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The role of the Bzier extraction operator for T-splines of arbitrary
degree: linear dependencies, partition of unity propeegting
behaviour, and local refinement

Stefan May*, Julien Vignollet, René de Borst

LUniversity of Glasgow, School of Engineering, Rankine @od, Oakfield Avenue, Glasgow G12 8LT, UK.

SUMMARY

We determine linear dependencies and the partition of ymmdperty of T-spline meshes of arbitrary degree
using the Bézier extraction operator. Local refinemeratsties for standard, semi-standard and non-
standard T-splines — also by making use of the Bézier eitraoperator — are presented for meshes of
even and odd polynomial degree. A technique is presentedtesrdine the nesting between two T-spline

meshes, again exploiting the Bézier extraction operdtimrlly, the hierarchical refinement of standard,

semi-standard and non-standard T-spline meshes is déxtushis technique utilises the reconstruction

operator, which is the inverse of the Bézier extractionrajme. Copyright© 0000 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: T-splines, isogeometric analysis, Bézier &stiion, linear dependency, partition of unity,
hierarchical refinement

1. INTRODUCTION

Isogeometric analysis was introduced in [1]. It is based lom ¢oncept that the same shape
functions are used to represent the geometry and to appatithe field variables. Initially,
Non-Uniform Rational B-Splines (NURBS) have been used apsHunctions in isogeometric
analysis. Since NURBS have a tensor product structure eramt occurs globally. Furthermore,
it can be difficult to model watertight surfaces with NURBStghees. T-splines, which can be
conceived as a generalisation of NURBS, were introduce®,8][and do not suffer from the
limitations that are inherent in NURBS. Local refinement ésvipossible and watertight surfaces
can be created. Moreover, T-splines allow for the reduatibeuperfluous control points. Use of
T-spline blending functions as shape functions in a finisgreint context was proposed in [4, 5].
NURBS and T-splines meet a growing acceptance in the engigeeommunity, which is
considerably facilitated by the technique of Bézier extitm [6, 7]. Bézier extraction allows for
an implementation that is identical to that typically usedinite element codes. However, in [8]
the concern was raised that for T-spline meshes, lineampemence — which is a necessary
condition to perform the analysis — is not an inherent prigpef the blending functions. In [9],
a definition for analysis-suitable T-spline meshes was g@segd which results in a mildly restricted
subset of T-splines. A topological algorithm was developsdvell: a T-spline mesh was deemed
analysis-suitable when there are no two orthogonal T-nodensions which intersect in the
extended T-spline mesh. A considerable amount of reseasshbhen spent since then on the

*Correspondence to: Stefan May, University of Glasgow, 8tbb Engineering, Oakfield Avenue, Rankine Building,
Glasgow G12 8LT, UK. E-mail: s.may.2@research.gla.ac.uk
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2 S. MAY, J. VIGNOLLET AND R. DE BORST

properties of analysis-suitable T-spline meshes [10423]L3] an algorithm based on the T-spline
mesh topology was presented to refine analysis-suitabfgifesmeshes. Recently, a hierarchical
refinement algorithm for analysis-suitable T-splines Hasa the reconstruction operator was
introduced in [14, 15]. Furthermore, the partition of ungsoperty and linear dependencies for
T-splines without multiple knots were investigated in [&6]d [17], respectively.

Using the Bézier extraction procedure [7], each blendimgfion can be defined in a normalised
fashion by a linear combination of Bernstein polynomial& Will show that linear dependencies
and the partition of unity property can be determined fopllire meshes with the Bézier extraction
operator at hand. It will be demonstrated that this appraachbe applied to T-spline meshes of
arbitrary degree. The Bézier extraction operator alsdblesato determine the nesting behaviour
between two T-spline meshes. Moreover, we show how stanpdandi-standard and non-standard
T-spline meshes can be refined locally using informatiomftbe Bézier extraction operator.

This paper is organised as follows. In the first section we giconcise description of T-splines.
Next, we present a brief overview on the construction of thezi® extraction operator for
T-splines. Subsequently, linear dependence and theipartt unity property of T-spline meshes
are investigated using the Bézier extraction operatd&dation 5 a refinement method is proposed
for T-spline meshes by adding anchors while the Bézieraekitn operator is utilised for the
determination of the nesting behaviour between two T-gplmeshes. The capabilities of the
method are demonstrated for meshes of even and of odd poighdegree. Finally, a technique
is introduced to refine hierarchically standard, semigaat and non-standard T-spline meshes.

2. T-SPLINES

This section provides a brief overview of T-splines. For arenelaborate demonstration of
T-splines in a finite element environment we refer to [5]. &dhat herein we limit ourselves

to two-dimensional problems but the methods developedimphper can also be used in three
dimensions — the only requirement is that we are able to edébdhe Bézier extraction operator.
Index notation is adopted throughout with respect to a Caridseame.

2.1. Definition of the domains

In Figure 1 the physical domain:(), the parent domairg(), the index domainu;), the parameter
domain €}'), and the sub-parameter domaifa)(are shown for T-splines. Each elementan
be mapped from the physical domain onto the parent domaig, € [-1, 1], where Gaussian
integration can be carried out. The sub-parameter dolaia obtained when only the unique
values of the parameter domgjy are considered.

2.2. Definition of the local knot vector

The index domain in Figure 1 represents a tiling of a regioR3rwhile all edges of each rectangle
have a positive integer value. T-spline meshes of odd andswf golynomial order have to be treated
differently when defining the local knot vectors from thegraeter domain. The local knot vectors
are necessary to define the blending functions, see Sec8on 2

For a T-spline mesh of even degrge in both directions, a so-called anchor — to which a
single multivariate blending function is attached — is pthae the centre of each rectangle, see
the quadratic T-spline mesh in Figure 2(a). A local knot eefdr a T-spline mesh of even degree is
obtained from the parameter domain by — starting at the anehearching horizontally (both left
and right) and vertically (both up and down), until a numbies,g2 + 1 edges are crossed in all four
directions, thus giving a vector length pf + 2. Every time an edge is crossed, the corresponding
parameter value is added to the local knot vector. If fewanth/2 + 1 edges are crossed, and there
are no more edges left to be crossed, the parameter valueahsieen added last is repeated until
pe/2 + 1 parameter values are added in this direction. For the blakarA sitting at(3.5,5.5) in
the index domain in Figure 2(a), the local knot vectors®fe= {0, 1,1,1} and=s' = {3, 2, 1,1},
respectively.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢000)
Prepared usingimeauth.cls DOI: 10.1002/nme
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Figure 1. lllustration of the physical domaim,j, the parent domainéf), the index domain ), the
parameter domairgf), and the sub-parameter domagp)(on a quadratic T-spline mesh.

For a T-spline mesh of odd degregin both directions, anchors are located at the vertices of
the rectangles, see the cubic T-spline mesh in Figure 2flrder to obtain the local knot vector
of an anchor, the parametgf at the vertex is added to the local knot vectors for each timec
Afterwards, we march again — starting at the location of thehar — horizontally to the right and
left, and vertically up and down, untib, + 1)/2 edges have been crossed in all four directions, thus
yielding again a local knot vector of length + 2. If there are no more edges to be crossed, then
the value of the last added parameter is repeated @@ntik 1)/2 values are added in this direction
to the local knot vector. Consider, for instance, the bluehan B sitting at(2,2) in the index
domain for the cubic T-spline mesh in Figure 2(b). The logadtkvectors ar&? = {0,0,0,1,1}
and=F = {0,0,0, 3, 2}.

2.3. Construction of the blending functions

Let us consider a T-spline mesh containimg@nchors. Each ancharis equipped with a single
multivariate blending functionV:. Each multivariate blending functioN‘ is defined in the sub-
parameter domaigy as follows

d
N'(g) = [[ Vicen) @)
{=1

with the univariate blending function§; for each anchot and the dimensiod. The univariate
blending functionV; of orderp, for anchori is given by

N (&) = Ni 1, (&) )

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢000)
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4 S. MAY, J. VIGNOLLET AND R. DE BORST
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Figure 2. Determination of the local knot vectors for a Tisplmesh of (a) even (quadratig; = 2) and
(b) odd (cubic,p, = 3) degree: every time an edge is crossed in all four directitms corresponding

parameter value is added to the Iocal knot vector. (a) Thed km)t vectors for the blue anchor A ¢ =
{61761761751} = {07 2 17 1} and= ‘—‘2 - {62762752752} = {37 3 17 1} (b) The local knot vectors for the
blue anchor B ar&f’ = {&1,€1,6,€1,601 ={0,0,0,1,1} and=% = {€3.€3,63,¢5,€3} = {0,0,0,1 35 3

where theN; , - (with a = 1 the single blending function for anchors obtained) can be defined
with the local knot vectoE) = {¢; |, & 5, -, &}, 4o} Of anchori for p, = 0 with

1 If 5; a S §€ < fé a+1 (3)
0 otherwise '

Ng a,O(gl) = {

Forp, > 1 they are given by the Cox - de Boor recursion formula [18, 19]

e fz a i gz a =& i
74']\76 a,pg—1(€4)+ 7 Lotpetl 3 NE a+1,pg—1(£‘€)' (4)

€Z a+pe+1 gf a+t+1

NZ a,pe (gl)

gf a+py €Z a

Herein we will only consider cases with an equal polynomideop, in the&; direction and the,
direction.

