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Whole Lung Morphometry with 3D Multiple b-Value
Hyperpolarized Gas MRI and Compressed Sensing
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Purpose: To demonstrate three-dimensional (3D) multiple b-

value diffusion-weighted (DW) MRI of hyperpolarized 3He gas
for whole lung morphometry with compressed sensing (CS).

Methods: A fully-sampled, two b-value, 3D hyperpolarized
3He DW-MRI dataset was acquired from the lungs of a healthy
volunteer and retrospectively undersampled in the ky and kz

phase-encoding directions for CS simulations. Optimal k-
space undersampling patterns were determined by minimizing
the mean absolute error between reconstructed and fully-

sampled 3He apparent diffusion coefficient (ADC) maps. Pro-
spective three-fold, undersampled, 3D multiple b-value 3He

DW-MRI datasets were acquired from five healthy volunteers
and one chronic obstructive pulmonary disease (COPD)
patient, and the mean values of maps of ADC and mean alve-

olar dimension (LmD) were validated against two-dimensional
(2D) and 3D fully-sampled 3He DW-MRI experiments.

Results: Reconstructed undersampled datasets showed no
visual artifacts and good preservation of the main image fea-
tures and quantitative information. A good agreement between

fully-sampled and prospective undersampled datasets was
found, with a mean difference of þ3.4% and þ5.1% observed

in mean global ADC and LmD values, respectively. These dif-
ferences were within the standard deviation range and consist-
ent with values reported from healthy and COPD lungs.

Conclusions: Accelerated CS acquisition has facilitated 3D
multiple b-value 3He DW-MRI scans in a single breath-hold,

enabling whole lung morphometry mapping. Magn Reson
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Medicine. This is an open access article under the terms
of the Creative Commons Attribution License, which per-
mits use, distribution and reproduction in any medium,
provided the original work is properly cited.
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INTRODUCTION

Diffusion-weighted MRI (DW-MRI) with hyperpolarized
(HP) noble gases is sensitive to changes in lung microstruc-
ture through the measurement of the apparent diffusion
coefficient (ADC) of the gas in the alveoli (1–3). However,
the measured ADC value can be influenced by non-
Gaussian phase behavior of the DW signal of the gas in the
lungs, causing non-mono-exponential signal attenuation
with increasing b-value. This behavior is determined by
the specific diffusion regime, which is influenced by sev-
eral factors including the DW measurement parameters,
gas diffusivity, and the complex alveolar structure (4). Var-
ious models of gas diffusion in the lungs have been pro-
posed to address this non-Gaussian signal behavior, and
provide estimates of lung alveolar length scales from the
HP gas signal. These include cylindrical geometrical mod-
els (5,6), q-space transforms (7), and more recently,
stretched exponential models (8). All of these approaches
have a common requirement for the acquisition of multiple
b-value DW-MRI data, to sample the non-mono-
exponential diffusion signal. However, multiple b-value
acquisition in a single breath-hold requires long scan
times, and multi-slice two-dimensional (2D) sequences
have been used to date, which do not provide whole lung
volumetric coverage for lung morphometry.

Previously used 2D 3He DW-MRI sequences permitted
acquisition of approximately five slices with four to six
b-values in a single breath-hold (�15 s) (8,9). Three-
dimensional (3D) DW-MRI sequences designed with a
similar slice thickness (�10–15 mm) and the same num-
ber of b-values would require an acquisition time of
almost 1 min to obtain whole lung coverage images,
which is beyond the limits of a tolerable breath-hold.
Acquisition methods such as radial (10), spiral (11), and
parallel radiofrequency (RF) encoding (12) have been
previously applied to HP 3He lung MRI to decrease
image acquisition time. However, these techniques
require the use of non-Cartesian gradient trajectories or
custom-built multichannel RF coils. Compressed sensing
(CS) presents an alternative acceleration technique that
can be used to reduce the total scan time to within the
limits of a breath-hold by exploiting the sparsity (or com-
pressibility) of lung MR images to acquire a randomly
undersampled k-space (13).

The feasibility of acquisition and reconstruction of HP
3He lung MR images with CS was first investigated by
retrospectively undersampling and reconstructing fully-
sampled 2D and 3D ventilation images (14). These initial
results showed that reductions in scan time could be
achieved in 2D and 3D 3He ventilation imaging without
compromising image quality and functional information.
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In the same work, prospective undersampled 2D 3He
DW-MRI data acquired with CS demonstrated preserva-
tion of spatial resolution and mean ADC values com-
pared with fully-sampled data. Further recent studies
with HP gases have incorporated CS to acquire 3He-1H
images in the same breath-hold (15,16), multi-interleaved
2D 3He MRI data for functional and structural mapping
including ADC, T�2, and B1 (17), and also to measure gas
flow in the upper airways with phase contrast velocime-
try (18).

