∇uT )) dV with u = (u, v, w)

and νT = ν + νt. We note that if E ≡ 1/2V
∫
V u · u dV , then dE/dt = I − D. In the

Estreak-Evor plane (figure 5a), solution trajectories for both of S950 and the symmetry-
constrained S950 simulation reveal that their Estreak and Evor are found to be slightly
negatively correlated, indicating the presence of the self-sustaining process given by the
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interaction between the streak and the streamwise vortices. The solution trajectories of
these simulations are maintained roughly around 20Il and 20Dl in the I-D plane (figure
5b), the values an order of magnitude larger than those at low Reynolds numbers (e.g.
Kawahara & Kida 2001; Gibson et al. 2008; Willis et al. 2013, 2016). This is essentially
due to the high Reynolds number considered in the present study, which leads to the
energy input to the system, substantially larger than that at low Reynolds numbers.
This indicates that the role of the eddy viscosity introduced here differs from that of
the molecular one, as it enables us to maintain the large energy input to the system
occurring in a high-Reynolds-number flow unlike the molecular viscosity. In both of the
Estreak-Evor and the I-D planes, the upper-branch solution U950 is found to be placed
in the middle of the turbulent trajectories of S950 and the symmetry-constrained S950
simulations. The lower-branch solution L950 is almost completely separated from the
trajectories, consistent with the observation on the first- and the second-order statistics
made with figure 4.

3.3. Bifurcation with the Reynolds number

Finally, to understand the connection between the invariant states of the Navier-Stokes
equation at transitional Reynolds number and those of this study at fairly high Reynolds
numbers, numerical continuation is further performed by gradually lowering the Reynolds
number using the computed invariant solutions with high resolution at Reτ ≃ 950 (i.e.
U950 and L950). Figure 6 reports bifurcation of the invariant solutions with the Reynolds
number. The solutions for Cs = 0.30 reveal a saddle-node bifurcation at a fairly low
critical Reynolds number around Rem,c ≃ 1693 ∼ 1707, (Reτ,c ≃ 71). The Smagorinsky
constant Cs is subsequently lowered around this low Rem, such that invariant solutions of
the Navier-Stokes equation are retrieved. The exact solutions, directly linked to the large-
scale structures in the minimal unit, are found to emerge approximately at Rem,c ≃ 1120
(Reτ,c ≃ 52) via saddle-node bifurcation. We note that this Rem,c is much lower than
Rem,c ≃ 1867 (Reτ,c ≃ 68.2) of the invariant solutions found by Park & Graham (2016)
with a similar box size, due to the different symmetry imposed in the present study (their
solution P4 with Lx × Lz = πh× π/2h).
The exact solutions of the Navier–Stokes equations (Cs = 0.0) are finally continued by

increasing the Reynolds number. While the upper branch solution could not be continued
for Rem & 2223, the lower branch solution is obtained up to Rem = 8889. Interestingly,
the lower-branch solution of the Navier-Stokes equation is found to generate smaller
skin friction than those with the elevated eddy viscosity (Cs = 0.30) on increasing
the Reynolds number. However, it should be noted that the eddy viscosity used here
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is designed to model all the surrounding smaller-scale structures, including the near-
wall motions generating an appreciable amount of turbulent skin friction. The difference
between the solutions with Cs = 0.0 and Cs = 0.30 probably originates from this nature
of the eddy viscosity.

4. Concluding remarks

Invariant solutions corresponding to large-scale turbulent motions at high Reynolds
numbers have been obtained following the approach of Rawat (2014) and Rawat et al.

(2015, 2016), where surrounding small-scale structures are modelled with an eddy viscos-
ity (i.e. Smagorinsky model with the artificially elevated Cs as a continuation parameter).
Here, we show that these solutions, and in particular the upper branch solution, can be
obtained at much higher Reynolds numbers (up to Reτ ≃ 1000), a different regime where
the large-scale structures in the form of long streaks (VLSMs) and quasi-streamwise
vortical structures (LSMs) emerge energetically in turbulent channel flow. This finding
suggests that the large-scale structures are probably organised around these invariant
solutions, providing direct evidence of their significance at sufficiently high Reynolds
numbers. This finding also tightly establishes their relation to the self-sustaining process
of the large-scale structures (Hwang & Cossu 2010b; Rawat et al. 2015; Hwang & Bengana
2016), while implying that the dynamical systems approach, plus visualization of the
relevant phase space, could be used to enlighten at least some aspects of the given
coherent structures at fairly high Reynolds numbers. However, the invariant solutions
found here do not fully represent the dynamics occurring in real flows (i.e. bursting,
Flores & Jiménez 2010; Hwang & Bengana 2016). In this respect, extending the present
approach to computation of the relative periodic orbits would be a fruitful path to follow
towards more accurate modelling of the large-scale dynamics (Kawahara & Kida 2001;
Willis et al. 2013, 2016). Finally, it should be mentioned that the self-sustaining energy-
containing motions in wall-bounded turbulent flows at high Reynolds numbers appear in a
self-similar form throughout the entire logarithmic region (Hwang & Cossu 2011; Hwang
2015), as originally hypothesized by Townsend (1976) (i.e. attached eddy hypothesis).
Each of the energy-containing motions is typically characterized by its spanwise length
scale (Hwang & Cossu 2011; Hwang 2015; Hwang & Bengana 2016), suggesting that
the invariant solutions with different spanwise length scales may be linked to these self-
similar motions. This also implies that a thorough investigation of the invariant solutions
with different sets of the length scales needs to be carried out in order to clarify the
relation between the ‘real’ and ‘exact’ coherent structures using a numerical experiment
given in the present study. Exploring such a link between the invariant solutions and the
concept of the attached eddies might unveil the nature of the self-sustaining coherent
structures. This would be an important step towards a consistent theoretical description
of wall-bounded shear flows in a wide range of Reynolds numbers, as the attached
eddy hypothesis has provided an important theoretical basis for a consistent statistical
description of high-Reynolds-number wall turbulence (e.g. Townsend 1976; Perry &
Chong 1982).
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