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ABSTRACT

Mathematical models of collective cell movement often neglect the effects of spatial
structure, such as clustering, on the population dynamics. Typically, they assume that
individuals interact with one another in proportion to their average density (the mean-
field assumption) which means that cell–cell interactions occurring over short spatial
ranges are not accounted for. However, in vitro cell culture studies have shown that
spatial correlations can play an important role in determining collective behaviour.
Here, we take a combined experimental and modelling approach to explore how
individual-level interactions give rise to spatial structure in a moving cell population.
Using imaging data from in vitro experiments, we quantify the extent of spatial structure
in a population of 3T3 fibroblast cells. To understand how this spatial structure arises,
we develop a lattice-free individual-based model (IBM) and simulate cell movement in
two spatial dimensions. Our model allows an individual’s direction of movement to be
affected by interactions with other cells in its neighbourhood, providing insights into
how directional bias generates spatial structure. We consider how this behaviour scales
up to the population level by using the IBM to derive a continuum description in terms
of the dynamics of spatial moments. In particular, we account for spatial correlations
between cells by considering dynamics of the second spatial moment (the average
density of pairs of cells). Our numerical results suggest that the moment dynamics
description can provide a good approximation to averaged simulation results from the
underlying IBM. Using our in vitro data, we estimate parameters for the model and
show that it can generate similar spatial structure to that observed in a 3T3 fibroblast
cell population.
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INTRODUCTION

Collective cell movement is integral to tissue repair (Martin, 1997; Shaw &Martin, 2009),

embryonic development (Kurosaka & Kashina, 2008), the immune response (Rørth, 2009)

and cancer (Friedl & Wolf, 2003). Interactions occurring between individual cells have

implications for movement of the cell population as a whole. However, the manner

in which these individual-level events affect the collective dynamics is not always well

understood (Tambe et al., 2011; Vedel et al., 2013; Agnew et al., 2014). Cells interact over

short length scales in various ways, for example via cell-secreted diffusible chemical

signals (Mason, Ito & Corfas, 2001; Raz & Mahabaleshwar, 2009). When detected by

neighbouring cells these signals can have a repulsive or attractive effect on an individual’s

direction of movement (Painter & Hillen, 2002), or affect the rate at which a cell will

move (Cai, Landman & Hughes, 2006). Physical forces, such as cell–cell adhesion (Trepat et

al., 2009; Tambe et al., 2011), and crowding effects also influence movement (Abercrombie,

1979; Plank & Simpson, 2012). These interactions may generate spatial structure in a cell

population which will in turn affect the collective dynamics (Plank & Law, 2015). For

instance, cell clustering can arise due to attractive forces such as cell–cell adhesion (Green

et al., 2010; Agnew et al., 2014). On the other hand, repulsive forces such as chemorepellant

signals can cause cells to segregate (Kay, Chu & Sanes, 2012; Keeley et al., 2014).

Individual-based models (IBMs) have proven effective for simulating the movement of

large numbers of cells and can give insights into how interactions give rise to spatial

structure (Grimm et al., 2006). In a lattice-free framework, cells are represented as

individual agents undergoing movement through continuous space and features including

proliferation (Plank & Simpson, 2012), cell–cell adhesion (Johnston, Simpson & Plank,

2013) and directional bias (Dyson & Baker, 2015) can be incorporated into the model.

Equivalent lattice-based models, where agent locations are restricted to discrete sites

on a pre-defined lattice, often require less computational power than their lattice-free

counterparts. However, at high cell densities agents become aligned along the lattice

resulting in unrealistic spatial configurations of cells that do not correspond well to

those observed experimentally (Plank & Simpson, 2012). In lattice-free models, different

approaches can be employed to account for crowding effects and volume-exclusion, the

concept that the cells themselves take up space in the domain and may obstruct the

movement of neighbouring cells. For instance, each individual may occupy a spherical

regionwith fixed diameter throughwhich themovement of other agents is restricted (Bruna

& Chapman, 2012; Dyson & Baker, 2015).

IBMs for cell movement in two spatial dimensions generate simulation data that can

be compared to experimental images of moving cells studied in vitro. In two-dimensional

cell migration assays, such as circular barrier assays (Simpson et al., 2013b) and scratch

assays (Johnston, Simpson & McElwain, 2014), cells are seeded into a well and allowed to

attach to the well surface. The movement of cells across the surface can then be monitored

by imaging the well at regular discrete time intervals. Analysis of this time-lapse imaging

data provides information about the properties of individual cells as well as the spatial

distribution of the population over time (Simpson, Landman & Hughes, 2010).
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Using an IBM to obtain a reliable description of average cell behaviour can become

computationally expensive because this involves carrying out many simulation repeats. In

addition, IBMs are not particularly amenable to further mathematical analysis. This has

motivated the development of more mathematically tractable approximation schemes

which can provide greater insight into how population-level behaviour arises from

interactions in the underlying stochastic process (Deroulers et al., 2009). Models that aim

to capture collective movement at the population level, such as the Fisher–Kolmogorov

equation (Fisher, 1937; Kolmogorov, Petrovsky & Piskunov, 1937), typically do not account

for spatial structure. Themajority ofmodels invoke amean-field assumptionwhich assumes

that cells interact with one another in proportion to their average density (Anderson &

Chaplain, 1998;Deroulers et al., 2009; Tremel et al., 2009). Thus, they do not always provide

an accurate representation of cell behaviour, particularly in highly clustered (or segregated)

populations where interactions between neighbouring cells are often stronger (or weaker)

than in populations where there is no spatial structure (Simpson et al., 2013a; Markham,

Baker & Maini, 2014).

