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Abstract. Population diversity is essential for avoiding premature con-
vergence in Genetic Algorithms (GAs) and for the effective use of
crossover. Yet the dynamics of how diversity emerges in populations are
not well understood. We use rigorous runtime analysis to gain insight into
population dynamics and GA performance for a standard (µ+1) GA and
the Jump

k
test function. By studying the stochastic process underlying

the size of the largest collection of identical genotypes we show that the
interplay of crossover followed by mutation may serve as a catalyst lead-
ing to a sudden burst of diversity. This leads to improvements of the
expected optimisation time of order Ω(n/ log n) compared to mutation-
only algorithms like the (1+1) EA.

Keywords Genetic algorithms, crossover, diversity, runtime analysis, theory

1 Introduction

Genetic Algorithms (GAs) are powerful general-purpose optimisers that perform
surprisingly well in many applications. Their wide-spread success is based on a
number of factors: using populations to diversify search, using mutation to gen-
erate novel solutions, and using crossover to combine features of good solutions.
Crossover can combine building blocks of good solutions, and help to focus search
on bits where parents disagree. For both tasks the population needs to be diverse
enough for crossover to be effective. A common problem in the application of
GAs is the loss of diversity when the population converges to copies of the same
search point, often called “premature convergence”.

Understanding population diversity and crossover has proved elusive. The
first example function where crossover was proven to be beneficial is called
Jumpk. In this problem, GAs have to overcome a fitness valley such that all
local optima have Hamming distance k to the global optimum. Jansen and We-
gener [7] showed that, while mutation-only algorithms such as the (1+1) EA
require expected time Θ(nk), a simple (µ+1) GA with crossover only needs time
O(µn2k3 + 4k/pc) where pc is the crossover probability. This time is O(4k/pc)
for large k, and hence significantly faster than mutation-only GAs. However,



their analysis requires an unrealistically small crossover probability pc ≤ 1/(ckn)
for a large constant c > 0. Hence the analysis does not reflect the typical be-
haviour in GA populations with constant crossover probabilities pc = Θ(1) as
used in practice. Kötzing, Sudholt, and Theile [8] later refined these results to-
wards a crossover probability pc ≤ k/n, which is still unrealistically small. Both
approaches focus on creating diversity through a sequence of lucky mutations,
relying on crossover to create the optimum once sufficient diversity has been
created. Their arguments break down if crossover is applied frequently.

Here we provide a novel approach to show that diversity can also be created
by frequent applications of crossover followed by mutation. For the maximum
crossover probability pc = 1 we prove that on Jumpk diversity emerges naturally
in a population: the interplay of crossover, followed by mutation, can serve as
a catalyst for creating a diverse range of search points out of few different indi-
viduals. This allows to prove a speedup of order n/ log n for k ≥ 3 compared to
mutation-only algorithms such as the (1+1) EA. Both operators are vital: mu-
tation alone requires Θ(nk) expected iterations to hit the optimum from a local
optimum. As shown in [8, Theorem 8] using only crossover with pc = Ω(1) but
no mutation, diversity reduces quickly, leading to inefficient runtimes for small
population sizes (µ = O(log n)).

After defining the algorithm, the (µ+1) GA from [7], and the Jumpk function
in Section 2, we elaborate on the population dynamics in Section 3, preparing
the ground for the following runtime result. For the standard mutation rate, we
show in Section 4 that the (µ+1) GA with pc = 1, µ = O(n), k = O(1) optimises
Jumpk in expected time O

(

µn log(µ) + nk/µ+ nk−1 log(µ)
)

. Compared to the
expected time Θ(nk) for the (1+1) EA this corresponds to a speedup of order
n/ log n for k ≥ 3 and

√

n/ log n for k = 2, for the best possible choice of µ.

2 Preliminaries

The Jumpk : {0, 1}
n → N class of pseudo-Boolean fitness functions was origi-

nally introduced by Jansen and Wegener [7]. The function value increases with
the number of 1-bits in the bitstring until a plateau of local optima is reached
consisting of all points with n − k 1-bits. However, its only global optimum is
the all-ones string 1n. Between the plateau and the global optimum there is a
gap of Hamming distance k which has to be “jumped over” for the function to
be optimised. The function is formally defined as

Jumpk(x) =

{

k + |x|1 if |x|1 = n or |x|1 ≤ n− k,

n− |x|1 otherwise,

where |x|1 =
∑n

i=1 xi is the number of 1-bits in x.
We will analyse the performance of a standard steady-state (µ+1) GA [7]

with pc = 1 using at each step uniform crossover (i.e., each bit of the offspring is
chosen uniformly at random from one of the parents) and standard bit mutation
(i.e., each bit is flipped with probability pm = χ/n = Θ(1/n)). Algorithm 1
shows the pseudo code for the (µ+1) GA, tailored to pc = 1.