2.4. Element definition

The red anchor A with index coordinatés5s, 5.5) for the quadratic T-spline mesh in Figure 3(a)
has the local knot vectois! = {¢7,¢3, ¢4, €5} andu2 = {£3,£5,¢5, €3}, Anchor A has non-zero
blending functions in the green parameter doniafné?] x [£3, £5]. Within this domain, the net
of red dashed lines depicted in Figure 3(a) is obtained upawidg all the values contained in
the local knot vectorg;'. Along those lines, we have a reduced continuity, which dédated by a
multiplicity larger than zero in the local knot vectors. H®of these lines is not already an edge, this
line is added to the T-spline mesh, see Figure 3(b). The aliltkeds called a continuity reduction
line. For T-splines, elements are defined by the union of@dles and continuity reduction lines
with non-zero parametric area in the parameter sppacsee also Figure 2(a).

3. BEZIER EXTRACTION FOR T-SPLINES

For details on the Bézier extraction method for T-splimefgrence is made to [7]. Here, we give a
succinct summary on the calculation of the Bézier extoactiperator and illustrate the method by
means of an example.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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T-SPLINES: CLASSIFICATION AND REFINEMENT 5
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Figure 3. Continuity reduction lines: consider the red amoh with index coordinate$3.5,5.5). (&) This
anchor has a support (non-zero blending functions) in teergshaded domaje?, £7] x [¢3, £3]. Drawing

all the values contained in the local knot vectdrs = {¢2, &3, ¢t, &7} and=4' = {€3,¢5,¢5, €3} gives the
net of dashed red lines. (b) If a red dashed line in (a) is mekdly an edge then it is added to the T-spline
mesh.

We suppose that the domain is divided iit@lements. Then, the blending functioij of anchor
i over element can be written as a linear combination of the Bernstein patyials

iT

Ni(§)=C. B.(¢) (5)
where the(p, + 1)? bivariate Bernstein polynomialB, for element are expressed as follows

By ()83 (&2)

B.(6)= | B €)BL(@) | ®)

B () B )

The bivariate Bernstein polynomial8, are equal for each elemeatin the parent domai,.
A univariate blending functiorV;, of anchori over element can be expressed in terms of the
univariate Bernstein basi3j, with

Bl%e(ff)
Nio(&) =[Cit ... C] o (7
BP (&)
whereC; ¢ are the coefficients for anchband element corresponding td3¢,. Thea = 1...p, + 1
univariate Bernstein polynomial3] of orderp, are defined over the interved € [—1, 1] by

By(&) = L ( be > (1= &)1+ &)L (8)

T 9pe \a—1

The univariate Bernstein polynomialy’, are equal in the parent domajnfor each element in
each direction. In Equation (5(7;, is the Bézier extraction operator of anctiawith support over

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢000)
Prepared usingmeauth.cls DOI: 10.1002/nme
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element
C{ csl

i im+1 i1
Qe - Cle 026

9)

Cierl-Cierl
To illustrate the notation, we again consider the anchor A3dt 5.5) in Figure 2(a). The local
knot vectors ar& = {0,1,1,1} and=4 = {3, 2,1,1} for the & direction and the, direction,
respectively. We now evaluate, for anchor A, the Bézierastion operator over the element

b in Figure 2(a) with rangé3, 4] x [4,5] in the index domain. The range for the element b is

(€3, €8] x [€3,€3] in the parameter domain arfd, 1] x [1, 2] in the sub-parameter domain. In

Figure 4 the blending function¥/* are shown for each direction in the sub-parameter domain
The part of the blending functlorﬁl which has a support over element b with rafgel] x [£, 2]

3’ 3
in the sub-parameter domajn—i. e. N/} — has been plotted with a solid black line. Expressing the

blending functionsV;} of anchor A with support over element b for each directjpin terms of
the Bernstein basiBj, of element b, gives for the Bézier extraction operator irhedicection

B}, B
A Al A2 A3 %b 1 % b
N, = [C3 o2 o] B%b 3 1 0] B%b : (10)
| B7s ] | B7y ]
A Al A2 A3 —BQ; b- 1 —BQ; b_
N2b = [CQb CQb CQb :| B%b [0 0 5] B%b ' (11)
BQ b _BQ b
— Bl — B, — BLE) — NL @) === Nen | [— BL&) — Bl,@) — BY,@) — Nj, ) === Np&) |
1 T T 1 T
0.8 | 0.8 N
06} 0.6 LSRN |
04 1 o4 -
02 ,"’0 ’ 0.2 “-7
00 : % 1 00 1 % 1
& &
(@) (b)

Figure 4. lllustration of the blending functlorisf[ for anchor A and the Bernstein polynomialy for
element b in Figure 2(a) over the sub-parameter domain ithé) direction and (b) th&, direction.

Now, using Equation (9) and combining the unidirectionak®r extraction operators defined in

Equation (10) and Equation (11), the Bézier extractiorrajeC;' for the anchor A with support
over element b, see Figure 2(a), reads

ci=0 00000 1 1 o, (12)
If, for an anchori, this procedure is applied to all elemerits then we end up with the Bézier
extraction operator for ancher _
Cc
c=1:1. (13)
Ck
Copyright© 0000 John Wiley & Sons, Ltd
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T-SPLINES: CLASSIFICATION AND REFINEMENT 7

The Bézier extraction operator for allanchors is then given by

1T

c
c=1|: |. (14)

NY(E)
NE =] (15)
Nn (§)
can be written as
N(€) =CB(£) (16)
whereB is the vector which contains the elemental Bernstein patyiats B,
B, (¢)
B(§) = Co |- 17)
Bg(§)

A single blending functiorV’ can be expressed as
. T
N'(§)=C" B(§). (18)
The blending functiongv . with support in element are determined by

N (§) = CeB.(§) (19)

with the elemental Bézier extraction operagy.

4. CLASSIFICATION OF T-SPLINES

In this section T-spline meshes are classified accordingpe¢dibear dependencies exhibited by
their blending functions. The partition of unity property also investigated. The classification
methods in this section can be applied to T-spline meshedifay degree, T-spline meshes with
extraordinary points and three-dimensional T-spline rasskthe only requirement is the Bézier
extraction operator.

4.1. Classification of T-splines according to the type ofdindependence

In the following, the Bézier extraction operator is usegaher meshes into three categories based
on the type of linear dependence of their blending functions

¢ globally linearly independent,
e locally linearly independent with a non-square magix
e locally linearly independent with a square mat@x.

4.1.1. Global linear independence
A T-spline mesh with anchors has globally linearly independent blending fuumdiif and only if
the solution for

Z a'N'(€) =0 (20)

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢000)
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8 S. MAY, J. VIGNOLLET AND R. DE BORST

isa® =0 fori=1...n. We recall that each blending functia¥’ of anchori can be expressed
using the Bézier extraction operator. Substituting Eiguatl8) into Equation (20) leads to

Y o' B(g) =0. (21)
=1
Since the Bernstein polynomials B are linearly independent, we can replace Equation (21) by
da'c =07 (22)
=1
which is equivalent to

c' ....c'|:|=|:. (23)

Thus, using Equation (14), Equation (23) can be rewritten as

C'a=0. (24)

IR

Since a T-spline mesh has globally linearly independemditey functionsN? when the only
solution for Equation (24) is* = 0 for i = 1...n, it follows directly from rank inspection of the
global Bézier extraction operat@rin Equation (24) whether the blending functiakisof a T-spline
mesh are globally linearly independent. If the global Bézixtraction operatd® has full rank, then
the rank ofC is equal to the number of anchotsand consequently, the blending functiakis are
globally linearly independent. In sum, the condition foolggl linear independence is

rank(C) = n. (25)

Note, that the size of the global Bézier extraction operiato

d
size(C) = n x <E X Hpg + 1) . (26)

=1

If a T-spline mesh is globally linearly dependent, the dejegities between anchors can be detected
by transforming Equation (24) into a row echelon form by Géaus elimination, Figure 5.

A T-spline mesh with globally linearly dependent blendingdtions cannot be used for analysis
since in a finite element context, this results in a system oéggns that cannot be solved.

4.1.2. Local linear independence
Repeating the procedure of the previous section at the aliafievel, the condition for local linear
independence is

rank(C.) =n. fore=1...F (27)

with the elemental Bézier extraction opera@y and the number of anchors. with support in
element. When Equation (27) holds, the size©f is

d
size(Ce) = ne X (H pe+ 1) : (28)
=1

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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(a) Globally linearly dependent cubic T-spline mesh [8], (b) Globally linearly dependent quartic T-spline mesh,
transforming Equation (24) into row echelon form transforming Equation (24) into row echelon form

yields the following linear dependencies between the yields the following linear dependencies between the
anchors A,Band C:-3N4(¢) + 3NB (&) + NC(¢) = anchors D, Eand F-3NP (&) + 2NF (&) + NF(¢) =

0. 0.

Figure 5. Globally linearly dependent T-spline meshes dicand of quartic polynomial degree.

