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Abstract—Partial Differential Equations (PDEs) lie at the heart
of numerous scientific simulations depicting physical phenomena.
The parallelization of such simulations introduces additional
performance penalties in the form of local and global synchro-
nization among cooperating processes. Domain decomposition
partitions the largest shareable data structures into sub-domains
and attempts to achieve perfect load balance and minimal com-
munication. Up to now research efforts to optimize spatial and
temporal cache reuse for stencil-based PDE discretizations (e.g.
finite difference and finite element) have considered sub-domain
operations after the domain decomposition has been determined.
We derive a cache-oblivious heuristic that minimizes cache misses
at the sub-domain level through a quasi-cache-directed analysis
to predict families of high performance domain decompositions
in structured 3-D grids. To the best of our knowledge this is the
first work to optimize domain decompositions by analyzing cache
misses - thus connecting single core parameters (i.e. cache-misses)
to true multicore parameters (i.e. domain decomposition). We
analyze the trade-offs in decreasing cache-misses through such
decompositions and increasing the dynamic bandwidth-per-core.
The limitation of our work is that currently, it is applicable only
to structured 3-D grids with cuts parallel to the Cartesian Axes.
We emphasize and conclude that there is an imperative need to
re-think domain decompositions in this constantly evolving multi-
core era.

Keywords—PDEs, Domain Decomposition, Stencil, Quasi-
cache-directed, Cache-oblivious

I. INTRODUCTION

The introduction of parallel program design, standardized

Application Programming Interfaces (API) and enormous

support from advancements in hardware of shared and

distributed memory machines has instigated researchers to

redesign, reimplement and optimize current algorithms. To

take advantage of the several CPU cores available in a

parallel computer, an existing problem must be partitioned

and assigned to these cores. When partitioning/decomposing

a problem the focus is typically on computations and

data [1], aiming to equidistribute the former and minimize

communication of the latter [2]. It is the programmer’s

responsibility to choose an appropriate decomposition.

Standard architecture today varies from a shared memory

machine that lets each process access a global address

space [3] to a distributed architecture that purely uses

message passing for communication/synchronization. MPI
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Fig. 1: A 7-pt stencil in 3-D.

(Message Passing Interface) [4] is the de-facto standard

for programming distributed memory machines. Hybrid

architectures consisting of several shared memory nodes,

interconnected by a high speed network like Infiniband [5],

have become the norm.

Due to the difficulties in obtaining analytical solutions to

PDEs, a good numerical approximation of the solution is

needed. Finite Difference Methods (FDMs) are a numerical

approximation method to estimate derivatives of any order [6].

Although we use FDM, results obtained in this work apply to

other stencil-based discretization schemes such as the Finite

Volume Method (FVM) or the Finite Element Method (FEM).

A stencil in FDM is a fixed geometric figure which is used to

approximate the value of the dependent variable in the PDE

by the weighted contributions of its neighbouring points. In

a 7-point stencil (Figure 1), the central point is updated by

the weighted average of six of its neighbours. This stencil

then moves to the next point to cover the entire domain.

Iterative methods like Jacobi, weighted Jacobi (ω − Jacobi),

Gauss-Seidel, Conjugate Gradient [6], [7], [8] are used to

update the unknowns. Thus, iterative methods are parallelized

to obtain stencil based solutions to PDEs. The decomposition

of a d-dimensional domain into sub-domains and subsequent

assignment to cores inherently imposes a logical geometrical

arrangement (topology) of the CPU cores as well. Ghost lay-

ers/halo data are appended to sub-domains to buffer incoming

data from neighbouring processes (and this data must be



Require: Sub-domains with set Dirichlet boundary

while Not converged do

MPI_Irecv (ghost data)

MPI_Isend (next-to-boundary data)

Update (see Figure 3) interior independent values using

7-pt stencil

MPI_Wait ( )

Update next-to-boundary values using 7-pt stencil

MPI_Allreduce (convergence test)

end while

Fig. 2: High level iterative parallel PDE solver like Jacobi

new[i][j][k]=alpha *
(old[i-1][j][k]+old[i+1][j][k]+

old[i][j-1][k]+old[i][j+1][k]+

old[i][j][k-1]+old[i][j][k+1]);

Fig. 3: Jacobi iteration kernel, alpha=constant, new and old

are 3-D data arrays

received before next-to-boundary points may be updated - so

called dependent layers). A high level description of a parallel

iterative algorithm, like parallel Jacobi, for solving PDEs is

illustrated in Figure 2, while the Jacobi iteration for a stencil

with equal weights is shown in Figure 3.

For a given core count, a spatial domain can be divided

in several ways. For example, given 64 cores, a total of

28 Cartesian process topologies exist in 3-D. Performance

optimization can start with domain decomposition at the

macro-level. Figure 4 illustrates that traditional optimizations

only consider reducing the cache misses [9] after performing

domain decomposition [10], [11], [12], [13], [14]. We take

a reverse approach in the sense that we derive a domain

decomposition based on optimization of cache-misses. Our

final objective is then to optimize a sub-domain using an

efficient domain decomposition and encourage the use of sub-

domain level optimizations.

Domain Decomposition

Optimization

Communication based Cache based

Cache aware Cache oblivious

Spatial & Temporal

Optimization

Fig. 4: Traditional optimization (solid arrows), our approach

(dashed + solid arrows)

II. RELATED WORK

Domain Decomposition is a partitioning technique where

large shareable data structures are split into smaller parts

and assigned to processes [1]. Domain decompositions are

problem dependent, e.g., matrix multiplications favour a

block decomposition whereas LU factorization does not

[15]. Partial Differential Equations (PDEs) [6] are prevalent

in scientific calculations which model natural phenomena.

