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Abstract. Ion-mediated enhancement of the hydraulic conductivity of xylem tissue (i.e. the ionic effect) has been re-
ported for various angiosperm species. One explanation of the ionic effect is that it is caused by the swelling and shrink-
ing of intervessel pit membranes due to the presence of pectins and/or other cell-wall matrix polymers such as hetero-
xylans or arabinogalactan–proteins (AGPs) that may contain acidic sugars. Here, we examined the ionic effect for six
Acer species and their pit membrane chemistry using immunocytochemistry, including antibodies against glycopro-
teins. Moreover, anatomical features related to the bordered pit morphology and vessel dimensions were investigated
using light and electron microscopy. The ionic effect varied from 18 % (6 9) to 32 % (6 13). Epitopes of homogalactur-
onan (LM18) and xylan (LM11) were not detected in intervessel pit membranes. Negative results were also obtained for
glycoproteins (extensin: LM1, JIM20; AGP glycan: LM2), although AGP (JIM13)-related epitopes were detected in paren-
chyma cells. The mean vessel length was significantly correlated with the magnitude of the ionic effect, unlike other pit
or vessel-related characteristics. Our results suggest that intervessel pit membranes of Acer are unlikely to contain pec-
tic or other acidic polysaccharides. Therefore, alternative explanations should be tested to clarify the ionic effect.

Keywords: Acer; glycoproteins; hydraulic conductivity; immunocytochemistry; ionic effect; pectic polysacchar-
ides; pit membrane; vessel.

Introduction

According to the cohesion–tension theory, long-distance
water transport in plants occurs through the xylem tis-
sue in a passive way (Askenasy 1895; Dixon and Joly
1895; Jansen & Schenk 2015). The driving force for water
uptake is set by the transpiration rate in leaves and is
under stomatal control (Damour et al. 2010). In angio-
sperm xylem, individual vessel elements dissolve their

primary and secondary cell wall partially to form perfo-
rated, multicellular vessels that are specialised for water
transport. However, these stacks of vessel elements are
of finite length, which means that no individual vessel
provides a direct connection from the roots to the can-
opy of a tree. Instead, water is transported through an
interconnected network of vessels, which is enabled by
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thousands of bordered pits between neighbouring vessel
walls (Choat et al. 2008).

The micromorphology of bordered pits between adja-
cent vessel walls and especially the intervessel pit mem-
brane is assumed to play a key role in drought-induced
embolism formation (Lens et al. 2011; Scholz et al. 2013a;
Schenk et al. 2015) and regulating hydraulic resistance
(Sperry et al. 2005; Wheeler et al. 2005; Choat et al. 2006).
Several studies reported that xylem hydraulic conduct-
ance may depend on the pH, the ionic strength, and ionic
identity of the perfused solvents (Zimmermann 1978; van
Ieperen 2007; Nardini et al. 2012). Our mechanistic under-
standing of this so-called ‘ionic effect’, however, remains
limited. Frequently cited explanations for the ionic effect
include the hydrogel hypothesis (Zwieniecki et al. 2001)
and the electroviscocity hypothesis (van Doorn et al.
2011; Santiago et al. 2013), which both rely on chemical
and physical properties of intervessel pit membranes.

According to the hydrogel hypothesis, the resistance
of the water molecules through the porous network of
pit membrane microfibrils is affected by a potential
swelling or shrinking of pectins, which are a highly het-
erogeneous class of acidic polysaccharides (Bonner
1946; Caffall and Mohnen 2009; Kastner et al. 2012). The
backbone of pectins is a linear chain of (1-4)-linked a-D-
galactosyluronic residues (homogalacturonan, HG),
which can be modified in various ways, most notably by
methylesterification to generate acidic residues.
Unesterified galactosyluronic residues of pectic HG can
interact with cations in the xylem sap and have been
suggested to result in a swelling or shrinking of pectins
(Kastner et al. 2012; Ngouémazong et al. 2012). Pectic
HG with higher degrees of methylesterification can also
form gels at low pH in the presence of saccharides such
as sucrose through mechanisms involving hydrophobic
interactions and hydrogen bonds (Kastner et al. 2012).
Other modifications of HG in addition to methyl-
esterification, include acetylation of individual mono-
mers, or substitution by xylosyl residues. Introduction of
rhamnose to the galacturonic acid-rich backbone can
lead to branching with neutral residues (Caffall and
Mohnen 2009). If pectins were an integral component of
the pit membrane, then its swelling could increase hy-
draulic resistance by reducing the diameter of the nano-
scale pores between the cellulose microfibrils of the pit
membrane (Zwieniecki et al. 2001).