In this work, CS was implemented to reduce scan time
and facilitate 3D multiple b-value HP 3He DW-MRI
within a single breath-hold. Simulations were first per-
formed to investigate the feasibility of 3D 3He multiple
b-value DW-MRI with CS undersampling, and recon-
structed images were evaluated to ensure that quantita-
tive microstructural information was preserved.
Prospective 3D 3He multiple b-value DW-MRI data were
subsequently acquired in five healthy volunteers and
one chronic obstructive pulmonary disease (COPD)
patient. The data were used to calculate maps of ADC
values (generated from a 2 b-value exponential fit) and
mean diffusion length scale (LmD) estimates (from a mul-
tiple b-value stretched exponential treatment), and these
were compared with values obtained from fully-sampled
3D and 2D multiple b-value DW-MRI.

THEORY

Compressed Sensing

CS allows images to be reconstructed from data that do
not fulfill the Nyquist sampling criteria. In this work,
images were reconstructed by solving Eq. 1 using a non-
linear conjugate gradient descent algorithm with back-
tracking line search (13):

argmin
m
fjjFum� y jj22 þ l1jjcmjj1 þ l2TVðmÞg [1]

where m is the reconstructed image, c is the sparsifying
transformation, Fu is the undersampled Fourier trans-
form, y is the acquired undersampled k-space data, TV
represents the sum of the absolute variations in the
image, and l1 and l2 are the penalty weighting parame-
ters that balance data fidelity and artifact reduction. In
this work, no sparsifying transformations were used in
the CS simulations, because 3D HP 3He lung MR images
are naturally sparse and reconstructed data from the sim-
ulations were found to be equivalently accurate with and
without sparsifying transformations.

Stretched Exponential Model

Within a 3He MR lung imaging voxel, the diffusion of
gas atoms is restricted by the walls of airways with dif-
ferent sizes and orientations with respect to the diffusion
sensitizing gradient (4). These different diffusion regimes
result in differences of apparent diffusion rates, which
are not fully compensated by motional averaging for the
typical diffusion times used for short-range 3He diffusion
measurements (19). This heterogeneity of the apparent
diffusivity is further increased by localized diffusion
effects induced by large gradients (20), as well as effects

related to the airway connectivity (eg, branching (19))

and background susceptibility gradients (9). Hence, the

measured macroscopic voxel signal can be represented

as the superposition of signals with different apparent

diffusivities D using Eq. 2:

Sb

S0
¼
ZD0

0

pðDÞe�bDdD [2]

where S0 is the signal when b ¼ 0, Sb is the signal corre-

sponding to a nonzero b-value, and D0 is the free diffu-

sion coefficient of 3He in air or N2. The probability

density function p(D) for each voxel can be estimated

from the diffusion signal using different approaches (21).

The approach employed in this work (see Eqs. 37 and 38

in (21)) uses the knowledge that the diffusion MR signal

decay of 3He in lungs can be well described by a

stretched exponential function (8) to obtain a numerical

expression for p(D). The distribution of diffusion length

scales LD 5 (2DD)
1=2 (ie, root mean squared displace-

ments, in which D is the diffusion time) associated with

the D values can then be calculated for each voxel. The

p(LD) distributions are a measure of the distribution of

microscopic dimensions of the airways (ie, the diffusion-

restricting boundaries) contained within a given voxel.

These distributions can be used to calculate the mean

diffusion length scale (LmD) for each pixel. LmD values

can therefore provide quantitative estimates of the mean

acinar airway dimensions within a voxel.

