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The role of the B́ezier extraction operator for T-splines of arbitrary
degree: linear dependencies, partition of unity property,nesting

behaviour, and local refinement
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1University of Glasgow, School of Engineering, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK.

SUMMARY

We determine linear dependencies and the partition of unityproperty of T-spline meshes of arbitrary degree
using the Bézier extraction operator. Local refinement strategies for standard, semi-standard and non-
standard T-splines – also by making use of the Bézier extraction operator – are presented for meshes of
even and odd polynomial degree. A technique is presented to determine the nesting between two T-spline
meshes, again exploiting the Bézier extraction operator.Finally, the hierarchical refinement of standard,
semi-standard and non-standard T-spline meshes is discussed. This technique utilises the reconstruction
operator, which is the inverse of the Bézier extraction operator. Copyrightc© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: T-splines, isogeometric analysis, Bézier extraction, linear dependency, partition of unity,
hierarchical refinement

1. INTRODUCTION

Isogeometric analysis was introduced in [1]. It is based on the concept that the same shape
functions are used to represent the geometry and to approximate the field variables. Initially,
Non-Uniform Rational B-Splines (NURBS) have been used as shape functions in isogeometric
analysis. Since NURBS have a tensor product structure, refinement occurs globally. Furthermore,
it can be difficult to model watertight surfaces with NURBS patches. T-splines, which can be
conceived as a generalisation of NURBS, were introduced in [2, 3] and do not suffer from the
limitations that are inherent in NURBS. Local refinement is now possible and watertight surfaces
can be created. Moreover, T-splines allow for the reductionof superfluous control points. Use of
T-spline blending functions as shape functions in a finite element context was proposed in [4,5].

NURBS and T-splines meet a growing acceptance in the engineering community, which is
considerably facilitated by the technique of Bézier extraction [6, 7]. Bézier extraction allows for
an implementation that is identical to that typically used in finite element codes. However, in [8]
the concern was raised that for T-spline meshes, linear independence – which is a necessary
condition to perform the analysis – is not an inherent property of the blending functions. In [9],
a definition for analysis-suitable T-spline meshes was proposed which results in a mildly restricted
subset of T-splines. A topological algorithm was developedas well: a T-spline mesh was deemed
analysis-suitable when there are no two orthogonal T-node extensions which intersect in the
extended T-spline mesh. A considerable amount of research has been spent since then on the
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2 S. MAY, J. VIGNOLLET AND R. DE BORST

properties of analysis-suitable T-spline meshes [10–12].In [13] an algorithm based on the T-spline
mesh topology was presented to refine analysis-suitable T-spline meshes. Recently, a hierarchical
refinement algorithm for analysis-suitable T-splines based on the reconstruction operator was
introduced in [14, 15]. Furthermore, the partition of unityproperty and linear dependencies for
T-splines without multiple knots were investigated in [16]and [17], respectively.

Using the Bézier extraction procedure [7], each blending function can be defined in a normalised
fashion by a linear combination of Bernstein polynomials. We will show that linear dependencies
and the partition of unity property can be determined for T-spline meshes with the Bézier extraction
operator at hand. It will be demonstrated that this approachcan be applied to T-spline meshes of
arbitrary degree. The Bézier extraction operator also enables to determine the nesting behaviour
between two T-spline meshes. Moreover, we show how standard, semi-standard and non-standard
T-spline meshes can be refined locally using information from the Bézier extraction operator.

This paper is organised as follows. In the first section we give a concise description of T-splines.
Next, we present a brief overview on the construction of the Bézier extraction operator for
T-splines. Subsequently, linear dependence and the partition of unity property of T-spline meshes
are investigated using the Bézier extraction operator. InSection 5 a refinement method is proposed
for T-spline meshes by adding anchors while the Bézier extraction operator is utilised for the
determination of the nesting behaviour between two T-spline meshes. The capabilities of the
method are demonstrated for meshes of even and of odd polynomial degree. Finally, a technique
is introduced to refine hierarchically standard, semi-standard and non-standard T-spline meshes.

2. T-SPLINES

This section provides a brief overview of T-splines. For a more elaborate demonstration of
T-splines in a finite element environment we refer to [5]. Note, that herein we limit ourselves
to two-dimensional problems but the methods developed in this paper can also be used in three
dimensions – the only requirement is that we are able to elaborate the Bézier extraction operator.
Index notation is adopted throughout with respect to a Cartesian frame.

2.1. Definition of the domains

In Figure 1 the physical domain (xℓ), the parent domain (̃ξℓ), the index domain (uℓ), the parameter
domain (ξuℓ ), and the sub-parameter domain (ξℓ) are shown for T-splines. Each elemente can
be mapped from the physical domainxℓ onto the parent domaiñξℓ ∈ [−1, 1], where Gaussian
integration can be carried out. The sub-parameter domainξℓ is obtained when only the unique
values of the parameter domainξuℓ are considered.

2.2. Definition of the local knot vector

The index domain in Figure 1 represents a tiling of a region inR
2 while all edges of each rectangle

have a positive integer value. T-spline meshes of odd and of even polynomial order have to be treated
differently when defining the local knot vectors from the parameter domain. The local knot vectors
are necessary to define the blending functions, see Section 2.3.