Previous studies suggest that pectins disappear during
the final stages of vessel development by hydrolytic en-
zymes that remove the non-cellulosic components
(O’Brien 1970; Kim and Daniel 2012; Kim and Daniel
2013; Herbette et al. 2015). Although about 20 different
antibodies have already been applied on bordered pit
membranes (Table 1), immunocytochemistry techniques

are limited to few species only, especially Populus and
Vitis vinifera. Most studies show that pectic polysacchar-
ides are absent in the actual, fully developed pit mem-
brane, but present in the outermost rim of the pit
membrane (i.e. the annulus) and in immature pit mem-
branes of developing vessel elements (Table 1; Wydra
and Beri 2007; Plavcov�a and Hacke 2011; Kim and Daniel
2013; Herbette et al. 2015). An exception to this is the re-
port of pectins based on JIM7 in juvenile shoots of Vitis
vinifera (Sun et al. 2011). Moreover, the ionic effect did
not decrease in transgenic plants of Nicotiana tabacum
(PG7 and PG16) with reduced HG content in comparison
with wild-type plants with assumingly higher pectin lev-
els (Nardini et al. 2007a). If pectin is lacking in intervessel
pit membranes, it is possible that other acidic cell-wall
matrix polysaccharides/proteoglycans, such as heteroxy-
lans or AGPs, could show a similar swelling and shrinking
behaviour as pectins (Li and Pan 2010), although there is
also little evidence for their distribution in intervessel pit
membranes (Table 1; van Doorn et al. 2011). Xyloglucan
(LM15) and mannan (LM21) epitopes were found to be
absent in mature bordered pit membranes of hybrid pop-
lar and hybrid aspen (Kim and Daniel 2013; Herbette
et al. 2015), while xyloglucan was found in intervessel pit
membranes of juvenile grapevine stems and European
aspen (Sun et al. 2011; Kim and Daniel 2013).

This paper aims to further test the hydrogel hypothesis
by investigating the ionic effect and the chemical com-
position of pit membranes in six closely related Acer spe-
cies. Because most of the earlier evidence indicates that
HG-related pectic epitopes (JIM5, JIM7, LM7, LM 19 and
LM20) and rhamnogalacturonan (RG)-I-related pectic
epitopes (LM5 and LM6) could not be detected in inter-
vessel pit membranes (Table 1), we limited our selection
of HG-related antibodies to LM18, which has not been
applied to pit membranes as far as we know, while LM11
was chosen as a heteroxylan antibody, and four antibod-
ies (LM1, LM2, JIM13 and JIM20) were selected to test for
the presence of glycoproteins, including extensin and
AGP glycans. Glycoproteins have not been reported in the
actual membrane of bordered pits (Wydra and Beri 2007;
Herbette et al. 2015), although proteins and AGPs occur
in xylem sap and may accumulate in pit membranes of
vessel elements and tracheids (Iwai et al. 2003; Buhtz
et al. 2004). Whether or not (glyco)proteins play a role in
the ionic effect is unknown (Neumann et al. 2010).

In addition, we investigated anatomical features
related to pit and vessel dimensions to better under-
stand structural characters associated with the ionic ef-
fect. Earlier work suggests that the amount of intervessel
pit membrane area per vessel is associated with the
magnitude of the ionic effect, both across taxonomically
unrelated species and four related species of Acer
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(Jansen et al. 2011; Nardini et al. 2012). Therefore, we ex-
pect that two scenarios could explain the magnitude of
the ionic effect in six Acer species: (1) the chemical iden-
tity and/or the anatomy of intervessel pit membranes, or
(2) none of these two, which means that alternative ex-
planations would be required.

Methods

Plant material

We collected 1- to 3-year-old branches from five Acer
species (Acer campestre, A. monspessulanum, A. palma-
tum, A. sieboldianum and A. tataricum) from single trees
at the botanic garden of Ulm University during April and
August 2012. Between April and August 2012, we also
collected branches from eight trees of A. pseudoplatanus
at the same location. Sample collection for all species
took place between 8 and 9 am to avoid severe water
stress levels and high levels of native embolism.
Although minor changes in the effect of seasonality can-
not be completely excluded, differences in the ionic ef-
fect between April and September were found to be
insignificant (Gasc�o et al. 2007). Moreover, pit membrane
chemistry has been reported to differ between the grow-
ing and the non-growing season (Wheeler 1981;
Pesacreta et al. 2005), but is unknown to show consider-
able differences between spring and summer. All trees
sampled were older than ten years. Collected branches
were cut in the field and transported to the lab in a plas-
tic bag with wet tissue within ten minutes. For all experi-
ments, branches were recut under water prior to
measurements. For the anatomical measurements and
immunolocalisation, we focused on the last (i.e. current
year) growth ring.

