
Noise reduction and targeted exploration in imitation learning for
Abstract Meaning Representation parsing

James Goodman∗ Andreas Vlachos† Jason Naradowsky∗
∗ Computer Science Department, University College London
james@janigo.co.uk, jason.narad@gmail.com
† Department of Computer Science, University of Sheffield

a.vlachos@sheffield.ac.uk

Abstract

Semantic parsers map natural language
statements into meaning representations,
and must abstract over syntactic phenom-
ena, resolve anaphora, and identify word
senses to eliminate ambiguous interpre-
tations. Abstract meaning representation
(AMR) is a recent example of one such
semantic formalism which, similar to a de-
pendency parse, utilizes a graph to repre-
sent relationships between concepts (Ba-
narescu et al., 2013). As with dependency
parsing, transition-based approaches are a
common approach to this problem. How-
ever, when trained in the traditional man-
ner these systems are susceptible to the ac-
cumulation of errors when they find un-
desirable states during greedy decoding.
Imitation learning algorithms have been
shown to help these systems recover from
such errors. To effectively use these meth-
ods for AMR parsing we find it highly
beneficial to introduce two novel exten-
sions: noise reduction and targeted explo-
ration. The former mitigates the noise in
the feature representation, a result of the
complexity of the task. The latter targets
the exploration steps of imitation learning
towards areas which are likely to provide
the most information in the context of a
large action-space. We achieve state-of-
the art results, and improve upon standard
transition-based parsing by 4.7 F1 points.

1 Introduction

Meaning representation languages and systems
have been devised for specific domains, such as
ATIS for air-travel bookings (Dahl et al., 1994)
and database queries (Zelle and Mooney, 1996;

bolster

against

defensescenter

will

attacks
The NATO

cyber

’s

prep
dobjnsubj

aux

pobj

nn

det

possessive

poss

bolster-01

defend-01center

military attack-01

name

cyber

NATO

ARG1ARG0

ARG1 prep-against

name
mod

op1

Figure 1: Dependency (left) and AMR graph (right) for: “The
center will bolster NATO’s defenses against cyber-attacks.’

Liang et al., 2013). Such machine-interpretable
representations enable many applications relying
on natural language understanding. The ambi-
tion of Abstract Meaning Representation (AMR)
is that it is domain-independent and useful in a va-
riety of applications (Banarescu et al., 2013).

The first AMR parser by Flanigan et al. (2014)
used graph-based inference to find a highest-
scoring maximum spanning connected acyclic
graph. Later work by Wang et al. (2015b) was in-
spired by the similarity between the dependency
parse of a sentence and its semantic AMR graph
(Figure 1). Wang et al. (2015b) start from the de-
pendency parse and learn a transition-based parser
that converts it incrementally into an AMR graph
using greedy decoding. An advantage of this ap-
proach is that the initial stage of dependency pars-
ing is well-studied and trained using larger corpora
than that for which AMR annotations exist.

Greedy decoding, where the parser builds the
parse while maintaining only the best hypothesis
at each step, has a well-documented disadvantage:
error propagation (McDonald and Nivre, 2007).
When the parser encounters states during parsing
that are unlike those found during training, it is
more likely to make mistakes, leading to states
which are increasingly more foreign and causing
errors to accumulate.

One way to ameliorate this problem is to
employ imitation learning algorithms for struc-
tured prediction. Algorithms such as SEARN
(Daumé III et al., 2009), DAGGER (Ross et al.,
2011), and LOLS (Chang et al., 2015) address
the problem of error propagation by iteratively ad-
justing the training data to increasingly expose the
model to training instances it is likely to encounter
during test. Such algorithms have been shown to
improve performance in a variety of tasks includ-
ing information extraction(Vlachos and Craven,
2011), dependency parsing (Goldberg and Nivre,
2013), and feature selection (He et al., 2013). In
this work we build on the transition-based pars-
ing approach of Wang et al. (2015b) and explore
the applicability of different imitation algorithms
to AMR parsing, which has a more complex out-
put space than those considered previously.

The complexity of AMR parsing affects
transition-based methods that rely on features to
represent structure, since these often cannot cap-
ture the information necessary to predict the cor-
rect transition according to the gold standard. In
other words, the features defined are not suffi-
cient to “explain” why different actions should
preferred by the model. Such instances become
noise during training, resulting in lower accuracy.
To address this issue, we show that the α-bound
Khardon and Wachman (2007), which drops con-
sistently misclassified training instances, provides
a simple and effective way of reducing noise and
raising performance in perceptron-style classifica-
tion training, and does so reliably across a range of
parameter settings. This noise reduction is essen-
tial for imitation learning to gain traction in this
task, and we gain 1.8 points of F1-Score using the
DAGGER imitation learning algorithm.

DAGGER relies on an externally specified ex-
pert (oracle) to define the correct action in each
state; this defines a simple 0-1 loss function for
each action. Other imitation learning algorithms
(such as LOLS, SEARN) and the variant of
DAGGER proposed by Vlachos and Clark (2014)
(henceforth V-DAGGER) can leverage a task level
loss function that does not decompose over the ac-
tions taken to construct the AMR graph. However
these require extra computations to roll-out to an
end-state AMR graph for each possible action not
taken. The large action-space of our transition sys-
tem makes these algorithms computationally in-
feasible, and roll-outs to an end-state for many of

the possible actions will provide little additional
information. Hence we modify the algorithms to
target this exploration to actions where the clas-
sifier being trained is uncertain of the correct re-
sponse, or disagrees with the expert. This provides
a further gain of 2.7 F1 points.