An associated physical domain must be discretized before

simulation, for example, a 2-D metal plate is divided into a

2-D mesh [15]. Second order elliptic PDEs can be completely

specified by defining boundary conditions, namely, Dirichlet,

Neumann or Robin [1], [7], [8]. The partial derivatives can

be approximated at various points using Finite Difference

Methods (FDMs) [6]. Iterative methods can then be used

to update the value of the approximated solution [7], [8].

Depending on the number of neighbours which are considered

for updating, including the point itself, an x-point geometrical

stencil is formed. In 3-D, we commonly consider a 7-point

or a 27-point stencil [10], [12], [16]. Variable or constant

weighted contributions of these neighbours represent the

discretized coefficients of the given PDE for a particular data

point. Typically stencil based codes achieve poor performance

due to low arithmetic intensity [13], [17]. This suggests that

arithmetic intensity and cache optimization ought not be

neglected when selecting a suitable decomposition.

Parallel efficiency is inherently connected to an optimized

serial code and there have been numerous efforts to optimize

the re-use of data in the cache memory [10], [11], [12], [13],

[16]. Cache blocking/tiling optimizations for maximum cache

reuse have focussed both on using appropriate block sizes

of data to improve spatial locality as well as enhancing data

locality between adjacent time steps or iterations [9], [10],

[11], [12], [13], [16]. Partial 3-D blocking has been proposed

in the literature to overcome the issue of frequent gaps in the

block of memory being considered and to show that highest

efficiency is achieved when the blocking factor has the

maximum size in the dimension which has contiguous data

[10]. Traditionally and universally, optimization in parallel

codes is considered only after the decomposition has been

selected as shown in Figure 4 (solid arrows).

Cost models for cache tiling have been developed but the

coarse-grained models do not distinguish between the cost of

load and store operations [11]. Further, in Jacobi type iterations

the grid that is written is different from the one that is read

as compared to a grid being updated by the Gauss-Seidel

method - a cause of increase in cache-conflict misses [18].

Serial microbenchmarks like the Stanza Triad (STriad), Stencil

Probe act as a proxy for the actual code, for studying automatic

prefetch policies and assessing the performance for larger

stencil codes. Furthermore, changing memory hierarchy has

reduced the efficacy of cache tiling/blocking [11] and hand-

coded optimizations might interfere with streaming memory



mechanisms like software/hardware prefetching [11], [13].

Factors like Translation Look Aside Buffers (TLB) misses,

mispredicted branches and hardware prefetches, etc. have also

been used to predict the stencil code performance using statis-

tics from performance counters [14]. Cache-aware [10], [11],

[12] and Cache Oblivous/transcendental [19] algorithms form

an orthogonal approach, with the former taking into account

the architectural details of the cache memory hierarchy and

the latter completely ignoring them.

III. OUR FOCUS AND CONTRIBUTION

We focus on predicting the best domain decomposition(s)

by minimizing a combination of communication elements and

cache-misses. Our analysis utilizes minimal cache parameters

i.e. cache line size. We introduce the term quasi-cache-aware

to mean that although the analysis is minimally cache-aware,

the end result is cache-oblivious. Our experiments show that

the same optimization does not yield the same performance

benefits with a sub-optimal domain decomposition. The fol-

lowing are our contributions:

• An in-depth analysis and worst-case prediction of read-

/write cache-misses due to the local computations in the

independent computation kernel and the dependent layers,

along with packing/unpacking cache-misses involved in

communication of data (see Section IV and V).

• Prediction of high performance families of process

topologies (see Section V).

• To emphasize that a hand-coded optimization at sub-

domain level can interfere with compiler optimizations

(see Section VI).

• Predict and demonstrate that given the same amount of

data in an X/Y/Z-plane, communication of Z-planes is

the most expensive (see Section VI).

• Investigate trade-offs in determining the best topology for

a given core count and problem size (see Section VI and

Section VII).

IV. NOTATION AND EXPERIMENTAL TESTBED

We represent the size of the input problem as NxNyNz ,

where (Ni + 1) is the number of grid points in direction i,

and i = x, y, z. The outermost points at the boundary do not

constitute unknowns (Dirichlet boundary). Hence, we have

a system of linear equations in (Nx − 1)(Ny − 1)(Nz − 1)
unknowns. Without any loss of generality, we assume

Nx = Ny = Nz = N . The number of processes (or cores)

is = P and any regular Cartesian domain decomposition

satisfies DxDyDz = P , where Di is the number of processes

in the ith dimension. The number of unknowns per process

is PxPyPz , where Pi = Ni−1
Di

. Allocating a 1-element deep

ghost layer to buffer data from neighbouring processes, the

3-D sub-domain size becomes (Px+2)(Py+2)(Pz+2). Each

sub-domain is composed of three layers: the ghost layer, the

dependent layer - consisting of near-to-boundary values (see

Figure 2) that needs data from other processes for updating

unknowns - and the independent layer (computational kernel)

consisting of interior values (see Figure 2) which needs
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Fig. 5: Subdomain of a process with independent, dependent,

ghost layers and indexing from 0
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Fig. 6: 3x1x1 Process Grid Decomposition and Coordinate