An alternative approach incorporates spatial correlations by employing the dynamics

of spatial moments. The dynamics of individual cells, pair of cells, triplets of cells, and

so on, can be considered in order to explore how spatial structure changes over time.

In ecology, spatial moment models have been developed to study the effects of spatial

patterns in animal and plant communities (Bolker & Pacala, 1997; Lewis & Pacala, 2000;

Dieckmann & Law, 2000). Models incorporating birth, death (Bolker & Pacala, 1997; Law,

Murrell & Dieckmann, 2003), growth (Adams et al., 2013) and movement (Murrell & Law,

2000) have been considered, as well as interactions between different types or species, for

example predator–prey relationships (Murrell, 2005). More recently, moment dynamics

approaches have also been applied to collective cell movement, such as in lattice-free

models with chemotactic interactions (Newman & Grima, 2004; Binny, Plank & James,

2015) and cell–cell adhesion (Middleton, Fleck & Grima, 2014), and a lattice-based model

for interacting cell populations (Johnston, Simpson & Baker, 2015).

A closure assumption is required in order to solve a dynamical system of spatial

moments. The mean-field assumption closes the system at first order so ignores the

spatial information held in higher moments. In order to retain information about spatial

structure a second-order closure, at least, is needed. A number of different second-order

closures are possible (Murrell, Dieckmann & Law, 2004; Raghib, Hill & Dieckmann, 2011);

however, the Kirkwood Superposition Approximation is often applied in the context of cell

movement (Kirkwood, 1935; Kirkwood & Boggs, 1942; Markham, Baker & Maini, 2014).

Other schemes which do not rely on a closure assumption have also been developed, for

example perturbation approximations (Bruna & Chapman, 2012) and methods that deal

with spatial moments at all orders (Ovaskainen et al., 2014).

In this paper we extend the model described in our recent work (Binny, Plank &

James, 2015) from one to two spatial dimensions, making it more amenable for use in

conjunction with experimental data. To explore whether our model can provide insights

into the behaviour of moving cells studied in vitro, we analyse imaging data generated from

experiments with populations of motile 3T3 murine fibroblast cells.
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We present a lattice-free IBM for collective cell movement in which an individual’s rate

and direction of movement are determined by interactions with cells in its neighbourhood.

This neighbour-dependent directional bias allows us to explore how attractive or repulsive

interactions between cells give rise to spatial structure in the population. The first spatial

moment, the average density of individual cells, holds no spatial information. Therefore, in

order to account for spatial correlations we consider the second spatial moment, an average

density of pairs of cells. We use our IBM to derive a population-level description for the

second moment dynamics and solve this for a distribution of cells that is homogeneous in

space. Our results suggest that the spatialmomentmodel can provide a good approximation

to the underlying stochastic process.

Motile cells possess dynamic cytoskeletons which allow them to change their shape and

flex around neighbouring cells (Abercrombie, 1979; Le Clainche & Carlier, 2008). To try

and capture this trait we also make use of the neighbourhood-dependent directional bias as

a mechanism for incorporating crowding effects, rather than defining cells as hard spheres

with a fixed exclusion area. Using our in vitro data, we estimate parameters for the model

and quantify the spatial structure in a moving population of fibroblast cells.

EXPERIMENTAL METHODS

Cell culture

Murine fibroblast 3T3 cells were cultured in Dulbecco’s modified Eagle medium

(Invitrogen, Australia) with 5% foetal calf serum (FCS) (Hyclone, New Zealand), 2

mM L-glutamine (Invitrogen, Carlsbad, CA, USA), 50 U/ml penicillin and 50 µg/ml

streptomycin (Invitrogen), in 5% CO2 and 95% air at 37 ◦C. Monolayers of 3T3 cells were

cultured in T175 cm2 tissue culture flasks (Nunc, Thermo Scientific, Denmark). Prior to

confluence, cells were lifted with 0.05% trypsin (Invitrogen, Carlsbad, CA, USA). Viable

cells were counted using the trypan blue exclusion test and a haemocytometer.

Two cell suspensions were created at approximate average cell densities of 20,000

cells/ml and 30,000 cells/ml. The experiments were performed in triplicate for each initial

cell density. Cells were seeded in a 24 well tissue culture plate (each well of diameter

15.6 mm) and incubated overnight in 5% CO2 and 95% air at 37 ◦C to allow them to attach

to the base of the plate. Initially, cells were approximately uniformly distributed in each

well.

Imaging techniques and analysis

Time-lapse images of the cells were captured, over a period of 12 h at 3 h intervals, using

a light microscope and Eclipse TIS software at 100× magnification. For each sample, a

4,500 µm × 450 µm image was reconstructed from overlapping adjacent images captured

at approximately the centre of the well. The locations of the n cells in each image were

manually determined by superimposing markers onto cells and recording the Cartesian

coordinates of markers using ImageJ image analysis software. These coordinates were used

to calculate a pair-correlation function (PCF) for each image following the method in

‘Pair-correlation function’.
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MATHEMATICAL MODELLING OF CELL MOVEMENT

Individual-based model

We extend our previous model (Binny, Plank & James, 2015) to consider the collective

movement of n individuals in two-dimensional continuous space, with periodic conditions

at the boundaries. The following framework is analogous to the one-dimensional model

described in Binny, Plank & James (2015) and we refer the reader there for a more

comprehensive description of the concepts outlined below.

The location of a cell i is represented by a coordinate xi ∈R
2 and the state of the system

at time t comprises the locations of all n individuals. Cell imoves as a Poisson process over

time with movement rate per unit time ψi(x), i.e., the probability of an event occurring in

a short time δt is ψi(x)δt +O(δt 2). The movement rate ψi(x) is dependent on the state

of the system at time t so the Poisson process is inhomogeneous over time. When cell i

undergoes a movement event, it moves a displacement r to a new location xi + r drawn

from a probability density function (PDF) µ(xi,xi+r).