This paper extends imitation learning to struc-
tured prediction tasks more complex than previ-
ously attempted. In the process, we review and
compare recently proposed algorithms and show
how their components can be recombined and ad-
justed to construct a variant appropriate to the task
in hand. Hence we invest some effort reviewing
these algorithms and their common elements.

Overall, we obtain a final F-Score of 0.70 on the
newswire corpus of LDC2013E117 (Knight et al.,
2014). This is identical to the score obtained by
Wang et al. (2015a), the highest so far published.
Our gain of 4.5 F1 points from imitation learning
over standard transition-based parsing is orthogo-
nal to that of Wang et al. (2015a) from additional
trained analysers, including co-reference and se-
mantic role labellers, incorporated in the feature
set. We further test on five other corpora of AMR
graphs, including weblog domains, and show a
consistent improvement in all cases with the ap-
plication of imitation learning using DAGGER and
the targeted V-DAGGER we propose here.

2 Transition-based AMR parsing

AMR parsing is an example of the wider family of
structured prediction problems, in which we seek
a mapping from an input x ∈ X to a structured
output y ∈ Y . Here x is the dependency tree,
and y the AMR graph; both are graphs and we no-
tationally replace x with s1 and y with sT , with
s1...T ∈ S. si are the intermediate graph configu-
rations (states) that the system transitions through.

A transition-based parser starts with an input s1,
and selects an action a1 ∈ A, using a classifier. ai
converts si into si+1, i.e. si+1 = ai(si). We term
the set of states and actions 〈s1, a1, . . . aT−1, sT 〉
a trajectory of length T . The classifier π̂ is trained
to predict ai from si, with π̂(s) = arg maxa∈Awa ·
Φ(s), assuming a linear classifier and a feature
function Φ(s).

We require an expert, π∗, that can indicate what
actions should be taken on each si to reach the
target (gold) end state. In problems like POS-
tagging these are directly inferable from gold, as
the number of actions (T) equals the number of

Action Name Param. Pre-conditions Outcome of action
NextEdge lr β non-empty Set label of edge (σ0, β0) to lr . Pop β0.
NextNode lc β empty Set concept of node σ0 to lc. Pop σ0, and initialise β.
Swap β non-empty Make β0 parent of σ0 (reverse edge) and its sub-graph. Pop β0 and

insert β0 as σ1.
ReplaceHead β non-empty Pop σ0 and delete it from the graph. Parents of σ0 become parents of

β0. Other children of σ0 become children of β0. Insert β0 at the head
of σ and re-initialise β.

Reattach κ β non-empty Pop β0 and delete edge (σ0, β0). Attach β0 as a child of κ. If κ has
already been popped from σ then re-insert it as σ1.

DeleteNode β empty; leaf σ0 Pop σ0 and delete it from the graph.
Insert lc Insert a new node δ with AMR concept lc as the parent of σ0, and insert

δ into σ.
InsertBelow Insert a new node δ with AMR concept lc as a child of σ0.

Table 1: Action Space for the transition-based graph parsing algorithm

Algorithm 1: Greedy transition-based parsing
Data: policy π, start state s1
Result: terminal state sT

1 scurrent ← s1;
2 while scurrent not terminal do
3 anext ← π(scurrent)

scurrent ← anext(scurrent)

4 sT ← scurrent

tokens with a 1:1 correspondence between them.
In dependency parsing and AMR parsing this is
not straightforward and dedicated transition sys-
tems are devised.

Given a labeled training dataset D, algorithm 1
is first used to generate a trajectory for each of the
inputs (d ∈ D) with π = π∗, the expert from which
we wish to generalise. The data produced from
all expert trajectories (i.e. 〈si,d, ai,d〉 for all i ∈
1 . . . T and all d ∈ 1 . . . D), are used to train the
classifier π̂, the learned classifier, using standard
supervised learning techniques. Algorithm 1 is re-
used to apply π̂ to unseen data. Our transition
system (defining A, S), and feature sets are based
on Wang et al. (2015b), and are not the main focus
of this paper. We introduce the key concepts here,
with more details in the supplemental material.

We initialise the state with the stack of the nodes
in the dependency tree, root node at the bottom.
This stack is termed σ. A second stack, β is ini-
tialised with all children of the top node in σ. The
state at any time is described by σ, β, and the cur-
rent graph (which starts as the dependency tree
with one node per token). At any stage before ter-
mination some of the nodes will be labelled with
words from the sentence, and others with AMR
concepts. Each action manipulates the top nodes

in each stack, σ0 and β0. We reach a terminal
state when σ is empty. The objective function to
maximise is the Smatch score (Cai and Knight,
2013), which calculates an F1-Score between the
predicted and gold-target AMR graphs.

Table 1 summarises the actions inA. NextNode
and NextEdge form the core action set, labelling
nodes and edges respectively without changing the
graph structure. Swap, Reattach and ReplaceHead
change graph structure, keeping it a tree. We per-
mit a Reattach action to use parameter κ equal to
any node within six edges from σ0, excluding any
that would disconnect the graph or create a cycle.