Axes with process ranks/coordinates

no data from neighbouring processes. The ghost layer acts

as a true boundary layer when the neighbour process is

MPI_PROC_NULL (A dummy destination/source process as

given by the MPI standard [4]). Figure 5 shows the three basic

layers and associated dimensions. Figure 6 shows the process

decomposition reference axes, X decomposition and process

coordinates given by MPI_Cart_coords() (A function

in MPI which gives the process coordinates in a Virtual

Topology [4]). Our X-axis for the domain is in the opposite

direction as the X-axis for process coordinates. The planes

are referred to as: X UP (upper YZ), X DOWN (lower YZ),

Y LEFT (left XZ), Y RIGHT (right XZ), Z TOWARDS U

(XY plane towards reader) and Z AWAY U (XY plane away

from reader), respectively. The 3-D data layout is depicted in

Figure 7.

Our experimental testbed is the ARC2 (Advanced Research

Computing) facility at Leeds - a Linux based HPC (High

Performance Computing) facility based on CentOS6 distribu-

tion. Each compute node consists of 2 Xeon E5-2670 Sandy

Bridge processors, each with 8 compute cores (base clock

frequency 2.6 GHz, Turbo 3.2 GHz), 16 GB shared memory

per processor making a total of 32 GB per compute node. The

peak theoretical FLOPS delivered by each processor is 166.4

GFLOP/sec (332.8 GFLOPS/sec per node). Each processor is

housed in a socket and has two QPI links, with each link

running at 16 GB/sec in each direction simultaneously [20].

There are a total of 190 blades consisting of 380 nodes, making

a total of 3040 compute cores (though we use no more than

1024 in this paper). The L1d and L1i cache are 32 KB each,
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Fig. 7: 3-D data layout : Z direction - contiguous data

L2 cache is 256 KB and 8 cores in a socket share the last

level cache (LLC) or L3 of 20 MB. L1d and L2 have a cache

line size of 64 bytes and associativity of 8 while L3 has the

same cache line size but an associativity of 20. Each node

server has a main memory of 32GB of type 1600MHz DDR3

and peak memory bandwidth per node of 102.4 GB/sec. Each

socket (CPU) forms a NUMA (Non-Uniform Memory Access)

region. The network is QDR Connect-X delivering 40Gbit/sec

to the compute blades and storage. The software stack supports

Intel C, GNU and PGI compilers with OpenMPI 1.6.5 library

and hyperthreading is turned off.

V. CREATING A MODEL FOR PREDICTION

We focus on establishing a relation between minimizing

cache misses and domain decomposition by considering the

internal layout of data of a sub-domain and the cache line

size. Our high level analysis allows us to ignore contention of

shared resources, processor architecture, cache-line replace-

ment policies - factors that contribute to cache misses but

are extremely difficult to quantify because of the multitude

of interactions between contending processes. We always

decompose along Cartesian Axes directions i.e. perpendicular

cuts along X, Y and Z dimensions (block partitions) and start

the analysis by considering the planes consisting of near-to-

boundary values (see Figure 2 and Figure 5). In practice, it

is not possible to determine the exact number of cache lines

being used to contain the data in the working set. The minimum

number of cache lines which can contain 2 contiguous data

elements in the Z-direction, 2 non-contiguous data elements

in the X-direction and 2 non-contiguous data elements in the

Y-direction is 5. Thus, at any point in time while updating

we deal with 2 planes and assume 5 dedicated cache lines.

Further, except for Figure 18, we utilize all the cores of a

node.

A. Z-Plane

This plane has the greatest effect on the running time as no

dimension has contiguous data here i.e. X and Y dimensions.

Using a 1-element ghost zone, 2-D data from the dependent

layer is packed implictly (using MPI_Type_subarray())

in the sending process and sent to the receiver. While pack-

ing, read-misses (reading from user array and writing to

1
1

1

1

1

ZX

Y

Fig. 8: Dependent Z TOWARDS U (shaded vertical rectan-

gle), adjacent points distance (thick solid red line ≈ Pz) and

boundary (unshaded circular points).

TABLE I: Parameters for Z-plane

Description Value

Total elements1 PxPy

Max. 2 element gap Pz + 2 ≈ Pz , if Pz >> 2
Total gap both Z-planes 2(Px − 1)[(Py + 1)(Pz + 2) + 2]

Probability cache write-miss 1, if Pz + 2 > cache line size
sizeof(FP )

Total cache write-misses ≈ PxPy , if Pz + 2 > cache line size
sizeof(FP )

Probability cache read-miss 1, if Pz + 2 > cache line size
sizeof(FP )

Total update cache read-misses 5PxPy if Pz + 2 > cache line size
sizeof(FP )

MPI buffer) become significant and while unpacking, write-

misses (reading from MPI buffer and writing to user array)

become significant. Both are significant when updating an

element using its neighbouring elements. Since the cache line

size in our experimental testbed is 64 bytes, it can store

either 8 double precision (DP) values or 16 floating

point/single precision (FP) values. Figure 8 shows

the update of a Z-plane. The near-to-boundary points (in blue)

have a minimum distance of Pz between them and hence do

not represent contiguous data. When a data point is updated,

the cache logic tries to exploit spatial locality. But the greater

the value of Pz , and smaller the length of the cache line, the

lesser the probability that the next needed element will be

found in the cache. Assuming Pz +2 >
cache line size(64)

sizeof(FP ) for

large problem sizes, there is a cache miss for a write on every

element. Hence, probabilty of a write-miss is
PxPy

PxPy
= 1. For

all practical purposes we assume Pz + 2 > cache line size
sizeof(FP ) .