We use the Gillespie algorithm to simulate this stochastic process (Gillespie, 1977). The

IBM can be tailored to suit different cell types and experimental conditions by choosing

different functions forψi andµ(xi,xi+r). In the following description, we choose functions

suitable for simulating movement of fibroblast cells.

Themovement rateψi comprises an intrinsic movement ratem and a density-dependent

component that sums contributions fromnneighbouring cells at xj to individual i’smotility:

ψi =max






0,m+

n
∑

j=1
i6=j

w(xj −xi)






, (1)

which ensures that ψi ≥ 0. The kernel w(z) weights the strength of interaction between a

pair of cells displaced by z and for simplicity we choose it to be a Gaussian function

w(z)=αexp

(

−
|z|2

2σ 2
w

)

. (2)

The parameter α determines the interaction strength while σ 2
w determines the range over

which interactions occur.

We now describe a mechanism which allows a cell’s direction of movement to be

determined by the degree of crowding in its neighbourhood. Thismechanism is comparable

to that of Binny, Plank & James (2015) but with some differences that are required for

extension to two spatial dimensions. The neighbour-dependent bias b(x) accounts for the

effect of n neighbouring cells located at xj on the direction of movement of an individual

at x

b(x)=
n

∑

j=1

∇v(xj −x). (3)
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Figure 1 Examples of probability density function g (θ;b) (blue solid line) for movement in a direc-

tion θ ∈ [0,2π]. The neighbour-dependent bias b is a vector indicating the direction (arg(b)) in which the
greatest/lowest degree of crowding arises in a cell’s neighbourhood, as well as the extent to which it occurs
(|b|). Insets are schematics illustrating g (θ;b) (grey solid line), where black arrows indicate the direction
(arg(b)) in which an individual (black dot) is most biased to move. (A) Unbiased movement; (B) weak di-
rectional bias b= (0.25,0.5)T ; (C) strong directional bias b= (0.5,1)T .

The kernel v(z) weights the strength of interaction between a cell pair displaced by z. For

simplicity, we choose v(z) to be a Gaussian function

v(z)=βexp

(

−
|z|2

2σ 2
v

)

, (4)

which means the interaction will be strong for a pair of cells located close together and

negligible if they are far apart. Interaction strength and range are determined by β and σ 2
v ,

respectively. The neighbour-dependent bias b(x) is a vector holding information about

both the extent and direction of crowded regions in the neighbourhood of a cell at x. We

use the angle arg(b(x)) to describe the direction of b(x). When β > 0, arg(b(x)) is the

direction in which the lowest degree of cell crowding arises locally. Conversely for β < 0,

arg(b(x)) is the direction of greatest local crowding. The magnitude |b(x)| provides a

measure of the extent of crowding.

When a cell moves, its direction of movement θ ∈ [0,2π ] is drawn from a PDF g (θ;b)

which depends on the neighbour-dependent bias b(x). The function g (θ;b) is a von Mises

distribution with mean arg(b) and concentration |b|:

g (θ;b)=
exp(|b|cos(θ−arg(b)))

2π I0(|b|)
, (5)

where I0 is the modified Bessel function of order 0. Thus, a cell is most likely to move in

the direction arg(b) and the strength of this directional bias increases with |b|, as shown in

Fig. 1.

The distance moved by a cell is drawn from a non-negative normal distribution with

mean step length 1/λµ and variance σ 2
µ. Therefore, the probability of an individual at x

moving to a new location at y is distributed according to

µ(x,y)=N exp






−

(

|y−x|− 1
λµ

)2

2σ 2
µ






g (arg(y−x);b(x)). (6)
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This means that a cell at x is biased to move away from close-lying neighbours when

β > 0. From a biological perspective this repulsive force could correspond to, for example,

movement in response to a cell-released chemorepellant (Cai, Landman & Hughes, 2006)

or physical forces due to deformation of the cell membrane under direct contact with

other cells (Trepat et al., 2009). When β < 0 the bias is towards crowded regions, such as

might arise in the presence of a cell-released chemoattractant (Painter & Hillen, 2002). The

bias strength increases with increasing neighbourhood cell density. Setting β = 0 results

in g (arg(y−x);b(x))= 1/(2π) and the cell is equally likely to move in any direction,

i.e., movement is unbiased. The PDF µ(x,y) has dimension L−2 and normalising by the

constant N satisfies the constraint
∫

µ(x,y)dy= 1 for any fixed x.

Pair-correlation function

The second spatial moment, the average density of pairs of cells, can be expressed as a

pair-correlation function (PCF) C(r), written in terms of a separation distance r (Illian

et al., 2008). The PCF is normalised by dividing by the first moment squared such that

C(r) = 1 in the complete absence of spatial structure, i.e., the distribution of cells is

completely random (a Poisson spatial pattern). For C(r)> 1, pairs of cells are more likely

to be found in close proximity than if they were distributed according to a Poisson pattern.

We describe such a configuration of cells as a cluster spatial pattern. In contrast, for

C(r)< 1, cell pairs separated by short displacements are less likely to arise, generating a

regular spatial pattern.

We compute a PCF C(r) from a particular arrangement of agents in a domain of width

Lx and height Ly . A reference agent at xi is selected and the distance r = |xj −xi| to a

neighbour at xj is calculated for n−1 neighbours. A periodic PCF can be calculated by

allowing a distance r to be measured across periodic boundaries. A different reference

agent is then chosen and the process repeated until each agent has been selected as a

reference once. A PCF is constructed by counting the distances that fall into an interval

[r − δr
2 ,r + δr

2 ], i.e., binning distances using a bin width δr . To ensure C(r)= 1 in the

complete absence of spatial structure we normalise by n(n−1)(2πrδr)/(LxLy).