METHODS

CS Simulations

All CS simulations and subsequent mean absolute error

(MAE), ADC, and LmD calculations were implemented

in-house using MATLAB (The Mathworks, Natick, Mas-

sachusetts) software. All in vivo MRI experiments were

performed under the approval of the UK national

research ethics committee.
Fully-sampled 3D DW HP 3He lung MR images were

acquired from the lungs of a healthy male volunteer (30

years old) in a 22 s breath-hold on a GE HDx 1.5 Tesla

(T) MR scanner (GE Healthcare, Milwaukee, WI) using a

3D spoiled gradient echo (SPGR) sequence based on that

described in (22). A flexible quadrature transmit-receive

RF coil (Clinical MR Solutions, Brookfield, Wisconsin),

tuned to the Larmor frequency of 3He (48.63 MHz), was

used with a gas dosage of 300 mL of HP 3He (�25%

polarization), mixed with 700 mL of N2. The lung infla-

tion level at imaging had a functional residual capacity

plus 1 L (FRCþ1L). Images were acquired with sequential

phase encoding and the following acquisition parame-

ters: 2� DW interleaves (b¼0, 1.6 s/cm2), 96 � 78 � 24

matrix, field of view (FOV): 40 � 32.5 � 28.8 cm3, effec-

tive slice thickness: 12 mm, echo time (TE)/repetition

time (TR): 4.2/5.7 ms, diffusion time¼1.6 ms (DW gradi-

ent strength¼14.1 mT/m, ramp¼0.3 ms, plateau¼ 1.0

ms), flip angle¼ 1.5 � (hard RF pulse of 0.24 ms dura-

tion), bandwidth¼631.25 kHz. The flip angle was

selected such that �25% of the initial nonrenewable
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magnetization remained at the end of the acquisition as

a result of RF pulse depolarization.
From the fully-sampled 3D image data, random k-space

undersampling patterns were generated in the two orthog-

onal phase-encoding directions for acceleration factors

(AF) ranging from 2 to 5. A Monte Carlo–based algorithm

was used with variable density to maximize the incoher-

ence. For each AF, four different k-space sampling pat-

terns were generated with different probability density

functions. Each of these patterns was used to retrospec-

tively undersample the full k-space dataset, and the corre-

sponding images were reconstructed as follows.
Reconstructions based on Eq. 1 were optimized by

minimizing the MAE between the fully-sampled ADC

maps and the CS-reconstructed ADC maps (MAEADC).

The quality of each reconstruction was evaluated using

both the MAEADC and the MAE between the original

fully-sampled magnitude image (b¼0) and the CS-

reconstructed magnitude image (MAEMAG). For the ulti-

mate goal of quantitative lung microstructural analysis,

the MAEMAG, MAEADC, and ADC maps were evaluated

on a pixel-by-pixel basis within a region of interest (ROI)

representing the lungs. MAEMAG was calculated using

Eq. 3 as follows:

MAEMAG ¼

XN

i¼1

XM

j¼1
jCSi;j � Fulli;j j

N �M
[3]

where CSi;j and Fulli;j denote the normalized pixel val-

ues in the CS-reconstructed and original fully-sampled

images, respectively; and N �M is the total number of

pixels in the lung ROI. ADC maps were computed using

a pixel-by-pixel mono-exponential fit of signal intensities

in the two interleaves of the 3D 3He DW-MRI dataset, as

in Eq. 4:

ADC ¼ lnðS0=SbÞ
b

[4]

An asymmetric cutoff of negative (ADC<0) or physically

too high (ADC>D0¼0.88 cm2/s) values was applied dur-

ing the creation of the ADC maps. MAEADC was calcu-

lated using a similar approach to MAEMAG, as in Eq. 5

MAEADC ¼
PN

i¼1

PM
j¼1 jCS ADCi;j � Full ADCi;j j

N �M
[5]

except that here CS ADCi;j and Full ADCi;j refer to the

pixel values of the ADC maps in the CS-reconstructed

and the original fully-sampled cases, respectively, as cal-

culated from Eq. 4. Whole lung ADC histograms were

generated for each AF, and skewness and full width at

half maximum (FWHM) values were derived from each

ADC histogram. Skewness of ADC values was calculated

using Eq. 6,

Skew ¼ Eðx � mÞ3

s3
[6]

where m is the mean of the ADC values (x), s is the

standard deviation, and E is the expectation operator.

Prospective CS Acquisition of 3D 3He DW-MRI

Prospective CS datasets with four DW interleaves were

acquired in five healthy volunteers and one COPD patient

(spirometric forced expiratory volume in 1 s, FEV1¼
31.2% predicted) using the optimal undersampling pattern

that was derived from CS simulations with AF¼ 3. Three-

fold undersampling was chosen because it was the highest

AF achievable without introducing significant image blur-

ring, and allowed a scan time reduction from 45 to 15 s,

which is a tolerable breath-hold for most clinical subjects.

The 3D CS multiple b-value DW-MRI dataset was acquired

with the following imaging parameters: gas dosage: 300 mL
3He mixed with 700 mL N2, lung inflation state: FRCþ 1L,

4 DW interleaves (b¼0, 1.6, 4.2, 7.2 s/cm2), 96 � 78 � 24

matrix, FOV: 40 � 32.5 � 28.8 cm3, effective slice thick-

ness: 12 mm, TE/TR: 4.2/6.0 ms, diffusion time¼ 1.6 ms

(maximum DW gradient strength¼ 30 mT/m, ramp¼ 0.3

ms, plateau¼ 1.0 ms), flip angle¼ 1.9 � (hard RF pulse as

previously), bandwidth¼631.25 kHz. ADC maps were cal-

culated from the first two interleaves, whereas LmD maps

were derived from all four interleaves using the stretched

exponential methodology.