For a T-spline mesh of even degreepℓ in both directions, a so-called anchor – to which a
single multivariate blending function is attached – is placed in the centre of each rectangle, see
the quadratic T-spline mesh in Figure 2(a). A local knot vector for a T-spline mesh of even degree is
obtained from the parameter domain by – starting at the anchor – marching horizontally (both left
and right) and vertically (both up and down), until a number of pℓ/2 + 1 edges are crossed in all four
directions, thus giving a vector length ofpℓ + 2. Every time an edge is crossed, the corresponding
parameter value is added to the local knot vector. If fewer thanpℓ/2 + 1 edges are crossed, and there
are no more edges left to be crossed, the parameter value thathas been added last is repeated until
pℓ/2 + 1 parameter values are added in this direction. For the blue anchor A sitting at(3.5, 5.5) in
the index domain in Figure 2(a), the local knot vectors areΞA

1 = {0, 12 , 1, 1} andΞA
2 = { 1

3 ,
2
3 , 1, 1},

respectively.
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Figure 1. Illustration of the physical domain (xℓ), the parent domain (̃ξℓ), the index domain (uℓ), the
parameter domain (ξuℓ ), and the sub-parameter domain (ξℓ) on a quadratic T-spline mesh.

For a T-spline mesh of odd degreepℓ in both directions, anchors are located at the vertices of
the rectangles, see the cubic T-spline mesh in Figure 2(b). In order to obtain the local knot vector
of an anchor, the parameterξuℓ at the vertex is added to the local knot vectors for each direction.
Afterwards, we march again – starting at the location of the anchor – horizontally to the right and
left, and vertically up and down, until(pℓ + 1)/2 edges have been crossed in all four directions, thus
yielding again a local knot vector of lengthpℓ + 2. If there are no more edges to be crossed, then
the value of the last added parameter is repeated until(pℓ + 1)/2 values are added in this direction
to the local knot vector. Consider, for instance, the blue anchor B sitting at(2, 2) in the index
domain for the cubic T-spline mesh in Figure 2(b). The local knot vectors areΞB

1 = {0, 0, 0, 1, 1}
andΞB

2 = {0, 0, 0, 13 ,
2
3}.

2.3. Construction of the blending functions

Let us consider a T-spline mesh containingn anchors. Each anchori is equipped with a single
multivariate blending functionN i. Each multivariate blending functionN i is defined in the sub-
parameter domainξℓ as follows

N i(ξ) =

d∏

ℓ=1

N i
ℓ(ξℓ) (1)

with the univariate blending functionsN i
ℓ for each anchori and the dimensiond. The univariate

blending functionN i
ℓ of orderpℓ for anchori is given by

N i
ℓ(ξℓ) = N i

ℓ 1,pℓ
(ξℓ) (2)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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Figure 2. Determination of the local knot vectors for a T-spline mesh of (a) even (quadratic,pℓ = 2) and
(b) odd (cubic,pℓ = 3) degree: every time an edge is crossed in all four directions, the corresponding
parameter value is added to the local knot vector. (a) The local knot vectors for the blue anchor A areΞA

1 =

{ξ21 , ξ
3
1 , ξ

4
1 , ξ

5
1} = {0, 12 , 1, 1} andΞA

2 = {ξ32 , ξ
5
2 , ξ

6
2 , ξ

7
2} = {1

3 ,
2
3 , 1, 1}, (b) The local knot vectors for the

blue anchor B areΞB
1 = {ξ11 , ξ

1
1 , ξ

2
1 , ξ

4
1 , ξ

5
1} = {0, 0, 0, 1, 1} andΞB

2 = {ξ12 , ξ
1
2 , ξ

2
2 , ξ

3
2 , ξ

5
2} = {0, 0, 0, 13 ,

2
3}.

where theN i
ℓ a,pℓ

(with a = 1 the single blending function for anchori is obtained) can be defined
with the local knot vectorΞi

ℓ = {ξiℓ 1, ξ
i
ℓ 2, . . . , ξ

i
ℓ pℓ+2} of anchori for pℓ = 0 with

N i
ℓ a,0(ξℓ) =

{

1 if ξiℓ a ≤ ξℓ < ξiℓ a+1

0 otherwise
. (3)

Forpℓ ≥ 1 they are given by the Cox - de Boor recursion formula [18,19]

N i
ℓ a,pℓ

(ξℓ) =
ξℓ − ξiℓ a

ξiℓ a+pℓ
− ξiℓ a

N i
ℓ a,pℓ−1(ξℓ) +

ξiℓ a+pℓ+1 − ξℓ

ξiℓ a+pℓ+1 − ξiℓ a+1

N i
ℓ a+1,pℓ−1(ξℓ). (4)

Herein we will only consider cases with an equal polynomial orderpℓ in theξ1 direction and theξ2
direction.

2.4. Element definition

The red anchor A with index coordinates(3.5, 5.5) for the quadratic T-spline mesh in Figure 3(a)
has the local knot vectorsΞA

1 = {ξ21 , ξ
3
1 , ξ

4
1 , ξ

5
1} andΞA

2 = {ξ32 , ξ
5
2 , ξ

6
2 , ξ

7
2}. Anchor A has non-zero

blending functions in the green parameter domain[ξ21 , ξ
5
1 ]× [ξ32 , ξ

7
2 ]. Within this domain, the net

of red dashed lines depicted in Figure 3(a) is obtained upon drawing all the values contained in
the local knot vectorsΞA

ℓ . Along those lines, we have a reduced continuity, which is indicated by a
multiplicity larger than zero in the local knot vectors. If one of these lines is not already an edge, this
line is added to the T-spline mesh, see Figure 3(b). The addedline is called a continuity reduction
line. For T-splines, elements are defined by the union of all edges and continuity reduction lines
with non-zero parametric area in the parameter spaceξuℓ , see also Figure 2(a).

3. BÉZIER EXTRACTION FOR T-SPLINES

For details on the Bézier extraction method for T-splines,reference is made to [7]. Here, we give a
succinct summary on the calculation of the Bézier extraction operator and illustrate the method by
means of an example.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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Figure 3. Continuity reduction lines: consider the red anchor A with index coordinates(3.5, 5.5). (a) This
anchor has a support (non-zero blending functions) in the green shaded domain[ξ21 , ξ

5
1 ]× [ξ32 , ξ

7
2 ]. Drawing

all the values contained in the local knot vectorsΞA
1 = {ξ21 , ξ

3
1 , ξ

4
1 , ξ

5
1} andΞA

2 = {ξ32 , ξ
5
2 , ξ

6
2 , ξ

7
2} gives the

net of dashed red lines. (b) If a red dashed line in (a) is not already an edge then it is added to the T-spline
mesh.