Vessel length measurements

We used the silicone injection method to assess the ves-
sel length distribution (Sperry et al. 2005; Scholz et al.
2013b). Five branches per species were collected and
trimmed to a length of 30 cm. The branches had a min-
imum diameter of 8 mm. Stem segments were perfused
at 0.175 MPa with commercial bottled water (Auvergne
Regional Park, France) at room temperature for 30 min, or
until no air bubbles could be seen at the open end. We
used a two-component silicone system (Rhordosil ESA
7250 A and ESA 7250 B, Bodo Müller GmbH). Both sub-
stances were mixed in an 11:1 ratio (A to B). The colour-
less silicone was stained by adding 1 % (w/v) Uvitex (Ciba
UK plc, Bradford, UK) dissolved in chloroform. The silicon
mixture was degassed for 20 min, or until no gas bubbles
emerged. Silicon was injected in the stem segment with a
Modell 100 pressure chamber instrument (PMS, Oregon,
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USA). Small amounts of the silicon mixture were poured
in glass vials. The distal end of braches were submerged
in the silicon mixture and transferred to a pressure cham-
ber, which was then pressurized to 0.2 MPa for 2 h. The
silicon was allowed to polymerize for 2 h at room tem-
perature and transverse sections were made with a slid-
ing microtome (GLS, Birmensdorf, Switzerland). Vessel
length distribution was assessed by investigating these
sections, starting at the proximal end. The first positive
silicone observation in a vessel was considered to repre-
sent the maximum vessel length. We used the maximum
vessel length to calculate four additional distances to es-
timate the vessel length distribution, with 6 mm as the
minimal distance (Sperry et al. 2005).

Hydraulic measurements of branch segments

Commercial bottled water (Auvergne Regional Park,
France) was used as a reference solution for our hydraulic
measurements to avoid artefacts caused by low salt con-
centration (Sperry et al. 2005; van Ieperen 2007).
According to data from the supplier, this reference solu-
tion included 0.504 mM Naþ, 0.286 mM Caþ2, 0.07 mM
Mg2þ, 0.158 mM Kþ, 0.084 mM SO2

4
� and 1.58 mM HCO3

�,
while the pH was 7. Samples were perfused with this solu-
tion at 0.2 MPa for at least 30 min, or until no air bubbles
emerged from the open end. This flushing was required to
refill embolised conduits. As the magnitude of the ionic
effect is influenced by the percentage of intact conduits
in stem samples (Gasc�o et al. 2006), the stem-specific hy-
draulic conductivity (Ks, kg s�1 m�1 MPa�1) was meas-
ured on stem segments that corresponded to 80 % of the
average vessel length (ranging from 2.27 to 4.81 cm),
which means that most vessels were closed and had no
open vessel ends in the sample. This approach allowed us
to make a direct comparison across the six Acer species,
because this method takes into account the distribution
of the vessel length classes (Gasc�o et al. 2006). We per-
fused the samples with a pressure of 0.007 MPa in a
Sperry apparatus (Sperry et al. 1988). The flowrate of
water was monitored each 5 s with an Sartorius CPA 225D
balance. If the flow rate showed less than 5 % variation
over 30 s, the flow was considered to be stable and the
hydraulic conductanctivity was measured over 1 min. In
most cases, stable flow rates were obtained after 15 min.
We tested the ionic effect by comparing stem-specific
conductivity (KS) with the reference solution and a high-
salt solution, which consisted of commercial water with
an additional 25 mM KCl, and calculated the ionic effect
(%) as the increase in conductivity. The xylem surface
area was measured after the hydraulic measurements
were completed. Callipers were used to measure the
xylem diameter, which allowed us to calculate the xylem

surface area. The pith area could be neglected because of
its small area in our stem segments.

Immunolocalisation of cell-wall components

Fluorescence microscopy was applied using a set of six rat
monoclonal antibodies: LM18 (pectic HG; Verhertbruggen
et al. 2009), LM11 (heteroxylan; McCartney et al. 2005),
LM2 (AGP glycan; Smallwood et al. 1996; Yates et al.
1996), JIM13 (AGP glycan; Knox et al. 1991), JIM20 (exten-
sin; Smallwood et al. 1994; Knox et al. 1995) and LM1
(extensin, Smallwood et al. 1995). As far as we know, this
is the first study applying the antibodies LM1, LM18, JIM20
and JIM13 to intervessel pit membranes. Possible masking
effects restricting access to cell-wall components (e.g.
Marcus et al. 2008) were not considered in this study.

