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Abstract

This paper extends the framework ‘o&tional behavior adjustment procég®RBAP) to
incorporating theé‘boundedly rational user equilibrid{BRUE). The proportional-switch
adjustment process (PSAP) and the network tatonnement process (NTP) are extended to the
BRUE case, and tiredynamical equations are shown to be Lipschitz continuous, which
guarantees the global uniqueness of the classical solutions. A special group of the
BRUE-RBAP is proposed, for which the path flows would increase if the paths are in the
acceptable path set, and would decrease otherwise. Classical solutions to this special group
of models may not exist. Stability of the BRUE-RBAP with classical solutions is proved
with separable link travel cost functions. For non-separable link travel cost functions, the
stability of the BRUE-PSARs proved. Numerical examples are presented to demanstrat

the evolution processes of BRUE-PSAP and BRUE-NTP under various bounded rationality
thresholds and various initial states. The applicability of BRUE-PSAP in larger networks
with asymmetric link travel cost functions is also illustrated.

Keywords. dayto-day dynamics, rational behavior adjustment process, boundedly rational
user equilibrium, stability

1. Introduction

The term “bounded rationality” was proposed by Herbert A. Simon in the 1950s to take into
account therrationality on people’s decision-making procedure (Simon, 1955). Diffeten



from the classical assumption of utility maximization, a decision maker may pick up a
satisfactory choice rather than the utility-maximizing one due to cognition limitation,
incomplete information or other restraints (Conlisk, 1996; Gabaix et al., 2006). The concept
of bounded rationality was widely implemented and investigated in the transportation area.
For example, Chorus and Timmermans (20ffsidered travelers’ limited awareness and
developed the methodology for the ex-ante evaluation of user benefits associated with
transport system changésao et al. (2011) considered bounded rationality in a route choice
model with cognitive cost in real-time information acquisiti®zeto and Lo (2006) and

Han et al. (2015) adopted bounded rationality in the tolerance-based dynamic user
equilibrium; Zhao and Huang (2016) introduced the concept of aspiration level and
investigated the user equilibrium problem based.on

A prominent branch of the bounded rationality model is the indifference band model,
application of which in the transportation field could trace back to Mahmassani and Chang
(1987), who considered bounded rationality in a single bottleneck with departure time
choice. The indifference band approach was embedded in simulation frameworks to
investigate the transportation system performance with various real-time traffic information
strategies (Emmerink et al., 1995a, 1995b; Jayakrishnan et al., ¥@®nassani and
Jayakrishnan, 1991), as well as incorporating responsive signals (Hu and Mahmassani, 1997)
or simultaneous departure time and route choices (Mahamssani and Liu, 1999). Empirical
analysswere conducted in Di et al. (2016b) and Jou et al. (2005, 2010).

Among the indifference band models, the boundedly rational user equilibrium (BRUE) is an
extension of theclassical Wardrop’s user equilibrium (UE), allowing travelers to be
non-strict utility maximizers. Lou et al. (2010) for the first time examined the mathematical
properties of the BRUE traffic assignment problem in general networks. Definition and
link/path-based presentation of BRUE were provided, &R UE link/path flow patterns

were shown to be non-empty and non-convex, and congestion pricing under BRUE was
discussed. Following this study, Di et al. (2013, 2014, 2016a) presented a series of work
which respectively discussed the methodology for constructing the BRUE path flow set, the
Braess Paradox with regard BRUE, and the second best toll pricing under bounded
rationality. Recently, Di and Liu (2016) provided a comprehensive review on the

apfication of bounded rationality in modelling travelers’ route choice behaviors.

Although the behavioral assumption of bounded rationaityidely used in the simulation



and empirical studies of dynamic traffic networks, theoretical research on
bounded-rationality-based dé&y-day dynamics is limited so far. Guo and Liu (2011)
developed a BRUE-based dwyday framework to model the irreversible network change
and then applied to investigate the flow evolution during the collapse and reopening of the
[-35W Bridge in the Twin Cities network in Minnesota, without discussing the system
stability issues. Di et al. (2015) specialized the model in Guo and Liu (2011) anddoous

a parallel-link and single origin-destination (OD) network with separable and linear link
time functions. Stability of their special model was examined from the perspective of
switched systems. Wu et al. (2013) investigatedpthk flow evolution in urban railway
networksby treating passengers’ learning process on perceived travel costs as a boundedly

rational behavior.

This study is intended to malkecontribution to the modeling of BRUE-based deyday
dynamics, by introducing BRUE into the conceptual framework of rational behavior
adjustment process (RBAP). RBAP is a type of fixed-demandtadgy dynamics
summarized by Zhang et al. (2001) and Yang and Zhang (2009), which includes the
dayto-day models in Smith (1984), Friesz et al. (1994) and Nagurney and Zhang #$997)
its special cases. There are also ttaglay models that can be treated as the link-based
version of RBAP (Guo et al., 2013, 201%#an and Du, 2012; He et al., 201%mith and
Mounce, 2011) oasthe extension of RBAP under elastic demand (Guo et al., 2013,;2015a
Li et al., 2012; Sandholm, 2002, 2005). In this paper, we attempt to establish the
BRUE-basedRBAP (BRUE-RBAP) and investigaits properties.

The rest of this paper is organized as follows. Seon 2 proposes a variational inequality
formulation for the BRUE traffic assignment problem and extends the RBAP in Yang and
Zhang (2009) to the BRUE-RBAP. The proportional-switch adjustment @¢B&AP)

(Smith, 1984) and the network tatonnement process (NTP) (Friesz et al., 1994) are extended
to be BRUE-based and are shown to be of classical solutions. A special group of
BRUE-RBAP is proposed, which incorporates the model in Di et al. (200%.further

shown by an example that the classical solutions to the model in Di et al) @agsot

exist. SectioB% discusses the stability 9ftliie generaBRUE-RBAP with separable link

travel cost functions and)(the BRUE-PSAP with non-separable link travel cost functions

In SectiorBl, numerical examples based on the Braess network are presented to compare the
evolution processes of thBRUE-PSAP and theBRUE-NTP with respect to differén
bounded rationély thresholds and different initial states. A larger example based on the



Nguyen-Dupuis network further illustrates the applicability of BRUE-PSAP with
asymmetric link travel cost functions. Sect@ 5 draws the conclusions and provides
possible directions for futumesearch.