Table I shows the various parameters for Z-planes. Assuming

Pz > 16 (for double values assume Pz > 8) there are 2

read-misses in X and Y directions and 1 read-miss in the Z

direction. Hence, there is a total of 5 cache read-misses in

updating one element (for a large problem), making it a total of

5PxPy misses for the entire Z-plane. Our analysis of the data

access pattern for the Z-plane is for a standard implementation

i.e. the sub-domain consists of the dependent layers as well

as the ghost layers. A different data layout is possible where

the Z-plane is contained in a separate contiguous 1-D array.

1Either float or double data



TABLE II: Parameters for X-planes

Description Value

Total elements PyPz

Max. 2 element gap 2
Total gap/unwanted elements for both X-planes 2[2(Py − 1)]
Probability of cache write-miss 1/16
Total cache write-misses PyPz/16
Probability of a cache read-miss 1/16
Total update cache read-misses 5

16
PyPz

1

ZX

Y

Fig. 9: X-plane update: Data elements are contiguous (solid

thick red line) except at boundary (dashed thick red line)

Such a design will increase implementation complexities, may

increase cache-conflict misses by altering the working set and

further, move the problem to the next-to-boundary plane.

B. X-plane

Both X UP and X DOWN have contiguous data in the Z

direction (blue points in Figure 9). Irrespective of the value of

Pz , the gap between the last element updated in the Z direction

and the first next element is always two (two ghost data points).

The total gap for PyPz points is exactly 2[2(Py − 1)] for

both the X-planes. The various parameters for X-planes are

shown in Table II. All updates proceed in the Z direction where

data is contiguous and hence after a cache-write miss, data

would be fetched into the cache according to the cache line

size. Thus, there is a cache write-miss after every 16 elements

(=
cache line size(64)

sizeof(FP ) ). Further, there are 5 cache read-misses

every 16th element, making a total of 5
16PyPz cache read-

misses for the entire plane in the worst case (assuming no

aggressive prefetching).

C. Y-plane

The planes Y LEFT and Y RIGHT have contiguous data

in the Z direction but not in the X direction. The gap between

the last updated element (xth row) and the first element in

the next row (i.e. (x + 1)th) row is (Pz + 2)(Py + 1) + 2.

Table III shows the parameters for the Y-plane. Data here is

contiguous in the Z-direction and hence there is a cache write-

miss every 16 elements (= cache line size
sizeof(FP ) in the worst case),

making the probability of a cache write-miss 1
16 . The total

cache write-misses are then 1
16PxPz . But unlike the constant

maximum distance of 2 elements in updating the X-plane, the

TABLE III: Parameters for Y-plane

Description Value

Total elements PxPz

Max. 2 element gap (Pz + 2)(Py + 1) + 2.
Total gap both planes 2(Px − 1)[(Pz + 2)(Py + 1) + 2]
Probability cache write-miss 1

cache line size/sizeof(FP )
= 1/16

Total cache write-misses (1/16)PxPz

Probability cache read-miss 1
cache line size/sizeof(FP )

= 1/16

Total update cache read-misses 5
16

PxPz

1
1
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Fig. 10: Dependent Y LEFT plane (vertical shaded rectangle)

and distance between two adjacent points (solid red thick line).

distance here is variable and depends on the Z and Y direction.

The higher the value of (Pz + 2)(Py + 1) + 2, the lower the

probability that the prefetched data will be available in cache

while updating a Y-plane. Figure 10 shows the Y LEFT plane

and a constant gap of 1 element in the Z direction. If we

are currently in the xth row, then to reach the first element

in the (x + 1)th row, we need to cross the ghost boundary

and then traverse through ≈ Py elements. We move along the

contiguous Z direction to update the Y plane and hence the

data for the next element is available if the gap between the

current and next element is less than the size of the cache

line. Hence, the total cache read-misses is 5
16PxPz (2 for

X neighbours, 2 for Y neighbours and 1 for Z neighbours).

If there is prefetching involved then the X decomposition

should perform better as there is a maximum constant gap

of 2 between any two updated elements and there is higher

probability that prefetching will cover that gap of 2 instead of

a gap of (Pz + 2)(Py + 1) + 2.

TABLE IV: Parameters for independent computational kernel

Description Value

Computational elements (Px − 2)(Py − 2)(Pz − 2)
Max. 2 element gap 4
Total gap 4(Px − 3)[(Py + Pz)]
Probability cache write-miss 1/16
Total cache write-misses 1

16
(Px − 2)(Py − 2)(Pz − 2)

Probability cache read-miss 1/16
Total update cache read-misses 5

16
(Px − 2)(Py − 2)(Pz − 2)



