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Abstract 

This paper extends the framework of “rational behavior adjustment process” (RBAP) to 

incorporating the “boundedly rational user equilibrium” (BRUE). The proportional-switch 

adjustment process (PSAP) and the network tatonnement process (NTP) are extended to the 

BRUE case, and their dynamical equations are shown to be Lipschitz continuous, which 

guarantees the global uniqueness of the classical solutions. A special group of the 

BRUE-RBAP is proposed, for which the path flows would increase if the paths are in the 

acceptable path set, and would decrease otherwise. Classical solutions to this special group 

of models may not exist. Stability of the BRUE-RBAP with classical solutions is proved 

with separable link travel cost functions. For non-separable link travel cost functions, the 

stability of the BRUE-PSAP is proved. Numerical examples are presented to demonstrate 

the evolution processes of BRUE-PSAP and BRUE-NTP under various bounded rationality 

thresholds and various initial states. The applicability of BRUE-PSAP in larger networks 

with asymmetric link travel cost functions is also illustrated. 

 

Keywords: day-to-day dynamics, rational behavior adjustment process, boundedly rational 

user equilibrium, stability 

1. Introduction 

The term “bounded rationality” was proposed by Herbert A. Simon in the 1950s to take into 
account the irrationality on people’s decision-making procedure (Simon, 1955). Different 
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from the classical assumption of utility maximization, a decision maker may pick up a 

satisfactory choice rather than the utility-maximizing one due to cognition limitation, 

incomplete information or other restraints (Conlisk, 1996; Gabaix et al., 2006). The concept 

of bounded rationality was widely implemented and investigated in the transportation area. 

For example, Chorus and Timmermans (2009) considered travelers’ limited awareness and 
developed the methodology for the ex-ante evaluation of user benefits associated with 

transport system changes; Gao et al. (2011) considered bounded rationality in a route choice 

model with cognitive cost in real-time information acquisition; Szeto and Lo (2006) and 

Han et al. (2015) adopted bounded rationality in the tolerance-based dynamic user 

equilibrium; Zhao and Huang (2016) introduced the concept of aspiration level and 

investigated the user equilibrium problem based on it. 

 

A prominent branch of the bounded rationality model is the indifference band model, 

application of which in the transportation field could trace back to Mahmassani and Chang 

(1987), who considered bounded rationality in a single bottleneck with departure time 

choice. The indifference band approach was embedded in simulation frameworks to 

investigate the transportation system performance with various real-time traffic information 

strategies (Emmerink et al., 1995a, 1995b; Jayakrishnan et al., 1994; Mahmassani and 

Jayakrishnan, 1991), as well as incorporating responsive signals (Hu and Mahmassani, 1997) 

or simultaneous departure time and route choices (Mahamssani and Liu, 1999). Empirical 

analyses were conducted in Di et al. (2016b) and Jou et al. (2005, 2010).  

 

Among the indifference band models, the boundedly rational user equilibrium (BRUE) is an 

extension of the classical Wardrop’s user equilibrium (UE), allowing travelers to be 

non-strict utility maximizers. Lou et al. (2010) for the first time examined the mathematical 

properties of the BRUE traffic assignment problem in general networks. Definition and 

link/path-based presentation of BRUE were provided, sets of BRUE link/path flow patterns 

were shown to be non-empty and non-convex, and congestion pricing under BRUE was 

discussed. Following this study, Di et al. (2013, 2014, 2016a) presented a series of work 

which respectively discussed the methodology for constructing the BRUE path flow set, the 

Braess Paradox with regard to BRUE, and the second best toll pricing under bounded 

rationality. Recently, Di and Liu (2016) provided a comprehensive review on the 

application of bounded rationality in modelling travelers’ route choice behaviors.  

 

Although the behavioral assumption of bounded rationality is widely used in the simulation 
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and empirical studies of dynamic traffic networks, theoretical research on 

bounded-rationality-based day-to-day dynamics is limited so far. Guo and Liu (2011) 

developed a BRUE-based day-to-day framework to model the irreversible network change 

and then applied it to investigate the flow evolution during the collapse and reopening of the 

I-35W Bridge in the Twin Cities network in Minnesota, without discussing the system 

stability issues. Di et al. (2015) specialized the model in Guo and Liu (2011) and focused on 

a parallel-link and single origin-destination (OD) network with separable and linear link 

time functions. Stability of their special model was examined from the perspective of 

switched systems. Wu et al. (2013) investigated the path flow evolution in urban railway 
networks by treating passengers’ learning process on perceived travel costs as a boundedly 
rational behavior. 

 

This study is intended to make a contribution to the modeling of BRUE-based day-to-day 

dynamics, by introducing BRUE into the conceptual framework of rational behavior 

adjustment process (RBAP). RBAP is a type of fixed-demand day-to-day dynamics 

summarized by Zhang et al. (2001) and Yang and Zhang (2009), which includes the 

day-to-day models in Smith (1984), Friesz et al. (1994) and Nagurney and Zhang (1997) as 

its special cases. There are also day-to-day models that can be treated as the link-based 

version of RBAP (Guo et al., 2013, 2015a; Han and Du, 2012; He et al., 2010; Smith and 

Mounce, 2011) or as the extension of RBAP under elastic demand (Guo et al., 2013, 2015a; 

Li et al., 2012; Sandholm, 2002, 2005). In this paper, we attempt to establish the 

BRUE-based RBAP (BRUE-RBAP) and investigate its properties. 