We suppose that the domain is divided intoE elements. Then, the blending functionN i
e of anchor

i over elemente can be written as a linear combination of the Bernstein polynomials

N i
e(ξ) = Ci

e

T
Be(ξ) (5)

where the(pℓ + 1)2 bivariate Bernstein polynomialsBe for elemente are expressed as follows

Be(ξ) =











B1
1 e(ξ1)B

1
2 e(ξ2)

...
Bpℓ+1

1 e (ξ1)B
1
2 e(ξ2)

...
Bpℓ+1

1 e (ξ1)B
pℓ+1
2 e (ξ2)











. (6)

The bivariate Bernstein polynomialsBe are equal for each elemente in the parent domaiñξℓ.
A univariate blending functionN i

ℓ e of anchori over elemente can be expressed in terms of the
univariate Bernstein basisBa

ℓ e with

N i
ℓ e(ξℓ) =

[
Ci 1

ℓ e . . . Ci pℓ+1
ℓ e

]






B1
ℓ e(ξℓ)

...
Bpℓ+1

ℓ e (ξℓ)




 , (7)

whereCi a
ℓ e are the coefficients for anchori and elemente corresponding toBa

ℓ e. Thea = 1 . . . pℓ + 1

univariate Bernstein polynomialsBa
ℓ of orderpℓ are defined over the intervalξ̃ℓ ∈ [−1, 1] by

Ba
ℓ (ξ̃ℓ) =

1

2pℓ

(
pℓ

a− 1

)

(1− ξ̃ℓ)
pℓ−(a−1)(1 + ξ̃ℓ)

a−1. (8)

The univariate Bernstein polynomialsBa
ℓ e are equal in the parent domaiñξℓ for each elemente in

each direction. In Equation (5),Ci
e is the Bézier extraction operator of anchori with support over

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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elemente

Ci
e =











Ci 1
1 eC

i 1
2 e

...
Ci pℓ+1

1 e Ci 1
2 e

...
Ci pℓ+1

1 e Ci pℓ+1
2 e











. (9)

To illustrate the notation, we again consider the anchor A at(3.5, 5.5) in Figure 2(a). The local
knot vectors areΞA

1 = {0, 12 , 1, 1} andΞA
2 = { 1

3 ,
2
3 , 1, 1} for the ξ1 direction and theξ2 direction,

respectively. We now evaluate, for anchor A, the Bézier extraction operator over the element
b in Figure 2(a) with range[3, 4]× [4, 5] in the index domain. The range for the element b is
[ξ31 , ξ

4
1 ]× [ξ42 , ξ

5
2 ] in the parameter domain and[ 12 , 1]× [ 13 ,

2
3 ] in the sub-parameter domain. In

Figure 4 the blending functionsNA
ℓ are shown for each direction in the sub-parameter domainξℓ.

The part of the blending functionsNA
ℓ which has a support over element b with range[ 12 , 1]× [ 13 ,

2
3 ]

in the sub-parameter domainξℓ – i. e.NA
ℓ b – has been plotted with a solid black line. Expressing the

blending functionsNA
ℓ b of anchor A with support over element b for each directionξℓ in terms of

the Bernstein basisBa
ℓ b of element b, gives for the Bézier extraction operator in each direction

NA
1 b =

[
CA 1

1 b CA 2
1 b CA 3

1 b

]





B1
1 b

B2
1 b

B3
1 b



 =
[
1
2 1 0

]





B1
1 b

B2
1 b

B3
1 b



 , (10)

NA
2 b =

[
CA 1

2 b CA 2
2 b CA 3

2 b

]





B1
2 b

B2
2 b

B3
2 b



 =
[
0 0 1

2

]





B1
2 b

B2
2 b

B3
2 b



 . (11)
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Figure 4. Illustration of the blending functionsNA
ℓ for anchor A and the Bernstein polynomialsBa

b for
element b in Figure 2(a) over the sub-parameter domain in (a)theξ1 direction and (b) theξ2 direction.

Now, using Equation (9) and combining the unidirectional B´ezier extraction operators defined in
Equation (10) and Equation (11), the Bézier extraction operatorCA

b for the anchor A with support
over element b, see Figure 2(a), reads

CA
b =

[
0 0 0 0 0 0 1

4
1
2 0

]T
. (12)

If, for an anchori, this procedure is applied to all elementsE, then we end up with the Bézier
extraction operator for anchori

Ci =






Ci
1

...
Ci

E




 . (13)
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T-SPLINES: CLASSIFICATION AND REFINEMENT 7

The Bézier extraction operator for alln anchors is then given by

C =







C1T

...

CnT







. (14)

C is called global Bézier extraction operator. Hence, the vector with alln blending functions

N(ξ) =






N1(ξ)
...

Nn(ξ)




 (15)

can be written as
N(ξ) = CB(ξ) (16)

whereB is the vector which contains the elemental Bernstein polynomialsBe

B(ξ) =






B1(ξ)
...

BE(ξ)




 . (17)

A single blending functionN i can be expressed as

N i(ξ) = CiTB(ξ). (18)

The blending functionsN e with support in elemente are determined by

N e(ξ) = CeBe(ξ) (19)

with the elemental Bézier extraction operatorCe.

4. CLASSIFICATION OF T-SPLINES

In this section T-spline meshes are classified according to the linear dependencies exhibited by
their blending functions. The partition of unity property is also investigated. The classification
methods in this section can be applied to T-spline meshes of arbitrary degree, T-spline meshes with
extraordinary points and three-dimensional T-spline meshes: the only requirement is the Bézier
extraction operator.