4.1.3. Local linear independence with a square magix
A subset of locally linearly independent T-spline meshesg.(when Equation (27) holds) can be
defined when the following additional property is valid f@ach element

d
rank(ge):Hpg—i—l:ne fore=1...F. (29)
=1

When Equation (29) holds, the size@f is

d d
size(C.) = (Hpg + 1) X <Hp£ + 1) . (30)
£=1 =1

Note, that Equation (29) implies Equation (27). Also, Edqua(27) implies Equation (25) — local
linear independence inherently results in global linedependence.

If a T-spline mesh is locally linearly dependent, then tha-aero coefficientgx. are obtained
analogously to the global case by transforming

gzge = Q (31)

into row echelon form. In Figure 6 examples are given for allgdamearly dependent T-spline
mesh, a T-spline mesh for which Equation (27) holds and difilespesh for which Equation (29)
holds.

4.2. Partition of unity property for T-splines

In this section we address the partition of unity propertyhef blending functions/(?) and of the
rational blending functionsK?), respectively. It will be elaborated how T-spline meshan be
classified as standard, semi-standard and non-standagithsi Bézier extraction operator. We will
also show that an affine transformation only exists when #rétjwn of unity property is satisfied,
with the ensuing consequence for the satisfaction of thehgatt.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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10 S. MAY, J. VIGNOLLET AND R. DE BORST
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thereforeC. is not a square matrix for element c.
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Figure 6. Local dependencies in a quadratic T-spline mesh.

4.2.1. Partition of unity property of the rational blendifignctionsR’
The multivariate rational T-spline blending function for @amchor; can be constructed as

R'(§) =

w'N*(§)
£ wwig

= (32)

with the weightw' associated to ancharNote that, in view of Equation (32), the rational blending
functionsR® always form a partition of unity (alk’ sum to one).

4.2.2. Partition of unity property of the blending functsN®
In [3] T-spline meshes have been classified according to #rttipn of unity property of the

blending functionsVv,

AN =1,
=1

into

e Standard T-spline meshes: all = 1,

Copyright© 0000 John Wiley & Sons, Ltd.
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T-SPLINES: CLASSIFICATION AND REFINEMENT 11

o Semi-standard T-spline meshes: sophe 1,
o Non-standard T-spline meshes: no solutiondar

We note, that only for standard T-spline meshes the blerfdimgtionsN? andthe rational blending
functionsR' satisfy the partition of unity property.

4.2.3. Partition of unity property of the blending functiii’ using the Bzier extraction operator
We will now show how the global Bézier extraction operatan be used to determine the partition
of unity property of the blending function$*. Rewriting Equation (33) using Equation (18) yields

n

Y pic” Bg) =1. (34)

i=1

Substituting Equations (13) and (17) into Equation (34) eliatboration gives

(Brct"+ .+t ) By@) + ..+ (B'CE + .+ 5°CET ) Bp®) = 1. (39)

oti o

The Bernstein polynomialB, in Equation (35) form a partition of unity if and only4#_= 1 for
each element. This statement can be expressed in a vector-matrix format a

BICI+...+p"CY 1
; - | (36)
B'CL+ ...+ p"Ch 1
which is equivalent to
61
c' ... ¢c'|:|=1 (37)
ﬁn
With the global Bézier extraction operatGrin Equation (14) we obtain
c'B=1. (38)

The row echelon form of Equation (38) then provides the méaassess whether a T-spline mesh
is standard, semi-standard or non-standard.

Figures 7 and 8 show a set of T-spline meshes of quadratic abit degree and their
classification for linear dependence and the partition dafiyyoroperty according to the previous
definitions using the Bézier extraction operator. As canliierved from Figures 7 and 8, changing
the knot intervals gives a different classification for thepline mesh — (a), (c), (e) are standard
T-spline meshes whereas (b), (d) and (f) are non-standaeorstandard T-spline meshes.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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12 S. MAY, J. VIGNOLLET AND R. DE BORST

[ ) Anchors [ J Anchors
—— Continuity reduction lines —— Continuity reduction lines
— Edges — Edges
& w | W Elements & w | W Elements
1 1 7
[ ]
1 1 6 o
3 is
3 2 4 o
1 i
3 I 3
3 7 Py
0 0 2
[ ] [
0 0 1
5 uy 1 2 3 4 5 uy
T o0 3 1 LI
d
a) Standardyank(C.) = +1fore=1...E. (b) Non-standardsank(C) = n.
Pe
- =1
[ ) Anchors [ J Anchors
—— Continuity reduction lines —— Continuity reduction lines
— Edges — Edges
& w | W Elements & w | W Elements
1 1 7
[ ]
1 1 6 o
3 is
2 2 4 °
1 i
3 7 3
3 7 Py
0 0 2
[ [ ] [
0 0 1
1 3 4 5 uy 1 2 3 4 5 uy
0 i 1 1 & 0 0 i 1 1 &
d
(c) Standardyank(Ce) = [] p+1fore=1...E. (d) Non-standardsank(Ce) = ne fore=1...E.
- =1
o Anchors o Anchors
—— Continuity reduction lines —— Continuity reduction lines
— Edges — Edges
S w | Ml Elements S w | Ml Elements
1 7 1 7
[ ]
1 6 1 6 o
ios o
P P
1 1
3 3 1 3 o
0 2 0 2
[ [ ]
0 1 0 1
1 2 3 4 5 u 1 5 uy
0 0 1 1 1 & 0 1 i

d .
(e) Standardyank(C.) = [[ p+1fore=1...E. (f) Semi-standardsank(C) = n.
7 /=1

Figure 7. Classification of quadratic T-spline meshes atingrto the level of linear independence and the
partition of unity property. (a), (c) and (e) are standarspline meshes, changing the knot intervals results
in non-standard or semi-standard T-spline meshes.
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[ ) Anchors [ J Anchors
—— Continuity reduction lines —— Continuity reduction lines
— Edges — Edges
& w | W Elements & w | W Elements
1 7 1 7
1 6 1 6
5005 is
504 P4
1 3 1 3
0 2 0 2
0 1 0 1
2 3 4 5 uy u
0 0 i 1 1 & &
d
(@) Standardrank(C.) = [[ p+1fore=1...E. (b) Non-standardsank(C) = n.
- =1
[ ) Anchors [ J Anchors
—— Continuity reduction lines —— Continuity reduction lines
— Edges — Edges
& w | W Elements & w | W Elements
1 7 1
1 6 1
5005 i
2
3 4 i
1
3 3 i
0 2 0
0 1 0
3 4 5 u 3 4 u
0 i 1 1 & 0 0 i 1 1 &
d
(c) Standardyank(Ce) = [] p+1fore=1...E. (d) Non-standardsank(Ce) = ne fore=1...E.
- /=1
o Anchors o Anchors
—— Continuity reduction lines —— Continuity reduction lines
— Edges — Edges
S w | Ml Elements S w | Ml Elements
1 7 1 7
1 6 1 6
ios o
P P
3 3 3 3
0 2 0 2
0 1 0 1
3 4 5 u 3 4 i
0 0 1 1 1 & 0 0 1 1 1 &

d
(e) Standardrank(Ce) = [[ pe+1fore=1...E.
o =1

(f) Semi-standardsank(C) = n.

Figure 8. Classification of cubic T-spline meshes accordinghe level of linear independence and the
partition of unity property. (a), (c) and (e) are standarspline meshes, changing the knot intervals results
in non-standard or semi-standard T-spline meshes.
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14 S. MAY, J. VIGNOLLET AND R. DE BORST

4.2.4. Affine transformation requires partition of unity
Any T-spline surfaceT” in the physical domainaf) can be expressed by the mapping from the
sub-parameteif) domain as follows

T() =Y R(&P (39)

whereR’ are the rational blending functions ail = (2, 23) are the control points associated to
anchori. Applying a transformation to the control poinisof the form

Pr=AP+b, (40)

with the control pointdP after transformation, results in an affine transformatiooesthe rational
blending functiong?’ in Equation (39) form a partition of unity.

However, when the T-spline in Equation (39) would have besdimdd with the blending functions
N instead of the rational blending functio®, then an affine transformation is only obtained for
standard T-spline meshes since semi-standard and nafestif-spline meshes do not have the
partition of unity property for the blending function&’, see also Figure 9 with a rigid body motion
applied to the control points of the anchors.

[ ] [ ] ° [ ] [ ] [ ] ° [ ]
[ Anchors 4 . [ Anchors 4 .
— Element boundaries b —— Element boundaries .
[ hd b [ e b
& @ ® [ ] [ ] ® & @ ® [ ] [ ] ®
® [ ] [ ] [ ] & & ® [ ] [ ] [ ] & &
q L4 Transformed [ L4 Transformed
3 physical mesh 3 physical mesh
[ b ] [ hd .
o o e ¢ o o e ¢
Initial Initial
physical mesh physical mesh
(@) Rational blending functiong?. (b) Blending functionsV?.

Figure 9. Applying a rigid body motion to the control poinfgite anchors results in an affine transformation

when the partition of unity property is fulfilled. (a) An aféiriransformation for the semi-standard T-spline

mesh in Figure 8(f) is obtained for the rational blendingdiimns R?; (b) using the blending functions’®

instead ofR? in Equation (39) gives no affine transformation — the elentenindaries are different — since
the N?* do not form a partition of unity for semi-standard meshes.