The Insert/InsertBelow actions insert a new
node as a parent/child of σ0. These actions are
not used in Wang et al. (2015b), but Insert is very
similar to the Infer action of Wang et al. (2015a).
We do not use the Reentrance action of Wang et
al. (2015b), as we found it not to add any benefit.
This means that the output AMR is always a tree.

Our transition system has two characteristics
which provide a particular challenge: given a sen-
tence, the trajectory length T is theoretically un-
bounded; and |A| can be of the order 103 to 104.
Commonly used transition-based systems have a
fixed trajectory length T , which often arises nat-
urally from the nature of the problem. In PoS-
tagging each token requires a single action, and
in syntactic parsing the total size of the graph is
limited to the number of tokens in the input. The
lack of a bound in T here is due to Insert actions
that can grow the the graph, potentially ad infini-
tum, and actions like Reattach, which can move
a sub-graph repeatedly back-and-forth. The ac-
tion space size is due to the size of the AMR vo-
cabulary, which for relations (edge-labels) is re-
stricted to about 100 possible values, but for con-
cepts (node-labels) is almost as broad as an En-

Algorithm 2: Generic Imitation Learning
Data: data D, expert π∗, Loss function F (s)
Result: learned classifier C, trained policy π̂

1 Initialise C0; for n = 1 to N do
2 Initialise En = φ;
3 πRollin = RollInPolicy(π∗, C0...n−1, n);
4 πRollout =

RollOutPolicy(π∗, C0...n−1, n);
5 for d ∈ D do
6 Predict trajectory ŝ1:T with πRollin;
7 for ŝt ∈ ŝ1:T do
8 foreach

ajt ∈ Explore(ŝt, π∗, πRollin) do
9 Φj

t = Φ(d, ajt , ŝ1:t);
10 Predict ŝ′t+1:T with πRollout;
11 Lj

t = F (ŝ′T);

12 foreach j do
13 ActionCostjt = Lj

t−mink L
k
t

14 Add (Φt, ActionCostt) to En;

15 π̂n, Cn = Train(C1...n−1, E1 . . . En);

glish dictionary. The large action space and un-
bounded T also make beam search difficult to ap-
ply since it relies on a fixed length T with com-
mensurability of actions at the same index on dif-
ferent search trajectories.

3 Imitation Learning for Structured
Prediction

Imitation learning originated in robotics, training
a robot to follow the actions of a human expert
(Schaal, 1999; Silver et al., 2008). The robot
moves from state to state via actions, generating
a trajectory in the same manner as the transition-
based parser of Algorithm 1.

In the imitation learning literature, the learning
of a policy π̂ from just the expert generated trajec-
tories is termed “exact imitation”.As discussed, it
is prone to error propagation, which arises because
the implicit assumption of i.i.d. inputs (si) during
training does not hold. The states in any trajec-
tory are dependent on previous states, and on the
policy used. A number of imitation learning algo-
rithms have been proposed to mitigate error prop-
agation, and share a common structure shown in
Algorithm 2. Table 2 highlights some key differ-
ences between them.

The general algorithm firstly applies a policy

πRollIn (usually the expert, π∗, to start) to the
data instances to generate a set of ‘RollIn’ tra-
jectories in line 6 (we adopt the terminology of
‘RollIn’ and ‘RollOut’ trajectories from Chang et
al. (2015)). Secondly a number of ‘what if’ sce-
narios are considered, in which a different action
ajt is taken from a given st instead of the ac-
tual at in the RollIn trajectory (line 8). Each of
these exploratory actions generates a RollOut tra-
jectory (line 10) to a terminal state, for which a
loss (L) is calculated using a loss function, F (sjT),
defined on the terminal states. For a number of
different exploratory actions taken from a state st
on a RollIn trajectory, the action cost (or relative
loss) of each is calculated (line 13). Finally the
generated 〈st, ajt , ActionCost

j
t 〉 data are used to

train a classifier, using any cost-sensitive classifi-
cation (CSC) method (line 15). New πRollIn and
πRollOut are generated, and the process repeated
over a number of iterations. In general the starting
expert policy is progressively removed in each it-
eration, so that the training data moves closer and
closer to the distribution encountered by just the
trained classifier. This is required to reduce error
propagation. For a general imitation learning al-
gorithm we need to specify:

• the policy to generate the RollIn trajectory
(the RollInPolicy)
• the policy to generate RollOut trajectories,

including rules for interpolation of learned
and expert policies (the RollOutPolicy)
• which one-step deviations to explore with a

RollOut (the Explore function)
• how RollOut data are used in the classi-

fication learning algorithm to generate π̂i.
(within the Train function)

Exact Imitation can be considered a single iter-
ation of this algorithm, with πRollIn equal to the
expert policy, and a 0-1 binary loss for F (0 loss
for π∗(st), the expert action, and a loss of 1 for
any other action); all one-step deviations from the
expert trajectory are considered without explicit
RollOut to a terminal state.