Prospective CS Acquisition Validation

To validate the ADC and LmD microstructural measure-

ments derived from prospective 3D CS data, the same

five healthy volunteers were imaged with fully-sampled

3D and 2D 3He DW-MRI using the scan parameters

detailed in the “CS Simulations” section and this sec-

tion, respectively. 3D fully-sampled data were also

acquired from the COPD patient; however, 2D fully-

sampled data were not acquired because of patient time

constraints. The selection of b-values used in all scans

was consistent and chosen to ensure that one of the

diffusion interleaves corresponded to b¼ 1.6 s/cm2, the

b-value most commonly used for 3He ADC calculations

in the literature (1,3,23,24).
2D multiple b-value DW-MRI data were acquired with

similar FOV and slice thickness as the corresponding 3D

datasets. Six slices were acquired with 12 mm thickness

and 12 mm gap, using a gas dosage of 300 mL 3He (mixed

with 700 mL N2) at a lung inflation state of FRCþ1L. Addi-

tional imaging parameters were as follows: four DW inter-

leaves (b¼0, 1.6, 4.2, 7.2 s/cm2), 96 � 72 in-plane matrix,

in-plane FOV: 40 � 30 cm2, TE/TR: 4.9/10 ms, diffusion

time¼ 1.6 ms (maximum DW gradient strength¼30 mT/m,

ramp¼ 0.3 ms, plateau¼ 1.0 ms), flip angle¼ 5 � (sinc RF

pulse), bandwidth¼631.25 kHz.
Comparisons of ADC and LmD values were made

between each corresponding dataset acquired from each

subject; ADC values (from a two b-value, 0 and 1.6 s/

cm2, mono-exponential fit) were compared between 3D

fully-sampled and 3D CS acquisitions, whereas LmD esti-

mates were compared between 2D fully-sampled and 3D

CS acquisitions. To investigate the agreement between

the two sets of measurements, scatter and Bland-Altman

plots were constructed to compare the relative difference

in ADC and LmD values on a slice-by-slice level.
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RESULTS

CS Simulations

CS simulations performed on the fully-sampled two

interleaved 3D 3He DW-MRI dataset led to optimal sam-

pling patterns and penalty weight parameters for each

AF. The optimal sampling patterns for each AF resulting

from the CS simulations are summarized in Figure 1a.

An increase in MAEMAG was observed with increasing

AF; however, this error (with a maximum value of 3.8%

at AF¼5) did not manifest in the appearance of image

artifacts. Reconstructed (b¼0) images for AFs of 2 and 3

showed good preservation of image details when com-

pared with the fully-sampled (AF¼1) image (examples

shown in Fig. 1b). At AFs of 4 and 5, a loss in image

detail was observed as a result of increased blurring

resulting from heavier undersampling of high-frequency

k-space components.
ADC maps were computed for each reconstructed 3D

3He CS dataset and compared with the 3D fully-sampled

ADC maps. CS simulation ADC results are summarized in

Table 1 and Figure 2. MAEADC exhibited a similar trend to

MAEMAG, ie, increasing undersampling resulted in larger

error values. The skewness of the whole lung ADC histo-

grams increased with AF; skewness¼1.08 at AF¼ 1 and

2.14 at AF¼5, respectively. The opposite trend was

observed with the FWHM of the histogram, which

decreased at higher AFs: FWHM¼ 0.141 cm2/s at AF¼ 1

and 0.118 cm2/s at AF¼ 5. In addition, a slight increase in

global ADC values was observed with increasing AF,

reflecting the increase in MAEADC. The maximum differ-

ence in global ADC value between CS and fully-sampled

acquisitions was 4% at AF¼5. Despite the slight increase

in global ADC values, single-slice ADC maps and whole

lung ADC histograms for each AF (see Figs. 2a and 2b)

appeared to be visually similar, indicating good preserva-

tion of quantitative lung microstructural information.

Prospective CS Acquisition of 3D 3He DW-MRI

The four-interleaved 3D 3He DW-MRI dataset acquired

from the same healthy volunteer as previously was

reconstructed from the three-fold undersampled k-space

using the optimal reconstruction parameters of the corre-

sponding undersampling pattern, as determined from CS

simulations. Results are summarized in Figures 3 and 4,

and Table 2, and described subsequently. A decrease in

signal intensity with increasing b-value was observed,

corresponding to the increased signal dephasing in the

presence of larger diffusion gradients (Fig. 3a). The first

two interleaves (b¼ 0 and 1.6 s/cm2) were used to calcu-

late an ADC map (Fig. 3b), which resulted in a mean

global (whole lung) ADC value of 0.198 6 0.082 cm2/s.