 

The rest of this paper is organized as follows. Section 2 proposes a variational inequality 

formulation for the BRUE traffic assignment problem and extends the RBAP in Yang and 

Zhang (2009) to the BRUE-RBAP. The proportional-switch adjustment process (PSAP) 

(Smith, 1984) and the network tatonnement process (NTP) (Friesz et al., 1994) are extended 

to be BRUE-based and are shown to be of classical solutions. A special group of 

BRUE-RBAP is proposed, which incorporates the model in Di et al. (2015). It is further 

shown by an example that the classical solutions to the model in Di et al. (2015) may not 

exist. Section 3 discusses the stability of (i) the general BRUE-RBAP with separable link 

travel cost functions and (ii) the BRUE-PSAP with non-separable link travel cost functions. 

In Section 4, numerical examples based on the Braess network are presented to compare the 

evolution processes of the BRUE-PSAP and the BRUE-NTP with respect to different 

bounded rationality thresholds and different initial states. A larger example based on the 
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Nguyen-Dupuis network further illustrates the applicability of the BRUE-PSAP with 

asymmetric link travel cost functions. Section 5 draws the conclusions and provides 

possible directions for future research. 

2. BRUE-RBAP: framework and models 

Consider a general network with a set A  of links and a set W  of OD pairs. Denote by av  

the flow on link a A  and  T
,av v a A  the link flow vector, where superscript “T” 

stands for the transpose operation. Each link a A  is associated with a link travel cost 

function  ac v , while each OD pair w W  is associated with a fixed demand wd  and a 

path set wR . Denote by wm  the total number of paths in wR , and wWw
m m


 . Let 

rwf  be the flow on path wr R , w W , and  T
, ,rw wf f r R Ww   be the path flow 

vector. Denote by rwc  the travel cost on path wr R , which is equal to the sum of costs on 

links constituting this path, and  T
, ,rw wc c r R Ww   the vector of path costs. The set 

 , ,0,
w

rw w rw wRr
f f d f r R Ww


     contains all feasible path flow patterns. The 

definition of BRUE (Di et al., 2013; Guo and Liu, 2011) is given as follows. 

 

Definition 1. Define min
wrw R rwc , w W . A path flow pattern f   is said to be a 

boundedly rational user equilibrium (BRUE) path flow pattern if it holds that 

 
0, if

0, if
rw rw w w

rw rw w w

f c

f c


 

   
  

, wr R , w W  (1) 

where 0w   is the bounded rationality threshold of travelers between OD pair w W . 

 

Before discussing the day-to-day dynamics, we introduce the following assumption on the 

path cost functions and present some results on BRUE. 

 

Assumption 1. The path cost functions  rwc f , ,  w Wr R w  , are non-negative, bounded 
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and continuously differentiable on  . Thus  c f  is Lipschitz continuous, i.e., there exists 

1 0   such that  

     1c f c g f g   , ,f g   

where ·  represents the 2-norm (Euclidean norm). 

 

Denoting ˆrw rw w wc c     and  Tˆ ˆ , ,rw wc c r R Ww  , the BRUE condition (1) can be 

rewritten as  

 
 
 
ˆ

ˆ

0, if

0, f 0

0

i

rw rw

rw rw

f c

f c




 







, wr R , w W  (2) 

where    max ,0x x

 . Referring to Smith (1979), any path flow pattern f   satisfying 

condition (2) must satisfy the following variational inequality (VI) condition (3), and vice 

versa: 

    T ˆ 0f f c f


     ,  f   (3) 

Equation (3) provides the VI formulation for BRUE traffic assignment problems. It is worth 

pointing out that, different from the classical VI form for traffic assignment (Dafermos, 1980), 

the path-based VI (3) has no equivalent link-based form, and  ĉ f


    is Lipschitz 

continuous but neither differentiable nor pseudo-monotone. Furthermore, since   is 

compact and convex, then the solution set to VI problem (3), i.e. the set of the BRUE path 

flow patterns, denoted by * , is nonempty and compact (Corollary 2.2.5, Facchinei and 

Pang, 2003). Also, we have known that *  is usually nonconvex (Lou et al., 2010), and it is 

connected under very special settings (with affine linear and strictly monotone link cost 

functions, see Di et al., 2015). However, its connectedness under general nonlinear and 

non-separable link cost functions remains an open question.  