Algorithm 1: (µ+1) GA with pc = 1

P ← µ individuals, uniformly at random from {0, 1}n;1

while 1n /∈ P do2

Choose x, y ∈ P uniformly at random;3

z ← mutate(crossover(x, y));4

P ← P ∪ {z};5

Remove one element from P with lowest fitness, breaking ties u.a.r.;6

3 Population Dynamics

The following lemma gives a on bound the expected time for the whole popu-
lation to reach the plateau. It is proved using level-based arguments, similar to
those in [3]. The proof is omitted due to space restrictions.

Lemma 1. The expected time until the entire population of (µ+1) GA with
pm = Θ(1/n) reaches the plateau of Jumpk for k = O(1) (or the optimum has
been found) is O(nµ log µ+ n log n).

In the remainder of the analysis we study the algorithm’s behaviour once all
individuals are on the plateau. Previous observations of simulations have revealed
the following behaviour. Assume the algorithm has reached a population where
all individuals are identical. We refer to identical individuals as a species, hence
in this case there is only one species. Eventually, a mutation will create a different
search point on the plateau, leading to the creation of a new species. Both species
may shrink or grow in size, and there is a chance that the new species disappears
and we go back to one species only.

However the existence of two species also serves as a catalyst for creating fur-
ther species in the following sense. Say two parents 0001111111 and 0010111111
are recombined, then crossover has a good chance of creating an individual with
n− k+ 1 1s, e. g. 0011111111. Then mutation has a constant probability of flip-
ping any of the n − k − 1 unrelated 1-bits to 0, leading to a new species, e. g.
0011111011. This may lead to a sudden burst of diversity in the population.

Due to the ability to create new species, the size of the largest cluster performs
an almost fair random walk. Once its size has decreased significantly from its
maximum µ, there is a good chance for recombining two parents from different
species. This helps in finding the global optimum as crossover can increase the
number of 1s in the offspring, compared to its parents, such that fewer bits
need to be flipped by mutation to reach the optimum. This is formalised in the
following lemma.

Lemma 2. The probability that the global optimum is constructed by a uniform
crossover of two parents on the plateau with Hamming distance 2d, followed by
mutation (pm = χ/n), is

2d
∑

i=0

(

2d

i

)

1

22d

(χ

n

)k+d−i (

1−
χ

n

)n−k−d+i

≥
1

22d

(χ

n

)k−d (

1−
χ

n

)n−k+d

(1)



Proof. For a pair of search points on the plateau with Hamming distance 2d,
both parents have d ones among the 2d bits that differ between parents, and
n− k − d 1s outside this area. Assume that crossover sets i out of these 2d bits
to 1, which happens with probability

(

2d
i

)

· 2−2d. Then mutation needs to flip
the remaining k + d − i 0s to 1. The probability that such a pair creates the
optimum is hence

2d
∑

i=0

(

2d

i

)

1

22d

(χ

n

)k+d−i (

1−
χ

n

)n−k−d+i

.

The second bound is obtained by ignoring summands i < 2d for the sum. ⊓⊔

Note that even a Hamming distance of 2, i. e. d = 1, leads to a probability of
Ω(n−k+1), provided that such parents are selected for reproduction. The proba-
bility is by a factor of n larger than the probability Θ(n−k) of mutation without
crossover reaching the optimum from the plateau. We will show that this effect
leads to a speedup of nearly n for the (µ+1) GA, compared to the expected time
of Θ(nk) for the (1+1) EA [5] and other EAs only using mutation.

The idea behind the analysis is to investigate the random walk underlying the
size of the largest species. We bound the expected time for this size to decrease
to µ/2, and then argue that the (µ+1) GA is likely to spend a good amount
of time with a population of good diversity, where the probability of creating
the optimum in every generation is Ω(n−k+1) due to the chance of recombining
parents of Hamming distance at least 2.