All four interleaves of this prospective dataset were then

used to generate a LmD map from the stretched

FIG. 1. Results from 3D 3He CS simulations. (a) Optimal variable-density k-space undersampling patterns (78 � 24 pixels) for each AF

determined from CS simulations. (b) Example reconstructed magnitude (b¼0) and difference images for each AF, with corresponding
MAEMAG values.

Table 1

Summary of Global ADC Values and Whole Lung ADC Histogram
Results From 3D 3He CS Simulations

AF ADCGlobal (cm2/s) Skewness FWHM (cm2/s)

1a 0.198 6 0.085 1.08 0.141
2 0.203 6 0.094 1.79 0.127

3 0.202 6 0.091 1.95 0.123
4 0.204 6 0.093 2.12 0.120
5 0.206 6 0.094 2.14 0.118

ADCGlobal, global ADC; FWHM, full width at half maximum
aAF¼1 corresponds to the fully-sampled dataset.
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exponential model (Fig. 3c), which resulted in a mean
global LmD value of 222.8 6 25.3 mm.

The resulting global and representative slice mean
ADC and LmD values for this healthy volunteer calcu-
lated from 3D CS, 3D fully-sampled, and 2D fully-
sampled acquisitions are summarized in Table 2. Derived
3D fully-sampled and 3D CS global ADC values were
identical, with a comparable standard deviation, whereas
a difference of 6.8% was observed in the global LmD

value between the 3D CS and the 2D fully-sampled
datasets. In the chosen example slices, a difference in
mean ADC of 5.9% between 3D CS and 3D fully-sampled
datasets was observed, as illustrated in Figure 4. For
mean LmD, the difference was 2.8% between 3D CS and
2D fully-sampled datasets.

Prospective CS Acquisition Validation

A summary of global mean ADC and LmD values for all
subjects imaged (five healthy volunteers and one COPD
patient) is presented in Table 3. For every subject, the
global mean ADC value derived from the 3D CS acquisi-
tion was equal to or higher than the value obtained from
the corresponding 3D fully-sampled acquisition. The dif-
ference in ADC values between the fully-sampled and
CS datasets ranged from 0.0 to 5.9% with a mean differ-
ence of 3.4%. Global LmD values exhibited a similar
increase in 3D CS acquisitions, and a slightly higher
mean difference of 5.1% was observed.

A scatter plot of single-slice ADC values calculated
from 3D fully-sampled and 3D CS datasets (Fig. 5a) shows
a good correlation (P< 0.001, r¼ 0.995). Two clusters of

FIG. 2. ADC results from 3D 3He CS simulations. (a) ADC maps for an example slice at each AF, with corresponding MAEADC values. (b)
Whole lung ADC histograms for each AF.

FIG. 3. Prospective 3D 3He DW-

MRI CS acquisition from a healthy
volunteer with three-fold under-
sampling and four diffusion inter-

leaves at b-values of 0, 1.6, 4.2,
and 7.2 s/cm2 (15 s breath-hold).

(a) Example slice for each diffusion
interleave. (b) ADC map of the
same slice calculated from the first

(b¼0) and second (b¼1.6 s/cm2)
interleaves. The representative

mean slice ADC value is shown
underneath the map. (c) Mean
alveolar dimension (LmD) map for

the same slice. The representative
mean slice LmD value is quoted

underneath the map.
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data points were observed, corresponding to the healthy
and COPD patient groups. The agreement between the

two measurements was confirmed by Bland-Altman anal-
ysis (Fig. 5b). The mean slice-by-slice ADC percentage
difference between methods was þ2.1% (absolute differ-

ence of 0.005 cm2/s), and 95% of the difference was
within �9.2% to þ13.4% (�0.024 to 0.034 cm2/s). Similar
levels of agreement in the LmD value between methods

were observed, as illustrated in the equivalent scatter and
Bland-Altman plots (Figs. 5c and 5d). The mean LmD per-
centage difference of þ4.7% (absolute difference of

9.29 mm) was larger than the mean ADC percentage differ-
ence, and 95% of the difference was within �2.1% to
þ11.4% (�4.65 to 23.23 mm).