2. BRUE-RBAP: framework and models

Consider a general network with a sét of links and a seWW of OD pairs. Denote by,

the flow on link ae A and v=(v,,ae @T the link flow vector, where superscript “T”

stands for the transpose operation. Each link A is associated witla link travel cost

function c,(v), while each OD pairweW is associated with a fixed demarttj, and a

path setR,. Denote bym, the total number of paths ifR,, and m:ZWEWmN. Let

f., be the flow on pathreR,, weW, and f =(f,,.r eR,weW)" be the path flow

rw rw?

vector. Denote byc,, the travel cost on pathi € R,, which is equal to the sum of costs on
links constituting this path, and=(g,,,re RN,WEW)T the vector of path costs. The set

Q:{f ‘Zrem fw=0d, f,20r eRW,WeW} contains all feasible path flow patterns. The

definition of BRUE (Di et al., 2013; Guo and Liu, 2011) is given as follows.

Definition 1. Define p, =min . ¢, weW. A path flow patternf e Q is said to be a

boundedly rational user equilibrium (BRUE) path flow pattern if it holds that

f >0, ifc, <
{ "o SR TR R weW (1)

rw —
f.,=0, ifc,>un,+e,

where ¢, >0 is the bounded rationality threshold of travelers between OD p&diWV .

Before discussing the ddg-day dynamics, we introduce the following assumption on the
path cost functions and present some results on BRUE.

Assumption 1. The path cost functions,,,( f), reR,, weW, are non-negative, bounded



and continuously differentiable of2 . Thus c( f) is Lipschitz continuous, i.e., there exists
p; >0 such that

le(f)-c(g) <p.f f-dl, ¥F.geQ

where || represents the 2-norm (Euclidean norm).

Denoting ¢, = G, —H,—¢, and é=(§,,reR,,weW)", the BRUE condition (1) can be

rewritten as

0
" 0’ reR,, wewW (2

where [x], = max{x, . Referring to Smith (1979), any path flow pattefne Q satisfying
condition (2) must satisfy the following variational inequality (VI) condition (3), and vice
versa:

(f'=f)'[¢(f)] =0, V f'eQ (3)
Equation (3) provides the VI formulation for BRUE traffic assignment problems. It is worth
pointing out that, different from the classical VI form for traffic assignment (Dafermos, 1980),
the path-based VI (3) has no equivalent link-based form, @h(df)l is Lipschitz
continuous but neither differentiable nor pseudo-monotone. Furthermore, €inde
compact and convex, then the solution set to VI problem (3), i.e. the set of the BRUE path
flow patterns, denoted by, is nonempty and compact (Corollary 2.2.5, Facchinei and
Pang, 2003). Also, we have known th@f is usually nonconvex (Lou et al., 2010), andit i
connected under very special settings (with affine linear and strictly monotone link cost

functions, see Di et al., 2015). Howevés connectedness under general nonlinear and
non-separable link cost functions remains an open question

Regarding the date-day flow dynamics, denote byf (t) the path flow vector at calendar
time t.Let f(t)=df (t)/d and consider the path flow dynamics
f(t)=F(f(t)), t=0, f(0)=feQ 4
T : :
where F( f (t)):(F (f(t)),r € RN,WGW) , under which the nonnegative path flows and

rw

5



fixed demands are assumed to be guaranteed. Also, assume system (4) has classical solutions,

that is to say, for everyf, €Q, there exists a unique solutiofi(t) of (4) defined on

[0,0) satisfying f (0)= f,. The dayto-day dynamics with no classical solutions would be

illustratedin|Example 1 in Sectign 2.3.

Referring to the rational behavior adjustment process (RBAP) in Yang and Zhang (2009), we
define the BRUE-RBAP in|Definition 2. It is clear that RBAP is a special case of

BRUE-RBAP with ¢,=0 forall weW.

Definition 2. The flow dynamis (4) is BRUE-RBAP ifc(f)T f <0, with the equality

holdingif and only if f is a BRUE path flow pattern.

The abstract concept of BRUE-RBAIR |Definition 2 is né applicable until specific

dayto-day models are built based on this framework, and to do it the most direct way would
be extending existing models in the RBAP category into BRUE-RBAP.

2.1. PSAP under BRUE

Based on Guo (2013), the PSAP in Smith (1984) can be extended to BRUE-PSAP as follows,

I:rw( f): z ( fsw[csw_crw_gw]Jr - frw[Crw_ Csw_gw]+)' re RN’ weW (5)
seRy

The right hand side of Eq. (5) can always be multiplied by a positive scalar to form a more
general flow dynamics. Since adding this scaler would not affect the analysis in this paper, it
is omitted for simplicity.

The global existence and uniqueness of the soluti®RIOE-PSAP is assured by Theoreﬂn 1
shown below, and the following lemma is necessitated.

Lemma 1. Consider (-, xm)T e R™. The following relations hold:

max((x]. -~ x,f) < (3 ¢) <V mae ]+ ) ©)

Proof. The proof is obvious and thus omitted. O

6



Theorem 1. Function F(f) in Eq. (5) is Lipschitz continuous o€, therefore the

solutionto BRUE-P SAP is globally unigue.