In SEARN (Daumé III et al., 2009), one of the
first imitation learning algorithms in this frame-
work, the πRollIn and πRollOut policies are identi-
cal within each iteration, and are a stochastic blend
of the expert and all classifiers trained in previous
iterations. The Explore function considers every
possible one-step deviation from the RollIn trajec-
tories, with a full RollOut to a terminal state. The

Algorithm π̂ RollIn RollOut Explore Train
Exact Imitation Deterministic Expert only None. 0/1 expert loss All 1-step E1 only
SEARN Stochastic Mixture Mixture, step-level stochastic All 1-step En only
LOLS Deterministic Learned only Mixture, trajectory-level stoch. All 1-step E1 . . . En

SCB-LOLS Deterministic Learned only Mixture, trajectory-level stoch. Random E1 . . . En

SMILE Stochastic Mixture None. 0/1 expert loss All 1-step E1 . . . En

DAGGER Deterministic Mixture None. 0/1 expert loss All 1-step E1 . . . En

V-DAGGER Deterministic Mixture Mixture, step-level stochastic All 1-step E1 . . . En

AGGREVATE Deterministic Learned only Expert only Random E1 . . . En

Table 2: Comparison of selected aspects of Imitation Learning algorithms.

Train function uses only the training data from
the most recent iteration (En) to train Cn.

LOLS extends this work to provide a deter-
ministic learned policy (Chang et al., 2015), with
π̂n = Cn. At each iteration π̂n is trained on all
previously gathered data E1...n; πRollIn uses the
latest classifier π̂n−1, and each RollOut uses the
same policy for all actions in the trajectory; either
π∗ with probability β, or π̂n−1 otherwise. Both
LOLS and SEARN use an exhaustive search of
alternative actions as anExplore function. Chang
et al. (2015) consider Structured Contextual Ban-
dits (SCB) as a partial information case, the SCB
modification of LOLS permits only one cost func-
tion call per RollIn (received from the external en-
vironment), so exhaustive RollOut exploration at
each step is not possible. SCB-LOLS Explore
picks a single step t ∈ {1 . . . T} at random at
which to make a random single-step deviation.

Another strand of work uses only the expert pol-
icy when calculating the action cost. Ross and
Bagnell (2010) introduce SMILE, and later DAG-
GER (Ross et al., 2011). These do not RollOut as
such, but as in exact imitation consider all one-step
deviations from the RollIn trajectory and obtain a
0/1 action cost for each by asking the expert what
it would do in that state. At the nth iteration the
training trajectories are generated from an inter-
polation of π∗ and π̂n−1, with the latter progres-
sively increasing in importance; π∗ is used with
probability (1-δ)n−1 for some decay rate δ. π̂n is
trained using all E1...n. Ross et al. (2011) discuss
and reject calculating an action cost by complet-
ing a RollOut from each one-step deviation to a
terminal state. Three reasons given are:

1. Lack of real-world applicability, for example
in robotic control.

2. Lack of knowledge of the final loss function,
if we just have the expert’s actions.

3. Time spent calculating RollOuts and calling
the expert.

Ross and Bagnell (2014) do incorporate RollOuts

to calculate an action cost in their AGGREVATE
algorithm. These RollOuts use the expert policy
only, and allow a cost-sensitive classifier to be
trained that can learn that some mistakes are more
serious than others. As with DAGGER, the trained
policy cannot become better than the expert.

V-DAGGER is the variant proposed by Vlachos
and Clark (2014) in a semantic parsing task. It is
the same as DAGGER, but with RollOuts using the
same policy as RollIn. For both V-DAGGER and
SEARN, the stochasticity of the RollOut means
that a number of independent samples are taken
for each one-step deviation to reduce the variance
of the action cost, and noise in the training data.
This noise reduction comes at the expense of the
time needed to compute additional RollOuts.

4 Adapting imitation learning to AMR

Algorithms with full RollOuts have particular
value in the absence of an optimal (or near-
optimal) expert able to pick the best action from
any state. If we have a suitable loss function, then
the benefit of RollOuts may become worth the
computation expended on them. For AMR pars-
ing we have both a loss function in Smatch, and
the ability to generate arbitrary RollOuts.

We therefore use a heuristic expert. This re-
duces the computational cost at the expense of not
always predicting the best action. An expert needs
an alignment between gold AMR nodes and to-
kens in the parse-tree or sentence to determine the
actions to convert to one from the other. These
alignments are not provided in the gold AMR, and
our expert uses the AMR node to token alignments
of JAMR (Flanigan et al., 2014). These align-
ments are not trained, but generated using regex
and string matching rules. However, trajectories
are in the range 50-200 actions for most training
sentences, which combined with the size of |A|
makes an exhaustive search of all one-step devia-
tions expensive. Compare this to unlabeled shift-

reduce parsers with 4 actions, or POS tagging with
|A| ∼ 30.

4.1 Targeted exploration
To reduce this cost we note that exploring Roll-
Outs for all possible alternative actions can be un-
informative when the learned and expert policies
agree on an action and none of the other actions
score highly with the learned policy. Extending
this insight we modify the Explore function in
Algorithm 2 to only consider the expert action,
plus all actions scored by the current learned pol-
icy that are within a threshold τ of the score for
the best rated action. In the first iteration, when
there is no current learned policy, we pick a num-
ber of actions (usually 10) at random for explo-
ration. Both SCB-LOLS and AGGREVATE use
partial exploration, but select the step t ∈ 1 . . . T ,
and the action at at random. Here we optimise
computational resources by directing the search to
areas for which the trained policy is least sure of
the optimal action, or disagrees with the expert.

Using imitation learning to address error prop-
agation of transition-based parsing provides the-
oretical benefit from ensuring the distribution of
st, at in the training data is consistent with the dis-
tribution on unseen test data. Using RollOuts that
mix expert and learned policies additionally per-
mits the learned policy to exceed the performance
of a poor expert. Incorporating targeted explo-
ration strategies in the Explore function makes
this computationally feasible.