4.1. Classification of T-splines according to the type of linear dependence

In the following, the Bézier extraction operator is used togather meshes into three categories based
on the type of linear dependence of their blending functions:

• globally linearly independent,
• locally linearly independent with a non-square matrixCe,
• locally linearly independent with a square matrixCe.

4.1.1. Global linear independence
A T-spline mesh withn anchors has globally linearly independent blending functions if and only if
the solution for

n∑

i=1

αiN i(ξ) = 0 (20)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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8 S. MAY, J. VIGNOLLET AND R. DE BORST

is αi = 0 for i = 1 . . . n. We recall that each blending functionN i of anchori can be expressed
using the Bézier extraction operator. Substituting Equation (18) into Equation (20) leads to

n∑

i=1

αiCiTB(ξ) = 0. (21)

Since the Bernstein polynomials inB are linearly independent, we can replace Equation (21) by

n∑

i=1

αiCiT = 0
T (22)

which is equivalent to

[
C1 . . . Cn

]






α1

...
αn




 =






0
...
0




 . (23)

Thus, using Equation (14), Equation (23) can be rewritten as

C
Tα = 0. (24)

Since a T-spline mesh has globally linearly independent blending functionsN i when the only
solution for Equation (24) isαi = 0 for i = 1 . . . n, it follows directly from rank inspection of the
global Bézier extraction operatorC in Equation (24) whether the blending functionsN i of a T-spline
mesh are globally linearly independent. If the global Bézier extraction operatorC has full rank, then
the rank ofC is equal to the number of anchorsn and consequently, the blending functionsN i are
globally linearly independent. In sum, the condition for global linear independence is

rank(C) = n. (25)

Note, that the size of the global Bézier extraction operator is

size(C) = n×

(

E ×

d∏

ℓ=1

pℓ + 1

)

. (26)

If a T-spline mesh is globally linearly dependent, the dependencies between anchors can be detected
by transforming Equation (24) into a row echelon form by Gaussian elimination, Figure 5.

A T-spline mesh with globally linearly dependent blending functions cannot be used for analysis
since in a finite element context, this results in a system of equations that cannot be solved.

4.1.2. Local linear independence
Repeating the procedure of the previous section at the elemental level, the condition for local linear
independence is

rank(Ce) = ne for e = 1 . . . E (27)

with the elemental Bézier extraction operatorCe and the number of anchorsne with support in
elemente. When Equation (27) holds, the size ofCe is

size(Ce) = ne ×

(
d∏

ℓ=1

pℓ + 1

)

. (28)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(0000)
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yields the following linear dependencies between the
anchors A, B and C:−3NA(ξ) + 3NB(ξ) +NC(ξ) =
0.
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(b) Globally linearly dependent quartic T-spline mesh,
transforming Equation (24) into row echelon form
yields the following linear dependencies between the
anchors D, E and F:−3ND(ξ) + 2NE(ξ) +NF (ξ) =
0.

Figure 5. Globally linearly dependent T-spline meshes of cubic and of quartic polynomial degree.

4.1.3. Local linear independence with a square matrixCe

A subset of locally linearly independent T-spline meshes (i. e. when Equation (27) holds) can be
defined when the following additional property is valid for each elemente

rank(Ce) =

d∏

ℓ=1

pℓ + 1 = ne for e = 1 . . . E. (29)

When Equation (29) holds, the size ofCe is

size(Ce) =

(
d∏

ℓ=1

pℓ + 1

)

×

(
d∏

ℓ=1

pℓ + 1

)

. (30)

Note, that Equation (29) implies Equation (27). Also, Equation (27) implies Equation (25) – local
linear independence inherently results in global linear independence.

If a T-spline mesh is locally linearly dependent, then the non-zero coefficientsαe are obtained
analogously to the global case by transforming

C
T
e αe = 0 (31)

into row echelon form. In Figure 6 examples are given for a locally linearly dependent T-spline
mesh, a T-spline mesh for which Equation (27) holds and a T-spline mesh for which Equation (29)
holds.

4.2. Partition of unity property for T-splines

In this section we address the partition of unity property ofthe blending functions (N i) and of the
rational blending functions (Ri), respectively. It will be elaborated how T-spline meshes can be
classified as standard, semi-standard and non-standard using the Bézier extraction operator. We will
also show that an affine transformation only exists when the partition of unity property is satisfied,
with the ensuing consequence for the satisfaction of the patch test.
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(a) Locally linearly dependent T-spline mesh, ten
anchors (blue) have a support in element b (dashed
green); transforming Equation (31) into row echelon
form yields the dependencies in element b between
anchors G and H:6NG(ξ)−NH(ξ) = 0.
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(b) Locally linearly independent T-spline mesh;
rank(Ce) = ne for element c; in element c (dashed
green) are only eight anchors (blue) with a support and
thereforeCe is not a square matrix for element c.
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(c) Locally linearly independent T-spline mesh;

rank(Ce) =
d∏

ℓ=1

pℓ + 1 for e = 1 . . . E.

Figure 6. Local dependencies in a quadratic T-spline mesh.

4.2.1. Partition of unity property of the rational blendingfunctionsRi

The multivariate rational T-spline blending function for ananchori can be constructed as

Ri(ξ) =
wiN i(ξ)

n∑

j=1

wjN j(ξ)

(32)

with the weightwi associated to anchori. Note that, in view of Equation (32), the rational blending
functionsRi always form a partition of unity (allRi sum to one).

4.2.2. Partition of unity property of the blending functionsN i

In [3] T-spline meshes have been classified according to the partition of unity property of the
blending functionsN i,

n∑

i=1

βiN i(ξ) = 1, (33)

into

• Standard T-spline meshes: allβi = 1,
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• Semi-standard T-spline meshes: someβi 6= 1,
• Non-standard T-spline meshes: no solution forβi.