Proof. First, by Eq. (6), we have
[F(f)-F(g)|<VmmaxmaxF,(f)-F,(9| ©

weW  reR,
Letting Ac,,=cC,,—C,,—¢€, and substituting Eq. (5) into Eq. (7), we have that, for each OD

pair weW,

I:rw( f)_ Frw(g)‘

< ZmN I;TE]F?.NX rs?% fSWI:ACer( f ):|+ -9 SWI:ACSW(Q):L

<2 f f)-
m, max maff, Ac,,( ) -9,AC..(9)

<2m, rrgg-ﬂx rsl]ma fsw(csw( f)_crw( f))_ gsw(CSV\( g)_ CM( g))‘

+ 28Wrn/\l m%)(i fsw - gst

max
reR,

8

Further substituting Eq. (8) into Eq. (7) reads

[F(H)-F(9)]
< 2«/5 I'VQ%X(W]N) maxmaxm SW(CSW( f)_Crw( f))_ gSW( CSV‘( g)_ CW( g))‘

weW reR, s=R,

+2dmima(e,m,) mgxmaxt.,~ g ©

Y2
2 53 3 (o160l ) 0.(cnl 9 9)

weW reR, se R,

+2ymmax(e,m, )| f - g

Since c,,(-), reR,, weW, are all differentiable, then there exigts >0 such that

Y2
[Z Z Z ( fSW(Csw( f ) _Crw( f ))_g sw(Csw( g) —-C rv\( g)))zj < pz” f- d| (10)

weW reR, s=R,

Substituting Eq. (10) into Eqg. (9) yields
[F(1)-F(9)|<2Vmp, max(m,)+ maxe,m))|f -g

weW

That is to say,F(f) in Eq. (5) is Lipschitz continuous. Therefore BRUE-PSAP has a

classical solution which is globally unique (Theorem 3.2, Khalil, 2002). ©



We show that BRUE-PSAP BRUE-RBAP in the following theorem.
Theorem 2. BRUE-PSAP in (5) is BRUE-RBAP.

Proof. We first write

c'f = Z Z Cer( fSW[ACerL - frw[ACrSWL)

weW reR, seR,

aPIPIDICM ST EDIPIPITMIMETE

weW reR, seR, weWreR, R,

(11)

For the second term on the right hand side of the last equality in Eq. (11), interchanging the
indices of r and s, we have

c f=> > > (Cuw—Ca) feuACq). <O

weW reR, seR,

with the equality holdingf and only if the following condition holds:
f,=0 if Ac,,>0, Vr,seR,, weW (12)

which indicates BRUE. Therefore, the flow dynamics (5) is BRUE-RBAP. ©
2.2. NTP under BRUE

The NTP (Friesz et al., 1994; Yang and Zhang, 2009) is given as

F(f)=R,(f-Bc)— f, p>0 (13)
where

R, (X =argmin,, | y— ¥ (14)
Based on the VI formulation (3),ercan extend the NTP to the followiBRUE-NTP:

F(f)=R,(f-B[¢],)-f, B>0 (15)

The existence and uniqueness of the classical solutidBRIOE-NTP is assured by the
following theorem.

Theorem 3. F(f) in Eqg. (13) is Lipschitz continuous of, therefore, the classical

solution to BRUE-NTP is globally unique.

Proof. From Eq. (15),



I ()-F (o)l=|(®( -B[e(1)].)- 1)-(R( o-Be(a)].)-
Pa( -BLe(1)].)- R (a-BLe(a)] )| I - d]
<|(r-Le(n)])~(9-BLe(@)] )| I ol
<p|[e( )], ~[¢(g) el
<ple(f)-¢(g)|+2|f g

<Ble(1)-c(9) 211 -0l T m (1. (1)1 (0)

where the second inequality is due {&,(X)—R,(y)|<||x Yy (Theorem 1.5.5(d),

(16)

Y2

Facchinei and Pang, 2003). For the third term on the right hand side of the last inequality in
Eq. (16), without loss of generality, assuming that, for OD pakeW , we have

u,(f)>n,(9)>0 and s eargmin_, c,[(9g), then by Eq. (6),

w( f)—minc, (g)‘

- I;gi{]ch( f)_cs'w(g)
<C,(1)-c.(9) (17)
R, CrW( f)_ch(g)‘
Y2
(Z(Crw( f)_crw(g))zJ

reR,

M () =1 (9) =1

IA

and thus

V;N”Lv(“w 1,(9) <X m, Y (Gu()-6.(9) <maxm|d - ¢ d| @18)

weW reR,

Substituting Eq. (18) into Eq. (16) leads to

[F()=F(a)<Ble(f)-c(a)+2] f - o+ maxm, | )= d

(19)
<(2+pp+pmax,m, )| F -9

Therefore F( f) is Lipschitz continuous and the BRUE-NTP admits globally unique

solution given any feasible initial state. O

To show that BRUE-NTP is BRUE-RBAP, we first introduce the following lemma.



Lemma 2. Under BRUE-NTP in (15),¢" f <[¢]' f .

Proof. Define the acceptable path set of OD paieW with respect to path costs( f)

as
S.={16,<u,+&,,reR,}={15,<0,re R}, weW (20)
and S, = R\ § the complement ofS, with respect toR,. Referring to the definition of

R,(f-B[e],) in Eq. (14), given f f is the unique solution to the following

minimization problem (21)-(23):

min Y. > (Yo +B[Ew].) (21)

weW reR,,

st. > y,=0, weW (22)
reR,
Yu2=—Ff: TreR,, weW (23)

Now we prove thatf >0 forall reS,, weW, by contradiction. Supposd,, <0 for

rw —

some pathi €S,, then [¢,] =0. By Zrem f , =0, there must exist another pathe R,
such that f;, >0. By choosing0< &< min{f,, ~f,,}, we will have

fo,>f,-8>0>-f,, 0>f,+8>f,>-f,

jw

and
2

(f-+B[en] ) +(fu+o+[6] ) <(fu +B[6 1) +(f, +[6 1)

which violates the optimality off . Therefore, we must havéd., >0 for all res,,

rw —

weW , which further leads to Zre%qwffwsozzre%[qu f, . Since

rw

> Gt =2 [6], f.,. we can conclude that™ f <[] f. o

Now we have the following theorem.