 

Regarding the day-to-day flow dynamics, denote by  f t  the path flow vector at calendar 

time t . Let    d df t f t t  and consider the path flow dynamics 

     f t F f t , 0t  ,   00f f   (4) 

where       T, ,rw wF f t F f t r R Ww   , under which the nonnegative path flows and 
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fixed demands are assumed to be guaranteed. Also, assume system (4) has classical solutions, 

that is to say, for every 0f  , there exists a unique solution  f t  of (4) defined on 

 0,  satisfying   00f f . The day-to-day dynamics with no classical solutions would be 

illustrated in Example 1 in Section 2.3. 

 

Referring to the rational behavior adjustment process (RBAP) in Yang and Zhang (2009), we 

define the BRUE-RBAP in Definition 2. It is clear that RBAP is a special case of 

BRUE-RBAP with 0w   for all w W .  

 

Definition 2. The flow dynamics (4) is BRUE-RBAP if  T
0c f f  , with the equality 

holding if and only if f  is a BRUE path flow pattern. 

 

The abstract concept of BRUE-RBAP in Definition 2 is not applicable until specific 

day-to-day models are built based on this framework, and to do it the most direct way would 

be extending existing models in the RBAP category into BRUE-RBAP.  

2.1. PSAP under BRUE 

Based on Guo (2013), the PSAP in Smith (1984) can be extended to BRUE-PSAP as follows, 

       
w

rw sw sw rw w rw w
s

r sw w
R

F f f c c f c c
 



      , wr R , w W  (5) 

The right hand side of Eq. (5) can always be multiplied by a positive scalar to form a more 

general flow dynamics. Since adding this scaler would not affect the analysis in this paper, it 

is omitted for simplicity.  

 

The global existence and uniqueness of the solution to BRUE-PSAP is assured by Theorem 1 

shown below, and the following lemma is necessitated. 

 

Lemma 1. Consider  T

1 ,, mx x  . The following relations hold: 

      1

1 2
2

1 1max ma, , ,x,
m

m mi i mx x x x x


   (6) 

 

Proof. The proof is obvious and thus omitted.          

m
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Theorem 1. Function  F f  in Eq. (5) is Lipschitz continuous on  , therefore the 

solution to BRUE-PSAP is globally unique. 

 

Proof. First, by Eq. (6), we have 

        max max
w

rw rw
w W r R

F f F g m F f F g
 

  (7) 

Letting rsw rw sw wc cc      and substituting Eq. (5) into Eq. (7), we have that, for each OD 

pair w W , 

 

   

   

   

         

max

2 max max

2 max max

2 max max

2 max

w

w w

w w

w w

w

rw rw
r R

w sw srw sw srw
r R s R

w sw srw sw srw
r R s R

w sw sw rw sw sw rw
r R s R

w w sw sw
s R

F f F g

m f f g g

m f f g g

m f c f c f g c g c g

m f

c c

c

g

c



  

 

 





       

 





  

 







 (8) 

Further substituting Eq. (8) into Eq. (7) reads 

 

   
           
 

            

 

1 2
2

2 max max max max

max max max

2 max

max

2

2

w w

w

w w

w sw sw rw sw sw rw
w W w W r R s R

w w sw sw
w W w W s R

w sw sw rw sw sw rw
w W

w W r R s R

w w
w W

F f F g

m m f c f c f g c g c g

m m f g

m m f c f c f g c g c g

m fm g

   

  

   





  

 

 





 
   

 

 

  

 (9) 

Since  rwc  , wr R , w W , are all differentiable, then there exists 2 0   such that 

           
1 2

2

2

w w

sw sw rw sw sw rw
w W r R s R

f c f c f g c g gc g f
  

 
   


  


   (10) 

Substituting Eq. (10) into Eq. (9) yields 

         22 max maxw w w
w W w W

F f F g m m m f g
 

     

That is to say,  F f  in Eq. (5) is Lipschitz continuous. Therefore BRUE-PSAP has a 

classical solution which is globally unique (Theorem 3.2, Khalil, 2002).        
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We show that BRUE-PSAP is BRUE-RBAP in the following theorem.  

 

Theorem 2. BRUE-PSAP in (5) is BRUE-RBAP. 

 

Proof. We first write 

 

    

   

T

w w

w w w w

rw sw srw rw rsw
W R R

rw sw srw rw rw

w r s

w r s w r s
rsw

W R R W R R

f c c

c c

c c f f

c f c f

 
  

 
     

 

 

 

 

 

   
 (11) 

For the second term on the right hand side of the last equality in Eq. (11), interchanging the 

indices of r  and s , we have 

    T 0
w w

rw sw sw srw
W R Rw r s

c f c cc f


  

     

with the equality holding if  and only if the following condition holds: 

 0swf   if 0srwc  ,  , wr s R , w W  (12) 

which indicates BRUE. Therefore, the flow dynamics (5) is BRUE-RBAP.       

2.2. NTP under BRUE 

The NTP (Friesz et al., 1994; Yang and Zhang, 2009) is given as 

    F f P f c f   , 0   (13) 

where 

   argminyP x y x    (14) 

Based on the VI formulation (3), we can extend the NTP to the following BRUE-NTP:  

     ˆF f P f c f 
   , 0   (15) 

The existence and uniqueness of the classical solution to BRUE-NTP is assured by the 

following theorem. 