In the following we refer to Y (t) as the size of the largest species in the
population at time t. Define

p+(y) := Pr (Y (t+ 1)− Y (t) = 1 | Y (t) = y) ,

p−(y) := Pr (Y (t+ 1)− Y (t) = −1 | Y (t) = y) ,

i. e., p+(y) is the probability that the size of the largest species increases from y
to y + 1, and p−(y) is the probability that it decreases from y to y − 1.

The following lemma gives bounds on these transition probabilities, unless
two parents of Hamming distance larger than 2 are selected for recombination
(this case will be treated later in Lemma 4). We formulate the lemma for arbitrary
mutation rates χ/n = Θ(1/n) and restrict our attention to sizes Y (t) ≥ µ/2 as
we are only interested in the expected time for the size to decrease to µ/2.

Lemma 3. For every population on the plateau of Jumpk for k = O(1) the
following holds. Either the (µ+1) GA with mutation rate χ/n = Θ(1/n) per-
forms a crossover of two parents whose Hamming distance is larger than 2, or
the size Y (t) of the largest species changes according to transition probabilities
p−(µ) = Ω(1/n) and, for µ/2 ≤ y < µ,

p+(y) ≤
y(µ− y)(µ+ y)

2µ2(µ+ 1)

(

1−
χ

n

)n

+O

(

(µ− y)2

µ2n

)

,

p−(y) ≥
y(µ− y)(µ+ χy)

2µ2(µ+ 1)

(

1−
χ

n

)n

−O

(

µ− y

µn

)

.



Proof. We call an individual belonging to the current largest species a y-
individual and all the others non-y individuals. In each generation, there is either
no change, or one individual is added to the population and one individual cho-
sen uniformly at random is removed from the population. In order to increase
the number of y-individuals, it is necessary that a y-individual is added to the
population, and a non-y individual is removed from the population. Analogously,
in order to decrease the number of y-individuals, it is necessary that a non-y in-
dividual is added to the population, and a y-individual is removed from the
population.

Given that Y (t) = y, let p(y) be the probability that a y-individual is created
at time t+ 1, and q(y) the probability that a non-y individual is created.

We now estimate an upper bound on p(y). We may assume that the Hamming
distance between parents is at most 2 as otherwise there is nothing to prove. A
y-individual can be created in the following three ways:

– Two y-individuals are selected. Crossing over two y-individuals produces
another y-individual, which survives mutation if no bits are flipped, i.e.,
with probability (1− χ/n)n.

– One y-individual and one non-y individual are selected. The crossover op-
erator produces a y-individual with probability 1/4 and mutation does not
flip any bits with probability (1− χ/n)n. If the crossover operator does not
produce a y-individual, then to produce a y-individual at least one specific
bit-position must be mutated, which occurs with probability O(1/n). The
overall probability is hence (1/4)(1− χ/n)n +O(1/n).

– Two non-y individuals are selected. These two individuals are either identical
or have Hamming distance 2 (i.e., by assumption). In the first case they both
have one of the k 0-bit positions of a y-individual set to 1. In the second case
they either both have one of the k 0-bit positions of a y-individual set to 1
or they both have one of the n − k 1-bit positions set to 0. In both cases,
crossover cannot change the value of such bit. Thus, at least one specific
bit-position must be flipped, which occurs with probability O(1/n).

Taking into account the probabilities of the three selection events above, the
probability of producing a y-individual is

p(y) =

(

y

µ

)2
(

1−
χ

n

)n

+ 2

(

y

µ

)(

1−
y

µ

)[(

1

4

)

(

1−
χ

n

)n

+O

(

1

n

)]

+
(µ− y)2

µ2
O

(

1

n

)

=
(

1−
χ

n

)n
(

y

µ

)(

y

µ
+

µ− y

2µ

)

+O

(

y(µ− y)

µ2
·
1

n

)

+O

(

(µ− y)2

µ2
·
1

n

)

=
y(µ+ y)

2µ2

(

1−
χ

n

)n

+O

(

µ(µ− y)

µ2
·
1

n

)

We then estimate a lower bound on q(y). In the case where y = µ, a non-y
individual can be added to the population if:



– two y-individuals are selected, and the mutation operator flips one of the
k 0-bits and one of the n − k 1-bits. This event occurs with probability

q(µ) = k(n− k)
(

χ
n

)2 (
1− χ

n

)n−2
= Ω(1/n), where we used that k = O(1).