Theorem 4. The BRUE-NTP is BRUERBAP.

10



Proof. From Lemma R, we have
ch=éTf£[é]If':[é]I(PQ(f—B[CL)—f) (24)
By Theorem 1.5.5(hin Facchinei and Pang (2003),

(( £=PLeL.)~ £) (£ -BLel. =P (F-B[8].)
]

=R (t-pleL.)- ] LT (Pu( f-pLe])- ) (25)
>0
CombiningEgs. (24) and (25) yields" f<—HP f B — f” /B<O and c¢'f=0 if
and only if
Pa( f-B[e],)- =0 )

Referring to Proposition 1.5.8 in Facchinei and Pang (2003), the solution to Eqg. (26) is
equivalent to that of the VI problem (3) and thus is BRUE. Therefore BRUE-NTP is
BRUE-RBAP. O

2.3. Aspecial group of BRUE-RBAP models

We refer to Assumption id Zhang et al. (2001) to establish a special group of BRUE-RBAP
models in Eq. (27). The readers may note that the original assumption in Zhang et al. (2001)
violated the flow conservation, which assumed that under a fixed-demantb-day-
dynamics, traffic flows on paths with costs higher than the minimum cost would decrease,
while flows on the minimum-cost paths would keep unchanged.

Theorem 5. The flow dynamics is BRUE-RBAP if the following condition holds:
{f >0, reS,,weW

w —

, with all equalities holding simultaneously iff € Q' (27)
f,<0, res, weW

Proof. From condition (27),

11



ot =z[zcrwf;w+zcrwfrw]
wewW

reS, res;,

IN

(Z(“w""gw) frw+ Z(“w"'gw) f.rWJ (28)

res, res,

:

(uw+sw)(z f + Z f'rwj

res, res;

=
=

S

Il
o

hence ¢’ f <0, with the equality holdingf and only if f € Q. Therefore dynamics (27) is
BRUE-RBAP. O

It is easy to verify thaBRUE-PSAP and BRUE-NTP do not necessarily satisfy condition
(27), although they arBRUE-RBAP. Further, it is not easy, if not impossible, to build
dynamics of this type that has classical solutions. One of the models in the literature
satisfying condition (27) is the one in Di et al. (2015), with the formulation given as follows:
1 Z fo., Te€S,
F.(f)=1IS5 . WeW (29)

—f s res,

where F,,(f) could be discontinuous because the Sgtcould change withf . In some

usual cases, the classical solution under r@) (nay not existwhich is illustrated by the
following example.

Example 1. In|Figure 1, consider a network consisting of a single OD and three parallel links

(thus link is equivalent to path). The demand is fixed talbe The travel cost functions of
the three links are respectivelg, =v,+5, ¢,=2v,+1, ¢,;=5v,+10. The bounded
rationality threshold ise=2. Suppose that the flow pattern at some time moment is

v=(6,6,4), and hencec(v)=(11,13,3Q. Then path 1 is of the minimum cost, while path

is also acceptable. By rule (29¥,=(2,2,-4), with which path 2 will inmediately become

unacceptable since the marginal cost of link 2 is greater than that of link 1. However, once
path 2 becomes unacceptable, its flow will immediately decrease and path 2 will rejoin the
acceptable path set. As a result, the flow on link 2 cannot increase exactly at the rate given by

v=(2,2,-4), which means that the classical solution does not existfc(t6,6,4). O

12



3. Stability analysis
We begin withLaSalle’s theorem to conduct the stability analysis BRUE-RBAP.

Definition 3. Consider the dynamad system
f(t)=F(f(t)), f(0)ed, t=0 (30)

where F:® > R™ and ® < R™. Aset M c® is said to be invariant if each solution

startingin M remainsinM for all t.

Theorem 6. (Theorem 1, LaSalle, 19p@onsider that the dynamical system (30) has
classical solutions, and the classical solutions are continuous functions of the initial
conditions. Let® be a bounded closed (compact) set with the property that every solution
of (30) which begins in® remains ind for all future time. Suppose there is a scalar

function V (x) which has continuous first partials i® and is suchV (x)<0. Let E

be the set of all points ind where V(x)=0. Let M be the largest invariant set in E.

Then every solution starting i approaches M ag — .

Based oph Theorem 6, we prove the stability of BRUE-RBAP under separable link travel cost

functions in the following theorem.

Theorem 7. Assumethe BRUE-RBAP has classical solutions that are continuous functions of

the initial conditions, and the link travel cost functions are separablé(®) <, then

f(t)>Q ast—ow.

Proof. Obviously, Q is a compact, and iff (0)eQ then f(t)eQ forall t>0. Define

V(f):ZJ.OVa(f)Ca(m)dco. (31)

acA

whose partial derivatives are continuous according to Assumption 1. By the definition of

BRUE-RBAP, V(f)=c'f <0, while V(f)=0 if and only if feQ , ie,

13



{f|f eQV(f)= O}:Q*. Since the largest invariant set contained is Q" itself, we

have that, if f (0)eQ, then f(t) > Q" as t—oo. O

Remark 1. The proof forl Theorem |7 does not require a positive defivifef ), i.e.,

V(f)=0 for all feQ andV(f)=0 if and only if f €Q’, which is actually not

satisfied by Eqg. (31). O

Remark 2. The global uniqueness of classical solutions and their continuity to the initial

conditions are guaranteed whef( f) is Lipschitz continuous (see Remark 2.2 in

Chellaboina et al., 1999), suchBRUE-PSAP and BRUE-NTP. The situation becomes more

complicated whenF( f) is discontinuous, which is not unusual for deyday dynamics

for example, the projected dynamical system (Nagurney and Zhang, 1997).