 

Theorem 3.  F f  in Eq. (13) is Lipschitz continuous on  , therefore, the classical 

solution to BRUE-NTP is globally unique. 

 

Proof. From Eq. (15),  
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           
     

     
   
   

        
1 2

2

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ 2

ˆ

ˆ

2ˆ

2 w w w
w W

c f c g

c f c

F f F g P f f P g g

P f P g f g

f g f g

f g

f g

f g m

g

c f

f g

c g

c f c g

c f c g

c f c g

  

  

 

 



       

        

       

      

    

   

        

 

 

 

  

  

 
      

 


 (16) 

where the second inequality is due to    P x P y x y     (Theorem 1.5.5(d), 

Facchinei and Pang, 2003). For the third term on the right hand side of the last inequality in 

Eq. (16), without loss of generality, assuming that, for OD pair w W , we have 

    0w wf g     and  argmin
ws R sws c g , then by Eq. (6),  

 

       

   

   
   

    
1 2

2

min min

min

max

w w

w

w

w

w w rw swr R s R

rw s wr R

s w s w

rw rw
r R

rw rw
r R

f g c f c g

c f c g

c f c g

c f c g

c f c g

 



 





  





 

 
  












 (17) 

and thus 

              2 2 2
max

w

w w w w rw rw w
w W

W W r Rw w

m f g m c f c g m c f c g


  

         (18) 

Substituting Eq. (18) into Eq. (16) leads to 

 
           

 1 1

max

2

2

max

w W w

w W w

F f F g f g m c f c g

m f g

c f c g 



    

   

 

 
 (19) 

Therefore  F f  is Lipschitz continuous and the BRUE-NTP admits globally unique 

solution given any feasible initial state.         

 

To show that BRUE-NTP is BRUE-RBAP, we first introduce the following lemma. 
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Lemma 2. Under BRUE-NTP in (15),  TTˆ ˆc f c f


 . 

 

Proof. Define the acceptable path set of OD pair w W  with respect to path costs  c f  

as 

    0ˆ, ,w rw w w w rw wRS r c r r c r R       , w W  (20) 

and \c
w w wS R S  the complement of wS  with respect to wR . Referring to the definition of 

  ˆP f c 
  in Eq. (14), given f , f  is the unique solution to the following 

minimization problem (21)-(23): 

   2
min ˆ

w

rw rw
W R

y
w r

y c


 

  (21) 

 s.t. 0
w

rw
Rr

y


 , w W  (22) 

  rw rwy f  , wr R , w W  (23) 

Now we prove that 0rwf   for all wr S , w W , by contradiction. Suppose 0iwf   for 

some path wi S , then  ˆ 0iwc

 . By 0

w
rwRr

f


 , there must exist another path wj R  

such that 0jwf  . By choosing  0 m n ,i jw iwf f   , we will have  

 0jw jw jwf ff      , 0 iw iw iwf ff     

and 

          2 22 2
ˆ ˆ ˆ ˆjw jw iw iw jw jw iw iwf cf c f fc c

  
                

which violates the optimality of f . Therefore, we must have 0rwf   for all wr S , 

w W , which further leads to  0ˆ ˆ
w w

rw rw rw rwS Sr r
c f c f

 
   . Since 

 ˆ ˆc c
w w

rwr S r w wSrw r rc f c f
 

  , we can conclude that  TTˆ ˆc f c f


 .         

 

Now we have the following theorem. 

 

Theorem 4. The BRUE-NTP is BRUE-RBAP. 
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Proof. From Lemma 2, we have 

        T TT Tˆ ˆ ˆ ˆc f c f c f c fcP f  
      (24) 

By Theorem 1.5.5(b) in Facchinei and Pang (2003),  

 

         
        

T

2 T

ˆ ˆ ˆ

ˆ ˆ ˆ

0

P f f f P f

P f f

c c c

fc cP fc

   

   

    

     



  







 (25) 

Combining Eqs. (24) and (25) yields    2
T ˆ 0f cc P f f 

      , and T 0c f   if 

and only if 

   ˆ 0cP f f 
    (26) 

Referring to Proposition 1.5.8 in Facchinei and Pang (2003), the solution to Eq. (26) is 

equivalent to that of the VI problem (3) and thus is BRUE. Therefore BRUE-NTP is 

BRUE-RBAP.            

2.3. A special group of BRUE-RBAP models 

We refer to Assumption 2 in Zhang et al. (2001) to establish a special group of BRUE-RBAP 

models in Eq. (27). The readers may note that the original assumption in Zhang et al. (2001) 

violated the flow conservation, which assumed that under a fixed-demand day-to-day 

dynamics, traffic flows on paths with costs higher than the minimum cost would decrease, 

while flows on the minimum-cost paths would keep unchanged. 