We note, that only for standard T-spline meshes the blendingfunctionsN i andthe rational blending
functionsRi satisfy the partition of unity property.

4.2.3. Partition of unity property of the blending functionsN i using the B́ezier extraction operator
We will now show how the global Bézier extraction operator can be used to determine the partition
of unity property of the blending functionsN i. Rewriting Equation (33) using Equation (18) yields

n∑

i=1

βiCiTB(ξ) = 1. (34)

Substituting Equations (13) and (17) into Equation (34) andelaboration gives
(

β1C1
1

T
+ . . .+ βnCn

1
T
)

︸ ︷︷ ︸

γT

1

B1(ξ) + . . .+
(

β1C1
E

T
+ . . .+ βnCn

E
T
)

︸ ︷︷ ︸

γT

E

BE(ξ) = 1. (35)

The Bernstein polynomialsBe in Equation (35) form a partition of unity if and only ifγ
e
= 1 for

each elemente. This statement can be expressed in a vector-matrix format as





β1C1
1 + . . .+ βnCn

1
...

β1C1
E + . . .+ βnCn

E




 =






1

...
1




 (36)

which is equivalent to

[
C1 . . . Cn

]






β1

...
βn




 = 1. (37)

With the global Bézier extraction operatorC in Equation (14) we obtain

C
Tβ = 1. (38)

The row echelon form of Equation (38) then provides the meansto assess whether a T-spline mesh
is standard, semi-standard or non-standard.

Figures 7 and 8 show a set of T-spline meshes of quadratic and cubic degree and their
classification for linear dependence and the partition of unity property according to the previous
definitions using the Bézier extraction operator. As can beobserved from Figures 7 and 8, changing
the knot intervals gives a different classification for the T-spline mesh – (a), (c), (e) are standard
T-spline meshes whereas (b), (d) and (f) are non-standard orsemi-standard T-spline meshes.
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(a) Standard,rank(Ce) =
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pℓ + 1 for e = 1 . . . E.
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(b) Non-standard,rank(C) = n.

1 2 3 4 5
1

2

3

4

5

6

7

0 0
1
2 1 1

0

0

1
3

2
3

2
3

1

1

u1

u2

ξu
1

ξu
2

Anchors

Continuity reduction lines

Edges

Elements

(c) Standard,rank(Ce) =
d∏

ℓ=1

pℓ + 1 for e = 1 . . . E.
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(d) Non-standard,rank(Ce) = ne for e = 1 . . . E.

1 2 3 4 5
1

2

3

4

5

6

7

0 0
1
2 1 1

0

0

1
3

2
3

2
3

1

1

u1

u2

ξu
1

ξu
2

Anchors

Continuity reduction lines

Edges

Elements

(e) Standard,rank(Ce) =
d∏

ℓ=1

pℓ + 1 for e = 1 . . . E.
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(f) Semi-standard,rank(C) = n.

Figure 7. Classification of quadratic T-spline meshes according to the level of linear independence and the
partition of unity property. (a), (c) and (e) are standard T-spline meshes, changing the knot intervals results

in non-standard or semi-standard T-spline meshes.
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(a) Standard,rank(Ce) =
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ℓ=1

pℓ + 1 for e = 1 . . . E.
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(b) Non-standard,rank(C) = n.
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(c) Standard,rank(Ce) =
d∏

ℓ=1

pℓ + 1 for e = 1 . . . E.

1 2 3 4 5
1

2

3

4

5

6

7

0 0
1
2 1 1

0

0

1
4

2
4

3
4

1

1

u1

u2

ξu
1

ξu
2

Anchors

Continuity reduction lines

Edges

Elements

(d) Non-standard,rank(Ce) = ne for e = 1 . . . E.
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(e) Standard,rank(Ce) =
d∏

ℓ=1

pℓ + 1 for e = 1 . . . E.
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(f) Semi-standard,rank(C) = n.

Figure 8. Classification of cubic T-spline meshes accordingto the level of linear independence and the
partition of unity property. (a), (c) and (e) are standard T-spline meshes, changing the knot intervals results

in non-standard or semi-standard T-spline meshes.
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4.2.4. Affine transformation requires partition of unity
Any T-spline surfaceT in the physical domain (xℓ) can be expressed by the mapping from the
sub-parameter (ξℓ) domain as follows

T (ξ) =

n∑

i=1

Ri(ξ)P i (39)

whereRi are the rational blending functions andP i = (xi
1, x

i
2) are the control points associated to

anchori. Applying a transformation to the control pointsP of the form

PT = AP + b, (40)

with the control pointsPT after transformation, results in an affine transformation since the rational
blending functionsRi in Equation (39) form a partition of unity.

However, when the T-spline in Equation (39) would have been defined with the blending functions
N i instead of the rational blending functionsRi, then an affine transformation is only obtained for
standard T-spline meshes since semi-standard and non-standard T-spline meshes do not have the
partition of unity property for the blending functionsN i, see also Figure 9 with a rigid body motion
applied to the control points of the anchors.

Initial
physical mesh

Transformed
physical mesh

Anchors

Element boundaries

(a) Rational blending functionsRi.

Initial
physical mesh

Transformed
physical mesh

Anchors

Element boundaries

(b) Blending functionsN i.

Figure 9. Applying a rigid body motion to the control points of the anchors results in an affine transformation
when the partition of unity property is fulfilled. (a) An affine transformation for the semi-standard T-spline
mesh in Figure 8(f) is obtained for the rational blending functionsRi; (b) using the blending functionsN i

instead ofRi in Equation (39) gives no affine transformation – the elementboundaries are different – since
theN i do not form a partition of unity for semi-standard meshes.