In the other case where y < µ, then a non-y individual can be added to the
population in the following two ways:
– A y-individual and a non-y individual are selected. Crossover produces a

copy of the non-y individual with probability 1/4, which is unchanged by
mutation with probability (1 − χ/n)n. Or with probability 1/4, crossover
produces an individual with k − 1 0-bits. Mutation then creates a non y-
individual by flipping a single of the n− k 1-bit positions. This event occurs

with probability (1/4)(n − k)
(

χ
n

) (

1− χ
n

)n−1
≥ (χ/4)

(

1− χ
n

)n
− O(1/n)

using again that k = O(1).
– Two non y-individuals are selected. In the worst case, the selected individuals

are different, hence crossover produces an individual on the plateau with
probability at least 1/2, which mutation does not destroy with probability
(1− χ/n)n.

Assuming that µ/2 ≤ y < µ and n is sufficiently large, the probability of adding
a non-y individual is

q(y) ≥ 2

(

y

µ

)(

1−
y

µ

)[(

χ+ 1

4

)

(

1−
χ

n

)n

−O

(

1

n

)]

+
1

2

(

1−
y

µ

)2
(

1−
χ

n

)n

=
(µ− y)(µ+ χy)

2µ2

(

1−
χ

n

)n

−O

(

µ− y

µ
·
1

n

)

.

Multiplying p(y) and q(y) by the respective survival probabilities, we get

p−(y) ≥

[

(µ− y)(µ+ χy)

2µ2

(

1−
χ

n

)n

−O

(

µ− y

µ
·
1

n

)](

y

µ+ 1

)

=
(µ− y)(µ+ χy)y

2µ2(µ+ 1)

(

1−
χ

n

)n

−O

(

(µ− y)

µ
·
1

n

)

.

p+(y) =

[

y(µ+ y)

2µ2

(

1−
χ

n

)n

+O

(

y(µ− y)

µ2
·
1

n

)](

µ− y

µ+ 1

)

=
(µ2 − y2)y

2µ2(µ+ 1)

(

1−
χ

n

)n

+O

(

(µ− y)2

µ2
·
1

n

)

.

Both equalities hold for values of y between µ/2 and µ. ⊓⊔

Steps where crossover recombines two parents with larger Hamming distance
were excluded from Lemma 3 as they require different arguments. The following
lemma shows that conditional transition probabilities in this case are favourable
in that the size of the largest species is more likely to decrease than to increase.

Lemma 4. Assume that y ≥ µ/2 and the (µ+1) GA on Jumpk with k = O(1)
and mutation rate χ/n = Θ(1/n) selects two individuals on the plateau with



Hamming distance larger than 2, then for conditional transition probabilities
p∗
−
(y) and p∗+(y) for decreasing or increasing the size of the largest species,

p∗
−
(y) ≥ 2p∗+(y).

Proof. Assume that the population contains two individuals x and z with Ham-
ming distance 2ℓ ≤ 2k, where ℓ ≥ 2. Without loss of generality, let us assume
that they differ in the first 2ℓ bit positions.

In the case that the majority individual y has ℓ 0-bits in the first 2ℓ positions,
then a y-individual may be produced by creating the ℓ 0-bits and ℓ 1-bits in the
exact positions by crossover and no mutation should occur. Alternatively, at least
one exact bit has to be flipped by mutation. Then, the probability of producing
a y-individual from x and z, and replacing a non y-individual with y is less than

p∗+(y) ≤

[

(

1

2

)2ℓ
(

1−
χ

n

)n

+O

(

1

n

)

]

(

µ− y

µ+ 1

)

On the other hand, the probability of producing an individual on the plateau
different from y, and replacing a y-individual is at least (for sufficiently large n)

p∗
−
(y) ≥

((

2ℓ

ℓ

)

− 1

)(

1

2

)2ℓ
(

1−
χ

n

)n
(

y

µ+ 1

)

> 2p∗+(y).