Theorem ¥ establishes the stability of the general BRUE-RBAP with separable link travel

cost functions. When the link travel cost functions are non-separable, the stability analysis is
difficult to conduct for the general case. Nonetheless, specificalyshaw the stability of
BRUE-PSAP with general link travel cost functions as follows.

Lemma 3. For BRUE-PSAP, if the path travel cost functiaf f) is monotone, i.e.,

(f-g) (c(f)-c(g))z0, Vf,geQ
then

F(f) 3. (f)F(f)=20, V feQ (32)

where J ( f) is the Jacobian of functio( f) evaluated atf .

Proof. Since c(f) is bounded onQ, so is F(f) in Eq. (5). Also we know that

Zre& F,=0 forall weW, and F,>0 if f,=0.Then for eachf eQ, there exista

sufficiently small scalara>0 (where o is indeed a function off ) such that

14



f +oF (f)eQ. Therefore by treatingF(f)T c(f+aF(f)) as a function ofa and

applying the Mean Value Theorem, we have

afF () (c(f+aF(f))—c(f))=aF () I (f+yF(f))F(f)=0, ye(0,a)
where the inequality holds due to the monotonicitycfff ), and thus

F(f) 3, (f+yF(f))F(f)=0, ve(0,a)
Since o can be arbitrarily small, then by the continuity df(-) on Q, we have

F(f) 3. (f)F(f)=0 forall feQ. o

Remark 3. An alternative proof fQr Lemma) 3 can be found in 5.4.3 in Ortega and Rheinboldt

(2000). However, to use the monotonicity of f) in thdr proof, F(f) in Eq. (32)
cannot be any arbitrarily vector ifR™ , therefore, one cannot concludeJU(at) 5

positive semidefinite from Eq. (32); in other words, the monotonicityc@f) doesn’t

necessary mean that its Jacobian is positive semidefinite.o

Theorem 8. If the path travel cost functiom:( f) is monotone, then under BRUE-PSAP in

Eq. (5),if f(0)eQ,then f(t)>Q ast—w.

Proof. Similar to Smith (1984), defining

aDIDIDNM CHEIEH (33)

weW keR, =R,

then we have

- Y[l 2 T 3 ulacu 2T T 3 sl 5 @4

w seR, EWKkR R ueWkR s R rw

For the second term on the right hand side of Eq. (34), interchanging the indikesuad
S yields
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( Coul, — kL[ACksJ+)

rw SERV EWKkR R
oc,
=2 8] -2 0 o
seR, EWs R
and thus
oc
23 Do Sy ]
weW reR, \ =R, LEW&B
= [ rsw] frw 22 z z z Sa fsuf rw (35)
weW reR, se R, weWreR, €W & B
< Z Z [Acrsw] frw
weW reR, s= R,

where the inequality holds dug to Lemma 3. For the right hand side of the inequality in Eq.
(35), considering a specific OD paweW , we have

Zg[ACrSW]i frW
:ZZS:[AC'SW 2 frlAcml], = Fra[ACl.)

k

=Z§[Acrsw DI ECWID NI LMK Z JAG], (36)
- ; fk\NZ[ACkrw + Z( rsw ACksw] ) (37)

S

< z kaZ[ACkrw + Z([AC Ckwv] )

s=r

=22 f [Ac].

<0
where Eq. (37) is obtained by interchanging the indices odnd k in the second term of

Eq. (36) and then rearranging the summation orders in both terms; the first inequality is due

to the fact that[Ac,,], ([Aqsw] —[AGe). )<0 for all k,r,seR,, weW. Therefore,if
V(f)=0, then we have

f[ACn] =0, VkreR,, weW (38)
Since for each patlk € §;, there must exist a pathi €S, such thatAg,, >0, so condition
(38) requires f,, =0 if keS;, which indicates BRUEIlt means that, iV (f )=0, then

f is BRUE. Conversely, referring to Eq. (35), ff is BRUE, thenV (f )=0. That is to
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say, V(f)=0 if and only if f eQ". With reference tp Theoren] 6, we hafgt) —» Q'

as t— oo, O

4. Numerical examples

In this section, we present numerical examples to explore the properties of BRUE-RBAP that
are not discussed in the theoretical analyses so far. In the first example, the well-known
Braess network (Braess, 1968; Braess et al., 2005) is adopted. With this simple network, we
compare the evolution trajectories BRUE-PSAP and BRUE-NTP with different bounded
rationality thresholds and different initial states. In the second example, we conduct
simulation on the Nguyen-Dupuis network (Nguyen and Dupuis, 1984) to show the
applicability of BRUE-PSAP in larger networks with general link travel cost functions. For

BRUE-NTP, we setf =1.

4.1. Braess network

The Braess network is shown|in Figure 2. The travel cost function of each link takes the

widely-used BPR (Bureau of Public Roads, 1964) fonp(va):c(;(u 0.1E(va/Ya)4),

where Cg is the free flow cost and’, the capacity of linkae A, and their values are

listed in Table L. There is only one OD pair with a fixed demand of 10 served by three paths
(Path 1,0 »>1—-»3— D; Path 2,0—-2—-4— D, Path 3,0—->2—-5—» 3> D). The

Wardrop’s UE path flow pattern is uniquely3, 3, 4)T, which is also the equilibrium point of

RBAP. Given the bounded rationality threshold, the complete BRUE set could be obtained
using the method proposed by Di et al. (2013). Alternatively, due to the small network size in
this example, we can plot the approximate BRUE set by enumeration.

Since the feasible path flow patterns have to meet the flow conservation constraint, a
two-dimensional figure is enough to display the flow trajectories. The ordinary differential
equation sets representing the deyray dynamics, includinBRUE-PSAP in Eq. (5) and
BRUE-NTP in Eq. (15), are solved numerically in Matlab by the built-in function ode45
using the fourth-order Runge-Kutta method. It is worth mentioning that, the observations we
made in this example are based on the specific network structure and parameter settings.
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Generalization of these observations requires further elaboration under general conditions.