 

Theorem 5. The flow dynamics is BRUE-RBAP if the following condition holds: 

 
0, ,

,0,

rw w

c
rw w

w

S w

f r S W

f r W

  

   

 , with all equalities holding simultaneously iff *f   (27) 

 

Proof. From condition (27), 
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   

 

T

0

c
w w

c
w w

c
w w

rw rw rw rw
W S

w w rw w w

w r

rw
W S

w w rw rw

r S

w r r S

w r SW r S

c f c f c f

f f

f f

  

  

  

 
   

 
 

    
 

 
    

    

 
 



  

  

  

 (28) 

hence T 0c f  , with the equality holding if  and only if *f  . Therefore dynamics (27) is 

BRUE-RBAP.         

 

It is easy to verify that BRUE-PSAP and BRUE-NTP do not necessarily satisfy condition 

(27), although they are BRUE-RBAP. Further, it is not easy, if not impossible, to build a 

dynamics of this type that has classical solutions. One of the models in the literature 

satisfying condition (27) is the one in Di et al. (2015), with the formulation given as follows: 

  
1

,

,

c
w

sw w
Srw

c
rw w

sw

f r S

f

F f

r S

S 






 



, w W  (29) 

where  rwF f  could be discontinuous because the set wS  could change with f . In some 

usual cases, the classical solution under rule (29) may not exist, which is illustrated by the 

following example.  

 

Example 1. In Figure 1, consider a network consisting of a single OD and three parallel links 

(thus link is equivalent to path). The demand is fixed to be 16. The travel cost functions of 

the three links are respectively 1 1 5c v  , 2 2 12c v  , 3 35 10vc   . The bounded 

rationality threshold is 2  . Suppose that the flow pattern at some time moment is 

 6,6,4v  , and hence    11,13,30c v  . Then path 1 is of the minimum cost, while path 2 

is also acceptable. By rule (29),  2,2, 4v   , with which path 2 will immediately become 

unacceptable since the marginal cost of link 2 is greater than that of link 1. However, once 

path 2 becomes unacceptable, its flow will immediately decrease and path 2 will rejoin the 

acceptable path set. As a result, the flow on link 2 cannot increase exactly at the rate given by 

 2,2, 4v   , which means that the classical solution does not exist at  6,6,4v  .       
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3. Stability analysis 

We begin with LaSalle’s theorem to conduct the stability analysis on BRUE-RBAP. 

 

Definition 3. Consider the dynamical system 

     f t F f t ,  0f  , 0t   (30) 

where :F   and   . A set M   is said to be invariant if each solution 

starting in M  remains in M  for all t . 

 

Theorem 6. (Theorem 1, LaSalle, 1960) Consider that the dynamical system (30) has 

classical solutions, and the classical solutions are continuous functions of the initial 

conditions. Let   be a bounded closed (compact) set with the property that every solution 

of (30) which begins in   remains in   for all future time. Suppose there is a scalar 

function  V x  which has continuous first partials in   and is such   0V x  . Let E  

be the set of all points in   where   0V x  . Let M  be the largest invariant set in E. 

Then every solution starting in   approaches M as t  . 

 

Based on Theorem 6, we prove the stability of BRUE-RBAP under separable link travel cost 

functions in the following theorem.  

 

Theorem 7. Assume the BRUE-RBAP has classical solutions that are continuous functions of 

the initial conditions, and the link travel cost functions are separable. If  0f  , then 

  *f t   as t  . 

 

Proof. Obviously,   is a compact, and if  0f   then  f t   for all 0t  . Define 

    
 

0
d

av

a
a

A

f
V f c



   . (31) 

whose partial derivatives are continuous according to Assumption 1. By the definition of 

BRUE-RBAP,   T 0f fV c  , while    0V f   if  and only if *f  , i.e., 

m m
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   *, 0V ff f    . Since the largest invariant set contained in *  is *  itself, we 

have that, if  0f  , then   *f t   as t  .        

 

Remark 1. The proof for Theorem 7 does not require a positive definite  V f , i.e., 

  0V f   for all f   and   0V f   if  and only if *f  , which is actually not 

satisfied by Eq. (31).         

 

Remark 2. The global uniqueness of classical solutions and their continuity to the initial 

conditions are guaranteed when  F f  is Lipschitz continuous (see Remark 2.2 in 

Chellaboina et al., 1999), such as BRUE-PSAP and BRUE-NTP. The situation becomes more 

complicated when  F f  is discontinuous, which is not unusual for day-to-day dynamics, 

for example, the projected dynamical system (Nagurney and Zhang, 1997).     

 

Theorem 7 establishes the stability of the general BRUE-RBAP with separable link travel 

cost functions. When the link travel cost functions are non-separable, the stability analysis is 

difficult to conduct for the general case. Nonetheless, specifically, we show the stability of 

BRUE-PSAP with general link travel cost functions as follows. 

 

Lemma 3. For BRUE-PSAP, if the path travel cost function  c f  is monotone, i.e., 

       T
0f g c f c g  , ,f g   

then  

      T
0cF f J f F f  ,  f   (32) 

where  cJ f  is the Jacobian of function  c f  evaluated at f . 