The choice of δr is important because very small values can yield a PCF dominated by

fluctuations while values that are too large result in an overly-smooth function which may

mask spatial structure (Binder & Simpson, 2015).

Spatial moment model

The IBM can be used to derive a population-level model in terms of the dynamics of

spatial moments (Plank & Law, 2015). Mathematical descriptions of spatial moments

and derivations of the rate of change equations for the first moment Z1(x,t ) and second

moment Z2(x,y,t ) are given in Binny, Plank & James, (2015) and still hold for movement

in two dimensions. Spatial moments are functions of time as well as space but, for brevity,

from here on we omit the time argument from the notation. Briefly, for the dynamics of

the first spatial moment the corresponding description for ψi is

M1(x)=m+

∫

w(y−x)
Z2(x,y)

Z1(x)
dy, (7)
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the expectedmovement rate of a cell at x. In (1) amaximum formula ensured a non-negative

movement rate but is not incorporated here because we only consider solutions in which

negative expected movement rates do not arise. When a cell at x moves, its new location y

is drawn from a PDF

µ1(x,y)=N exp






−

(

|y−x|− 1
λµ

)2

2σ 2
µ






g (arg(y−x);b1(x)). (8)

The neighbour-dependent bias for a cell at x is

b1(x)=

∫

∇v(y−x)
Z2(x,y)

Z1(x)
dy. (9)

The equation for the dynamics of the first spatial moment is

dZ1(x)

dt
= −M1(x)Z1(x)+

∫

µ1(u,x)M1(u)Z1(u)du, (10)

where the first and second terms on the right-hand side correspond to movement out of x

and into x, respectively. The first moment is constant with respect to time because there

are no birth/death events and there is no net flux across the boundaries.

For the dynamics of the second moment the expected movement rate of a cell at x in a

pair with a cell at y is given by

M2(x,y)=m+

∫

w(z−x)
Z3(x,y,z)

Z2(x,y)
dz+w(y−x), (11)

where Z3(x,y,z) denotes the third spatial moment, the average density of triplets of cells.

When a cell at xmoves, its new location y is drawn from a PDF µ2(x,y,z), where the third

argument accounts for the fact that x is in a pair with a cell at z:

µ2(x,y,z)=N exp






−

(

|y−x|− 1
λµ

)2

2σ 2
µ






g (arg(y−x);b2(x,z)). (12)

The neighbour-dependent bias for a cell at x in a pair with a cell at y is given by

b2(x,y)=

∫

∇v(z−x)
Z3(x,y,z)

Z2(x,y)
dz+∇v(y−x). (13)

Finally, the equation for the dynamics of the second moment is

dZ2(x,y)

dt
= −(M2(x,y)+M2(y,x))Z2(x,y)

+

∫

µ2(u,x,y)M2(u,y)Z2(u,y)du

+

∫

µ2(u,y,x)M2(u,x)Z2(u,x)du. (14)
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Movement out of x, conditional on the presence of a cell at y, is accounted for in the first

negative term in (14). The first integral term describes movement into x from a starting

location u, conditional on the presence of a cell at y. The remainder are symmetric terms

for movement out of and into y.

A closure for the third spatial moment is required to solve Eq. (14) and we use the

Kirkwood superposition approximation (Kirkwood, 1935; Kirkwood & Boggs, 1942) given

by

Z̃3(x,y,z)=
Z2(x,y)Z2(x,z)Z2(y,z)

Z1(x)Z1(y)Z1(z)
, (15)

however other choices of closure are possible (Murrell, Dieckmann & Law, 2004). This

closes the dynamical system at second order, therefore we retain information on spatial

structure that would be ignored by instead employing a first-order closure, such as the

mean-field assumption.

RESULTS

Comparing IBM simulation data and moment dynamics
approximations

To explore whether our model is capable of generating spatial structure in a simulated

cell population we average results from repeated simulations of the IBM and compute

a periodic PCF CIBM(r) as outlined in ‘Pair-correlation function’. We compare this to

numerical solutions of our spatial moment model to examine whether it provides a good

approximation to the underlying stochastic process. The equation for the dynamics of the

second moment (14) is solved for a spatially homogeneous distribution of cells, which

means that we assume the probability of finding an individual in a given small region is

independent of its location in space. This allows the equation to be rewritten in terms of

displacements between pairs of cells, as outlined in the Appendix. The PCF CSM(ξ) is given

by Z2(ξ)/Z 2
1 such that CSM(ξ)= 1 in the complete absence of spatial structure. The second

spatial moment is radially symmetric about the origin of ξ. Therefore, in the results below

we show only a radial section of CSM(ξ) which we denote CSM(r), where r = |ξ|. Cells

are initially distributed across a domain of width Lx and height Ly , according to a spatial

Poisson process with intensity n/(LxLy). In the spatial moment model this corresponds to

Z2(ξ)= Z 2
1 at t = 0. The system is allowed to reach steady state before results from each

model are compared. Parameters used in this section are summarised in Table 1.

In the complete absence of interactions, an individual’s direction of movement is

unbiased and its movement rate is solely determined by the intrinsic component. It is

straightforward to show analytically that the steady-state solution for Z2(ξ) is a constant

under these conditions. Numerical solutions and averaged IBM simulations confirm this.

The effect of the neighbour-dependent directional bias, in the absence of neighbour-

dependent motility (i.e., α= 0), is shown in Fig. 2. The PCF quantifies differences in the

spatial structure, depending on the strength and nature of cell–cell interactions, which

may not be readily apparent from a qualitative visual inspection of the cell locations

(Fig. 2 insets). Regular spatial patterns are generated by the directional bias when β > 0
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Table 1 Table of model parameters in order of appearance, with values used in the numerical results.