DISCUSSION

CS Simulations

CS has enabled the acquisition of 3D multiple b-value
DW lung images with HP 3He in a single breath-hold, for

the purpose of diffusion modeling of lung microstructure
using a stretched exponential approach. CS simulations
performed on a fully-sampled two b-value 3D 3He DW-

MRI dataset led to optimal sampling patterns and pen-
alty weight parameters for different AFs (between 2 and

5). The slight increase in mean ADC value observed with
retrospective undersampling was within the range of

healthy lung ADC values (�0.20 cm2/s) at b¼ 1.6 s/cm2

found in previous studies (2,3,24).
Skewness of the ADC histogram was observed to

increase with AF. The increase in skewness and mean
ADC can both be explained by the increase in mean abso-
lute error (MAEMAG and MAEADC) with increased under-
sampling. With CS, some information loss is inevitable
from the undersampling of k-space, which increases errors
and creates a noise-like artifact in the magnitude images.
The slight increase in MAEADC results in a few physiologi-
cally unrealistic low and high ADC values in some pixels.
Examples can be observed in the single-slice ADC maps at
AFs of 2–5 in Figure 2a. An asymmetric cutoff of negative
(ADC< 0), or physically too high (ADC>D0¼0.88) values
is applied during the creation of the ADC maps; however,
some of the uncut artificially high pixel values still influ-
ence the mean and skewness of the histogram. If the whole
histogram is considered (ie, no cutoff of lower and higher
ADC limits is applied), the change in skewness of the
ADC histogram between AFs is much lower and the maxi-
mum difference in global ADC value becomes only 1.3%,
compared with the 4% difference calculated when the
asymmetric cutoff is applied.

ADC histograms also appear narrower at larger AFs
because of the smaller FWHM values observed with
increased undersampling. This trend can be explained
by the properties of CS reconstruction, in that denoising
and thresholding is used to remove undersampling noise
artifacts introduced by undersampling (13). Narrower
ADC histograms from increasingly undersampled 2D 3He
ADC data were also observed previously in (14). The
standard deviation values of the global and slice ADC
values from reconstructed CS datasets were larger than
the corresponding fully-sampled values; a trend opposite
to that reported by Ajraoui et al (14). This difference is
likely the result of pixels with high ADC value being
introduced from increased MAEADC, causing a larger
standard deviation of ADC values. The decrease in
FWHM value observed with increased undersampling
more accurately reflects the denoising and smoothing of
the CS reconstruction process.

In this work, CS simulations were optimized by mini-
mizing MAEADC, whereas in previous work, only MAE-

MAG was minimized for 2D ADC mapping with 3He (14).
Here, the ADC values obtained from simulations opti-
mized with minimum MAEADC were found to be more
comparable with fully-sampled datasets than those opti-
mized using the minimum MAEMAG method. The opti-
mal penalty weight parameters (l1 and l2) for
simulations with minimum MAEADC were also found to
be smaller than those resulting from MAEMAG

FIG. 4. Comparison of 3D and 2D 3He ADC and LmD maps. (a)

Same representative slice ADC map for each of the three imaging
methods (3D fully-sampled, 3D with CS, and 2D fully-sampled).

(b) Corresponding LmD maps for 3D with CS and 2D acquisitions.

Table 2
Summary of Global and Representative Slice Mean ADC and LmD Values Acquired From a Single Healthy Volunteer

Imaging method

b-value¼ [0, 1.6 s/cm2] b-value¼ [0, 1.6, 4.2, 7.2 s/cm2]

Slice ADC
mean (cm2/s)

Global ADC
mean (cm2/s)

Slice LmD

mean (mm)
Global LmD

mean (mm)

3D full k-space 0.187 6 0.076 0.198 6 0.085 —a —a

3D CS 0.176 6 0.071 0.198 6 0.082 212.7 6 24.0 222.8 6 25.3

2D full k-space 0.190 6 0.089 0.194 6 0.090 206.9 6 29.5 208.6 6 29.8

a3D fully-sampled data were acquired with only two diffusion interleaves; therefore, no LmD value was calculated.
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simulations. Considering the nonlinear CS reconstruction
algorithm in Eq. 1, this finding indicates that the recon-
structed images with minimum MAEADC have less total
variation and sparsity when compared with images
reconstructed with minimum MAEMAG, implying that
data consistency needs to be better maintained during
the reconstruction process, leading to improved preser-
vation of quantitative lung microstructural information.

As expected, MAEMAG increased with AF in CS simu-
lations, which was manifested as a blurring in image
detail due to a reduction in sampling of high-frequency
k-space components at higher AFs. These blurring effects
are an intrinsic result of the variable density k-space
sampling patterns used in the CS simulations. Because

most of the information in HP gas lung images arises

from low-frequency k-space components, a probability

density function is used to sample the center of k-space

more heavily than the periphery. In this work, the

increasingly lower sampling density of high-frequency

components with increasing AF prevented the use of

AFs of 4 and 5 for 3D 3He lung MRI acquisitions,

because the associated loss of spatial resolution of the

reconstructed images was considerable.