 

Proof. Since  c f  is bounded on  , so is  F f  in Eq. (5). Also we know that 

0
w

rwRr
F


  for all w W , and 0rwF   if 0rwf  . Then for each f  , there exists a 

sufficiently small scalar 0   (where   is indeed a function of f ) such that 
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 f F f  . Therefore by treating     T
c fF f F f  as a function of   and 

applying the Mean Value Theorem, we have 

               T T
0cc f F f cF f F ff J f FF f f       ,  0,   

where the inequality holds due to the monotonicity of  c f , and thus 

       T
0cJ fF f fF f F  ,  0,   

Since   can be arbitrarily small, then by the continuity of  ·cJ  on  , we have 

     T
0cJ fF f F f   for all f  .         

 

Remark 3. An alternative proof for Lemma 3 can be found in 5.4.3 in Ortega and Rheinboldt 

(2000). However, to use the monotonicity of  c f  in their proof,  F f  in Eq. (32) 

cannot be any arbitrarily vector in , therefore, one cannot conclude that  cJ f  is 

positive semidefinite from Eq. (32); in other words, the monotonicity of  c f  doesn’t 

necessary mean that its Jacobian is positive semidefinite.      

 

Theorem 8. If the path travel cost function  c f  is monotone, then under BRUE-PSAP in 

Eq. (5), if  0f  , then   *f t   as t  .  

 

Proof. Similar to Smith (1984), defining 

    2
w w

kw kw sw w
W k R sw R

V f f c c


  

      (33) 

then we have 

 
       2

2 2
w u uu u

ku su
rsw ku ksu ku ksu

s R u W k R s R W k R s Rrw rw rwu

V f c c
f f

f
c

f
c c

f  
      


  

   
  

    (34) 

For the second term on the right hand side of Eq. (34), interchanging the indices of k  and 

s  yields 

m
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        

 

2

2

2

2

w

w

uu

u

su
rsw su sku ku ksu

s R u W k R s Rrw rw

su
rsw su

s R u W s R rw

c c c

c

V f c
f f

f

f

f

c

f

  
   


  

 
  

 




 








 

 
 

and thus 

 

   

 

 

2

2

2

2

2

w w u

w w w u

w w

su
rsw su rw

W R s R u W s R rw

su
rsw rw su rw

W R s R W R u W s R rw

rsw

w r

w r w r

w
r

W R s Rr
w

c f f
c

V f
f

c

f
c f f f

c f


    


      


  





 
   


 

 



   

    

  

 (35) 

where the inequality holds due to Lemma 3. For the right hand side of the inequality in Eq. 

(35), considering a specific OD pair w W , we have 

 

 

      

2

2

rsw rw

rsw kw krw rw rkw

r s

r s k

c f

c cf f c



  
 



 



 
 

        2 2

r s k
rsw kw krw rsw rw

r s k
rkwc c c f cf

   
         (36) 

       2 2

k r
kw krw r

s
sw kswcf c c

  
      (37) 

       2 2

kw krw rs k
k r

w
s

w s
r

f c c c


  
       

 
 3

0

kw krw
k r

cf


  




 

where Eq. (37) is obtained by interchanging the indices of r  and k  in the second term of 

Eq. (36) and then rearranging the summation orders in both terms; the first inequality is due 

to the fact that       2 2
0krw rsw kswc c c

  
    for all , , wk r s R , w W . Therefore, if 

  0V f  , then we have 

  3 0kw krwf c

 ,  , wk r R , w W  (38) 

Since for each path c
wk S , there must exist a path wj S  such that 0kjwc  , so condition 

(38) requires 0kwf   if c
wk S , which indicates BRUE. It means that, if   0V f  , then 

f  is BRUE. Conversely, referring to Eq. (35), if f  is BRUE, then   0V f  . That is to 
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say,   0V f   if  and only if *f  . With reference to Theorem 6, we have   *f t   

as t  .          

4. Numerical examples 

In this section, we present numerical examples to explore the properties of BRUE-RBAP that 

are not discussed in the theoretical analyses so far. In the first example, the well-known 

Braess network (Braess, 1968; Braess et al., 2005) is adopted. With this simple network, we 

compare the evolution trajectories of BRUE-PSAP and BRUE-NTP with different bounded 

rationality thresholds and different initial states. In the second example, we conduct 

simulation on the Nguyen-Dupuis network (Nguyen and Dupuis, 1984) to show the 

applicability of BRUE-PSAP in larger networks with general link travel cost functions. For 

BRUE-NTP, we set 1  . 

4.1. Braess network 

The Braess network is shown in Figure 2. The travel cost function of each link takes the 

widely-used BPR (Bureau of Public Roads, 1964) form,     40 1 0.15a a a a ac v c v Y  , 

where 0
ac  is the free flow cost and aY  the capacity of link a A , and their values are 

listed in Table 1. There is only one OD pair with a fixed demand of 10 served by three paths 

(Path 1, 1 3O D   ; Path 2, 2 4O D   ; Path 3, 2 5 3O D    ). The 

Wardrop’s UE path flow pattern is uniquely  T
3,3,4 , which is also the equilibrium point of 

RBAP. Given the bounded rationality threshold, the complete BRUE set could be obtained 

using the method proposed by Di et al. (2013). Alternatively, due to the small network size in 

this example, we can plot the approximate BRUE set by enumeration.  