The patch test is always satisfied when an affine transfoomatipossible, i. e. for the rational
blending functiongz?, and for the blending functions of a standard T-spline mesh.
4.3. Standard T-splines are locally linearly independeith\a square matrixC.

We will show next that standard T-spline meshes are alwagaliolinearly independent and that
the elemental Bézier operatdis are always a square matrix. We start with the global pantitib
unity property of standard T-spline meshes,

Z BIN'(€) =1 withpi =1. (41)
i=1

The global partition of unity property for standard T-sglimeshes in Equation (41) implies the
local partition of unity property for each element

Te
D BINUE) =1 with i =1. (42)
i=1
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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T-SPLINES: CLASSIFICATION AND REFINEMENT 15

Now we add to Equation (42) the expression

Z alNi(€) =0 (43)
=1
which results in .
D (B4 a)NI(E) =1 with gl =1. (44)

=1
If there existed an anchemith o? # 0 in Equation (44), the T-spline mesh would not be a standard

T-spline mesh (see also the proof in [16] for the global caBegrefore, the only solution i} = 0
fori =1...n. in Equation (44) which means that we have for each eleméenEquation (43)

Ne

D aiN'(€) =0 withal =0. (45)
i=1

Hence, the global partition of unity property implies lobakar independence of the T-spline mesh.
However, we do not know yet wheth€l. is a square matrix or not. To further pursue this issue,

we write the resul? = 1 in Equation (42) as follows

1
01 ... 0 Be
P . :leée:l (46)
00 .. 1| L%
wherel,. is the unity matrix
I =diag(1,1,...,1). 47

It is important to note that the size of the unity maffixs

d d
size(I.) = <H pe + 1) X (H pe + 1) (48)
(=1 (=1

d
and thereforep. = [] pe + 1. By writing Equation (38) for elemertin an elemental form
(=1

CiB. =1, (49)

we can draw the conclusion that Equation (46) is the row echielrm of Equation (49). Hence, we
can infer thalC. has the same size &sand thatC. is also a square matrix,

d d
size(C.) = size(l) = (H pe + 1) X (sz + 1) . (50)

/=1 =1

We recall that the global partition of unity property resutt locally linearly independent blending
functions. With Equation (50) this leads to the conclusioat twve have the case in Equation (29)
sinceC. is a square matrix. In sum, all standard T-splines have thexfmg property

d
rank(ge):Hngrl:ne fore=1...FE. (51)
(=1

Equation (51) is a necessary condition for standard T-eptieshes: if Equation (51) is not fulfilled,
then the T-spline mesh cannot be a standard T-spline meshew¢o, even when Equation (51)
is fulfilled, the T-spline mesh can still be semi-standarchon-standard. In order to determine
standard T-spline meshes, it is necessangsufficient to show that Equation (38) yields= 1.

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢000)
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16 S. MAY, J. VIGNOLLET AND R. DE BORST

4.4. Analysis-suitable T-splines

Analysis-suitable T-splines have been defined in [9]. Ireotd detect them, the extended T-spline
mesh was introduced, and a mesh was deemed analysis-switabh there are no two orthogonal
T-node extensions which intersect in the extended T-splilesh. This definition holds for any
knot interval and is of topological nature; it allows to dhguish between analysis-suitable and
non-analysis-suitable T-splines.

The new approach in this paper which is based on the Bézieaation operator is an algebraic
viewpoint and allows a classification of T-splines into stam, semi-standard and non-standard
with Equation (38).

Figure 10 reveals that a standard T-spline is not necegsamilanalysis-suitable T-spline. In
Figure 10, T-node extensions intersect in the extendedifiesmesh and the T-spline meshes are
therefore non-analysis-suitable. From Figure 8(a), 8{d)&e) we know that these T-spline meshes
are standard.

o Anchors o Anchors
—— Continuity reduction lines —— Continuity reduction lines
— Edges — Edges
[ ] Elements [ ] Elements
& U T-node extensions & U T-node extensions
1 7 1
1 6 1
2 2
3 5 3
I 2
3 4 3
1 1
3 3 3
0 2 0
0 1 0
3 u uy
0 0 i 1 1 & &
(@) T-node extensions for the T-spline mesh in (b) T-node extensions for the T-spline mesh in
Figure 8(a). Figure 8(c).
[ ) Anchors
—— Continuity reduction lines
— Edges
[ ] Elements
& U T-node extensions
1 7
1 6
2
3 5
2
3 4 .
1
3 3 L4
0 2
0 1 '
3 uy
I S S S

(c) T-node extensions for the T-spline mesh in
Figure 8(e).

Figure 10. Extended T-spline meshes for Figure 8(a), 8(d) &e); these standard T-spline meshes are
non-analysis-suitable according to [9] since T-node esitaTs intersect in the extended T-spline mesh.
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T-SPLINES: CLASSIFICATION AND REFINEMENT 17

5. LOCAL REFINEMENT OF STANDARD, SEMI-STANDARD AND NON-STADARD
T-SPLINES BY ADDING ANCHORS

In this section we show how standard, semi-standard andtaotard T-spline meshes of even and
odd polynomial degree can be refined locally by adding arschsing information from the Bézier
extraction operator.

A requirement for the refinement algorithm is that the ihifiad the refined T-spline mesh are
nested — this condition will be defined in the following senti together with a method to fulfil
it using the Bézier extraction operator. We also show haidizcation of the control points in the
refined T-spline mesh can be obtained. Afterwards, we axfaialgorithm for the local refinement
of T-splines and give some examples. In the examples we dicsisfon refining standard T-spline
meshes (Section 5.4, Appendix A) followed by an example tmsthat also non-standard meshes
can be refined locally by adding anchors (Appendix B).

5.1. Computation of the refinement matrix and nesting belhgvi

A refinement matrixM of sizen x np gives the relation between the blending functidvig of a
refined mesh with z anchors and the blending functioDg of an initial mesh which has anchors

N(§) =M Nr(§). (52)

Expressing the blending functions on both sides using thedkein polynomials, Equation (16),
gives
C Bgr(§) =M CrBr(§), (53)

while the blending functiongV on the initial mesh must be defined in terms of the elements of
the refined mesh with the Bernstein polynomiéts,. The linear independence of the Bernstein
polynomialsB j in Equation (53) results in

C =M Crp. (54)

The coefficients of a row of the refinement mathf can be evaluated as follows. Expanding
Equation (54) using Equation (14) yields

ClT Ve C}%T
S : : (55)
CnT MnT C%RT
Applying the transpose to both sides results in
' . oCl=[Ch .. CylM .. M (56)

which makes it possible to determine the roLﬁT fori =1...n of the refinement matriM by
transforming the systems o
C'=Cp"M' fori=1...n (57)

into a row echelon form. In the case that there is no solutiotiie M * for anchori in Equation (57),
the initial and the refined T-spline mesh are not nested, vhieans that it is not possible to
representall blending functions/NV of the initial T-spline mesh as a linear combination of the
blending functionslN , of the refined T-spline mesh. One can resolve this as will jgagxed
in Section 5.4 (quadratic cage, = 2) and Appendix A (cubic case, = 3).

It is interesting to note that when nestedness is ensuredrendhitial mesh is standard, the
refined T-spline mesh can only be a standard or semi-staridaptine mesh: knowing that the
initial T-spline mesh is standard and satisfies the pantitibunity property in Equation (41) (all

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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18 S. MAY, J. VIGNOLLET AND R. DE BORST

B = 1) and using the rowMiT of the refinement matrid1 from Equation (57) results in

1= pN(E) = FM Ny ZBRNJ (58)
=1 =1
where the coefficient8r are given by
Br=M'B. (59)

From Equation (59) it can be concluded that there alwaydsaisolution for the coefficieni8r
when nestedness is ensurdd éxists) and therefore the refined T-spline mesh can only tandard
or semi-standard T-spline mesh when the initial mesh isisti@h

5.2. Determination of the coordinates for the anchors inrdfaned T-spline mesh

In this section we assume that the initial and the refinedifiesmesh are nested. We show how the
coordinates and weights of the anchors in a refined T-splie€hroan be determined. The weighted
(polynomial) curve of Equation (39) is given by [20]

&)=Y NP, (60)
i=1
with the weighted control points
Ezu - (wzle’ wilév wz) (61)

We require that the refined and the initial weighted curve@y, 4, andT,,, respectively — represent
the same geometry

IIUR(§> = Iw (§)’ (62)
and insert Equation (60) into the left- and right-hand sifiIEquation (62) to obtain

ZNJ Pl = ZNI (63)

Using the Bézier extraction operator subsequently gives

nRr

ch BR R - ZCL BR —w (64)

or, since the Bernstein polynomlelﬁR are linearly independent

ZCJ P, = ijQ‘TE;- (65)
=1

Elaborating Equation (65) yields

B’lll)R 2111)

ch ooyl | =le e (66)
nRr n
=w R = w

or, in the global form

gRTgwR = ngw’ (67)
so that with Equation (54), we obtain
T TagT
gR EwR :gR ¥ Ew' (68)
Hence, the weighted control poink,, ,, for the refined mesh follow from
EwR - ¥T£w' (69)
Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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T-SPLINES: CLASSIFICATION AND REFINEMENT 19

5.3. The algorithm for local refinement of standard T-spdine

In our local refinement algorithm (see also Algorithm 1) fearglard T-splines we proceed as
follows: after inserting new anchors into the T-spline mésdfining), we check whether the
necessary condition for standard T-spline meshes, Equéiib), holds. If this is not the case, the
mesh resulting from local refinement will not be standartegitThen, Equation (31) plays a key
role: it allows us to determine wheth€r, is a square matrix or not, but also, when presented in
row echelon form, to detect and remove linear dependerie@ding to the necessary condition for
standard T-spline meshes in Equation (51). Once Equatibrig3ulfilled, we evaluate each row of
the refinement matrid in Equation (57). Should the blending functions of some anslof the
initial mesh not be nested in the refined mesh, then we modéfyrtesh accordingly. Finally, when
nestedness is satisfied, Equation (38) is assessed witethdrholds. If not, then we have a semi-
standard mesh according to Equation (59) and anchors aegladdhe mesh within the support of
anchors for whichg? # 1. Otherwise, the initial and the refined mesh are nested atdridspline
meshes.