4.2 Noise Reduction
Different samples for a RollOut trajectory using
V-DAGGER or SEARN can give very different
terminal states sT (the final AMR graph) from
the same starting st and at due to the step-level
stochasticity. The resultant high variance in the re-
ward signal hinders effective learning. Daumé III
et al. (2009) have a similar problem, and note that
an approximate cost function outperforms single
Monte Carlo sampling, “likely due to the noise in-
duced following a single sample”.

To control noise we use the α-bound discussed
by Khardon and Wachman (2007). This excludes
a training example (i.e. an individual tuple si, ai)
from future training once it has been misclassified
α times in training. We find that this simple idea
avoids the need for multiple RollOut samples.

An attraction of LOLS is that it randomly se-
lects either expert or learned policy for each Roll-

Out, and then applies this consistently to the whole
trajectory. Using LOLS should reduce noise with-
out increasing the sample size. Unfortunately the
unbounded T of our transition system leads to
problems if we drop the expert from the RollIn or
RollOut policy mix too quickly, with many trajec-
tories never terminating. Ultimately π̂ learns to
stop doing this, but even with targeted exploration
training time is prohibitive and our LOLS exper-
iments failed to provide results. We find that V-
DAGGER with an α-bound works as a good com-
promise, keeping the expert involved in RollIn,
and speeding up learning overall.

Another approach we try is a form of focused
costing (Vlachos and Craven, 2011). Instead of
using the learned policy for β% of steps in the
RollOut, we use it for the first b steps, and then
revert to the expert. This has several potential ad-
vantages: the heuristic expert is faster than scoring
all possible actions; it focuses the impact of the ex-
ploratory step on immediate actions/effects so that
mistakes π̂ makes on a distant part of the graph
do not affect the action cost; it reduces noise for
the same reason. We increase b in each iteration
so that the expert is asymptotically removed from
RollOuts, a function otherwise supported by the
decay parameter, δ.

4.3 Transition System adaptations

Applying imitation learning to a transition system
with unbounded T can and does cause problems
in early iterations, with RollIn or RollOut trajec-
tories failing to complete while the learned pol-
icy, π̂, is still relatively poor. To ensure every tra-
jectory completes we add action constraints to the
system. These avoid the most pathological scenar-
ios, such as disallowing a Reattach of a previously
Reattached sub-graph. These constraints are only
needed in the first few iterations until π̂ learns, via
the action costs, to avoid these scenarios. They are
listed in the Supplemental Material. As a final fail-
safe we insert a hard-stop on any trajectory once
T > 300.

To address the size of |A|, we only consider a
subset of AMR concepts when labelling a node.
Wang et al. (2015b) use all concepts that occur
in the training data in the same sentence as the
lemma of the node, leading to hundreds or thou-
sands of possible actions from some states. We
use the smaller set of concepts that were assigned
by the expert to the lemma of the current node any-

Exact Imitation Imitation Learning
Experiment No α α=1 α-Gain No α α=1 IL Gain (α) IL Gain (No α) Total Gain
AROW, C=10 65.5 66.8 1.3 65.5 67.4 0.6 0.0 1.9
AROW, C=100 66.4 66.6 0.2 66.4 67.7 1.1 0.0 1.3
AROW, C=1000 66.4 67.0 0.6 66.5 68.2 1.2 0.1 1.8
PA, C=100 66.7 66.5 -0.2 67.2 68.7 2.2 0.5 2.0
Perceptron 65.5 65.3 -0.2 66.6 68.6 3.3 1.1 3.1

Table 3: DAGGER with α-bound. All figures are F-Scores on the validation set. 5 iterations of classifier training take place
after each DAgger iteration. A decay rate (δ) for π∗ of 0.3 was used.

where in the training data. We obtain these assign-
ments from an initial application of the expert to
the full training data.

We add actions to use the actual word or lemma
of the current node to increase generalisation, plus
an action to append ‘-01’ to ‘verbify’ an unseen
word. This is similar to the work of Werling et al.
(2015) in word to AMR concept mapping, and is
useful since 38% of the test AMR concepts do not
exist in the training data (Flanigan et al., 2014).

Full details of the heuristics of the expert
policy, features used and pre-processing are in
Supplemental Material. All code is available
at https://github.com/hopshackle/
dagger-AMR.

4.4 Naı̈ve Smatch as Loss Function

Smatch (Cai and Knight, 2013) uses heuristics to
control the combinatorial explosion of possible
mappings between the input and output graphs,
but is still too computationally expensive to be
calculated for every RollOut during training. We
retain Smatch for reporting all final results, but
use ‘Naı̈ve Smatch’ as an approximation during
training. This skips the combinatorial mapping of
nodes between predicted and target AMR graphs.
Instead, for each graph we compile a list of:
• Node labels, e.g. name
• Node-Edge-Node label concatenations, e.g.
leave-01:ARG0:room
• Node-Edge label concatenations, e.g.
leave-01:ARG0, ARG0:room

The loss is the number of entries that appear in
only one of the lists. We do not convert to an
F1 score, as retaining the absolute number of mis-
takes is proportional to the size of the graph.