 

Since the feasible path flow patterns have to meet the flow conservation constraint, a 

two-dimensional figure is enough to display the flow trajectories. The ordinary differential 

equation sets representing the day-to-day dynamics, including BRUE-PSAP in Eq. (5) and 

BRUE-NTP in Eq. (15), are solved numerically in Matlab by the built-in function ode45 

using the fourth-order Runge-Kutta method. It is worth mentioning that, the observations we 

made in this example are based on the specific network structure and parameter settings. 
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Generalization of these observations requires further elaboration under general conditions. 

 

We set the bounded rationality thresholds to be 0, 0.3, 0.5 and 0.8, respectively, and see how 

the evolution trajectories change in both BRUE-PSAP and BRUE-NTP. The results are 

shown in Figure 3 and Figure 4, respectively. First of all, when 0  , both models converge 

to the unique Wardrop’s UE as predicted. Second, as the threshold expands, trajectories 

starting from the same initial state shift for both BRUE-PSAP and BRUE-NTP, but less for 

the former, which may indicate that the trajectories of BRUE-PSAP are more “robust” with 
respect to the threshold change. Moreover, given a same threshold, it happens in both models 

that different trajectories converge to the same equilibrium point, but less frequently for 

BRUE-PSAP. For example, when 0.3  , starting from 30 different initial states, the 

numbers of final equilibria of BRUE-PSAP and BRUE-NTP are respectively 22 and 10. In 

this sense, BRUE-PSAP has a much larger diversity regarding the final equilibria than 

BRUE-NTP. 

4.2. Nguyen-Dupuis network 

In this example, we simulate BRUE-PSAP in a larger network with non-separable and 

asymmetric link travel cost functions. The Nguyen-Dupuis network is illustrated in Figure 5, 

with paths and other OD-related information being listed in Table 2. The travel cost on link 

a  is given by 
13 9

1
10a bba abc y x v


   , where  19 19abX x


  and  1 19ay y


  are given in 

Table 3. Two different initial states are chosen, whose values and the corresponding 

equilibrium path flows and costs are listed in Table 4. Flow evolution on representative paths 

is drawn on Figure 6. In both cases, the flow patterns eventually approach the corresponding 

equilibria, which is consistent with Theorem 8. 

5. Conclusions 

This paper proposed an extended RBAP model on the basis of BRUE. The path-based VI 

formulation for BRUE traffic assignment was established. The existing RBAP models (PSAP 

and NTP) were extended to the BRUE case. A special group of BRUE-RBAP was built, with 

which coming along some discussion on the non-existence of the classical solutions to some 

models belonging to this special group. Stability of the general BRUE-RBAP with separable 

link travel cost functions was proved; while considering non-separable link travel cost 
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functions, the stability of BRUE-PSAP was proved. The numerical examples verified the 

stability of BRUE-RBAP and further uncovered some properties of BRUE-PSAP and 

BRUE-NTP. 

 

While making some progresses in the static and dynamic modeling related to BRUE, this 

paper raises more questions which remain unsolved.  

 

First, regarding the BRUE solution set, its topology (e.g. connectedness) is still not fully 

investigated, and although the VI formulation is established, it is unclear how to obtain (at 

least part of) the BRUE solutions based on this formulation in an efficient way. For this topic, 

some discussion can be found in Di et al. (2013) and Han et al. (2015). 

 

Second, although the existence and uniqueness of the solutions to the day-to-day dynamics is 

assured in most of the previous literature, it is not a trivial problem as shown in Sections 2.1 

and 2.2. In some cases, the classical solution doesn’t always exist, as illustrated in Example 1. 

Under this circumstance, other notions of solutions such as Caratheodory solutions and 

Filippov solutions (Cortes, 2008) can be defined, the discussion of which is beyond the scope 

of the current paper but could be an interesting extension in the future.  

 

Third, the stability analyses under BRUE-RBAP are much more complex compared with that 

under RBAP. It is very difficult to construct the Lyapunov functions under general 

non-separable link cost functions, even for the RBAP based on Wardrop’s UE (Guo et al., 

2015a), while the non-convexity of the BRUE link/path flow set could make the problem 

even more challenging for BRUE-RBAP. Furthermore, even the LaSalle’s theorem can only 
be used for day-to-day formulations with classical solutions that are continuous w.r.t. the 

initial states. The discontinuous day-to-day formulations may lead to discontinuous 

Lyapunov functions, and the non-existence of the classical solutions further requires more 

advanced mathematical methods. 

 

Besides the above-mentioned problems, there are broader directions for future research, such 

as the link-based BRUE-RBAP, the BRUE-RBAP under flexible demand and the associated 

congestion pricing scheme (Guo et al., 2015b; Ye and Yang, 2015), as well as validation of 

these models with real data. 
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Figure 1. A single-OD and parallel-link network. 
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Figure 2. Braess network. 
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Figure 3. Trajectories of BRUE-PSAP with different thresholds. 
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 (a) 0   (b) 0.3   

 

 (c) 0.5   (d) 0.8   

Figure 4. Trajectories of BRUE-NTP with different thresholds. 