Prospective CS Acquisition of 3D DW-MRI

A prospective three-fold undersampled 3D 3He DW-MRI

dataset was acquired in one healthy volunteer using an

Table 3
Global ADC and LmD Values Calculated From Fully-Sampled and CS Acquisitions for the Five Healthy Volunteers and One COPD

Patient

Subject
Imaging
method

b-value¼ [0, 1.6 s/cm2] ADC %
difference

Multiple b-values LmD %
differenceglobal ADC (cm2/s) global LmD (mm)

Healthy 1
Fully-sampled 0.198 6 0.085

0.0%
208.6 6 29.8

6.8%
3D CS 0.198 6 0.082 222.8 6 25.3

Healthy 2
Fully-sampled 0.163 6 0.082

4.3%
192.6 6 27.0

6.0%
3D CS 0.170 6 0.077 204.1 6 23.2

Healthy 3
Fully-sampled 0.152 6 0.083

5.9%
184.5 6 31.0

8.3%
3D CS 0.161 6 0.069 199.8 6 27.0

Healthy 4
Fully-sampled 0.163 6 0.068

1.8%
197.5 6 24.2

3.6%
3D CS 0.166 6 0.067 204.6 6 23.6

Healthy 5
Fully-sampled 0.169 6 0.081

5.9%
207.5 6 24.6

0.7%
3D CS 0.179 6 0.078 209.0 6 29.1

COPD 1
Fully-sampled 0.525 6 0.169

2.7%
—a

—
3D CS 0.539 6 0.186 313.6 6 56.1

a2D fully-sampled DW-MRI was not acquired from the COPD patient as a result of time constraints.

FIG. 5. (a) Slice-by-slice compari-

son of mean ADC values between
3D fully-sampled and 3D CS data-
sets for all five healthy volunteers

and one COPD patient. Solid line
represents the line of equality. (b)

Bland-Altman plot showing the
agreement between the two meth-
ods. The percentage difference in

slice ADC values is plotted against
the mean slice ADC values
between the two measurements.

Solid lines represent the mean
percentage difference, and the

95% difference range (61.96
standard deviations). (c) Equiva-
lent slice-by-slice comparison of

mean LmD values between 2D
fully-sampled and 3D CS datasets

for all five healthy volunteers. (d)
Equivalent LmD Bland-Altman plot
showing a similar agreement

between the two methods.
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optimized undersampling pattern, and quantitative meas-

ures of lung microstructure were compared with 2D

fully-sampled and 3D DW-MRI datasets. An excellent

ADC agreement was observed between 3D fully-sampled

and 3D CS datasets, whereas a difference of 6.8% was

observed in the global LmD value between the 3D CS and

2D fully-sampled datasets. This global LmD difference

was within the standard deviation range of the global

mean value, and LmD values were similar to reported

mean linear intercept values obtained from healthy

human lung histology samples (�200 mm) (25). In the

chosen example slices, the observed mismatch between

the CS and fully-sampled ADC and LmD values could be

explained by slight differences in subject position or

lung inflation level between the separate scans, which

could cause the example slices to be representative of a

slightly different region of the lungs (Fig. 4).
A small positive bias in global mean ADC and LmD

value was observed between 3D CS and fully-sampled

2D and 3D datasets acquired from the five healthy volun-

teers and one COPD patient, which could be attributed

to the increase in MAEADC as a result of undersampling.

However, these values were within the standard devia-

tion range, consistent with reported healthy and COPD

lung ADC values (2,3,24) and similar to mean linear

intercept values obtained from human lung histology

samples (�200 mm in healthy, �400 mm in COPD) (25).

In a slice-by-slice comparison of fully-sampled and CS-

derived ADC and LmD values, good agreement was

found, close to the line of equality. In the quantitative

comparisons of both ADC and LmD, 95% of the differ-

ence between fully-sampled and CS datasets was well

within the standard deviation range of mean values.

From the CS simulations (where, unlike the fully-

sampled acquisitions, there is intrinsically no variability

because of scans being performed in a separate breath), a

�2% ADC mismatch was observed between the fully-

sampled and three-fold undersampled CS reconstruction,

which can be attributed to CS reconstruction error.
Despite the observation of a small positive bias in CS-

derived ADC and LmD values, the biases are negligible

when compared with the large differences in lung micro-

structure between healthy and COPD subjects; ADC and

mean linear intercept length values of emphysema sub-

jects vary depending on disease severity, but are typically

2–2.5 times larger than those of healthy subjects (2,25).