/I Start with a standard T-spline mesh
/I Number of refinement stepal
fori=1:Ndo
RefinementSuccessful = 0;
while RefinementSuccessful = 0 do
/I Check whether necessary condition for standard T-spiim&quation (51) holds:

d
ifCe# [[(pe+1) fore=1...E then

1 adéd elldditional anchors by inspecting the Bézier exwaabperator in Equation (31):
/I (a) ensure tha€. is a square matrix
/1 (b) remove linear dependencies
else
/I Check with Equation (57) whether the initial and the refimeesh are nested:
if Refinement matriv cannot be computetthen
Il add additional anchors by assessing the Bézier extracfierators of the initial and the refined
mesh: localise, which anchors are not nested in Equation (57
else
/I Check whether T-spline mesh is standard by assessingiBqas):
if 3+ 1then
~ /l mesh is semi-standard according to Equation (59) ,
// add anchors to the mesh within the support of the anchiaiswhich 3* # 1
else
/I Compute the weighted control poink,, , of the refined mesh using Equation (69)
RefinementSuccessful = 1;
end
end
end
end
end

Algorithm 1: Local refinement algorithm based on the insertion of newhargfor standard
T-spline meshes.

5.4. Local refinement of standard T-splines of even degreglting anchors

This section explains how the necessary condition for stahd-spline meshes in Equation (51)
and nestedness for meshes of even degree can be enforcgdhesBézier extraction operator. It
should be noted, that in order to be able implement the mettiescribed in the following, the local
knot vectors for each anchor are required in the index&nd sub-parameteg,) domain — it is not
sufficient to have only access to the Bézier extractionatper

5.4.1. Example 1: Ensuring th&t. is a square matrix and nestedness

Copyright© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn000)
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20 S. MAY, J. VIGNOLLET AND R. DE BORST

Initial refinement
We consider the quadratic standard T-spline mesh in thexciddmain and the physical domain in
Figure 11. It is refined by insertion of an anchor which resuitthe rectanglés?, £1] x [¢3, €3]

being split vertically, see Figure 12(a).

o ' AAnchors o (] Anchors
—— Continuity reduction lines [] Element corners
o : nges —— Element boundaries
U Elements
52
*——@

[T

S O wi— wi—

u

u
&

(b)

Figure 11. Initial quadratic standard T-spline mesh infi@)ihdex domain and (b) the physical domain.

o Anchors [ J Anchors
—— Continuity reduction lines —— Continuity reduction lines
— Edges — Edges
& w | W Elements & w | W Elements
1 1 7
[ ]
1 1 6 o
2 2
3 3 5
i i
3 3 4 L4
1 1
3 3 3
3 3 ®
0 0 2
[ ]
0 0 1
uy 1 up
& 0 &

(b)

Figure 12. (a) Refined quadratic non-standard T-spline freghFigure 11(a) in the index domain. (b) The
T-spline mesh is locally linearly independent — but as oigyreanchors (blue) have a support in element b
(dashed green lineLz. is not a square matrix for element b.

Ensuring that C. is a square matrix

The resulting mesh is locally linearly independent, but-standard andC. is not a square matrix
for all elements. Indeed, for element b (bounded by a dastehdine), we haveank(C.) = n.,

as there are only eight anchors (blue) with a suppart- 8, see Figure 12(b). Hence, additional
anchors need to be inserted in order to obtain a square n@griach local knot vector of the
blue anchors with support in element b in Figure 12(b) costaéine sub-parameter values of the
boundaries of element b[g, 1] x [1, 2] in the¢; direction and the, direction, respectively, except
for the anchors A and B in Figure 13(a). The local knot vectdrthe anchors A and B in thg
direction do not contain the sub-parameter vajue- 1. Therefore, rectangle c needs to be split.

This results in the standard T-spline mesh in Figure 13(b).
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[ ) Anchors [ J Anchors
—— Continuity reduction lines —— Continuity reduction lines
— Edges — Edges
& w | W Elements & w | W Elements
1 1 7
[ ]
1 1 6 o
2 2
3 3 3
i i
3 3 4 [ ]
1 1
3 3 3
3 3 Py
0 0 2
[ ]
0 0 1
u 1 2 3 4 5 uy
& 0 0 i 1 1 &
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Figure 13. Procedure to obtain a square maftix (a) The local knot vectors of the anchors A and B (blue)

do not contain the sub-parameter vafye= 3, which is a boundary of element b (dashed green). The local
knot vectors of all other anchors with support in elementée (Bigure 12(b)) contain the sub-parameter
valueso, 4 in the¢; direction and}, 2 in the¢, direction [0, 3] x 4, 2] represents the boundary values of
element % in the sub-parameter domain. Hence, the rectamgleds to be split so that the local knot vectors
of the anchors A and B also contain the kgpt= % (b) The resulting standard mesh and the initial mesh

in 11(a) are not nested.

Nestedness

The initial T-spline mesh in Figure 11(a) and the refined madhigure 13(b) are not nested: the

blending functions of anchors C, D and E (see mesh in Figuyeddnot be expressed as a linear
combination of the blending functions of the refined meshigufe 13(b). This can be identified by

inspection of the row echelon form of Equation (57) for thasehors.

& uy
1 7
| p [ [ [ [ @® Anchors initial mesh
. Py Py Py Py P Anchors initial mesh,
z 35 . not nested
1 . L Anchors refined mesh
3 4 [ J C Edees initi
d — ges initial mesh
% 3 D Edges refined mesh
0 ) d ® s l: u Common support
[ [ [ 1 non-nested anchors
0 1
1 2 3 4 5 u
0 3 1 1 &

Figure 14. Superposition of the initial T-spline mesh in iléex domain from Figure 11(a) and the refined
mesh in Figure 13(b). Transforming Equation (57) into roledon form gives no results for the anchors C,
D and E (blue) since the meshes in Figure 11(a) and Figure &B¢onot nested. Edges and anchors from
the refined mesh in Figure 13(b), which were added duringeefent, are inserted in the initial mesh from
Figure 11(a) and marked with green. Within the grey domdithate anchors C, D and E from the initial
mesh have a support, while the grey domain is bounded by tvy rieserted green edges. In this grey
domain an additional anchor needs to be inserted, i. e. $teedaed rectangle d needs to be subdivided, see
Figure 15.

Therefore, an additional anchor has to be inserted. We dnaméw edges and anchors of the
refined mesh in Figure 13(b) in the initial mesh of Figure } &&illustrated with solid green lines
and green points in Figure 14. Then, the grey domain is drhighljighting the common support of
the three anchors C, D and E which is bounded by the new greggseWithin the grey domain a
new anchor needs to be inserted, i. e. the dashed red rezthngéds to be subdivided. The resulting
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22 S. MAY, J. VIGNOLLET AND R. DE BORST

refined mesh has now the sought properties: it is standarts amedted with the initial (non-refined)
mesh, i. e. the blending functiaN of each anchor in Figure 11(a) can be represented as a linear
combination of the blending functiody j of the anchors in the refined mesh in Figure 15(a).

Refined physical mesh

So far, refinement has only been considered in the index doimairder to obtain a standard and
nested T-spline mesh. Next, the evaluation of the weightedral points in the physical domain is
addressed.

The location of the weighted control points for the refinedsm& ., . is determined using
Equation (69). The physical mesh is shown in Figure 15(b)tvhireserves the same geometry
as the physical mesh in Figure 11(b). This can be observedimparing for instance the shape of
the element boundaries of the initial and the refined phy/siesh.

[ Anchors [ Anchors
—— Continuity reduction lines [] Element corners
) — Edges —— Element boundaries
& w | W Elements

O O W= W= W =

(b)

Figure 15. Refined quadratic T-spline mesh of Figure 11 ith@)ndex domain and (b) the physical domain.
This T-spline mesh is standard and nested with the initigpplire mesh of Figure 11.