Value

Symbol Description Units Fig. 2 Fig. 3 Fig. 4

m Intrinsic movement rate h−1 10 10 5

α Strength of interaction for movement rate h−1 0 1; 10; −1.5; −2 0

σw Spatial range of interactions for movement rate µm 0.5 0.5 10

β Strength of interaction for directional bias µm 0.1; 1; −0.03; −0.05 0 1,000

σv Spatial range of interactions for directional bias µm 0.5 0.5 10

λµ Rate parameter of PDF for movement distance µm−1 5 5 0.1

σµ Spatial range of PDF for movement distance µm 0.05 0.05 2.5

δr Bin width for PCF µm 0.12 0.12 8

1 Grid spacing for discretisation of spatial displacement ξ µm 0.1 0.1 5

ξmax Maximum distance of ξ1, ξ2 for computing Z2(ξ) µm 4 4 150

while β < 0 gives rise to clustering. The spatial moment model performs very well as

an approximation to the IBM except when there is strong clustering (Fig. 2D). This can

likely be attributed to limitations of the moment-closure assumption. The Kirkwood

Superposition Approximation provides a reasonable approximation to the third moment

for Poisson spatial patterns and regular patterns, but performs quite poorly for cluster

spatial patterns where it can cause the model to underestimate the secondmoment (Raghib,

Hill & Dieckmann, 2011; Murrell, Dieckmann & Law, 2004; Dieckmann & Law, 2000).

Figure 3 shows the spatial structure generated by the mechanism for neighbour-

dependent motility when there is no local directional bias (i.e., β = 0). Neighbourhood

interactions give rise to regular spatial patterns when α > 0 and cluster spatial patterns

when α < 0. Again, we see good agreement between CSM(r) and CIBM(r) except for large

magnitudes of α < 0 where the pattern is clustered and the moment model under-predicts

spatial structure (Fig. 3D). While the limitations associated with the moment closure may

play a role, there is another factor that could also be contributing to the poor fit here. We

have chosen values of α such that the probability of ψi> 0 is high. However ψi = 0 can

arise by chance in an IBM simulation and while such occurrences are relatively rare they

can have a self-propagating effect, leading to strong clustering. The spatial moment model

does not account for these chance events so this might explain why spatial structure is

underestimated more dramatically even for relatively weak clustering.

Our numerical results show that the same spatial structures can be generated by either

neighbour-dependent mechanism acting in isolation. When both mechanisms affect

movement together, the choice of α and β determines whether they work cooperatively,

to promote spatial structure to an even greater extent, or in opposition.

Model validation using experimental data

We will now use in vitro experimental data to validate our model. We begin by exploring

whether the directional bias mechanism is capable of generating spatial structure that is
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Figure 2 Spatial structure for 200 cells undergoing collective movement with neighbour-dependent

directional bias (α = 0 h−1) in a 20 µm× 20 µmdomain at time t = 25 h. The PCF CIBM(r) (blue solid
line) provides a quantitative measure of the spatial structure in the simulated cell population and is com-
puted (using a bin width δr = 0.12 µm) by averaging results from 500 repeated simulations of the IBM.
For ease of visualisation, a snapshot of the configuration of cells in a single simulation at t = 25 is shown
in the inset. The spatial structure approximated by the spatial moment model (solved using1 = 0.1 µm
and ξmax = 4 µm) is expressed as a PCF CSM(r) (red dashed line). Parameters are α = 0 h−1, σw = σv =

0.5 µm,m= 10 h−1, λµ = 5 µm−1, σµ = 0.05 µm; (A) β = 0.1 µm; (B) β = 1 µm; (C) β = −0.03 µm; (D)
β = −0.05 µm.

qualitatively similar to that observed in 3T3 fibroblast cell populations studied in vitro and

aim to estimate parameters which yield a reasonable qualitative match to our data.

Movement rates for 3T3 fibroblast cells are discussed in the literature (Ware, Wells &

Lauffenburger, 1998; Vedel et al., 2013). We choose a biologically relevant rate of 50 µm/h

for the speed at which an isolated cell moves (i.e., in the absence of neighbourhood

interactions). Cell speed is not itself a parameter of our model, but can be decomposed

into two constituent parts for input into the model: a mean step length 1/λµ = 10 µm and
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Figure 3 Spatial structure for 200 cells undergoing collective movement with neighbour-dependent

motility (β = 0 µm) in a 20 µm× 20 µmdomain at time t = 25 h. The PCF CIBM(r) (blue solid line) pro-
vides a quantitative measure of the spatial structure in the simulated cell population and is computed (us-
ing a bin width δr = 0.12 µm) by averaging results from 500 repeated simulations of the IBM. For ease of
visualisation, a snapshot of the configuration of cells in a single simulation at t = 25 is shown in the inset.
The spatial structure approximated by the spatial moment model (solved using1 = 0.1 µm and ξmax =

4 µm) is expressed as a PCF CSM(r) (red dashed line). Parameters are β = 0 µm, σw = σv = 0.5 µm,m =

10 h−1, λµ = 5 µm−1, σµ = 0.05 µm; (A) α= 1 h−1; (B) α= 10 h−1; (C) α= −1.5 h−1; (D) α= −2 h−1.

an intrinsic movement rate m= 5 h−1. For the movement PDF µ(x,y) we set σµ = 2.5 µm

which is biologically reasonable as it ensures cells are more likely to take short steps

than undergo large jumps across the space. We employ the directional bias mechanism

to incorporate volume exclusion effects by interpreting 2σv as the approximate range

over which a cell interacts with neighbours and treating this as a proxy for the average

diameter of a cell. From the literature, the average cell diameter for 3T3 fibroblast cells is

approximately 20 µm which yields σv = 10 µ m (Simpson et al., 2013a; Vedel et al., 2013).