The flexibility of the transition system means
multiple different actions from a given state si
can lead, via different RollOut trajectories, to the
same target sT . This can result in many actions
having the best action cost, reducing the signal
in the training data and giving poor learning. To

encourage short trajectories we break these ties
with a penalty of T/5 to Naı̈ve Smatch. Multiple
routes of the same length still exist, and are pre-
ferred equally. Note that the ordering of the stack
of dependency tree nodes in the transition system
means we start at leaf nodes and move up the tree.
This prevents sub-components of the output AMR
graph being produced in an arbitrary order.

5 Experiments

The main dataset used is the newswire (proxy) sec-
tion of LDC2014T12 (Knight et al., 2014). The
data from years 1995-2006 form the training data,
with 2007 as the validation set and 2008 as the
test set. The data split is the same as that used by
Flanigan et al. (2014) and Wang et al. (2015b). 1

We first assess the impact of noise reduction
using the alpha bound, and report these experi-
ments without Rollouts (i.e. using DAGGER) to
isolate the effect of noise reduction. Table 3 sum-
marises results using exact imitation and DAGGER

with the α-bound set to discard a training instance
after one misclassification. This is the most ex-
treme setting, and the one that gave best results.
We try AROW (Crammer et al., 2013), Passive-
Aggressive (PA) (Crammer et al., 2006), and per-
ceptron (Collins, 2002) classifiers, with averaging
in all cases. We see a benefit from the α-bound for
exact imitation only with AROW, which is more
noise-sensitive than PA or the simple perceptron.
With DAGGER there is a benefit for all classifiers.
In all cases the α-bound and DAGGER are syn-
ergistic; without the α-bound imitation learning
works less well, if at all. α=1 was the optimal set-
ting, with lesser benefit observed for larger values.

We now turn our attention to targeted explo-
ration and focused costing, for which we use V-
DAGGER as explained in section 4. For all V-

1Formally Flanigan et al. (2014; Wang et al. (2015b) use
the pre-release version of this dataset (LDC2013E117). Wer-
ling et al. (2015) conducted comparative tests on the two ver-
sions, and found only a very minor changes of 0.1 to 0.2
points of F-score when using the final release.

Authors Algorithmic Approach R P F
Flanigan et al. (2014) Concept identification with semi-markov model followed by

optimisation of constrained graph that contains all of these.
0.52 0.66 0.58

Werling et al. (2015) As Flanigan et al. (2014), with enhanced concept identification 0.59 0.66 0.62
Wang et al. (2015b) Single stage using transition-based parsing algorithm 0.62 0.64 0.63
Pust et al. (2015) Single stage System-Based Machine Translation - - 0.66
Peng et al. (2015) Hyperedge replacement grammar 0.57 0.59 0.58
Artzi et al. (2015) Combinatory Categorial Grammar induction 0.66 0.67 0.66
Wang et al. (2015a) Extensions to action space and features in Wang et al. (2015b) 0.69 0.71 0.70
This work Imitation Learning with transition-based parsing 0.68 0.73 0.70

Table 4: Comparison of previous work on the AMR task. R, P and F are Recall, Precision and F-Score.

DAGGER experiments we use AROW with regu-
larisation parameter C=1000, and δ=0.3.

Figure 2 shows results by iteration of reducing
the number of RollOuts explored. Only the expert
action, plus actions that score close to the best-
scoring action (defined by the threshold) are used
for RollOuts. Using the action cost information
from RollOuts does surpass simple DAGGER, and
unsurprisingly more exploration is better.

Figure 3 shows the same data, but by total com-
putational time spent2. This adjusts the picture, as
small amounts of exploration give a faster bene-
fit, albeit not always reaching the same peak per-
formance. As a baseline, three iterations of V-
DAGGER without targeted exploration (threshold
=∞) takes 9600 minutes on the same hardware to
give an F-Score of 0.652 on the validation set.

Figure 4 shows the improvement using focused
costing. The ‘n/m’ setting sets b, the number of
initial actions taken by π̂ in a RollOut to n, and
then increases this by m at each iteration. We gain
an increase of 2.9 points from 0.682 to 0.711. In
all the settings tried, focused costing improves the
results, and requires progressive removal of the ex-
pert to achieve the best score.

We use the classifier from the Focused Costing
5/5 run to achieve an F-Score on the held-out test
set of 0.70, equal to the best published result so far
(Wang et al., 2015a). Our gain of 4.7 points from
imitation learning over standard transition-based
parsing is orthogonal to that of Wang et al. (2015a)
using exact imitation with additional trained anal-
ysers; they experience a gain of 2 points from
using a Charniak parser (Charniak and Johnson,
2005) trained on the full OntoNotes corpus instead
of the Stanford parser used here and in Wang et al.
(2015b), and a further gain of 2 points from a se-
mantic role labeller. Table 4 lists previous AMR
work on the same dataset.

2experiments were run on 8-core Google Cloud n1-
highmem-8 machines.

Validation F-Score Test F-Score
Dataset EI D V-D V-D Rao et al
proxy 0.670 0.686 0.704 0.70 0.61
dfa 0.495 0.532 0.546 0.50 0.44
bolt 0.456 0.468 0.524 0.52 0.46
xinhua 0.598 0.623 0.683 0.62 0.52
lpp 0.540 0.546 0.564 0.55 0.52

Table 5: Comparison of Exact Imitation (EI), DAGGER (D),
V-DAGGER (V-D) on all components of the LDC2014T12
corpus.