Thus, our results indicate that 3D multiple b-value 3He

DW-MRI with CS has potential to be used clinically to

track changes in lung microstructure associated with

emphysematous disease. The 3D multiple b-value data

affords the possibility of calculating LmD across the entire

lung volume from the stretched exponential model, allow-

ing for volumetric lung microstructural estimates. The 3D

multiple b-value acquisition strategy proposed here is

fully compatible with the stretched exponential model,

and also alternative diffusion analyses and morphometric

models, such as the “cylinder model” (5,6) or q-space

transform analysis (7).
To demonstrate the clinical potential of this method,

five healthy subjects and one COPD patient were imaged

with the 3D CS multiple b-value DW-MRI sequence. LmD

maps were calculated across the entire lung for each sub-

ject, and the derived global mean LmD values reflect the

alveolar size of each subject (example maps from

a healthy subject and the COPD patient are shown in

Fig. 6).
One limitation of the slice-by-slice comparison of lung

microstructural measurements between fully-sampled and

CS datasets was that the lung volume was assumed to be

the same for each acquisition. Subjects were instructed to

inhale the 3He and N2 gas dosage from FRC to produce a

lung volume of FRCþ1 L. However, this inflation volume

may not have been reproduced exactly for each acquisi-

tion. A difference in lung inflation level of 6% compared

with 15% of total lung capacity (TLC) has been shown to

have a relatively minor effect on the global mean ADC val-

ues (24), but this could also result in slices from the fully-

sampled and CS datasets that correspond to slightly differ-

ent regions of the lung. The difference in lung microstruc-

tural parameters between possibly misregistered slices

could be additionally affected by the gravitational

dependence of lung ventilation. For example, in the

supine position, 3He ADC values have been shown to be

larger in the anterior regions of the lung compared with

the posterior regions, as a result of the gravitational com-

pression of lung tissue in the latter (26).

FIG. 6. Four example slice LmD

maps calculated from 3D multi-

ple b-value 3He DW-MRI with
CS acquired in a healthy (top

row) and COPD subject (bottom
row).
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From the CS simulations, a small increase in MAEADC

and MAEMAG was observed from AF¼3 to AF¼ 4 or 5.

The use of these high AFs could allow for higher nomi-

nal spatial resolutions to be achieved, or permit the

acquisition of additional diffusion interleaves. However,

one drawback of using higher AFs is the more severe

image blurring effects introduced as a result of the heav-

ier undersampling of high-frequency k-space compo-

nents. These blurring effects could be reduced by

incorporating prior knowledge into the CS reconstruction

procedure to improve reconstruction accuracy (15), and

thus improve the preservation of edge details of the 3D

CS multiple b-value DW-MRI lung images.
In recent years, the potential of HP 129Xe as a cost-

effective alternative to 3He for lung imaging and ADC

mapping has been explored, with comparable results and

functional information obtained from the two nuclei

(1,27). Furthermore, naturally abundant xenon (26%
129Xe) (28) and efficient use of enriched xenon (29) have

been shown to enable high-quality ventilation imaging at

a significantly lower cost than that of 3He. However, the

approximately three-fold lower gyromagnetic ratio of
129Xe compared with 3He translates to a considerable sig-

nal disadvantage under equivalent experimental condi-

tions, and the lower diffusivity of the xenon gas also

requires that longer diffusion gradients be used to probe

lung microstructure in DW-MRI. To date, 2D multiple b-

value 129Xe DW-MRI has been demonstrated for lung

morphometry assessment (30,31); however, these meth-

ods do not provide whole lung coverage information.

The CS techniques implemented here are readily trans-

latable to 129Xe and could be applied to enable acquisi-

tion of 3D multiple b-value 129Xe DW-MRI, to allow

whole lung morphometry calculations at a fraction of the

cost of an equivalent 3He acquisition.

CONCLUSIONS

Compressed sensing has been implemented successfully

for the acquisition of 3D multiple b-value DW-MRI lung

images with HP 3He in a single breath-hold for quantita-

tive whole lung microstructural assessment. Prospective

CS datasets were acquired in five healthy volunteers and

one COPD patient using an optimized three-fold under-

sampled k-space pattern, and derived ADC and LmD

results were validated against fully-sampled 3D and 2D
3He DW-MRI. Good agreement between prospective CS

and fully-sampled datasets was found, with a mean dif-

ference of þ3.4 and þ5.1% in global mean ADC and LmD

values, respectively. These results confirm that CS acqui-

sition of undersampled 3D 3He MRI datasets with multi-

ple b-values for lung morphometry is fit for clinical lung

imaging studies.
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