The patch test is always satisfied when an affine transformation is possible, i. e. for the rational
blending functionsRi, and for the blending functionsN i of a standard T-spline mesh.

4.3. Standard T-splines are locally linearly independent with a square matrixCe

We will show next that standard T-spline meshes are always locally linearly independent and that
the elemental Bézier operatorsCe are always a square matrix. We start with the global partition of
unity property of standard T-spline meshes,

n∑

i=1

βiN i(ξ) = 1 with βi = 1. (41)

The global partition of unity property for standard T-spline meshes in Equation (41) implies the
local partition of unity property for each elemente

ne∑

i=1

βi
eN

i(ξ) = 1 with βi
e = 1. (42)
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Now we add to Equation (42) the expression

ne∑

i=1

αi
eN

i(ξ) = 0 (43)

which results in
ne∑

i=1

(βi
e + αi

e)N
i(ξ) = 1 with βi

e = 1. (44)

If there existed an anchori with αi
e 6= 0 in Equation (44), the T-spline mesh would not be a standard

T-spline mesh (see also the proof in [16] for the global case). Therefore, the only solution isαi
e = 0

for i = 1 . . . ne in Equation (44) which means that we have for each elemente in Equation (43)

ne∑

i=1

αi
eN

i(ξ) = 0 with αi
e = 0. (45)

Hence, the global partition of unity property implies locallinear independence of the T-spline mesh.
However, we do not know yet whetherCe is a square matrix or not. To further pursue this issue,

we write the resultβi
e = 1 in Equation (42) as follows








1 0 · · · 0
0 1 . . . 0
...

...
.. .

...
0 0 . . . 1













β1
e

...
βne

e




 = Ie βe = 1 (46)

whereIe is the unity matrix
Ie = diag(1, 1, . . . , 1). (47)

It is important to note that the size of the unity matrixIe is

size(Ie) =

(
d∏

ℓ=1

pℓ + 1

)

×

(
d∏

ℓ=1

pℓ + 1

)

(48)

and therefore,ne =
d∏

ℓ=1

pℓ + 1. By writing Equation (38) for elemente in an elemental form

C
T
e βe = 1, (49)

we can draw the conclusion that Equation (46) is the row echelon form of Equation (49). Hence, we
can infer thatCe has the same size asIe and thatCe is also a square matrix,

size(Ce) = size(I) =

(
d∏

ℓ=1

pℓ + 1

)

×

(
d∏

ℓ=1

pℓ + 1

)

. (50)

We recall that the global partition of unity property results in locally linearly independent blending
functions. With Equation (50) this leads to the conclusion that we have the case in Equation (29)
sinceCe is a square matrix. In sum, all standard T-splines have the following property

rank(Ce) =

d∏

ℓ=1

pℓ + 1 = ne for e = 1 . . . E. (51)

Equation (51) is a necessary condition for standard T-spline meshes: if Equation (51) is not fulfilled,
then the T-spline mesh cannot be a standard T-spline mesh. However, even when Equation (51)
is fulfilled, the T-spline mesh can still be semi-standard ornon-standard. In order to determine
standard T-spline meshes, it is necessaryandsufficient to show that Equation (38) yieldsβ = 1.
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4.4. Analysis-suitable T-splines

Analysis-suitable T-splines have been defined in [9]. In order to detect them, the extended T-spline
mesh was introduced, and a mesh was deemed analysis-suitable when there are no two orthogonal
T-node extensions which intersect in the extended T-splinemesh. This definition holds for any
knot interval and is of topological nature; it allows to distinguish between analysis-suitable and
non-analysis-suitable T-splines.

The new approach in this paper which is based on the Bézier extraction operator is an algebraic
viewpoint and allows a classification of T-splines into standard, semi-standard and non-standard
with Equation (38).

Figure 10 reveals that a standard T-spline is not necessarily an analysis-suitable T-spline. In
Figure 10, T-node extensions intersect in the extended T-spline mesh and the T-spline meshes are
therefore non-analysis-suitable. From Figure 8(a), 8(c) and 8(e) we know that these T-spline meshes
are standard.
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(a) T-node extensions for the T-spline mesh in
Figure 8(a).
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(b) T-node extensions for the T-spline mesh in
Figure 8(c).
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(c) T-node extensions for the T-spline mesh in
Figure 8(e).

Figure 10. Extended T-spline meshes for Figure 8(a), 8(c) and 8(e); these standard T-spline meshes are
non-analysis-suitable according to [9] since T-node extensions intersect in the extended T-spline mesh.
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5. LOCAL REFINEMENT OF STANDARD, SEMI-STANDARD AND NON-STANDARD
T-SPLINES BY ADDING ANCHORS

In this section we show how standard, semi-standard and non-standard T-spline meshes of even and
odd polynomial degree can be refined locally by adding anchors using information from the Bézier
extraction operator.

A requirement for the refinement algorithm is that the initial and the refined T-spline mesh are
nested – this condition will be defined in the following section, together with a method to fulfil
it using the Bézier extraction operator. We also show how the location of the control points in the
refined T-spline mesh can be obtained. Afterwards, we explain the algorithm for the local refinement
of T-splines and give some examples. In the examples we first focus on refining standard T-spline
meshes (Section 5.4, Appendix A) followed by an example to show that also non-standard meshes
can be refined locally by adding anchors (Appendix B).