Using DAGGER with this system we obtained
an F-Score of 0.60 in the Semeval 2016 task on
AMR parsing, one standard deviation above the
mean of all entries. (Goodman et al., 2016)

Finally we test on all components of the
LDC2014T12 corpus as shown in Table 5, which
include both newswire and weblog data, as well as
the freely available AMRs for The Little Prince,
(lpp)3. For each we use exact imitation, DAG-
GER, and V-DAGGER on the train/validation/splits
specified in the corpus. In all cases, imitation
learning without RollOuts (DAGGER) improves
on exact imitation, and incorporating RollOuts (V-
DAGGER) provides an additional benefit. Rao et
al. (2015) use SEARN on the same datasets, but
with a very different transition system. We show
their results for comparison.

Our expert achieves a Smatch F-Score of 0.94
on the training data. This explains why DAG-
GER, which assumes a good expert, is effective.
Introducing RollOuts provides additional theoret-
ical benefits from a non-decomposable loss func-
tion that can take into account longer-term impacts
of an action. This provides much more informa-
tion than the 0/1 binary action cost in DAGGER,
and we can use Naı̈ve Smatch as an approximation
to our actual objective function during training.
This informational benefit comes at the cost of in-
creased noise and computational expense, which
we control with targeted exploration and focused

3http://amr.isi.edu/download.html

Figure 2: Targeted exploration with V-
DAGGER by iteration.

Figure 3: Targeted exploration with V-
DAGGER by time.

Figure 4: Focused costing with V-
DAGGER. All runs use threshold of 0.10.

costing. We gain 2.7 points in F-Score, at the cost
of 80-100x more computation. In problems with a
less good expert, the gain from exploration could
be much greater. Similarly, if designing an expert
for a task is time-consuming, then it may be a bet-
ter investment to rely on exploration with a poor
expert to achieve the same result.

6 Related Work

Other strategies have been used to mitigate the er-
ror propagation problem in transition-based pars-
ing. A common approach is to use beam search
through state-space for each action choice to find
a better approximation of the long-term score of
the action, e.g. Zhang and Clark (2008). Goldberg
and Elhadad (2010) remove the determinism of
the sequence of actions to create easy-first parsers,
which postpone uncertain, error-prone decisions
until more information is available. This contrasts
with working inflexibly left-to-right along a sen-
tence, or bottom-to-top up a tree.

Goldberg and Nivre (2012) introduce dynamic
experts that are complete in that they will respond
from any state, not just those on the perfect trajec-
tory assuming no earlier mistakes; any expert used
with an imitation learning algorithm needs to be
complete in this sense. Their algorithm takes ex-
ploratory steps off the expert trajectory to augment
the training data collected in a fashion very similar
to DAGGER.

Honnibal et al. (2013) use a non-monotonic
parser that allows actions that are inconsistent with
previous actions. When such an action is taken
it amends the results of previous actions to en-
sure post-hoc consistency. Our parser is non-
monotonic, and we have the same problem en-
countered by Honnibal et al. (2013) with many
different actions from a state si able to reach the
target sT , following different “paths up the moun-
tain”. This leads to poor learning. To resolve

this with fixed T they break ties with a monotonic
parser, so that actions that do not require later cor-
rection are scored higher in the training data. In
our variable T environment, adding a penalty to
the size of T is sufficient (section 4.4).

Vlachos and Clark (2014) use V-DAGGER to
give a benefit of 4.8 points of F-Score in a
domain-specific semantic parsing problem similar
to AMR. Their expert is sub-optimal, with no in-
formation on alignment between words in the in-
put sentence, and nodes in the target graph. The
parser learns to link words in the input to one of
the 35 node types, with the ‘expert’ policy align-
ing completely at random. This is infeasible with
AMR parsing due to the much larger vocabulary.

7 Conclusions

Imitation learning provides a total benefit of 4.5
points with our AMR transition-based parser over
exact imitation. This is a more complex task than
many previous applications of imitation learning,
and we found that noise reduction was an essen-
tial pre-requisite. Using a simple 0/1 binary action
cost using a heuristic expert provided a benefit of
1.8, with the remaining 2.7 points coming from
RollOuts with targeted exploration, focused cost-
ing and a non-decomposable loss function that was
a better approximation to our objective.

We have considered imitation learning algo-
rithms as a toolbox that can be tailored to fit the
characteristics of the task. An unbounded T meant
that the LOLS RollIn was not ideal, but this could
be modified to slow the loss of influence of the
expert policy. We anticipate the approaches that
we have found useful in the case of AMR to re-
duce the impact of noise, efficiently support large
action spaces with targeted exploration, and cope
with unbounded trajectories in the transition sys-
tem will be of relevance to other structured pre-
diction tasks.

Acknowledgments

Andreas Vlachos is supported by the EPSRC grant
Diligent (EP/M005429/1) and Jason Naradowsky
by a Google Focused Research award. We would
also like to thank our anonymous reviewers for
many comments that helped improve this paper.

References
Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.

Broad-coverage ccg semantic parsing with amr. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1699–1710, Lisbon, Portugal, September. Associa-
tion for Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria, August.
Association for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In ACL
(2), pages 748–752.