Here, we consider the directional bias mechanism in the absence of neighbour-dependent
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motility (i.e., we set α= 0). With these parameter choices in place, interaction strength β

is the only parameter that we need to estimate.

Images are taken at the centre of the well to avoid edge effects and when analysing

our in vitro data, we assume that cells are distributed homogeneously across this region.

An average cell density is estimated from each image, by dividing the number of cells

in an image (which ranged between 80 and 318 cells) by the image area. In ‘Comparing

IBM simulation data and moment dynamics approximations’ we implemented periodic

boundary conditions in our IBM simulations such that cells located near a boundary of

the domain could interact with those at an opposite boundary. Therefore it was reasonable

to calculate a periodic PCF from the configurations of cells that arose. However, for our

experimental data, themotility of a cell located near the edge of an image will not be affected

by a cell at an opposite edge. Therefore, to calculate an accurate average pair density for the

short displacements we are primarily interested in, we choose to generate a non-periodic

PCF Cexp(r) from the experimental images.

To obtain an estimate for β we consider a single experimental image of dimensions

4,500 µm × 450 µm with 286 cells, as shown in Fig. 4A with markers superimposed over

cell locations. We use our IBM to simulate movement in this 4,500 µm × 450 µm region

using the parameters discussed above (and summarised in Table 1) and explore different

values of β. In each simulation, 286 cells are initially distributed according to a spatial

Poisson process and we compute a PCF once the system has converged to steady state.

Figure 4B shows a snapshot from an IBM simulation at t = 15 h. The presence of spatial

structure is not obvious from visual inspection of Figs. 4A–4B alone but calculating a PCF

(Fig. 4C) indicates a regular spatial pattern over displacements <50 µm. We find that for

β = 1,000 µm the PCFs predicted by our IBM and spatial moment model provide a very

good visual match to that computed from the in vitro data for this sample. Unlike CIBM(r)

and CSM(r), the PCF computed from each experimental image does not tend to 1 for large

displacements because it is computed from non-periodic distances and owing to the image

dimensions. However, we see good agreement at short to moderate displacements. To

validate our estimate, we compare PCFs obtained using the same parameter choices and

β = 1,000 µm for the average cell densities in each of the other images (Figs. S1 and S2).

For all samples we see a reasonable qualitative agreement between the PCFs predicted by

the model and the PCF generated from the in vitro data.

ThePCFsCexp(r) andCIBM(r) employ a binwidth δr whichprovides a reasonably smooth

function for themajority of experimental samples yet contains sufficient information about

spatial structure to allow us to carry out our analysis. Smaller values of δr give a better

match to CSM(r), however Cexp(r) becomes dominated by fluctuations.

Fromour numerical results we know that both themechanisms for neighbour-dependent

motility and directional bias are capable of generating spatial structure. In the absence of

directional bias, large values of α are required to generate the extent of spatial structure

observed in the in vitro data. When carrying out IBM simulations under these conditions,

individuals experience strong neighbourhood interactions and, as a result, movement

rates ψi are often considerably higher than the average movement rates of fibroblast

cells discussed in the literature (Ware, Wells & Lauffenburger, 1998; Vedel et al., 2013). For

Binny et al. (2016), PeerJ, DOI 10.7717/peerj.1689 13/24



Figure 4 Spatial structure in 3T3 fibroblast cells for 286 cells in a 4,500 µm× 450 µm region. (A) Sam-
ple image (obtained from a well containing cell suspension of approximate initial density 30,000 cells/ml)
showing superimposed markers (white dots). Scale bar corresponds to 100 µm; (B) Cell locations (blue
dots) at t = 15 h from a single IBM simulation. Parameters are α= 0 h−1, β = 1,000 µm, σw = σv = 10 µm,
m= 5 h−1, λµ = 0.1 µm−1, σµ = 2.5 µm; (C) PCF CIBM(r) (blue solid line) obtained from averaging results
from 200 simulations of the IBM at t = 15 h. PCFs computed from the IBM using values of β within the
range ±75% of β = 1,000 µm, lie within the region indicated by the blue shaded area. PCF Cexp(r) (green
squares-dotted line) generated from experimental image, for δr = 8 µm. PCF CSM(r) (red dashed line) ap-
proximated by spatial moment model at t = 15 h, for1= 5 µm and ξmax = 150 µm.

example, using the same parameter choices as for Fig. 4 but in the absence of directional

bias (β = 0), an interaction strength of α= 1,000 h−1 generates spatial structure which is

a reasonable qualitative match to the in vitro data. However, 23% of individuals undergo

movement with a rate ψi > 100 h−1, which corresponds to a biologically unreasonable

cell speed of 1,000 µm/h. Therefore, we do not consider neighbour-dependent motility in

isolation here. When both mechanisms are acting together, numerous combinations of α

and β exist that would give rise to similar spatial structure.
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Figure 5 Relationship between average cell density and the extent of spatial structure.Metrics calcu-
lated from IBM (blue triangles), spatial moment model (red circles) and in vitro data (green squares) for
the average cell densities in each of the images. A regression line (black line) is fitted to the experimental
data. (A) Metric calculated by integrating (1−C(r)) over displacements 0≤ r ≤ 80 µm, i.e., summing the
green-shaded area and subtracting the grey-shaded area (inset Fig.). (B) Metric calculated by integrating
|1−C(r)| over displacements 0≤ r ≤ 80 µm, i.e., summing the green-shaded area (inset Fig.).