5.4.2. Example 2: Removing linear dependencies

Initial refinement
As a next example, the initial quadratic T-spline mesh inuFégl1 is now refined as shown in

Figure 16(a).

Removing linear dependencies

The T-spline mesh of Figure 16(a) is non-standard using &@ué38). Furthermore, the necessary
condition Equation (51) is not fulfilled. Transforming Edjoa (31) into row echelon form yields
the dependenciy 7' (¢) — N(¢) = 0 in element f. In order to break this dependence, new anchors
need to be inserted. In the following, it will be shown how demtify potential locations for these
new anchors and how to select the ideal one.

Extension lines (solid blue) are drawn between the ancharsdFG as depicted in Figure 16(b).
These extension lines intersect at the location of the gsgaares. These squares are located in the
rectangles g and h (dashed red line). Rectangle g cannottherfisubdivided, but rectangle h can,
as shown in Figure 17.
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(a) The T-spline mesh is locally linearly dependent —
the row echelon version of Equation (31) gives the
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(b) Extension lines (solid blue) for the anchors F and
G intersect at the location of the green squares. The

rectangles g and h (dashed red line) contain the green
squares. Rectangle g cannot be further subdivided.
All options for subdividing rectangle h are given in

Figure 17.

Figure 16. Refined (non-standard) quadratic T-spline mesh Figure 11(a) in the index domain.
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(c) Standard, not nested.
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(f) Non-standard.

Figure 17. All possible subdivisions for the rectangle higure 16(b): the dashed orange lines indicate the
new edges to be inserted, the orange points denote thedoaitthe new anchors.

Table | gives a summary of the number of pairs of anchors viiteakly dependent blending
functions, number of non-square matricg€s, nestedness and number of additionally inserted
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24 S. MAY, J. VIGNOLLET AND R. DE BORST
anchors for the options in Figure 17. This information carubed in order to determine the best
location and optimum number of additional anchors.

Table I. Summary of the number of pairs of anchors with lihedependent blending functions, number of
non-square matricés., nestedness and number of additionally inserted anchotisémptions in Figure 17.

Figure | 17(a) | 17(b) | 17(c) | 17(d) | 17(e) | 17(F) | 17(q)
Number of pairs of anchors
with linearly dependent 0 0 0 0 0 0 0

blending functions
Number of non-square

matricesC. 0
Nestedness O O O O W] W] W]
Number of additional anchors 2 3 3 4 2 3 3

According to Figure 17 and Table I, only the options (b) andai suitable for refinement of
the T-spline mesh in Figure 11 since they are standard artdchesth the initial mesh. From an
implementational point of view, one could select the optidrich introduces the smallest amount
of new anchors, i. e. option (b).

In case that no refinement option results in a standard artdch@sspline mesh, one can select
either the option with the smallest number of pairs of anshwith linearly dependent blending
functions or the option with the smallest number of non-sguaatricesC. and then continue with
the next refinement step until a standard and nested mesteisiet, see Appendix C.

5.5. Summary for the local refinement of standard T-splines

The examples for the local refinement of standard T-splinghee by adding anchors demonstrate
that the Bézier extraction operator allows to:

¢ enforce the necessary condition in Equation (51) for stah@apline meshes:

— when the T-spline mesh is locally linearly independent betde not have a square
matrix C. for each element, the Bézier extraction operator shows, which element does
not have enough anchors with a support (Figure 13(a));

— when there are local linear dependencies, the Bézieratidraoperator shows, where
new anchors and edges need to be inserted (Figure 16(b))

e pinpoint for which blending functions two T-spline meshes aot nested (Figure 14).

We have found that when the necessary condition in Equalidpi¢ fulfilled and the refinement
matrix M in Equation (57) can be computed, we always obtain a nestediatd T-spline mesh.
We have not experienced a single case where this resultedestad semi-standard T-spline mesh.
However, should such a case arise, one can pinpoint for varichors3:, # 1 using Equation (59)
and insert an additional anchor in the supported domainesgtanchors.

The local refinement of standard T-spline meshes of odd degréeated in Appendix A.
Furthermore, Appendix B demonstrates that also non-stdidsplines can be refined locally when
nestedness exists.

6. HIERARCHICAL REFINEMENT OF STANDARD, SEMI-STANDARD AND
NON-STANDARD T-SPLINES USING THE RECONSTRUCTION OPERATOR

In [15] another refinement strategy was introduced basedheneconstruction operator. Instead
of adding new anchors to the mesh as was proposed in the psesé@ztion, the method is based
on the division of elements while an invertible elementakt extraction operatd®. is needed

for the reconstruction operator. The hierarchical refinemeethod in [15] has been derived for
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analysis-suitable T-splines. Here, we show how the idedisf ¢oncept can also be applied to
standard, semi-standard and non-standard T-spline meshes

6.1. Splitting elements

The hierarchical refinement algorithm based on the recottstn operator requires local linear
independence. Moreover, it requires thatis a square matrix for the elementhat is subdivided,

d

rank(C.) = HW +1 (70)
=1

since the reconstruction operator, defined as
ge = g;lv (71)

is needed. Therefore, for this hierarchical refinement rilym the Bézier extraction operator
plays again a key role: when Equation (70) is satisfied for el@® this element can be refined
hierarchically. Thus, this algorithm can be applied to d&ad, semi-standard and non-standard
T-spline meshes.

Consider an element with range1, 1] and suppose that we want to split it in hgk:1, 0] and
[0, 1]. The first Bernstein basiB! with the knot vectof —1, —1, —1, 1} (black curve) in Figure 18 in
the elemeni—1, 1] can be defined in the two sub-elemepts, 0] and[0, 1] as a linear combination
of the Bernstein polynomials in the two sub-elements: thenBtein basis functions for the left part
of the element with support ip-1, 0] are given by the local knot vectors

Bi, for {-1,-1,-1,0}, Bj, for {-1,-1,0,0}, B}, for {-1,0,0,0}. (72)

| — Bl&) — B} (6) — B} &) — === Bl&) |
I T T T T T T T T T T T T T T

0.8 | a

04 a

02t . |

A
~
]
~
-
-
-~

0 1 | | | | | | | | | | |
-1 -08 -06 04 -02 0 02 04 06 08 1
&

Figure 18. The Bernstein polynomid! with support over the elemeiit-1,1] can be expressed in the
sub-element; with range[—1,0] as a linear combination of the Bernstein polynomi&,: Bi(¢1) =

Bi (&) + $B1,(&) + 1B (&)

The Bernstein polynomiaB; in the left part of the element (solid black line) can now be
expressed as a linear combination of the Bernstein polyaisiai , as follows

B, (&)
Bi&)=[1 3 3] |BL&)|- (73)
B} (&)

The coefficients in Equation (73) can either be obtainedgusia algorithm in [7] for the knot vector
{-1,-1,—1,1} with an interior knot (causing a discontinuity)@t= 0 or, alternatively, using the
relations in [21]. Applying the same procedure’d, B3, and on the right part of the element (with
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the rang€o, 1]) gives

Bi(&1) 1 % % By y(&1) % 0 0] [Bj,(&)
Bi(&)| =10 3 P B (&) + 7 % 0 |Bi (&) - (74)
Bi(&) 0 0 7] |Bii&) 13 1 [BY(&)
——_——’
B (&1) Ay Bi(&) A, Bi,(&)

Hence, the Bernstein polynomial3, over one element with the span—1, 1] can be expressed
as a linear combination of the Bernstein polynomiBls, and B; ,. over the two smaller elements
e; with the sparn—1, 0] ande, with the spar{0, 1]. Extending Equation (74) into more dimensions
gives

B(§) = AiB,(§) + ArB,(§). (75)
We next assume that the Bézier extraction operator is krfowthe original, single elemen®.
and for the two sub-elemeng.; andC. .. Then, we can express the weighted culyg, with the
weighted control point®’,  over element using Equation (75)

Ne Ne

T, (£ = ZCZ Zcz (AiBi(§) + A, B.(§) P, (76)

and over the two sub-elements

Ne Ne r

(é) wel(é) —wer = ZCJ Bl w 1 + Z C (5) —wer (77)

k=1

with the weighted control point®, ., and P, .. for elemente; ande,, respectively. Comparing
Equation (76) and Equation (77) results in

Ney

Zcz AB(¢ ZCJ Bi(&)P,,, (78)

Ner

ZC’ A B ( ZC B, (&P, (79)

or in vector-matrix form

cApP, =C.,'P, , (80)
C.'A.P, =C..'P,, (81)

Hence, the weighted coordinates of the two sub-element®lataned with the reconstruction
operator in Equation (71) as

w I Rel C Al P, = EerTgeTérEwe- (82)

We r

6.2. Example

As an example we consider the quadratic non-standard espiesh of Figure 19 which is globally
linearly independent but locally linearly dependent.