Slivers of wood from the current growth ring were fix-
ated overnight in a solution with 4 % paraformaldehyde,
0.1 mM phosphate buffer and 1 % sucrose at pH 7.3.
Samples were embedded in LR-Gold resin following the
instructions of the manufacturer. We tested cell-wall epi-
tope distribution by fluorescence microscopy. Semi-thin
sections (0.5 mm) were mounted on an object slide and
incubated for 30 min in 5 % (w/v) milk protein in
phosphate-buffered saline (PBS). A 5-fold dilution of the
primary antibody in milk/PBS replaced the blocking milk.
After an hour, we washed the sample three times with
PBS. The secondary antibody goat anti-rat-IgG conjugate
with fluorescein isothiocyanate (FITC) was diluted 100-
fold and incubated in darkness for 1 h in milk/PBS.
Unbound antibody was removed by washing samples
three times with PBS for 5 min. The sections were heat-
fixed to glass slides without a mounting medium. We
included controls to test non-specific binding of the sec-
ondary antibody. Additionally, we tested the sample for
auto-fluorescence, which was quenched by staining with
toluidine blue. Samples showing no auto-fluorescence
were treated with calcofluor white to enhance the con-
trast of cell walls.

Wood anatomy

Wood anatomical features related to the dimensions
and quantity of pits and vessels were measured follow-
ing standard protocols (Scholz et al. 2013b;). Transverse
sections with a thickness of ca. 25 mm were prepared
with a sliding microtome (GLS, Birmensdorf, Switzerland).
Staining of the sections was performed with a 1 % (w/v)
safranin solution in 50 % ethanol and a 1 % (w/v) alcian
blue solution in demineralised water. After staining, the
samples were dehydrated in an ethanol series (50 %, 70
% and 96 %), treated with Neo-clear clearing agent
(Merck Millipore, Germany), and embedded in Neo-
mount (Merck Millipore, Germany). The embedding
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medium was polymerized in an oven at 60 �C overnight.
Photographs of the latest growth rings were taken with a
Leica DM RBE microscope system (Leica Micosystems,
Wetzlar, Germany).

Electron microscopy, including scanning electron mi-
croscopy (SEM) and transmission electron microscopy
(TEM), was applied to investigate ultra-structural details
of pits and cell walls. Tangential sections of about 1 cm2

and a maximum thickness of 3 mm were oven dried
overnight and mounted on SEM stubs using carbon ce-
ment. The stubs were sputtered with a thin layer of gold
using a Balzers Union sputter coater (Lichtenstein,
Lichtenstein). SEM pictures were obtained with a Zeiss
DSM 942 SEM-system (Jena, Germany).

For TEM observations of the pit membrane thickness
(TPM) and vessel wall thickness (TVW), slivers from short
branch segments (5 mm) were transferred to Karnovsk�ys
fixative at room temperature. After washing with 0.1 M
phosphate buffer, samples were postfixed in 1 % buf-
fered osmium tetroxide (OsO4) for 4 h at 5 �C. The OsO4

was removed by washing with phosphate buffer and a
graded ethanol series (30 %, 50 %, 60 %, 70 %, 90 % and
96 % ethanol) was applied to dehydrate the samples.
The ethanol was then gradually replaced with EponTM

resin over several days. The samples were cut with an
ultramicrotome (Ultracut, Reichert-Jung, Austria) to ob-
tain transverse, semi-thin sections of 500 nm. Ultrathin
sections were observed with a Jeol JEM-1400 TEM
(München, Germany).

Statistical analysis

Anatomical characters and hydraulic measurements
(Ks and ionic effect) were expressed by average
values (6 standard deviation) based on at least five
measurements per species. The correlation between a

xylem feature anatomical and the ionic effect was tested

by calculating a Pearson correlation coefficient with

P¼0.05 as a threshold value. The IBM SPSS Statistics ver-

sion 20 (2011, SPSS Inc., Chicago, IL, USA) was used for

the analyses.