TABLE V: Cache read/write misses for X, Y and Z-plane

Plane Pack

read-

misses

Unpack

write-

misses

Update

read-

misses

Update

write-

misses

Total

Z-plane PxPy PxPy 5PxPy PxPy 8PxPy

X-plane
PyPz

16

PyPz

16

5PyPz

16

PyPz

16

PyPz

2

Y-plane PxPz

16
PxPz

16
5PxPz

16
PxPz

16
PxPz

2

D. Independent computation

Irrespective of the dimensions, in the subdomain interior

we have a maximum gap of 4 elements between the last

updated element and the next element to be updated. As Pz

decreases and Px and Py increase, the total gap/unwanted ele-

ments will increase. In any topology, a write-miss is expected

only after approximately 16 elements. Hence, probability of

a write-miss is approximately 1
16 , which makes a total of

1
16 (Px − 2)(Py − 2)(Pz − 2) write misses. Since this is the

same for all topologies, a uniform cache-miss rate is expected

irrespective of the size of the cubic sub-domain but the total

number of cache misses is a function of the size of the

sub-domain. The case for cache read-misses is similar. Table

IV shows the parameters for the independent computation

kernel. Note that the independent computation kernel is the

part of the sub-domain where computation can be overlapped

with communication (see Figure 2) using the non-blocking

communication routines. When the data is being packed by the

communication progress engine, the cache is being used for

two purposes: to bring in data for independent computations,

and to bring in data from the dependent planes which are

being packed if neighbour 6= MPI_PROC_NULL. Since the

cache is now being used for both the purposes mentioned

above, the cache miss rate is likely to go up because of cache

pollution. Similar is the case of unpacking of data if the MPI

implementation decides to unpack it before MPI_Wait() is

executed. If the data is unpacked at the point of executing the

wait call, we are sure that the independent computational core

has already been updated.

E. Packing, Unpacking and Updating

In general, the number of cache write-misses for unpacking

will be the same as cache read-misses while packing data.

While updating data, the number of cache write-misses will

be different from cache read-misses because of the 7-point

stencil. Table V shows the total number of cache misses in the

worst case without agressive prefetch, theoretically predicted

by our model when a plane is packed, unpacked and updated.

F. Deriving the heuristic by minimization

We proceed to minimize the cache-misses that we derived

in the previous sections. The total cache misses for the three

planes using Table V can be written as:

S = 8PxPy +
1

2
PxPz +

1

2
PyPz = αPxPy + βPz(Px + Py)

where α and β are dependent on the length of the architecture-

specific cache line ( here α = 8, β = 1
2 ) . Our goal is

to minimize this expression to obtain the least value of S.

By manipulating ∂S
∂Px

and ∂S
∂Py

, we obtain Px = Py but

this does not yield any relation to Pz . Since N is constant,

the values of Px, Py and Pz are dependent on the values

of Dx, Dy and Dz such that DxDyDz = P , where P is

the number of processes or cores. Clearly, we can find all

possible combinations of Dx, Dy and Dz and thus find all

possible values of αPxPy + βPz(Px + Py). Minimization of

this expression suggests a minimization of a quadratic problem

but by observing that we know the various permutations of

Dx, Dy, Dz for a given P , we can find the minimum value

of S by an exhaustive search by substituting the value of

Px, Py, Pz in S. Our solution implies that for S to remain

minimum, we need Dx = Dy and Dz = 1. In the worst case

when all six planes are sent, the volume of data is given by:

V = 2(PxPy + PyPz + PzPx)

Minimizing V by manipulating ∂V
∂Px

, ∂V
∂Py

and ∂V
∂Pz

, we

obtain Px = Py = Pz . The intersection of conditions

for minimization of the sum of communicated elements

and minimization of cache misses leads to a common

condition Px = Py . This implies that Dx = Dy when

Nx = Ny = Nz = N . In the more general case where

Nx 6= Ny 6= Nz , the ratio
(Nx−1)

Dx
=

(Ny−1)
Dy

must be

maintained.

As the problem size increases, the inner independent com-

putational kernel increases faster than the surface area of

planes. For example, when the problem increases 8 times,

the independent computational domain increases 8 times

as compared to a 4 times increase in the surface area.

Our derivation in Section V is based on the assumption

that the cache misses due to the independent computation

kernel should not be much larger than the sum total of

cache misses incurred by the planes. If this case is violated

i.e. S̃ = (5+1)
16 (Px − 2)(Py − 2)(Pz − 2) >> S, then

the optimal topology moves towards the topology given by

MPI_Dims_create(). This does not mean that the topol-

ogy determining optimal domain decomposition is always the

one returned by MPI_Dims_create() but rather that the

optimal topology will be found at a higher Dz ≤ Dsz , where

Dsz is the Z-dimension returned by MPI_Dims_create().

Since minimizing S̃ yields Dx = Dy = Dz and minimizing

S gives Dx = Dy , Dz = 1, thus 1 ≤ Dz optimal ≤ Dsz . In

other words, MPI_Dims_create() returns the upper limit

of the search space of highest performing topologies.

VI. EXPERIMENTAL RESULTS

We implement the Laplace equation ∇2u = 0 where

u = u(x, y, z) - an elliptic, linear, homogeneous PDE of

order two. Dirichlet boundary conditions for boundary ∂Ω
is u = 1. Implicit equations in (Nx − 1)(Ny − 1)(Nz − 1)
unknowns are solved using a finite difference 7-point

stencil on Ω = (0, 1)3. Without loss of generality and for
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Fig. 11: Time/iteration Vs Topology for 16 processes (SMP),

problem size=2573, 1048576 cells/process

simplicity, the simulation assumes that (Ni − 1)%Di = 0
for i = x, y, z. When (Ni − 1)%Di 6= 0, it produces a load

imbalance and complicates an unbiased study of the effect

of domain decompositions. Further, we always use a Jacobi

computational kernel (Figure 3) in 3-D for discussions.