The dashed green element b is now divided vertically intogulo-element pand k. with range
[0,4] x [2,2] and [1, 2] x [2,3],i. e. the knot valug; = 1 is inserted in element b. Element b
can be subdivided since Equation (70) holds for it. In ordemhntain the weighted control points
P,  andP, in Equation (82), the reconstruction operat®s; andR. ., which follow from
the Be2|er extractlon operato@.; andC, ,, respectively, are needed for element b. These Bézier

extraction operators are based on the modified local kndbx&of the sub-elements land k.
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Figure 19. Non-standard, globally linearly independen'sp]l'ne mesh in the index domain (from
Figure 7(b)). Element b (dashed green Iine) with ra[logé 4, 4] is split vertically into two sub-elements
b, and b- with range0, 1] x [2, 3] and[4, 3] x [2, 3], respectively. Each local knot vector associated to
a blue anchor (i. e. those having a support in element b) neede modified. For instance, the anchor

A W|th =¢' = {0,0,0,1} becomesE{, = {0,0,0, 1} in element hand=4, = {0,0, 1,1} in element b.
=4 = {0,0,0,1} remains unchanged for the other elements. The modified koalvectors for the other
blue anchors are given in Appendix D.

which are obtained as follows. We pick from each blue anéhahnich has a support over element
b in Figure 19 the local knot vect@. Then we insert into this local knot vector the knot value
& = 1 and split the resulting knot vector into two knot vectors erfigthp, + 2, where one knot
vector contains the firgt, + 2 entries and the other one the lagtt+ 2 entries. For instance, taking
the anchor A in Figure 19 gives the local knot ve(ﬂ’fr {0,0,0, 1} The local knot vectors for
the elements band b. are then=¢, = {0,0,0,1} and={!, = {0 0,1,1}. We note that the local
knot vector=¢ is modified only in the elements and b., while for the other elemengs;! remains
unchanged. The local knot vectors for the blue anchors irstiheelements;band k. are given in
Appendix D.

The initial non-standard T-spline mesh and the hierardlyicafined non-standard T-spline mesh
in the physical domain are depicted in Figure 20. Both ptajsiteshes represent the same geometry.

Initial anchors
Hierarchical anchors for b,
Hierarchical anchors for b,

Element corners
Element boundaries

[ ) Anchors
[] Element corners
—— Element boundaries

*—1—@

|Op<ae

(@) (b)

Figure 20. (a) Initial and (b) hierarchically refined noarsard T-spline mesh from Figure 19 in the physical
domain.
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7. DISCUSSION AND CONCLUSIONS

We have classified T-spline meshes of arbitrary degree dicapto linear independence and the
partition of unity property. We have also shown how to refitendard T-spline meshes by adding
anchors, such that the initial and the refined T-spline messhasted. It has been demonstrated that
non-standard meshes can also be refined by adding anchonsngktedness exists. All methods
exploit the Bézier extraction operator, which appeardag p central role. Furthermore, it has been
shown that hierarchical refinement of standard, semi-stahdnd non-standard T-spline meshes
using the reconstruction operator basically also invothesBézier extraction operator, since the
reconstruction operator is just its inverse.

We finally note that the term “analysis-suitable” might causonfusion. Analysis can be
performed with standard, semi-standard and non-standaplifé meshes. In our view, the
requirements for a T-spline mesh to be suitable for anafyrsis

« the blending function®&* are globally linearly independent (Equation (25) holds)
o the partition of unity property holds in order to satisfy @féine transformation and the patch
test.

We note that the local/global linear independence of theditey functionsN? results in the
local/global linear independence of the rational blendimgctions R:. Hence, globally linearly
independent semi-standard and non-standard T-splineeseghich employ the rational blending
functions R? in Equation (32) can be used for analysis since the ratioleaiding functionsrk?
always form a partition of unity. It has also been demonstréihat semi-standard and non-standard
T-spline meshes can be refined locally by either adding neshans, or by splitting existing
elements. Refining semi-standard and non-standard Tesplieshes by adding anchors requires
nestedness, while the hierarchical refinement for semidsta and non-standard meshes requires
the satisfaction of Equation (70).

A. LOCAL REFINEMENT OF STANDARD T-SPLINES OF ODD DEGREE BY ADING
ANCHORS

Herein it is explained how the necessary condition for stathd-spline meshes of Equation (51)
and nestedness for meshes of odd degree can be enforcedhesBégier extraction operator.

A.1l. Example 1: Ensuring th&. is a square matrix and nestedness

Initial refinement
We start with the cubic standard T-spline mesh depicted guiiéi 21 which is refined as in
Figure 22(a).

Ensuring that C. is a square matrix

The mesh in Figure 22(a) is locally linearly independent,rimn-standard an@, is not a square
matrix for all elements. For instance, we hawek(C.) = n. in element b as there are only fifteen
anchors (blue) with a support, Figure 22(b). Hence, an mohdit anchor needs to be inserted.
Each local knot vector of the blue anchors in Figure 22(b)taiois the sub-parameter values of
the boundaries of element bjg; 3] x [, 2] in the&; direction and the; direction, respectively —
except for the anchors A and B in Figure 23(a). The local keotars of the anchors A and B in the
& direction do not contain the sub-parameter vajye- % Therefore, an additional anchor needs

to be inserted at the location of the red point c. This resaltse standard mesh in Figure 23(b).

Nestedness
Unfortunately, the initial mesh in Figure 21(a) and the refirmesh in Figure 23(b) are not nested.
Transforming Equation (57) into row echelon form gives ntuson for the anchors C, D, E and
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Figure 21. Initial cubic standard T-spline mesh in (a) thdeixdomain and (b) the physical domain.
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& w | Elements & w | Elements
1 7 1
1 6 1
2 2
3 5 3
1 1
3 4 3
1 1
3 3 3
0 2 0
0 1 0

@

Figure 22. (a) Refined cubic non-standard T-spline mesh fraggare 21(a) in the index domain; (b) the
T-spline mesh is locally linearly independent, but in eleii® (dashed green line) are only fifteen anchors
(blue) with a support and therefo. is not a square matrix for this element.

F in the initial mesh, see Figure 24, i. e. the blending fuordiassociated to these anchors in the
initial T-spline mesh cannot be represented as a linear owtibn of the blending functions of the
refined T-spline mesh in Figure 23(b).
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Figure 23. Determination of the location of a new anchor wleris not a square matrix for a cubic T-spline

mesh. (a) The local knot vectors in tige direction of the blue anchors A and B do not contain the sub-

parameter valu¢, = % which is a boundary of element b (dashed green). Theredoranchor is required

at the location of the red point c. (b) The resulting standasgline mesh. This T-spline mesh and the initial
T-spline mesh in 21(a) are not nested.

MY
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@® Anchors initial mesh
P Anchors initial mesh,
not nested
Anchors refined mesh
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=== Edges initial mesh
E Edges refined mesh
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F u non-nested anchors
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Figure 24. Superposition of the initial T-spline mesh in ithgex domain from Figure 21(a) and the refined
mesh in Figure 23(b). The row echelon form of Equation (5vggino results for the anchors C, D, E and
F (blue) and therefore, the meshes in Figure 21(a) and FRR(I® are not nested. Edges and anchors from
the refined mesh in Figure 23(b), which were added duringeefent, are inserted in the initial mesh from
Figure 21 and marked with green. In the grey domain all foehars C, D, E and F have a common support,
while the grey domain is bounded by the newly inserted grelges Within the grey domain, no anchor is
at the position of the red point d. In order to obtain a refinesimwhich is standardnd nested with the
initial mesh in Figure 21, the anchor d needs to be insertedlie mesh of Figure 23(b), see also Figure 25.

Therefore, an additional anchor has to be inserted. We dnaméw edges and anchors of the
refined T-spline mesh of Figure 23(b) in the initial T-splimesh of Figure 21(a) as illustrated with
solid green lines and points in Figure 24. Then, the domaiere/ll four anchors C, D, E and F
have a common support is drawn while this domain needs totdgydhe green edge. This domain
is indicated with a grey colour. It can be observed that withie grey domain no anchor is sitting at
the location of the red point d. Therefore, the red point dasents the location of an anchor which
has to be inserted into the T-spline mesh. The resultingifespnesh is depicted in Figure 25(a).
This T-spline mesh is standard. Furthermore, the initighline mesh in Figure 21(a) and the refined
T-spline mesh in Figure 25(a) are nested.

Refined physical mesh
After obtaining a standard and nested T-spline mesh in tdeximomain we can now consider
the computation of the physical mesh. The location of thegieid control points for the refined
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meshP . can be determined using Equation (69). The physical meshrafinement is shown in
Figure 25(b) which represents the same geometry as thegathysésh in Figure 21(b).

[ Anchors (] Anchors
—— Continuity reduction lines []  Element corners
} — Edges —— Element boundaries
& up . Elements

O O vl Ll WY = e
L BT I NV B NN |

uj

u
&

(b)

Figure 25. Refined cubic T-spline mesh of Figure 21 in (a) ttex domain and (b) the physical domain.
This T-spline mesh is standard and nested with the initisplire mesh of Figure 21.

A.2. Example 2: Removing linear dependencies

Initial refinement
As a next example, the initial cubic standard T-spline meskigure 21 is refined as shown in

Figure 26(a).