Results

Hydraulic measurements of branch segments

The stem specific hydraulic conductivity (Ks) using the

reference solution varied from 0.269 (6 0.018) kg s�1

m�1 MPa�1 (mean 6 SD) in A. monspessulanum to 0.367

(6 0.024) kg s�1 m�1 MPa�1 in A. sieboldianum. All spe-

cies showed a significant increase in KS when perfusing

the samples with the 25 mM KCl solution (see

[Supporting Information —Table S1] and Fig. 1). The

ionic effect measured was on average 24.7 % (6 12.4)

and ranged from 18.0 % (6 9.7) in A. palmatum to 32.4

% (6 13.1) in A. tataricum (Fig. 1).

Immunolocalisation of cell wall polysaccharides

Results from the immunolocalisation are summarized in

Table 2. The controls included for non-specific binding of

the secondary antibody were negative for all species

studied. No positive staining could be detected for LM1

(extensin), LM2 (AGP glycan), JIM20 (extensin) and LM18

(HG; Fig. 2). From the six antibodies tested, LM11 (xylan,

Fig. 3) and JIM13 (AGP, Fig. 4) showed positive staining of

the xylem tissue. The antibody LM11 labelled each xylem

cell wall, indicating the ubiquitous but weak distribution

of xylan in their secondary cell walls.
The JIM13 (AGP glycan) epitope was present in ray

and axial parenchyma cells, but most pronounced in

vessel-associated parenchyma cells of all six Acer

Figure 1. Relation between mean vessel length (LV) and mean relative increase in hydraulic conductivity (“ionic effect”, in %) of the six Acer
species studied. Pearson correlation coefficient r¼0.84, P¼0.03).
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species. Its distribution was consistently observed near
the inner cell wall of vessel-associated parenchyma cells

(Fig. 4). The staining intensity varied between the species
studied (Table 3). In A. palmatum, the JIM13 epitope
was clearly seen in parenchyma cells (Fig. 4A–C), while

weaker signals were detected in A. sieboldianum
(Fig. 4D–F) and A. tataricum (Fig. 4G–I).

Anatomical observations

A survey of the anatomical characters of the xylem cells
is provided in Table 3. The mean vessel diameter (D) was
consistent for most species and around 25 mm, except

for A. pseudoplatanus, which showed a more variable
and wider diameter of 42 (6 11) mm. The latter species
also showed the lowest vessel density (VD) with 82 (613)
vessels per mm2, and the thickest intervessel walls (TVW),

which were 6.4 (6 1.1) mm. Acer campestre, A. monspes-
sulanum and A. palmatum showed vessel density values
(VD) around 120 vessels per mm2, while A. sieboldianum

and A. tataricum had more than 180 vessels per mm2.
Differences in the solitary vessel index (VS) ranged

from 0.82 for A. campestre, which means that 82 % of all
vessels counted were solitary, to 0.43 in A. pseudoplata-
nus. The vessel-grouping index (VG) ranged between 1.27

in A. tataricum and 1.84 in A. sieboldianum. The average
vessel length (LV) varied from 2.27 (6 0.13) cm in A. pal-
matum to 4.81(6 0.18) cm in A. tataricum, while LV was
around 3 cm for A. monspessulanum, A. pseudoplatanus

and A. sieboldianum.
Little variation was found for the intervessel pit-field

fraction (FPF), with values ranging from 0.65 (6 0.01) to
0.71 (6 0.02) in A. monspessulanum and A. tataricum, re-

spectively. The average surface area of a single interves-
sel pit membrane (APit) was between 21.23 (6 3.4) mm2

in A. tataricum and 34.18 (6 6.6) mm2 in A.

pseudoplatanus. The pit membrane thickness (TPM) varied

considerably, with relatively thin membranes of 146

(6 16) nm in A. tataricum to 235 (6 25) nm in A. pseudo-

platanus. The pit aperture area (APit AP) showed a con-

stant intraspecific variation (SD¼60.3 mm), except for A.

pseudoplatanus, which also had the largest pit aperture

area (APit ap) of 2.95 (6 0.93) mm2.
We found a strong correlation between the average

ionic effect and the mean vessel length LV (Pearson’s

r¼0.84, n¼6, P¼0.03). No other anatomical features

(D, DH, VD, VG, AP, APit, APit ap, FPF,TPM and FP) correlated

with the ionic effect values of the six Acer species.