Single Node: For 16 processes decomposed in 3-

D, the cache equations yield an optimal decomposition

of 4x4x1 instead of the 4x2x2 topology given by

MPI_Dims_create(). The performance of various

topologies for 16 processes is shown in Figure 11. Points

at the same horizontal level can be visualized as a single

family and hence at least three families can be observed.

The performance gain for the best topology (4x4x1)

over the topology minimizing communication (4x2x2) is

approximately 4%, while compared to the worst topology

(1x2x8), it is approximately 48%. Using our model we

search for the solution of DxDy = 16 and find that Dx = 4,

Dy = 4 satisfies it such that Px = Py . It may be noted that

it is not always possible that Dx = Dy . When Dx 6= Dy ,

we find the closest Dx, Dy such that the equation holds

while keeping Dz = 1. When Dx = Dy can be found, we

systematically consider the next best topologies to have the

X and Y components as 2Dx and 1
2Dy or 1

2Dx and 2Dy

while keeping Dz = 1. Applying this rule to Figure 11 we

predict the next highest performing topologies to be 8x2x1

and 2x8x1, which coincides with the experimental values.

The topology yielding the lowest communication elements

per process is 4x2x2 (minimum surface area) and 4x4x1 but a

topology like 8x2x1 and 2x8x1 yields better performance than

4x2x2 due to cache effects. Various compiler optimizations

were tried in order to bring down the timing of the worst

decomposition (among 16x1x1, 1x16x1 and 1x1x16) with a

problem of size 1613, i.e. a decomposition of 1x1x16. We list

the results in Table VI. It can be noted from Table VI that

even with the -O2 flag, the compiler generates almost optimal

code and that hand optimization interferes with compiler

optimization (-O3 with Rivera et. al. [10] 2-D tiling). Table

VII shows the predicted cache misses using our model and the

actual cache misses. Even without incorporating prefetching

in our model, the predictions are extremely accurate. We

TABLE VI: Time per iteration with different compiler options

for problem size=161x161x161 and Processors=16

Compiler Optimization Time/iteration

(10−5 secs)

-O2 373
-O3 372
-O3 -xhost 384
-O3 -fp-model fast=1 361
-O3 -fp-model precise -fp-model source 374
-O3 -fimf-precision:low 370
-O3 -unroll4 374
-O3 -opt-prefetch=4 368
-O3, Tile Size=50, Rivera et. al. [10] 394
-O2, Tile Size=50, Rivera et. al. [10] 363

TABLE VII: Predicted Cache Misses (PCM) and Actual

cache misses for Problem Size=1613, Processors=16, Itera-

tions=19353, Independent Compute Elements (ICE)=199712,

PCM for ICE=62410

Topology PCM-planes Total PCM Observed Misses

Z X Y L1 L2

16x1x1 0 12800 0 1.45E+9 1.8E+9 4.0E+8

1x1x16 204800 0 0 5.16E+9 5.0E+9 1.4E+9

1x16x1 0 0 12800 1.45E+9 1.4E+9 5.3E+8

combine the cache misses of only the functions that contribute

significantly towards the total cache misses. The profiler

TAU (Tuning and Analysis Utilities) [21] was used to obtain

the PAPI (Performance Application Programming Interface)

counters like PAPI_L1_DCM and PAPI_L2_DCM [14].

Table VII shows that the Z decomposition is the worst, with

maximum predicted and actual cache misses. This serves as

both a motivation and verification for considering topologies

like (2Dx)(
Dy

2 )Dz and (Dx

2 )(2Dy)Dz . The observed L1

cache misses for the Y decomposition is less than for the X

decomposition although our predictions show that they should

be equal. Further investigation is needed to ascertain the exact

cause. The order of predicted and observed cache misses is

both 109 - instilling further confidence in our prediction (we

do not predict L1 and L2 cache misses separately but use

TAU [21] to capture them individually.).

Multiple Node: Here both local and global communication

take place via the Infiniband interface - leading to an increase

in communication time due to an added message latency

(hops) and increased data in-flight time. We further note that

because of the difference in the number of communication

elements between a topology which minimizes local cache

misses and a topology that minimizes communication elements

specifically, the time gap between the execution for our ex-

periment is expected to reduce when the communication time

between processes increases due to inter-node communication.

Weak Scaling: Figure 12 shows the results for weak

scaling for 8, 64, 216 and 512 processors for 106 cells/core.

The best topology (minimizing cache misses) for each

processor count and problem size is plotted against the
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Fig. 12: Weak scaling for 8, 64, 216, 512 processors, Cell-

s/processor = 106, Iterations=10000. Best topologies (4x2x1,

16x4x1, 6x12x3 and 8x32x2) Vs (2x2x2, 4x4x4, 6x6x6 and

8x8x8), respectively.
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Fig. 13: Weak scaling for 16, 128, 432, 1024 processors,

Cells/processor=1048576, Iterations=10000. Best topologies

(4x4x1, 16x8x1, 12x12x3, and 16x32x2) Vs (4x2x2, 8x4x4,

12x6x6, and 16x8x8), respectively.

topology MPI_Dims_create(). It can be seen that the

cache-minimizing topology outperforms the communication

minimizing topology consistently and the gap even tends to

increase. It was not possible to obtain all possible permutations

of decompositions for 216 processors as our implementation

assumes that (Ni − 1)%Di = 0. Figure 13 shows the weak

scaling between the two types of topologies for 16, 128,

432 and 1024 processors for a total of 1048576 unknowns

per core. The difference between this case and the previous

case is that the number of processors is not a perfect cube

and hence the MPI_Dims_create() may return/returns

Dx 6= Dy 6= Dz . A smaller gap between the two categories

of topologies is possibly because Dz is not the cube-root

of the processor count and hence may be less than Dx

and Dy in the Least Communication Elements (LCE) case,

whereas if the processor count is a perfect cube then Dz (=

Dx = Dy) grows exactly as P
1

3 (MPI Dims create() returns

the maximum value of Dz) for the LCE decomposition.