Numerical and analytical results suggest that there is a relationship between the average

cell density and the extent of spatial structure in the moving cell population. Increasing

the average cell density causes a decrease in the extent of spatial structure, i.e., for a regular

spatial pattern average pair densities at short displacements increase towards 1. However,

for the average cell densities studied here, it is not immediately obvious whether our in

vitro experimental data supports the suggestion that a significant relationship exists. We

now explore this idea in more depth by using the area between the PCF to calculate a

summary statistic which quantifies the extent of spatial structure, as shown in Fig. 5. We

consider two metrics and compute each for PCFs generated from the IBM, spatial moment

model and in vitro data. The first metric measures spatial structure as
∫ R
0 (1−C(r))dr

(Fig. 5A). Positive values indicate a regular spatial pattern while negative values indicate a

cluster spatial pattern. The second is given by
∫ R
0 |1−C(r)|dr (Fig. 5B). Both metrics are

calculated for R= 80 µm and have units µm. The average cell densities obtained from the

in vitro data lie within a relatively small range and so the overall change in the metric is

small. Nevertheless, for both metrics our model predicts that increasing average cell density

decreases the extent of spatial structure. To investigate whether our in vitro data supports

this we carry out a simple linear regression, yielding p-values of 0.0211 and 0.0435 for

the first (Fig. 5A) and second metric (Fig. 5B), respectively. Thus, using either metric and

despite the noise in our in vitro data, the results suggest that a significant relationship does

indeed exist between average cell density and spatial structure.
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DISCUSSION

IBMs of collective movement allow us to explore how interactions between individuals give

rise to spatial structure and how, in turn, this self-generated spatial structure affects the

population dynamics. However, IBMs are limited when it comes to explaining population-

level behaviour as they can be difficult to analyse mathematically. To move beyond

these limitations, population-level models can be derived from IBMs but often employ a

mean-field assumption which neglects spatial correlations between cells. We have derived

a population-level description in terms of spatial moment dynamics to account for spatial

correlations and give insight into how neighbour-dependent directional bias generates

spatial structure in a moving cell population. Extending our original model (Binny, Plank

& James, 2015) from one to two spatial dimensions makes it more amenable for use

alongside experimental data. Our results verify that the spatial moment model can provide

a good approximation to averaged simulations of the underlying IBM when cells are

distributed homogeneously through space.

Volume exclusion effects can be incorporated into lattice-free models of interacting

agents, for example using a hard sphere approach where neighbours are explicitly excluded

froma region surrounding an individual. Instead, we employ themechanism for neighbour-

dependent directional bias as a means of accounting for crowding effects. Using an

interaction kernel concentrated around short pair displacements allows us to reduce the

likelihood of two cells being found in very close proximity, although it does not altogether

rule out the possibility.

In vitro studies have shown that cell motility can be heavily influenced by the average

density of cells, particularly at high densities where crowding effects come into play,

affecting the movement rate or direction of individuals (Lee, McIntire & Zygourakis, 1994;

Tremel et al., 2009; Vedel et al., 2013). In addition, spatial correlations between cells can

have major implications for motility, for example cell populations with clustering exhibit

different behaviour to those that adopt regular spatial patterns (Green et al., 2010; Keeley et

al., 2014). We carried out in vitro experiments with motile 3T3 fibroblast cells for model

validation and to explore the extent to which spatial structure is generated in fibroblast cell

populations. It is not obvious from visual inspection of the imaging data alone whether

spatial structure is present, however calculating a PCF indicates a regular spatial pattern.

The spatial structure arises over displacements <50 µm and is likely predominantly a

consequence of space being excluded by the cells, however chemotactic interactions, such

as chemokine signalling, may also contribute to a lesser extent (Vedel et al., 2013). We

consider whether our model’s mechanism for neighbour-dependent directional bias can

generate a similar spatial structure. The majority of model parameters are obtained by

selecting biologically relevant values from the literature and we use our in vitro data to

provide an estimate for the interaction strength β. This parameter was estimated from

a single experimental image and for validation we use the same estimate for the average

cell densities in each of the other images. A visual comparison of the PCFs suggests that

our parameterised model can successfully predict the spatial structure of 3T3 fibroblasts

at various average cell densities. We do not consider the neighbour-dependent motility
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mechanism in the absence of directional bias because the spatial structure observed in vitro

could only be generated if a large proportion of cells moved at biologically unreasonable

rates. However, it is possible that both mechanisms acting together could give rise to the

observed spatial structure and further information would be required to distinguish the

relative contributions of each effect occurring in vitro.

We choose to calculate a non-periodic PCF from each experimental image to obtain

an accurate average pair density at short displacements. Because we do not apply edge

corrections and owing to the image dimensions, the PCF often has values less than 1 for

large displacements. However, we would expect that a PCF calculated either for a very

large number of cells (at the same average density) or by averaging results from many

identically-prepared repeated experiments, would give C(r)≈ 1 for large displacements. A

number of methods to account for edge effects are discussed in the literature, for example

the use of buffer zones, toroidal edge corrections or employing weighting factors (Haase,

1995; Law et al., 2009). However, in some cases, applying an edge correction may yield

results that do not provide an accurate representation of the spatial structure in the

population. For instance, when analysing spatial patterns that are clustered or regular,

the use of a toroidal correction can lead to an unknown extent of bias in the resulting

distribution of distances (Haase, 1995). To avoid this uncertainty, we have chosen to work

with the actual pair distances between cells in the experimental images and not correct for

edge effects.

We have further validated our model by considering in more detail the relationship

between average cell density and the extent of spatial structure in a cell population.

Numerical and analytical results from our model suggest that increasing the average cell

density decreases the extent of spatial structure. There is considerable noise in the in vitro

data because we choose to analyse PCFs generated from individual images as opposed

to working with averaged results. In addition, the data considers a relatively small range

of average cell densities. Nevertheless, our experimental data also supports the idea that

such a relationship exists. The most likely explanation for this effect is that as average cell

density increases, there is less free space available and cells are forced into closer proximity.