Discussion

Testing the hydrogel hypothesis

One of the key findings of this paper is that none of the

epitopes for the six antibodies tested could be detected

in intervessel pit membranes of the six Acer species

studied. The lack of HG and RG-I-related epitopes in

intervessel pit membranes as based on LM18 and seven

additional antibodies tested in previous studies (Table 1;

Plavcov�a and Hacke 2011; Kim and Daniel 2012, 2013;

Herbette et al. 2015; but see Sun et al. 2011) suggest

that pectic polysaccharides appear to be absent in inter-

vessel pit membranes of fully developed vessels, and

that the hydrogel hypothesis does not fully explain the

ionic effect. Therefore, an alternative hypothesis is

required, which supports our scenario 2 as outlined in

the Introduction, but rejects scenario 1 (Nardini et al.

2007b, 2011; van Doorn et al. 2011; Santiago et al. 2013).

New functional explanations for the ionic effect could for

instance come from surfactants and surfactant-coated

nanobubbles in xylem sap, which may change in size de-

pending on the ionic concentration of xylem sap (Duval

et al. 2012; Jansen and Schenk 2015; Schenk et al. 2015).

A lack of pectins and removal of the non-cellulosic, non-

pectic components during vessel development was also

suggested based on traditional staining techniques

(O’Brien and Thimann 1967; O’Brien 1970). However, the

presence of pectins in vessel-parenchyma pit mem-

branes has been reported several times (Table 1;

Plavcov�a and Hacke 2011; Kim and Daniel 2012; Kim and

Daniel 2013; Herbette et al. 2015), indicating that pit

membrane chemistry also depends on the pit type.

While the occurrence of pectins in vessel–parenchyma

pit membranes could be associated with gel and tylosis

formation (Rioux et al. 1998; De Micco et al. 2016), these

pectins are unknown to have any effects on the ionic ef-

fect. We could not detect pectins in the half-bordered

vessel-parenchyma pits of Acer (via LM18).

......................................................................................................

Table 2. Immunolocalisation of six antibodies in secondary xylem
tissue of six acer species. “þþþ”¼ strong signal of the correspond-
ing epitope; “þ”¼ signal was detected, “6 “¼weak detection of
the epitope, and ‘�’¼no signal. A. cam ¼ A. campestre, A mon ¼ A.
monspessulanum; A. pla ¼ A. palmatum; A. pse ¼ A. pseudoplata-
nus; A. sie¼ A. sieboldianum; A. tar¼ A. tartaricum.

Species Control LM2 JIM13 LM1 JIM20 LM18 LM11

A. cam � � þ � � � þþþ

A. mon � � þ � � � þþþ

A. pla � � þþþ � � � þþþ

A. pse � � þ � � � þþþ

A. sie � � 6 � � � þþþ

A. tat � � þ � � � þþþ
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The presence of cellulose in fully developed intervessel

pit membranes was proven in functional assays and

based on histological observation with specific probes

for crystalline and non-crystalline cellulose (Dusotoit-

Coucaud et al. 2014; Herbette et al. 2015). Few studies,

however, have suggested that methyl-esterified pectins

remain present in mature intervessel pit membranes of

Acer pseudoplatanus, Dianthus caryophyllus, Populus

italica and Robinia pseudo-acacia, while acidic pectins

and vic-glycol side-groups are removed from pit

membranes during hydrolysis (Catesson et al. 1979;

Catesson 1983). The presence of acidic pectins has been

reported in torus-bearing pit membranes of Ulmus

(Czaninski 1979; Jansen et al. 2004). Based on the ruthe-

nium red staining and hydroxylamine-ferric chloride

staining techniques, the relative abundance of acidic ver-

sus methylesterified pectins was suggested to be closely

related to the ionic effect in four Lauraceae species

(Gortan et al. 2011). Light microscopic observation after

staining with ruthenium red also suggested that pectins

occur in the intervessel pit membranes of Umbellularia

californica (Nardini et al. 2011). However, these more

Figure 2. Selection of lack of epitope detection for the antibodies LM2 (AGP glycan, A and B), LM1 (extensin, C and D), JIM20 (extensin; E and
F) and LM18 (HG; G and H) applied to transverse wood sections. Species include A. tataricum (A–C, G and H) and A. sieboldianum (C and D, E
and F). Micrographs on the left (A, C, E and G) show the sections stained with calcofluor white, while fluorescence images are shown on the
right (B, D, F and H). V, vessel; *Ray parenchyma cells. Scale bar¼100 mm.
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Figure 3. Selection of immunohistological observations with the anti-xylan antibody (LM11) in A. monspessulanum (A) and A. palmatum (C).
Micrographs on the left (A and C) show the transverse wood sections stained with calcofluor white, the localisation of the antibody under
fluorescent light on the right (B and D). No positive staining can be seen in the vessels (¼V), ray parenchyma (¼ *), and intervessel walls
(arrows). Scale bar¼100 mm.