In the other case, assume that the majority individual y does not have ℓ
0-bits in the first 2ℓ bit-positions. Then the mutation operator must flip at least
one specific bit among the last n− 2ℓ positions to produce y, which occurs with
probability O(1/n), while the probability to produce a non y-individual on the
plateau is still Ω(1). ⊓⊔

4 Standard Mutation Rate

In this section we state the main result. Herein we consider pm = 1/n.

Theorem 1. The expected optimisation time of the (µ+1) GA with pc = 1,
pm = 1/n and µ ≤ κn, for some constant κ > 0, on Jumpk, k = O(1), is
O(µn log(µ) + nk/µ+ nk−1 log(µ)).

For k ≥ 3 the best speedup compared to the expected time of Θ(nk) for the
(1+1) EA [5] and other EAs only using mutation is of order Ω(n/ log n) for µ =
κn. For k = 2 the best speedup is of order Ω(

√

n/ log n) for µ = Θ(
√

n/ log n).
Note that for mutation rate 1/n, the dominant terms in Lemma 3 are equal,

hence the size of the largest species performs a fair random walk, up to a bias
resulting from small-order terms. This confirms our intuition from observing
simulations. The following lemma formalises this fact: in steps where the size
Y (t) of the largest species changes, it performs an almost fair random walk.

Lemma 5. For the random walk induced by the size of the largest species, con-
ditional on the current size y changing, for µ/2 < y < µ, the probability of
increasing y is at most 1/2 + O(1/n) and the probability of decreasing it is at
least 1/2−O(1/n).



We use these transition probabilities to bound the expected time for the
random walk to hit µ/2.

Lemma 6. Consider the random walk of Y (t), starting in state X0 ≥ µ/2. Let
T be the first hitting time of state µ/2. If µ = O(n), then E(T | X0) = O(µn +
µ2 log µ) regardless of X0.

Proof. Let Ei abbreviate E(T | X0 = i), then Eµ/2 = 0 and Eµ = O(n) + Eµ−1

as p−(µ) = Ω(1/n) by Lemma 3.
For µ/2 < y < µ the probability of leaving state y is always (regardless of

Hamming distances between species) bounded from below by the probability of
selecting two y-individuals as parents, not flipping any bits during mutation, and
choosing a non-y individual for replacement (cf. Lemma 3, Lemma 4):

p+(y) + p−(y) ≥
y2

µ2
·

(

1−
1

n

)n

·
µ− y

µ+ 1
≥

µ− y

24µ

as y ≥ µ/2, µ + 1 ≤ 3µ/2 (since µ ≥ 2), and (1 − 1/n)n ≥ 1/4 for n ≥ 2.
Using conditional transition probabilities 1/2 ± δ for δ = O(1/n) according to
Lemma 5, Ei is bounded as Ei ≤

24µ
µ−i +

(

1
2 − δ

)

Ei−1 +
(

1
2 + δ

)

Ei+1.

This is equivalent to
(

1
2 − δ

)

· (Ei − Ei−1) ≤ 24µ
µ−i +

(

1
2 + δ

)

· (Ei+1 − Ei).
Introducing Di := Ei − Ei−1, this is equivalent to

Di ≤

24µ
µ−i +

(

1
2 + δ

)

·Di+1

1
2 − δ

≤
50µ

µ− i
+ α ·Di+1

for α := 1+2δ
1−2δ = 1+O(1/n), assuming n is large enough. From Eµ = O(n)+Eµ−1

we get Dµ = O(n), hence an induction yields Di ≤
∑µ−1

j=i
50µ
µ−j ·α

j−i+αµ−i ·O(n).

Combining α = 1 + O(1/n) and 1 + x ≤ ex for all x ∈ R, we have αµ ≤
eO(µ/n) ≤ eO(1) = O(1). Bounding both αj−i and αµ−i in this way, we get

Di ≤ O(n) +O(µ) ·

µ−1
∑

j=i

1

µ− j
= O(n+ µ log µ)

as the sum is equal to
∑µ−i

j=1 1/j = O(log µ).
Now, Dµ/2+1 +Dµ/2+2 + · · ·+Di = (Eµ/2+1 −Eµ/2) + (Eµ/2+2 −Eµ/2+1) +

· · · + (Ei − Ei−1) = Ei − Eµ/2 = Ei. Hence we get Ei =
∑i

k=(µ/2)+1 Dk ≤

O(µn+ µ2 log µ). ⊓⊔

Now we show that, when the largest species has decreased its size to µ/2,
there is a good chance that the optimum will be found within the following
Θ(µ2) generations.