[ J Anchors
—— Continuity reduction lines
— Edges @® Anchors
& w | W Elements & U = Edges
1 7 1 7
1 6 1 6
5005 5005
50 4 500 4
1 3 1 3
0 2 0 2
0 1 0 1
u 1 2 3 4 5 u
& 0 0 i 1 1 &
(@) The T-spline mesh is locally linearly dependent — (b) lllustration for the determination of the location
the row echelon form of Equation (31) results in of new anchors. Extension lines (solid blue) for
the dependency-2NC (¢) + 2N (¢) +3N7(¢) =0 the anchors with locally linearly dependent blending
in element f (dashed green). B B functions G, H and J are drawn. The extension lines

intersect at the location of the red squares g, h and i.
Only the square g represents a location for a new anchor
(see Figure 27) since at h and i anchors are already
located.

Figure 26. Refined (non-standard) cubic T-spline mesh fragurE 21(a) in the index domain.

Removing linear dependencies

The T-spline mesh in Figure 26(a) is non-standard using kmuéd8). The row echelon version of
Equation (31) yields the dependeneg N (&) + 2N (¢) + 3N’ (€) = 0 in element f. Therefore,
an additional anchor needs to be inserted. This will be dore manner similar to Section 5.4:
extension lines (solid blue) are drawn between the anchitindecally linearly dependent blending
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functions G, H and J, Figure 26(b). The intersections of #tteresion lines are marked with the red
squares. These squares denote possible positions for anubwrdf there does not already exist
one. It can be observed from Figure 26(b) that only the iBtdisn at the red square g is a candidate
for a new anchor. However, the T-spline mesh with a new anichieigure 27 is still locally linearly
dependent and semi-standard, so that more anchors andreziipbto be inserted by applying the
aforementioned methods until a standard and nested Tesplash is obtained.

[ J Anchors
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— Edges
& U [ ] Elements
1 7
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1
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Figure 27. Refined cubic T-spline mesh from Figure 26(a)s Thspline mesh is semi-standard.

A.3. Example 3: Non-standard T-spline fulfils necessargitmm for standard T-splines

In the examples considered so far, enforcing Equation @d)lted in a standard T-spline mesh.
However, this is not always the case as Equation (51) is rifitismt for obtaining a standard
T-spline mesh — it is only a necessary condition for standasglines. Figure 28(b) presents a case
where enforcing Equation (51) does not result in a standaolifie mesh.

[ J Anchors [ J Anchors
—— Continuity reduction lines —— Continuity reduction lines
— Edges — Edges
& w | W Elements & w | Elements
1 7 1 7
1 6 1 6
5008 5008
3 4 3 4
3003 3003
0 2 0 2
0 1 0 1
1 2 3 uy 1 2 3 uy
0 0 1 1 & 0 0 1 1 &
d d
(a) Standardrank(Ce) = [[ pe+1fore=1...E. (b) Non-standard,rank(Ce) = [[ ps+1 for e=
o (=1 o (=1

1...E.

Figure 28. (a) Initial standard T-spline mesh and (b) refined-standard T-spline mesh. For both meshes
Equation (51) holds, but both T-spline meshes are not nestetiown in Figure 29(a).

Both T-spline meshes in Figure 28 are locally linearly inglegient with a square matr.. The
initial T-spline mesh, Figure 28(a), is standard, whilergsfined T-spline mesh, Figure 28(b), is non-
standard. We recall, that a standard and a non-standartin&spesh cannot be nested according
to Equation (59): evaluating the refinement matrix in Equa(b7) gives no solution for the anchor
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K — and therefore both T-spline meshes are not nested. Appthie same procedure as previously
explained (see also Figure 24) gives the possible locafiemeew anchors (red) as depicted in

Figure 29(a).

[ Anchors initial mesh
Anchor initial mesh,

o not nested
Anchors refined mesh
[ ] Potential new anchors [ ] Anchors
— Edges initial mesh —— Continuity reduction lines
Edges refined mesh — Edges
& uy | [ Support non-nested anchor & w | W Elements
1 1 7
1 1 6
2 2
3 3 5
2 2
3 3 4
1 1
3 3 3
0 0 2
0 0 1
u 1 2 3 4 5 u
& 0 0 3 1 &

Figure 29. (a) Superposition of the initial T-spline megnirFigure 28(a) and the newly inserted edges and
anchors (green) from the refined T-spline mesh in Figure)28{he blending function of anchor K in the
initial T-spline mesh cannot be represented as a linear o@tibn of the blending functions of the refined
T-spline mesh, i. e. both T-spline meshes are not nested #iecrow echelon form of Equation (57) gives
no result for anchor K. The support of anchor K —bounded bytve green edges and anchors —is depicted
with a grey domain. Within the grey domain, new anchors caim&erted at the location of the red points in
order to obtain a standard and nested T-spline mesh. Fanitestinserting the red anchor j would result in
a standard and nested T-spline mesh as presented in (b).

B. LOCAL REFINEMENT OF NON-STANDARD T-SPLINES BY ADDING ANEIORS

In the previous examples in Section 5.4 and Appendix A, wealestrated how to refine a standard
T-spline mesh and obtain a standard mesh based on Algorithmitis section we give an example
that non-standard meshes can also be refined locally by @ddichors — the only requirement is
that the initial and the refined mesh are nested.

Figure 30 shows the initial non-standard and Figure 31 tfiee@ semi-standard quadratic
T-spline mesh in the index and physical domain, respegtiBeith meshes are nested, which allows
the calculation of the weighted control poi#s, . in Equation (69).
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— Edges

[ ] Elements

(] Anchors
[] Element corners
—— Element boundaries

u
&l
(b)

Figure 30. Initial (non-standard) quadratic T-spline mésha) the index domain and (b) the physical
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Figure 31

domain.

(] Anchors
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(b)

. Refined (semi-standard) quadratic T-spline méBigure 30 in (a) the index domain and (b) the

physical domain.

C. OBTAINING THE OPTIMISED NUMBER OF ADDITIONALLY INSERTEDANCHORS

Consider the initial (standard) and refined (non-stand&sjline mesh in Figure 32.
Figure 33 shows all the options where additional anchordeadnserted by applying the routines
from Section 5.4, while due to symmetry only the options fox tower part of Figure 32(b) are

considered.
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o Anchors [ J Anchors
—— Continuity reduction lines —— Continuity reduction lines
— Edges — Edges
& w [ ] Elements & [ ] Elements
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Figure 32. (a) Initial standard and (b) refined non-standasgline mesh in the index domain.
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Figure 33. All possible subdivisions for Figure 32(b): thestbed orange lines indicate the new edges to be
inserted, the orange points denote the location of the nelas.

Table Il gives the number of pairs of anchors with linearlpeledent blending functions, number
of non-square matriceS., nestedness and number of additionally inserted anchothdmptions
in Figure 33. -

According to Table II, the optimum option would be either Wig 33(e) or Figure 33(g) since
they yield the smallest number of pairs of anchors with Iihedependent blending functions and
number of non-square matric€s. After inserting the additional anchors, again, the reglesto be
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Table Il. Summary of the number of pairs of anchors with Ihedependent blending functions, number of
non-square matricés., nestedness and number of additionally inserted anchotisémptions in Figure 33.

Figure | 33(a) | 33(b) | 33(c) | 33(d) | 33(e) | 33(f) | 33(g) | 33(h) | 33(i)
Number of pairs of anchors
with linearly dependent 5 5 6 6 5 6 5 6 6
blending functions
Number of non-square 8 6
matricesC.
Nestedness O O O O O O 0 O O
Number of additional anchors 2 2 2 2 3 3 3 3 4

subdivided are determined for the updated mesh and the oyptioption is selected. This procedure
needs to be repeated until a standard and nested T-splitasrastained, see for example Figure 34

after six iterations.

[ ] Anchors
—— Continuity reduction lines
— Edges
& w [ | Elements
1 7
1 6
3
I 5
2
7 4
1
i 3
0 2
0 1
1 2 3 4 5 6 7 i
o o 1 F 3 1 1 &

Figure 34. Standard and nested T-spline mesh after ingeaiditional anchors in six iterations into the
refined T-spline mesh of Figure 32(b)

D. MODIFIED LOCAL KNOT VECTORS

Table Il gives the local knot vector in element b and in thb-selements pand k. for each of the
blue anchors in Figure 19.
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Table Ill. Local knot vectorE&; for the blue anchors in Figure 19 in element b and in the sabrehts p

10.
11.

12.
13.
14.

15.

Copyright© 0000 John Wiley & Sons, Ltd.
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and h.
Coordinates in| Local knot| Local knot | Local knot
index domain vector vectorinlk | vectorin b
(15,2.5) | {0,0,0,1} | {0,0,0,5} | {0,0,5,1}
(3,2.5) {0,0,1,1} | {0,051} | {0,511}
(1.5,4) {0,0,0,1} | {0,0,0,5} | {0,0,5,1}
(3,4) {0,0,1,1} | {0,0,3,1} | {0,3,1,1}
(4.5,3.5) {0,1,1,1} {0,%,1,1} {%,1,1,1}
(4.5,4.5) {0,1,1,1} | {0,3,1,1} | {7,1,1,1}
(15,55) | {0,0,0,5} | {0,0,0,4} | {0,0,4,5}
(25755) {0 0 % 1} {0a07%a§} {Ou_liaﬁal}
(35755) {0 % 1 1} {Oa%7§71} {%757]-;1}
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