Figure 4. Selection of immunohistological observations with the anti-AGP antibody (JIM13) in A. palmatum (A and B), A. sieboldianum (C and
D) and A. tataricum (E and F). Micrographs on the left (A, C and E) show the transverse wood sections stained with calcofluor white, the fluor-
escence images are shown on the right (B, D and F). Positive signals (arrows) for AGP can be seen in axial parenchyma cells (¼*) associated
with vessels (¼V), ray parenchyma, but not in intervessel pit membranes (triangles) Scale bar¼100 mm.
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traditional staining techniques should be interpreted

with caution because the classical reaction of ruthenium

red with pectins is typical but not highly specific (Bonner

1946; Luft 1971).
Evidence for the lack of pectic polysaccharides in inter-

vessel pit membranes based on immunocytochemical

techniques appears to be consistent (Table 1). Application

of a commercial pectinase treatment to intervessel pit

membranes in Fagus sylvatica did not affect the pit mem-

brane ultrastructure in TEM, and was found to have no ef-

fect on embolism resistance, unlike cellulase-treated

material (Dusotoit-Coucaud et al. 2014). The observation

that hydrolysis of pectins induced a sharp increase in vul-

nerability to embolism, without any significant effect on

hydraulic conductance, could be caused by the occur-

rence of pectins in the pit membrane annulus (Plavcov�a

and Hacke 2011; Kim and Daniel 2013). However, methyl-

esterified HG and fucosylated xyloglucans (XyGs) were de-

tected in intervessel pit membranes of grapevine plants

based on the JIM7 and CCRC-M1 antibodies, respectively

(Sun et al. 2011). A potential explanation for this finding

of pectins in intervessel pit membranes could be that the

observations by Sun et al. (2011) are based on juvenile

xylem of young branches (<12 weeks old), which may in-

clude a high amount (ca. 35 %) of living, not fully differen-

tiated vessels (Jacobsen et al. 2015). The observation of

methylesterfied HG and XyGs in grapevine should, there-

fore, be tested in mature xylem tissue.
Heteroylans (LM11) appear to be abundantly distrib-

uted in the secondary cell wall of all xylem cells (Awano

et al. 2002). The presence of the JIM13 AGP epitope char-

acterises xylem parenchyma cells, including both ray and

axial parenchyma (Fig. 2), while LM2 targets a different

AGP epitope that appears to be absent. AGPs have also

been reported in meta- and protoxylem vessels of

Echinacea purpurea using antibodies against (b-D-Glc)3

Yariv phenylglycoside (Göllner et al. 2013). AGPs perform

various functions in plants: they are involved in growth,

programmed cell death, pattern formation, and interact

with growth regulators (Seifert and Roberts 2007). In

some parenchyma cells, we detected AGPs in the plasma

membrane based on the JIM13 epitope. The appearance

of AGPs in the plasma membrane is a logical consequence

of glycosylphosphatidylinositol (GPI) anchoring in the

......................................................................................................................................................................................................................

Table 3. Wood anatomical features of six Acer species. All numbers represent mean values 6SD. *¼no standard deviation is given for VG and
VS, which were measured on 100 individual vessels in two to three transverse wood sections. A. Cam, a. Campestre; a. Mon, a.
Monspessulanum; a. Pla, a. Platanatum; a. Pse, a. Pseudoplatanus; a. Sie, a. Sieboldianum; a. Tar, a. Tataricum. Character acronyms follow
[Supplementary Table 2].

Character (units) A. cam A. mon A. pla A. pse A. sie A. tat

AP (mm2) 0.60 6 0.24 0.36 6 0.12 0.37 6 0.12 0.61 6 0.24 0.63 6 0.18 0.73 6 0.2

APF 2.06 6 0.45 1.75 6 0.40 1.66 6 0.35 1.68 6 0.28 2.03 6 0.47 1.55 6 0.42

APit (mm2) 23.29 6 5.04 25.23 6 3.61 18.54 6 2.70 34.18 6 6.62 19.15 6 3.24 21.23 6 3.37

APit Ap (mm2) 1.99 6 0.37 1.34 6 0.35 1.24 6 0.32 2.95 6 0.93 1.62 6 0.34 0.97 6 0.27

AV (mm2) 3.10 6 0.83 2.01 6 0.53 1.97 6 0.52 2.84 6 0.81 2.84 6 0.72 3.40 6 0.77

D (mm) 23.39 6 5.68 21.07 6 5.39 27.65 6 6.45 41.9 6 11.16 29.86 6 7.44 22.48 6 5.03