Lemma 7. Consider the (µ+1) GA with pc = 1 on Jumpk. If the largest species
has size at most µ/2 and µ ≤ κn for a sufficiently small constant κ > 0, the
probability that during the next cµ2 generations, for some constant c > 0, the
global optimum is found is Ω

(

1/(1 + nk−1/µ2)
)

.



Proof. We show that during the cµ2 generations the size of the largest species
never rises above (3/4)µ with at least constant probability. Then we calculate
the probability of jumping to the optimum during the phase, given this happens.

Let Xi, 1 ≤ i ≤ cµ2 be random variables indicating the increase in number of
individuals of the largest species at generation i. We pessimistically ignore self-
loops, thus the size of the species either increases or decreases in each generation.
Using the conditional probabilities from Lemma 5, we get that the expected
increase in each step is 1 · (1/2 +O(1/n))− 1 · (1/2−O(1/n)) = O(1/n). Then
the expected increase in size of the largest species at the end of the phase is

E(X) =

cµ2

∑

i=1

Xi =

cµ2

∑

i=1

O(1/n) = (c′µ2)/n ≤ c′κµ ≤ (1/8)µ,

where we use that µ ≤ κn and κ is chosen small enough.
By an application of Hoeffding bounds Pr (X ≥ E(X) + λ) ≤

exp(−2λ2/
∑

i c
2
i ) with λ = µ/8 and ci = 2, we get that Pr (X ≥ (2/8)µ) ≤

exp(−c′) = 1−Ω(1). We remark that the bounds also hold for any partial sum
of the sequence Xi ([1], Chapter 1, Theorem 1.13), i. e. with probability Ω(1)
the size never exceeds (3/4)µ in the considered phase of length cµ2 generations.

While the size does not exceed (3/4)µ, in every step, there is a probability
of at least 1/4 · 3/4 = Ω(1) of selecting parents from two different species, and
by Lemma 2 the probability of creating the optimum is Ω(n−k+1).

Finally, the probability that at least one successful generation occurs in a
phase of cµ2 is, using (1 − (1 − p))λ ≥ (λp/(1 + λp)) for λ ∈ N, p ∈ [0, 1] [2,
Lemma 10], the probability that the optimum is found in one of these steps is

1−

(

1−
1

Ω(n−k+1)

)cµ2

≥ Ω

(

µ2 · n−k+1

1 + µ2 · n−k+1

)

.

Finally, we assemble all lemmas to prove our main result.

Proof (of Theorem 1). The expected time for the whole population to reach the
plateau is O(µn log(µ) + n log n) by Lemma 1. Once the population is on the
plateau, we wait till the largest species has decreased its size to at most µ/2.
According to Lemma 6, the time for the largest species to reach size µ/2 is
O(µn + µ2 log µ). By Lemma 7, the probability that in the next cµ2 steps the
optimum is found is Ω

(

1/(1 + nk−1/µ2)
)

. If not, we repeat the argument. The
expected number of such trials is O(1 + nk−1/µ2) and the expected length of
one trial is O(µn + µ2 log µ) + cµ2 = O(µn + µ2 log µ). The expected time for
reaching the optimum from the plateau is hence at most O(µn + µ2 log(µ) +
nk/µ+ nk−1 log(µ)).

Adding up all times and subsuming terms O(µ2 log(µ)) = O(µn log µ) and
O(n log n) = O(nk/µ+ nk−1 log µ) completes the proof. ⊓⊔

5 Conclusion

A rigorous analysis of the (µ+1) GA has been presented showing how the use
of both crossover and mutation considerably speeds up the runtime for Jumpk



compared to algorithms using mutation only. Traditionally it has been believed
that crossover may be useful only if sufficient diversity is readily available and
that the emergence of diversity in the population is due to either mutation
alone or should be enforced by the introduction of diversity mechanisms [4, 6, 9].
Indeed, previous work highlighting that crossover may be beneficial for Jumpk
used unrealistically low crossover probabilities to allow mutation alone to create
sufficient diversity. Conversely, our analysis shows that the interplay between
crossover and mutation on the plateau of local optima of the Jumpk function
quickly leads to a burst of diversity that is then exploited by both operators to
reach the global optimum.
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