We set the bounded rationality thresholds to be 0, 0.3, 0.5 and 0.8, respectively, and see how
the evolution trajectories change in both BRUE-PSAP and BRUE-NTP. The results are
shown in Figure B and Figure 4, respectively. First of all, wben0, both models converge

to the uniqueWardrop’s UE as predicted. Second, as the threshold expands, trajectories
starting from the same initial state shift for both BRUE-PSAP and BRUE-NTP, but less for
the former, which may indicate that the trajectories of BRASEP are more “robust” with

respect to the threshold change. Moreover, given a same threshold, it happens in both models
that different trajectories converge to the same equilibrium point, but less frequently for
BRUE-PSAP. For example, whes=0.3, starting from 30 differaninitial states, the
numbers of final equilibria of BRUE-PSAP aBlRUE-NTP are respectively 22 and 10. In

this sense, BRUE-PSAP has a much larger diversity regarding tHeefindibria than
BRUE-NTP.

4.2. Nguyen-Dupuis network

In this example, we simulate BRUE-PSAP in a larger network with non-separable and

asymmetric link travel cost functions. The Nguyen-Dupuis network is iIIustraEed in Figure 5,

with paths and othe®D-related information being listed|in Tablg¢ 2. The travel cost on link

a is given by c, = ya+1cr3zlbi1 Xy, Where X =[Xlo.s and Y=[Y.],,, are givenm

Table 3. Two different initial states are chosen, whose values and the corresponding

equilibrium path flows and costs are listedl in Tahle 4. Flow evolution on representative paths

is drawn on Figure |6. In both cases, the flow patterns eventually approach the corresponding
equilibria, which is consistent W‘th Theorem 8.

5. Conclusions

This paper proposed an extend@BAP model on the basis RUE. The path-based VI
formulation for BRUE traffic assignment was established. The existing RBAP models (PSAP
and NTP) were extended to the BRUE case. A special group of BRUE-RBAP was built, with
which coming along some discussion on the non-existence of the classical solutions to some
models belonging to this special group. Stability of the gelBfR&IE-RBAP with separable

link travel cost functions was proved; while considering non-separable link travel cost
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functions, the stability of BRUE-PSAP was proved. The numerical examples verified the
stability of BRUE-RBAP and further uncovered some properties of BRUE-PSAP and
BRUE-NTP.

While making some progresses in the static and dynamic modeling related to BRUE, this
paper raises more questions which remain unsolved.

First, regarding the BRUE soluticset its topology (e.g. connectedness) is still not fully
investigated, and although the VI formulation is established, it is unclear how to obtain (at
least part of) the BRUE solutions based on this formulation in an efficient way. For this topic,
some discussion can be found in Di et al. (2013) and Han et al. (2015).

Second, although the existence and uniqueness of the solutions to the day-to-day dynamics is

assured in most of the previous literature, it is not a trivial problem as shown in Sections|2.1

and|2.2| In some cases, the classical solution doesn’t always exist, as illustrated in|Example 1

Under this circumstance, other notions of solutions such as Caratheodory solutions and
Filippov solutions (Cortes, 2008) can be defined, the discussion of which is beyond the scope

of the current paper but could be an interesting extension in the future.

Third, the stability analyses under BRUE-RBAP are much more complex compared with that
under RBAP. It is very difficult to construct the Lyapunov functions under general
non-separable link cost functions;en for the RBAP based on Wardrop’s UE (Guo et al.,

2015a), while the non-conveixy of the BRUE link/path flow set could make the problem
even more challenging for BRUE-RBAP. Furthermore, everiLi$alle’s theorem can only

be used for daye-day formulations with classical solutions that are continuous w.r.t. the
initial states. The discontinuous diyday formulations may lead to discontinuous
Lyapunov functions, and the non-existence of the classical solutions further requires more
advanced mathematical methods.

Besides the above-mentioned problems, there are broader directions for future research, such
asthe link-based BRURBAP, the BRUE-RBAP under flexible demand and the associated
congestion pricing scheme (Guo et al., 2015b; Ye and Yang, 2015), as well as validation of
these models with real data.

Acknowledgement

19



The authors express their thanks to the Associate Editor and two anonymous reviewers,
whose useful comments have improved the expositigdhi®paper. The research described

in this paper was substantially supported by Grants from the Hong Kong Grant Council
[Grant HKUST16211114] and the National Natural Science Foundation of China [Grant
NSFC 71371020

Refer ences

Braess D (1968) Uber ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung
12(1):258-268.

Braess D, Nagurney A, Wakolbinger T (2005) On a paradox of traffic planning.
Transportation Science 39(4):446-450.

Bureau of Public Roads (1964) Traffic Assignment Manual (US Department of Commerce).

Chorus CG, Timmermans HJP (2009) Measuring user benefits of changes in the transport
system when traveler awareness is limited. Transportation Research Part A
43(5):536-547.

Conlisk J (1996) Why bounded rationality? Journal of Economic Literature 34(2):669-700.

Cortes J (2008) Discontinuous dynamical systems. IEEE Control Systems 28(3):36-73.

Dafermos S (1980) Traffic equilibrium and variational inequalities. Transportation Science
14(1):42-54.

Di X, Liu HX (2016) Boundedly rational route choice behavior: A review of models and
methodologies. Transportation Research Part B 85:142-179.

Di X, He X, Guo X, Liu HX (2014) Braess paradox under the boundedly rational user
equilibria. Transportation Research Part B 67:86-108.

Di X, Liu HX, Ban X (2016a) Second best toll pricing within the framework of bounded
rationality. Transportation Research Part B 83:74-90.

Di X, Liu H, Ban X, Yu J (2015) Submission to the DTA 2012 Special issue: on the stability
of a boundedly rational dawp-day dynamic. Networks and Spatial Economics
15(3):537-557.

Di X, Liu HX, Pang J, Ban X (2013) Boundedly rational user equilibria (BRUE):
Mathematical formulation and solution sets. Transportation Research Part B
57:300-313.