DH (mm) 28.28 6 6.86 26.23 6 6.81 33.14 6 7.73 42.32 6 11.16 34.56 6 8.61 27.14 6 6.08

FC 0.28 6 0.05 0.28 6 0.05 0.29 6 0.04 0.31 6 0.08 0.32 6 0.04 0.30 6 0.05

FLC 0.18 6 0.03 0.32 6 0.03 0.37 6 0.06 0.57 6 0.08 0.42 6 0.02 0.20 6 0.01

FP 0.19 6 0.04 0.18 6 0.03 0.19 6 0.03 0.21 6 0.03 0.22 6 0.03 0.22 6 0.03

FPF 0.69 6 0.05 0.65 6 0.01 0.66 6 0.05 0.69 6 0.06 0.69 6 0.04 0.71 6 0.02

LC (cm) 0.60 6 0.07 0.94 6 0.06 0.77 6 0.09 1.63 6 0.17 1.28 6 0.06 0.96 6 0.04

LV (cm) 4.21 6 0.46 3.04 6 0.20 2.27 6 0.13 2.86 6 0.30 3.12 6 0.05 4.81 6 0.18

TPM (nm) 188 6 37 225 6 29 201 6 40 235 6 26 192 6 11 146 6 16

TVW (mm) 2.63 6 0.59 3.52 6 0.82 2.48 6 0.48 6.427 6 1.07 2.17 6 0.51 1.97 6 0.49

VD (mm2) 125 6 27 120 6 40 104 6 28 83 6 13 187 6 11 239 6 27

VG * 1.33 1.54 1.64 1.52 1.84 1.27

VS * 0.82 0.68 0.63 0.43 0.58 0.80
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plasma membrane. Although more evidence is required,
AGPs could be involved in the monitoring of the hydraulic
system, formation of tyloses, refilling of embolised con-
duits or other hydraulic processes.

To what extent do anatomical features account
for the ionic effect?

Surprisingly, we found a positive and significant correl-
ation between the mean vessel length and the ionic ef-
fect, but not with any other vessel and bordered pit
characteristics. This finding suggests that species with
longer vessels such as A. tataricum have a stronger ionic
effect than species with a shorter mean vessel length.
For Populus tremula, Tilia cordata and Acer platanoides, a
negative correlation between xylem conduit diameter
and ionic effect has been reported (Aasamaa and S~ober
2010). Considering that vessel diameter and length are
positively related (Hacke et al. 2006), these findings ap-
pear not to agree with our measurements. Hence, further
research based on a larger number of species and a wide
range of vessel lengths would be required to test the cor-
relation reported here.

The lack of other anatomical correlations appears to
contradict earlier work on four Acer species (Nardini et al.
2012), including three species that were also investi-
gated in this study (i.e. A. campestre, A. monspessulanum
and A. pseudoplatanus). A positive correlation was found
between the ionic effect and characters related to vessel
grouping and intervessel conectivity (Jansen et al. 2011;
Nardini et al. 2012). A correlation between the ionic ef-
fect of four Acer species and the intervessel contact frac-
tion (FC) was only supported at the interspecific level and
not significant at the intraspecific level (Nardini et al.
2012). A potential explanation for this discrepancy could
be that the six Acer species studied here show a rela-
tively narrow range of variation in the ionic effect (from
18 % in A. palmatum to 31 % in A. tataricum) compared
with the 2–32 % range across 20 species (Jansen et al.
2011). However, a similar narrow range from 15 % to 23
% was also reported by Nardini et al. (2012). Moreover,
the ionic effect of the four Acer species measured by
Nardini et al. (2012) were based on stem segments that
were ca. 10 cm long, while our measurements were
based on a stem segment length with at least 80 % of all
vessels intact (i.e. closed). Therefore, direct comparison
between this study and Nardini et al. (2012) cannot be
made.

Conclusions

This paper demonstrates the ionic effect for six, closely
related species within the genus Acer. Although this

phenomenon has various implications in the field of

plant water relations, the actual relevance in planta and

the potential relationships between the ionic effect and

plant traits have not been elucidated. Our results confirm

the absence of pectic polysaccharides in intervessel pit

membranes and the lack of a relation with several pit

anatomical traits, which reinforces the need for an alter-

native hypothesis besides the hydrogel hypothesis to

provide a full mechanistic explanation of the ionic effect.
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