Since the process placement also plays a very important role

when we venture out of the SMP, we show in Figure 14

(individual topologies not shown because of lack of space) the

difference between two runs of the same problem size with
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Fig. 14: Topology Timings for two runs of Problem

Size=10253, P=1024

identical number of processors but random node allocation.

The topology which minimizes communication i.e. 16x8x8

has a variation of approximately 0.0051 seconds per iteration

which shows that obtaining an optimal process placement is

just as important as minimizing communication. A detailed

discussion of topology mapping/process placement is outside

the scope of this paper.

Strong scaling: As the number of cores increase, the

communication time increases whereas the computation time

decreases due to the decreasing problem size per core. In our

experiments, we observed that in addition to the problem size

per core, the number of cells in the Z-direction i.e. Pz also

affects the optimal decomposition. Further, a tile size of N
2Dz

in the Z-direction with Dz is not the same as having no tiling

with 2Dz . For example, a tile size of 512 in the Z-direction

with Pz = 1024 is not equivalent to having no tiling with

Pz = 512. Further, when we increase Dz , we trade-off an

increase in the Z-plane update with a decrease in update in the

independent computational kernel due to enhanced caching.

Table VIII and IX show our results for problems of sizes

10253 and 5133 up-to 512 cores. In all the cases we were

able to predict high performing decompositions in either 1 or

2 deterministic steps. At P = 512, our predicted topology

for problem size 10253 is 12.38% and for problem size 5133

is 11.97% more efficient than the standard decomposition

(in terms of speed-up), respectively. For a problem of size

20493 (approx. 8.6 billion cells, results not shown), we are

able to find a higher performing topology (8x16x4) in 3

steps for P = 512 that outperforms the standard (8x8x8)

in time by 8.6% and at P = 128 a topology (4x8x4) that

outperforms the standard (8x4x4) by 18.33%. Interestingly,

at P = 512 and problem size = 20493, the three topologies

which take the least amount of time to update the independent

computational kernel are: 1x512x1, 512x1x1 and 1x1x512,

but are outperformed by other topologies due to the imbalance

in the X/Y dimensions of the aforementioned trio.

Prefetch: In modern microprocessors software and

hardware controlled prefetching is used to hide latency and

is abstracted away from the user, unlike a cell processor [12]

where it can be controlled. As long as the prefetching policy



TABLE VIII: Strong scaling for problem size=10253, It-

erations=500, steps taken to predict first topology better

than MDC i.e. MPI_Dims_create(), SMDC=Speed-up of

MDC relative to the best, Spred=Speed-up of predicted relative

to the best. Best, MDC and Predicted measured in seconds

.

Cores Best MDC Predicted Steps SMDC Spred

16 228.99 235.62 230.41 2 0.97 0.99
32 115.64 116.12 116.12 2 1.97 1.97
64 58.59 63.57 58.59 2 3.60 3.91
128 29.78 31.94 30.22 2 7.17 7.58
256 15.39 16.39 15.39 2 13.97 14.88
512 8.19 9.57 8.36 2 23.93 27.39

TABLE IX: Strong scaling for problem size=5133, Iter-

ations=500, steps taken to predict first topology better

than MDC i.e. MPI_Dims_create(), SMDC=Speed-up of

MDC relative to the best, Spred=Speed-up of predicted relative

to the best. Best, MDC and Predicted measured in seconds.

Cores Best MDC Predicted Steps SMDC Spred

2 198.26 199.58 198.26 1 0.99 1.00
4 100.89 100.89 100.89 1 1.97 1.97
8 52.13 54.99 52.13 1 3.61 3.80
16 28.11 30.58 28.11 1 6.48 7.05
32 14.33 15.03 14.33 1 13.19 13.84
64 7.49 8.40 7.49 1 23.60 26.47
128 4.06 4.38 4.09 1 45.26 48.47
256 2.25 2.31 2.25 2 85.83 88.12
512 1.31 1.67 1.47 1 118.72 134.87

remains uniform for every topology, the inclusion or exclusion

of prefetching does not affect our model for prediction as

it has the same relative effect on different decompositions.

The probability of a cache miss increases with increasing

data gaps (unused elements), theoretically being zero for

0-stride data. Table VI shows that the approximate timing

with aggressive software prefetch remains almost the same

as without it. Theoretically, for independent computation

(similarly for X/Y/Z planes), the ratio of unwanted to

total elements gives us the inverse efficiency of prefetching

(η−1) i.e. η−1
in =

4(Px−3)(Py+Pz)
4(Px−3)(Py+Pz)+(Px−2)(Py−2)(Pz−2) . For

example, if N = 161, DxDyDz = 4 × 2 × 1 then (1-η−1
in )

= 99.93%. When DxDyDz = 2 × 4 × 1, (1-η−1
in ) = 99.89%.