5.1. Computation of the refinement matrix and nesting behaviour

A refinement matrixM of sizen× nR gives the relation between the blending functionsNR of a
refined mesh withnR anchors and the blending functionsN of an initial mesh which hasn anchors

N(ξ) = M NR(ξ). (52)

Expressing the blending functions on both sides using the Bernstein polynomials, Equation (16),
gives

C BR(ξ) = M CRBR(ξ), (53)

while the blending functionsN on the initial mesh must be defined in terms of the elements of
the refined mesh with the Bernstein polynomialsBR. The linear independence of the Bernstein
polynomialsBR in Equation (53) results in

C = M CR. (54)

The coefficients of a row of the refinement matrixM can be evaluated as follows. Expanding
Equation (54) using Equation (14) yields






C1T

...
CnT




 =






M1T

...
MnT











C1
R

T

...
CnR

R
T




 . (55)

Applying the transpose to both sides results in

[
C1 . . . Cn

]
=
[
C1

R . . . CnR

R

] [
M 1 . . . Mn

]
(56)

which makes it possible to determine the rowsM iT for i = 1 . . . n of the refinement matrixM by
transforming the systems

Ci = CR
TM i for i = 1 . . . n (57)

into a row echelon form. In the case that there is no solution for theM i for anchori in Equation (57),
the initial and the refined T-spline mesh are not nested, which means that it is not possible to
representall blending functionsN of the initial T-spline mesh as a linear combination of the
blending functionsNR of the refined T-spline mesh. One can resolve this as will be explained
in Section 5.4 (quadratic case,pℓ = 2) and Appendix A (cubic case,pℓ = 3).

It is interesting to note that when nestedness is ensured andthe initial mesh is standard, the
refined T-spline mesh can only be a standard or semi-standardT-spline mesh: knowing that the
initial T-spline mesh is standard and satisfies the partition of unity property in Equation (41) (all
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β = 1) and using the rowsM iT of the refinement matrixM from Equation (57) results in

1 =

n∑

i=1

βiN i(ξ) =

n∑

i=1

βiM iTNR(ξ) =

nR∑

j=1

βj
RN

j
R(ξ) (58)

where the coefficientsβR are given by

βR = M
Tβ. (59)

From Equation (59) it can be concluded that there always exists a solution for the coefficientsβR

when nestedness is ensured (M exists) and therefore the refined T-spline mesh can only be a standard
or semi-standard T-spline mesh when the initial mesh is standard.

5.2. Determination of the coordinates for the anchors in therefined T-spline mesh

In this section we assume that the initial and the refined T-spline mesh are nested. We show how the
coordinates and weights of the anchors in a refined T-spline mesh can be determined. The weighted
(polynomial) curve of Equation (39) is given by [20]

Tw(ξ) =

n∑

i=1

N i(ξ)P i
w (60)

with the weighted control points

P i
w = (wixi

1, w
ixi

2, w
i). (61)

We require that the refined and the initial weighted curves –TwR andTw, respectively – represent
the same geometry

TwR(ξ) = Tw(ξ), (62)

and insert Equation (60) into the left- and right-hand side of Equation (62) to obtain
nR∑

j=1

N j
R(ξ)P

j
wR =

n∑

i=1

N i(ξ)P i
w. (63)

Using the Bézier extraction operator subsequently gives
nR∑

j=1

C
j
R

T
BR(ξ)P

j
wR =

n∑

i=1

CiTBR(ξ)P
i
w (64)

or, since the Bernstein polynomialsBR are linearly independent
nR∑

j=1

C
j
R

T
P j

wR =

n∑

i=1

CiTP i
w. (65)

Elaborating Equation (65) yields

[
C1

R . . . CnR

R

]






P 1
wR
...

P nR

w R




 =

[
C1 . . . Cn

]






P 1
w

...
P n

w




 (66)

or, in the global form
C

R

TPwR = C
TPw, (67)

so that with Equation (54), we obtain

C
R

TPwR = C
R

T
M

TPw. (68)

Hence, the weighted control pointsPwR for the refined mesh follow from

PwR = M
TPw. (69)
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5.3. The algorithm for local refinement of standard T-splines

In our local refinement algorithm (see also Algorithm 1) for standard T-splines we proceed as
follows: after inserting new anchors into the T-spline mesh(refining), we check whether the
necessary condition for standard T-spline meshes, Equation (51), holds. If this is not the case, the
mesh resulting from local refinement will not be standard either. Then, Equation (31) plays a key
role: it allows us to determine whetherCe is a square matrix or not, but also, when presented in
row echelon form, to detect and remove linear dependencies,leading to the necessary condition for
standard T-spline meshes in Equation (51). Once Equation (51) is fulfilled, we evaluate each row of
the refinement matrixM in Equation (57). Should the blending functions of some anchors of the
initial mesh not be nested in the refined mesh, then we modify the mesh accordingly. Finally, when
nestedness is satisfied, Equation (38) is assessed whetherβ = 1 holds. If not, then we have a semi-
standard mesh according to Equation (59) and anchors are added to the mesh within the support of
anchors for whichβi 6= 1. Otherwise, the initial and the refined mesh are nested standard T-spline
meshes.

// Start with a standard T-spline mesh
// Number of refinement steps:N
for i = 1 : N do

RefinementSuccessful = 0;
while RefinementSuccessful = 0 do

// Check whether necessary condition for standard T-splines in Equation (51) holds:

if Ce 6=
d∏

ℓ=1

(pℓ + 1) for e = 1 . . . E then

// add additional anchors by inspecting the Bézier extraction operator in Equation (31):
// (a) ensure thatCe is a square matrix
// (b) remove linear dependencies

else
// Check with Equation (57) whether the initial and the refined mesh are nested:
if Refinement matrixM cannot be computedthen

// add additional anchors by assessing the Bézier extraction operators of the initial and the refined
mesh: localise, which anchors are not nested in Equation (57)

else
// Check whether T-spline mesh is standard by assessing Equation (38):
if β 6= 1 then

// mesh is semi-standard according to Equation (59)
// add anchors to the mesh within the support of the anchorsi for whichβi 6= 1

else
// Compute the weighted control pointsP

wR
of the refined mesh using Equation (69)

RefinementSuccessful = 1;
end

end
end

end
end

Algorithm 1 : Local refinement algorithm based on the insertion of new anchors for standard
T-spline meshes.