 

 

1

4 5

12

6 7

9 10 11

13 3

8

2

1

2

3

4
5

6

7

8

9

10

11

15 19

18

12

13

14

16

17

 

Figure 5. Nguyen-Dupuis network. 
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 (a) Pattern #1 (b) Pattern #2 

Figure 6. Evolution of path flows in the asymmetric Nguyen-Dupuis network. 
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Table 1. Parameters of the link performance functions in Braess network 

Link no. a  1 2 3 4 5 

Free flow cost, 0
ac  2 1 1 2 1 

Link capacity, aY  3 7 7 3 4 

 

 

Table 2. OD demands, thresholds and paths in Nguyen-Dupuis network 

Origin Destination Demand Threshold Path # Consisting of links 

1 2 400 20 1  1, 5, 7, 9, 11 

    2  1, 5, 7, 10, 15 

    3  1, 5, 8, 14, 15 

    4  1, 6, 12, 14, 15 

    5  2, 7, 9, 11, 17 

    6  2, 7, 10, 15, 17 

    7  2, 8, 14, 15, 17 

    8  2, 11, 18, 

1 3 800 10 9  1, 5, 7, 10, 16 

    10  1, 5, 8, 14, 16 

    11  1, 6, 12, 14, 16 

    12  1, 6, 13, 19 

    13  2, 7, 10, 16, 17 

    14  2, 8, 14, 16, 17 

4 2 600 15 15  3, 5, 7, 9, 11 

    16  3, 5, 7, 10, 15 

    17  3, 5, 8, 14, 15 

    18  3, 6, 12, 14, 15 

    19  4, 12, 14, 15 

4 3 200 20 20  3, 5, 7, 10, 16 

    21  3, 5, 8, 14, 16 

    22  3, 6, 12, 14, 16 

    23  3, 6, 13, 19 

    24  4, 12, 14, 16 

    25  4, 13, 19 
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Table 3. Parameters of the link performance functions in Nguyen-Dupuis network 

X  

18 10 5  1 1.2              

1 19               0.2 0.1  

2  15 9 2 1.1              

  5 11  2      0.3 0.1       

3  2  13.5 6 0.4 1         1   

2  1 0.9 2 17.5      0.4 0.2       

    0.6  12.5 0.1 4 4.4       0.3   

    0.5  2 5.5    1.1  0.1   0.4   

      0.5  13.5 1 0.6       5  

      0.2  5 33.3    2 13 12    

        0.2  12.5    3   2  

   0.5  4  2    9.8 2 0.3      

   0.1  2      1 5      1 

       0.3  10  3  37 0.1 14    

         0.1 11   0.2 20 0.5    

         0.2    0.1 2 50   6 

 4   3  0.3 2         20 1  

 4       4  0.3      2 11  

            2   5   10 

y  7 9 9 12 3 9 5 13 5 9 9 10 9 6 9 8 7 14 11 

 

Table 4. Initial flows and equilibrium flows/costs for the Nguyen-Dupuis example 

Path # 
Pattern #1 Pattern #2 

Initial flow BRUE flow BRUE cost Initial flow BRUE flow BRUE cost 

1 200.0 0.0 87.8 0.0 0.0 85.8 

2 200.0 0.0 100.8 0.0 0.0 99.0 

3 0.0 0.0 102.7 0.0 0.0 101.4 

4 0.0 0.0 112.3 0.0 0.0 112.6 

5 0.0 51.9 81.3 0.0 37.0 80.9 

6 0.0 0.0 94.4 0.0 0.0 94.1 

7 0.0 0.0 96.3 200.0 0.0 96.5 

8 0.0 348.1 62.1 200.0 363.0 62.5 

9 200.0 0.0 100.0 0.0 0.0 98.6 

10 200.0 0.0 101.9 0.0 0.0 101.0 

11 200.0 0.0 111.4 0.0 0.0 112.2 

12 200.0 634.0 87.7 0.0 623.3 86.8 

13 0.0 80.4 93.5 400.0 123.3 93.7 
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14 0.0 85.6 95.4 400.0 53.5 96.1 

15 200.0 304.1 81.9 0.0 304.9 79.8 

16 200.0 59.8 94.9 0.0 18.8 93.1 

17 200.0 24.9 96.8 0.0 0.0 95.5 

18 0.0 0.0 106.4 300.0 0.0 106.6 

19 0.0 211.3 81.8 300.0 276.3 83.4 

20 50.0 0.0 94.1 0.0 0.0 92.7 

21 50.0 0.0 96.0 0.0 0.0 95.1 

22 50.0 0.0 105.5 0.0 0.0 106.2 

23 50.0 0.0 81.8 0.0 0.0 80.8 

24 0.0 0.0 81.0 100.0 0.0 83.0 

25 0.0 200.0 57.2 100.0 200.0 57.5 
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