This shows the theoretical superiority of a topology of

type m × n × p over n × m × p where m > n. This is

also reflected by the execution times of topologies (see

Figure 11) in an SMP (but not multiple nodes as process

placement plays a significant role or when the independent

computational kernel becomes extremely large as then higher

cuts in the Y-dimension are preferred i.e. the second fastest

changing index). More research is needed to gain an exact

understanding of how prefetching works at different data sizes.

Timing comparison for X/Y/Z planes: Figure 15 (Log

scale on Y-axis) shows the average time taken by each

process to send an equal amount of data in the X, Y and Z

planes and is the maximum for the Z-plane. The topology
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Fig. 15: Average time to send X/Y/Z planes with topology=23,

plane sizes 64x64x4, 128x128x4, 256x256x4 and 512x512x4

bytes

chosen for this experiment was 2x2x2, ensuring the same

number of X, Y and Z neighbours for each process. ARC2

uses a default --bind-to-core --bysocket policy

and thus the Z-planes are communicated across sockets using

dedicated Quick Path Interconnect (QPI) as opposed to shared

memory communication for X and Y planes. The mapping

can be changed but we prefer to keep the default mapping

and not venture into the domain of process placement to limit

the scope of the current work.

Figure 16 illustrates the same for inter-node communication

with 4 nodes (64 cores) and Figure 17 shows the corresponding

cache misses for equal sized X/Y/Z planes with 4 nodes. The

Y/Z-planes are sent to neighbour processes on the same node

but X-planes travel across SMP’s (using Infiniband). The Y

planes thus, take less time than X-planes on an average. The

Z-planes still take more time than the X-planes, although the

former use shared memory for communication. The major con-

tributing component in the average timings of Z-planes is then

due to the cache-misses incurred during its packing/unpacking

and the contention for shared memory among processes.

Increasing bandwidth per-core: When a node is com-

pletely utilized, the memory bandwidth per core is minimal

as all the 8 cores of a socket share the same Last Level Cache

(LLC) and the main memory module. Since simulation of

a PDE using stencil based methods is a memory-bandwidth

intensive procedure, we experiment with partial utilization of

nodes. Though an under-utilization of resources, this can find

a potential application in solving the coarsest grid on a subset

of processes in parallel multilevel methods like geometric

multigrid (for example [7], [22]). Our experiments with P =

64 processors and a problem of size 4013 is shown in Figure

18. As the processes-per-node (ppn) decrease, the application

performance increases. Theoretically, there should come a
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Fig. 16: Average time taken to send X, Y and Z planes with

Processors=64 (topology=4x4x4) and plane sizes of 64x64x4,

128x128x4, 256x256x4 and 512x512x4 bytes
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Fig. 17: Cache Misses for updation of Z/Y/X planes of equal

sizes with Processors P=64

point where the benefits of increasing memory bandwidth

per core will be balanced by the increasing global and local

synchronization time. The experiment proves that stencil codes

are memory bandwidth intensive.

VII. CONCLUSION AND FUTURE WORK

We analytically derive a heuristic for predicting high

performing topologies by using a minimally cache-aware
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Fig. 18: Topology Timings for Processors=64, Problem

Size=4013, Iterations=10000, Cells/core=106 for varying

Memory Bandwidth per core

TABLE X: High level summary of tradeoffs in finding optimal

domain decomposition, ↓ - a decrease, ↑ - an increase

Factor Impact

Cache Misses ↓ Communication ↑

Virtual bw./core ↑ Communication time ↑ & Resource utilization ↓

Communication ↓ Computation ↑ & Cache-misses ↑

analysis. The layout of data of a sub-domain is used and

experiments demonstrate that certain predicted topologies

lead to a higher application performance due to fewer cache

misses. Thus, to obtain maximum performance, it is necessary

to optimize the domain decomposition at the macro level

and then implement sub-domain level temporal and spatial

optimizations. In this work we only used spatial locality

to derive cache-miss governing equations on a standard

algorithm. Optimal decompositions not only depend on

communication and load balance but also on cache misses

incurred due to the memory access pattern in the algorithm,

problem size, balance between cuts in the X/Y dimension,

data-points in the contiguous-data direction and process

placement. Table X summarizes the tradeoffs in optimizing

domain decompositions. In general the best performing

topologies have higher communication overhead than the

topology returned by MPI_Dims_create() - the latter

incurring higher cache misses. Using nodes partially (Figure

18) increases memory bandwidth per core but increases

communication as the domain is spread on a larger number

of nodes. Further, locally predicting the ghost values to

cut communication increases computation/cache-misses. Our

experiments show that a standard decomposition is generally

not the optimal decomposition for stencil codes.

We plan to enhance this model by incorporating latency,

bandwidth, cache capacity, and physical topology factors.

Further research is needed to model the interaction of tiling

with cache misses in the planes. Although stencil codes

offer low temporal locality, a future study to modify the

model to incorporate its effects looks interesting. Logical

future directions are to apply the current work to multilevel

methods, such as parallel geometric multigrid [7], [22]

and block-structured Adaptive Mesh Refinement (AMR)

[23]. This technique can be exploited in parallel geometric

multigrid at two levels : (1) at the fine grid level (2) at

the coarsest level when using a subset of processes/cores.

Further, with increasing nodes, the effects of process

placement become significant and we plan to incorporate

this variable in predicting optimal decompositions at run-

time. We emphasize and conclude that in the light of

growing size of on-chip memories, enhanced bandwidth of

interconnects, shrinking latencies, optimizations in the stacks

of distributed/shared memory APIs, it is important to re-think

domain decompositions for a given core count and problem

size.
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