Di X, Liu HX, Zhu S, Levinson DM (2016b) Indifference bands for boundedly rational route

20



switching. Transportation (in press)

Dupuis P, Nagurney A (1993) Dynamical systems and variational inequalities. Annals of
Operations Research 44(1):7-42.

Emmerink RHM, Axhausen KW, Nijkamp P, Rietveld P (1995a) The potential of
information provision in a simulated road transport network with non-recurrent
congestion. Transportation Research Part C 3(5):293-309.

Emmerink RM, Axhausen K, Nijkamp P, Rietveld P (1995b) Effects of information in road
transport networks with recurrent congestion. Transportation 22(1):21-53.

Facchinei F, Pang J (2003) Finite-Dimensional Variational Inequalities and Complementarity
Problems (Springer-Verlag, New York).

Friesz TL, Bernstein D, Mehta NJ, Tobin RL, Ganjalizadeh S (1994)t®dgy dynamic
network disequilibria and idealized traveler information systems. Operations Research
42(6):1120-1136.

Gabaix X, Laibson DI, Moloche G, Weinberg S (2006) Costly information acquisition:
experimental analysis of a boundedly rational model. American Economic Review
96(4):1043-1068.

Gao S, Frejinger E, Ben-Akiva M (2011) Cognitive cost in route choice with real-time
information: An exploratory analysis. Transportation Research Part A45(9):916-926.

Guo RY, Yang H, Huang HJ (2013) A discrete rational adjustment process of link flows in
traffic networks. Transportation Research Part C 34:121-137.

Guo RY, Yang H, Huang HJ, Tan ZJ (2015a) Link-based tdalgy network traffic
dynamics and equilibria. Transportation Research Part B 71:248-260.

Guo RY, Yang H, Huang HJ, Tan ZJ (2B)3ay-to-day flow dynamics and congestion
control. Transportation Science (in press)

Guo X (2013) Toll sequence operation to realize target flow pattern under bounded
rationality. Transportation Research Part B 56:203-216.

Guo X, Liu HX (2011) Bounded rationality and irreversible network change. Transportation
Research Part B 45(10):1606-1618.

Han K, Szeto WY, Friesz TL (2015) Formulation, existence, and computation of boundedly
rational dynamic user equilibrium with fixed or endogenous user tolerance.
Transportation Research Part B 79:16-49.

Han L, Du L (2012) On a link-based dayday traffic assignment model. Transportation
Research Part B 46(7p-84.

He X, Guo X, Liu HX (2010) A link-based date-day traffic assignment model.
Transportation Research Part B 44(4):597-608.

21



Hu T, Mahmassani HS (1997) D#&y-day evolution of network flows under real-time
information and reactive signal control. Transportation Research Part C 5(1):51-69.
Jayakrishnan R, Mahmassani HS, Hu T (1994) An evaluation tool for advanced traffic
information and management systems in urban networks. Transportation Research Part

C 2(3):129-147.

Jou R, Hensher DA, Liu Y, Chiu C (2010yban commuters’ mode-switching behaviour in
Taipai, with an application of the bounded rationality principlérban Studies
47(3):650-665.

Jou R, Lam S, Liu Y, Chen K (2005) Route switching behavior on freeways with the
provision of different types of real-time traffic information. Transportation Research
Part A39(5):445-461.

Khalil HK (2002). Nonlinear Systems, third edition (Prentice Hall, Upper Saddle River, NJ).

LaSalle JP (1960) Some extensions of Liapusocsecond method. IRE Transactions on
Circuit Theory 7(4):520-527.

Li Y, Tan Z, Chen Q (2012) Dynamics of a transportation network model with homogeneous
and heterogeneous users. Discrete Dynamics in Nature and Society 2012:1-16.

Lou Y, Yin Y, Lawphongpanich S (2010) Robust congestion pricing under boundedly
rational user equilibrium. Transportation Research Part B 44(1):15-28.

Mahmassani HS, Chang G (1987) On boundedly rational user equilibrium in transportation
systems. Transportation Science 21(2):89-99.

Mahmassani HS, Jayakrishnan R (1991) System performance and user response under
real-time information in a congested traffic corridor. Transportation Research Part A
25(5):293-307.

Mahmassani HS, Liu Y (1999) Dynamics of commuting decision behaviour under advanced
traveller information systems. Transportation Research Part C 7(2-3):91-107.

Nagurney A, Zhang D (1997) Projected dynamical systems in the formulation, stability
analysis, and computation of fixed-demand traffic network equilibria. Transportation
Science 31(2):147-158.

Nguyen S, Dupuis C (1984) An efficient method for computing traffic equilibria in networks
with asymmetric transportation costs. Transportation Science 18(2):185-202.

Ortega J, Rheinboldt W (2000) Iterative Solution of Nonlinear Equations in Several
Variables (Society for Industrial and Applied Mathematics).

Sandholm WH (2002) Evolutionary implementation and congestion pricing. The Review of
Economic Studies 69(3):667-689.

Sandholm WH (2005) Excess payoff dynamics and other well-behaved evolutionary

22



dynamics. Journal of Economic Theory 124(2):149-170.

Simon H (1955) A behavioral model of rational choice. The Quarterly Journal of Economics
69(1):99-118.

Smith MJ (1979) The existence, uniqueness and stability of traffic equilibria. Transportation
Research Part B 13(4):295-304.

Smith MJ (1984) The stability of a dynamic model of traffic assignment - An application of a
method of Lyapunov. Transportation Science 18(3):245-252.

Smith M, Mounce R (2011) A splitting rate model of traffic re-routing and traffic control.
Transportation Research Part B 45(9):1389-14009.

Szeto WY, Lo HK (2006) Dynamic traffic assignment: properties and extensions.
Transportmetrica 2(1):31-52.