Kai-wei Chang, Akshay Krishnamurthy, Alekh Agar-
wal, Hal Daumé III, and John Langford. 2015.
Learning to search better than your teacher. In Pro-
ceedings of the 32nd International Conference on
Machine Learning (ICML-15), pages 2058–2066.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics,
pages 173–180. Association for Computational Lin-
guistics.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of the ACL-02 conference on Empirical methods in
natural language processing-Volume 10, pages 1–8.
Association for Computational Linguistics.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online
passive-aggressive algorithms. The Journal of Ma-
chine Learning Research, 7:551–585.

Koby Crammer, Alex Kulesza, and Mark Dredze.
2013. Adaptive regularization of weight vectors.
Mach Learn, 91:155–187.

Deborah A Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the atis

task: The atis-3 corpus. In Proceedings of the work-
shop on Human Language Technology, pages 43–48.
Association for Computational Linguistics.

Hal Daumé III, John Langford, and Daniel Marcu.
2009. Search-based structured prediction. Machine
learning, 75(3):297–325.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A Smith. 2014. A discrim-
inative graph-based parser for the abstract meaning
representation. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics, pages 1426–1436. Association for Compu-
tational Linguistics.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 742–750. Association for Computa-
tional Linguistics.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic
oracle for arc-eager dependency parsing. In COL-
ING, pages 959–976.

Yoav Goldberg and Joakim Nivre. 2013. Training
deterministic parsers with non-deterministic oracles.
Transactions of the association for Computational
Linguistics, 1:403–414.

James Goodman, Andreas Vlachos, and Jason Narad-
owsky. 2016. Ucl+sheffield at semeval-2016 task
8: Imitation learning for amr parsing with an alpha-
bound. In Proceedings of the 10th International
Workshop on Semantic Evaluation.

He He, Hal Daumé III, and Jason Eisner. 2013. Dy-
namic feature selection for dependency parsing. In
Empirical Methods in Natural Language Process-
ing.

Matthew Honnibal, Yoav Goldberg, and Mark John-
son. 2013. A non-monotonic arc-eager transition
system for dependency parsing. In Proceedings of
the Seventeenth Conference on Computational Nat-
ural Language Learning, pages 163–172. Citeseer.

Roni Khardon and Gabriel Wachman. 2007. Noise
tolerant variants of the perceptron algorithm. The
journal of machine learning research, 8:227–248.

Kevin Knight, Laura Baranescu, Claire Bonial,
Madalina Georgescu, Kira Griffitt, Ulf Hermjakob,
Daniel Marcu, Martha Palmer, and Nathan Schnei-
der. 2014. Abstract meaning representation (amr)
annotation release 1.0. Linguistic Data Consortium
Catalog. LDC2014T12.

Percy Liang, Michael I Jordan, and Dan Klein. 2013.
Learning dependency-based compositional seman-
tics. Computational Linguistics, 39(2):389–446.

Ryan T McDonald and Joakim Nivre. 2007. Charac-
terizing the errors of data-driven dependency parsing
models. In EMNLP-CoNLL, pages 122–131.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for amr parsing. CoNLL 2015,
page 32.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Using syntax-
based machine translation to parse english into
abstract meaning representation. arXiv preprint
arXiv:1504.06665.

Sudha Rao, Yogarshi Vyas, Hal Daume III, and Philip
Resnik. 2015. Parser for abstract meaning repre-
sentation using learning to search. arXiv preprint
arXiv:1510.07586.

Stéphane Ross and Drew Bagnell. 2010. Efficient
reductions for imitation learning. In 13th Inter-
national Conference on Artificial Intelligence and
Statistics, pages 661–668.

Stephane Ross and J Andrew Bagnell. 2014. Rein-
forcement and imitation learning via interactive no-
regret learning. arXiv preprint arXiv:1406.5979.

Stéphane Ross, Geoffrey J Gordon, and J Andrew Bag-
nell. 2011. A reduction of imitation learning and
structured prediction to no-regret online learning. In
14th International Conference on Artificial Intelli-
gence and Statistics, volume 15, pages 627–635.

Stefan Schaal. 1999. Is imitation learning the route
to humanoid robots? Trends in cognitive sciences,
3(6):233–242.

David Silver, James Bagnell, and Anthony Stentz.
2008. High performance outdoor navigation from
overhead data using imitation learning. Robotics:
Science and Systems IV, Zurich, Switzerland.

Andreas Vlachos and Stephen Clark. 2014. A new cor-
pus and imitation learning framework for context-
dependent semantic parsing. Transactions of the As-
sociation for Computational Linguistics, 2:547–559.

Andreas Vlachos and Mark Craven. 2011. Search-
based structured prediction applied to biomedical
event extraction. In Proceedings of the Fifteenth
Conference on Computational Natural Language
Learning, pages 49–57. Association for Computa-
tional Linguistics.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015a. Boosting transition-based amr parsing with
refined actions and auxiliary analyzers. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), pages 857–862,
Beijing, China, July. Association for Computational
Linguistics.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015b. A transition-based algorithm for amr pars-
ing. North American Association for Computational
Linguistics, Denver, Colorado.

Keenon Werling, Gabor Angeli, and Christopher D.
Manning. 2015. Robust subgraph generation im-
proves abstract meaning representation parsing. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
982–991, Beijing, China, July. Association for Com-
putational Linguistics.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the National Con-
ference on Artificial Intelligence, pages 1050–1055.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: investigating and combining graph-
based and transition-based dependency parsing us-
ing beam-search. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 562–571. Association for Computa-
tional Linguistics.