Because of their deformable plasma membranes, pairs of cells can arise at displacements

less than the average diameter of a cell. This increases the average pair density at short

displacements, thus reducing the extent of spatial structure. Because we do not employ a

hard sphere volume-exclusion method, instead representing cells by points in space, our

model will predict a Poisson spatial pattern for very high average cell densities (far greater

than those in our data). In reality, the fact that 3T3 fibroblasts have a minimum area they

can occupy means that this would never be observed in vitro.

The spatial moment model is only an approximation to the IBM because it invokes a

closure assumption which closes the dynamical system at second order and ignores higher

order moments. The performance of our model depends on the suitability of this closure

as an approximation to the third moment. Different closures are proposed in the literature

and we use the Kirkwood Superposition Approximation, which is a relatively simple closure

that is often applied in cell movement models. This closure is known to perform reasonably

well for regular and Poisson spatial patterns but causes the model to underestimate the
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second moment for cluster patterns. A number of other closures also share this limitation.

The asymmetric power-2 closure, which expresses the third moment in terms of weighted

sums of lower order moments, can prove more successful for cluster spatial patterns.

However it is not always obvious which weighting constants are most appropriate and the

closure has the potential to predict negative average densities of triplets (Dieckmann &

Law, 2000;Murrell, Dieckmann & Law, 2004; Raghib, Hill & Dieckmann, 2011).

We have chosen to use kernels suitable for modelling fibroblast movement but different

kernels could be employed for applications in other contexts. However, there is a numerical

constraint associated with choosing the movement PDF µ. If using a PDF that has large

positive values concentrated at pair displacements very close to zero, the spatial moment

model cannot always accurately capture the full extent of the directional bias at these

short displacements. This, in turn, causes the model to underestimate the extent of spatial

structure. Choosing a movement PDF with positive values at displacements further from

zero, such as the PDF employed here, overcomes this issue. Expressing and solving the

moment dynamics equations in polar coordinates may also allow for greater flexibility in

the choice of movement PDF.

There are a number of possible extensions to the work presented here. For example,

the model could be extended to a birth-death-movement process to investigate how

cell proliferation and cell death contribute to the collective dynamics. Models of spatial

moment dynamics that incorporate density-independent or density-dependent birth, death

andmovement have previously been discussed in the literature (see for exampleDieckmann

& Law, (2000); Murrell (2005)) but it would be useful to explore the role that neighbour-

dependent directional bias plays in this setting. We have applied our model to cell

movement, however the types of interaction experienced by cells are also relevant in

other contexts. For instance, our model could be applied in an ecological context to

consider the effect of directional bias on moving animal populations.

APPENDIX

When solving Eq. (14) for a spatially homogeneous distribution of cells, the secondmoment

Z2(x,y) depends only the displacement y−x which can now be treated as a single variable.

The displacement from x to y is denoted ξ and the displacement from x to z is denoted ξ′.

For the movement PDF µ2(u,x,y), we denote the displacement from u to x as ξ
′′

. The first

spatial moment is required for Z̃3(x,y,z) and in the homogeneous case Z1 is a constant.

We rewrite (14) in terms of the displacements between pairs as follows:

dZ2(ξ)

dt
= −(M2(ξ)+M2(−ξ))Z2(ξ)

+

∫

µ2(ξ
′′,ξ′′ +ξ)M2(ξ

′′ +ξ)Z2(ξ
′′ +ξ)dξ′′

+

∫

µ2(ξ
′′,ξ′′ −ξ)M2(ξ

′′ −ξ)Z2(ξ
′′ −ξ)dξ′′. (16)
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The movement rate M2(x,y) of a cell at x in a pair with a cell at y given in (11) is now

expressed in terms of the displacement ξ between x and y:

M2(ξ)=m+

∫

w(ξ′)
Z3(ξ,ξ

′)

Z2(ξ)
dξ′ +w(ξ). (17)

The movement PDF given in (12) becomes

µ2(ξ,ξ
′)=N exp






−

(

|ξ|− 1
λµ

)2

2σ 2
µ






g (arg(ξ);b2(ξ

′)) (18)

with neighbour-dependent bias

b2(ξ)=

∫

∇v(ξ′)
Z3(ξ,ξ

′)

Z2(ξ)
dξ′ +∇v(ξ). (19)

The interaction kernels were previously expressed in terms of a single variable in (2) and

(4) and these definitions still hold here. The closure for the third moment is

Z̃3(ξ,ξ
′)=

Z2(ξ)Z2(ξ
′)Z2(ξ

′ −ξ)

Z 3
1

. (20)

The boundary condition is as follows:

Z2(ξ)→Z 2
1 as |ξ| →∞. (21)

Equation (16) was solved numerically using the method of lines with MATLAB’s in-built

ode23 solver. This involved a discretisation of ξ = (ξ1,ξ2)T with grid spacing 1 over the

domain {−ξmax ≤ ξ1,ξ2 ≤ ξmax}, where ξmax was large enough so that Z2(ξ)≈ Z 2
1 at the

boundary. Required values of Z2(ξ) that lay outside of the computable domain were set to

the value of Z2(ξ) at a corner of the boundary, i.e., Z2(ξmax,ξmax). The integral terms in

(16) were approximated using the trapezium rule with the same discretisation. In addition,

the PDF for movement µ2(ξ,ξ
′) was normalised numerically using the trapezium rule such

that
∫

µ2(ξ,ξ
′)dξ = 1 for any fixed ξ′. The results were insensitive to a reduction in grid

spacing 1.
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