Wu J, Sun H, Wang DZW, Zhong M, Han L, Gao Z (2013) Bounded-rationality based
day+to-day evolution model for travel behavior analysis of urban railway network.
Transportation Research Part C 31:73-82.

Yang F, Zhang D (2009) Dagp-day stationary link flow pattern. Transportation Research
Part B 43(1):119-126.

Ye H, Yang H, Tan Z (2015) Learning marginal-cost pricing via a trial-and-error procedure
with dayto-day flow dynamics. Transportation Research Part B 81:794-807.

Zhang D, Nagurney A (1995) On the stability of projected dynamical systems. Journal of
Optimization Theory and Applications 85(1):97-124.

Zhang D, Nagurney A, Wu J (2001) On the equivalence between stationary link flow patterns
and traffic network equilibria. Transportation Research Part B 35(8):731-748.

Zhao C, Huang H (2016) Experiment of boundedly rational route choice behavior and the
model under satisficing rule. Transportation Research Part C 68:22-37.

23



Flow on Path 3
OFRLP N WU O 00 W

Flow on Path 3
OFRP NWbUo J 00w

=
o

e
(=]

Figure 1. A single-OD and parallel-link network.

o Initial State
= Equilibrium Point

5
Flow on Pat

(@ =0

0

o |nitial State
o Equilibrium Point

Flow on Path 1

(c) e=0.5

10
9 ° Initial State
o 8¢ = Equilibrium Point
é 7
a 6
c 5
; 4
o3 o
1 <
0 1 2 3 4 5 & 7 ® 9 410
Flow on Path 1
(b) £=0.3
10¢
o Initial State
m 8¢ = Equilibrium Point
£ o
a 6%
c 5¢
24
w28 \&
1e e
N , e
0 1 2 3 4 5 6 4 8 9 10
Flow on Path 1
(d) £=0.8

Figure 3. Trajectories of BRUE-PSAP with different thresholds.

24



Flow on Path 3

Flow on Path 3

Flow on Path 1

(c) €e=0.5

Flow on Path 1

(d) £=0.8

Figure 4. Trajectories oBRUE-NTP with different thresholds.

Figure5. Nguyen-Dupuis network.
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Table 1. Parameters of the link performance functions in Braess network

Link no. a 1 2 3 4 5
Free flow cost,C; 2 1 1 2 1
Link capacity, Y, 3 7 7 3 4

Table 2. OD demands, thresholds and paths in Nguyen-Dupuis network

Origin  Destination Demand  Threshold Path# Consisting of links

1 2 400 20 1 1,5,7,9,11
2 1,5,7,10, 15
3 1,5, 8,14, 15
4 1,6, 12, 14, 15
5 2,7,9,11, 17
6 2,7,10, 15,17
7 2,8,14, 15,17
8 2,11, 18,

1 3 800 10 9 1,5,7,10, 16
10 1,5, 8, 14, 16
11 1,6,12, 14, 16
12 1,6, 13,19
13 2,7,10, 16, 17
14 2,8,14, 16, 17

4 2 600 15 15 3,57,9 11
16 3,5,7,10, 15
17 3,5,8,14,15
18 3,6,12, 14,15
19 4,12, 14, 15

4 3 200 20 20 3,5,7,10, 16
21 3,5,8,14,16
22 3,6,12, 14,16
23 3,6,13,19
24 4,12, 14, 16
25 4,13, 19
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Table 3. Parameters of the link performance functions in Nguyen-Dupuis network

18 10 5 1 1.2
1 19 0.2 01
2 15 9 2 1.1
11 2 03 01
135 6 04 1 1
09 2 175 04 0.2
0.6 125 01 4 4.4 0.3
0.5 2 55 11 0.1 0.4
0.5 135 1 0.6 5
0.2 5 333 2 13 12
0.2 12.5 3 2
0.5 2 9.8 0.3
0.1 1
0.3 10 3 37 0.1 14
01 11 02 20 05
0.2 01 2 50 6
3 03 2 20 1
4 0.3 2 11
2 10
7 9 9 12 3 9 5 13 5 9 9 10 9 6 9 8 7 14 11

Table 4. Initial flows and equilibrium flows/costs for the Nguyen-Dupuis example

Pattern #1 Pattern #2
Path #
Initial flow BRUE flow BRUE cost Initial flow BRUE flow BRUE cost
1 200.0 0.0 87.8 0.0 0.0 85.8
2 200.0 0.0 100.8 0.0 0.0 99.0
3 0.0 0.0 102.7 0.0 0.0 101.4
4 0.0 0.0 112.3 0.0 0.0 112.6
5 0.0 51.9 81.3 0.0 37.0 80.9
6 0.0 0.0 94.4 0.0 0.0 94.1
7 0.0 0.0 96.3 200.0 0.0 96.5
8 0.0 348.1 62.1 200.0 363.0 62.5
9 200.0 0.0 100.0 0.0 0.0 98.6
10 200.0 0.0 101.9 0.0 0.0 101.0
11 200.0 0.0 111.4 0.0 0.0 112.2
12 200.0 634.0 87.7 0.0 623.3 86.8
13 0.0 80.4 93.5 400.0 123.3 93.7
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14 0.0 85.6 95.4 400.0 53.5 96.1
15 200.0 304.1 81.9 0.0 304.9 79.8
16 200.0 59.8 94.9 0.0 18.8 93.1
17 200.0 24.9 96.8 0.0 0.0 955
18 0.0 0.0 106.4 300.0 0.0 106.6
19 0.0 211.3 81.8 300.0 276.3 83.4
20 50.0 0.0 94.1 0.0 0.0 92.7
21 50.0 0.0 96.0 0.0 0.0 95.1
22 50.0 0.0 105.5 0.0 0.0 106.2
23 50.0 0.0 81.8 0.0 0.0 80.8
24 0.0 0.0 81.0 100.0 0.0 83.0
25 0.0 200.0 57.2 100.0 200.0 57.5
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