5.4. Local refinement of standard T-splines of even degree byadding anchors

This section explains how the necessary condition for standard T-spline meshes in Equation (51)
and nestedness for meshes of even degree can be enforced using the Bézier extraction operator. It
should be noted, that in order to be able implement the methods described in the following, the local
knot vectors for each anchor are required in the index (uℓ) and sub-parameter (ξℓ) domain – it is not
sufficient to have only access to the Bézier extraction operator.

5.4.1. Example 1: Ensuring thatCe is a square matrix and nestedness
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Initial refinement
We consider the quadratic standard T-spline mesh in the index domain and the physical domain in
Figure 11. It is refined by insertion of an anchor which results in the rectangle[ξ21 , ξ

4
1 ]× [ξ32 , ξ

5
2 ]

being split vertically, see Figure 12(a).
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Figure 11. Initial quadratic standard T-spline mesh in (a) the index domain and (b) the physical domain.
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Figure 12. (a) Refined quadratic non-standard T-spline meshfrom Figure 11(a) in the index domain. (b) The
T-spline mesh is locally linearly independent – but as only eight anchors (blue) have a support in element b

(dashed green line),Ce is not a square matrix for element b.

Ensuring that Ce is a square matrix
The resulting mesh is locally linearly independent, but non-standard and,Ce is not a square matrix
for all elements. Indeed, for element b (bounded by a dashed green line), we haverank(Ce) = ne,
as there are only eight anchors (blue) with a support,ne = 8, see Figure 12(b). Hence, additional
anchors need to be inserted in order to obtain a square matrixCe. Each local knot vector of the
blue anchors with support in element b in Figure 12(b) contains the sub-parameter values of the
boundaries of element b –[0, 1

2 ]× [ 13 ,
2
3 ] in theξ1 direction and theξ2 direction, respectively, except

for the anchors A and B in Figure 13(a). The local knot vectorsof the anchors A and B in theξ1
direction do not contain the sub-parameter valueξ1 = 1

2 . Therefore, rectangle c needs to be split.
This results in the standard T-spline mesh in Figure 13(b).
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Figure 13. Procedure to obtain a square matrixCe. (a) The local knot vectors of the anchors A and B (blue)
do not contain the sub-parameter valueξ1 = 1

2 , which is a boundary of element b (dashed green). The local
knot vectors of all other anchors with support in element b (see Figure 12(b)) contain the sub-parameter
values0, 1

2 in theξ1 direction and13 , 2
3 in theξ2 direction –[0, 12 ]× [13 ,

2
3 ] represents the boundary values of

element b in the sub-parameter domain. Hence, the rectanglec needs to be split so that the local knot vectors
of the anchors A and B also contain the knotξ1 = 1

2 . (b) The resulting standard mesh and the initial mesh
in 11(a) are not nested.

Nestedness
The initial T-spline mesh in Figure 11(a) and the refined meshin Figure 13(b) are not nested: the
blending functions of anchors C, D and E (see mesh in Figure 14) cannot be expressed as a linear
combination of the blending functions of the refined mesh in Figure 13(b). This can be identified by
inspection of the row echelon form of Equation (57) for theseanchors.
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not nested

Anchors refined mesh

Edges initial mesh

Edges refined mesh
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non-nested anchors

Figure 14. Superposition of the initial T-spline mesh in theindex domain from Figure 11(a) and the refined
mesh in Figure 13(b). Transforming Equation (57) into row echelon form gives no results for the anchors C,
D and E (blue) since the meshes in Figure 11(a) and Figure 13(b) are not nested. Edges and anchors from
the refined mesh in Figure 13(b), which were added during refinement, are inserted in the initial mesh from
Figure 11(a) and marked with green. Within the grey domain all three anchors C, D and E from the initial
mesh have a support, while the grey domain is bounded by the newly inserted green edges. In this grey
domain an additional anchor needs to be inserted, i. e. the dashed red rectangle d needs to be subdivided, see

Figure 15.

Therefore, an additional anchor has to be inserted. We draw the new edges and anchors of the
refined mesh in Figure 13(b) in the initial mesh of Figure 11(a) as illustrated with solid green lines
and green points in Figure 14. Then, the grey domain is drawn,highlighting the common support of
the three anchors C, D and E which is bounded by the new green edges. Within the grey domain a
new anchor needs to be inserted, i. e. the dashed red rectangle d needs to be subdivided. The resulting
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refined mesh has now the sought properties: it is standard andis nested with the initial (non-refined)
mesh, i. e. the blending functionN of each anchor in Figure 11(a) can be represented as a linear
combination of the blending functionsNR of the anchors in the refined mesh in Figure 15(a).

Refined physical mesh
So far, refinement has only been considered in the index domain in order to obtain a standard and
nested T-spline mesh. Next, the evaluation of the weighted control points in the physical domain is
addressed.

The location of the weighted control points for the refined mesh PwR is determined using
Equation (69). The physical mesh is shown in Figure 15(b) which preserves the same geometry
as the physical mesh in Figure 11(b). This can be observed by comparing for instance the shape of
the element boundaries of the initial and the refined physical mesh.
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Figure 15. Refined quadratic T-spline mesh of Figure 11 in (a)the index domain and (b) the physical domain.
This T-spline mesh is standard and nested with the initial T-spline mesh of Figure 11.

5.4.2. Example 2: Removing linear dependencies

Initial refinement
As a next example, the initial quadratic T-spline mesh in Figure 11 is now refined as shown in
Figure 16(a).

Removing linear dependencies
The T-spline mesh of Figure 16(a) is non-standard using Equation (38). Furthermore, the necessary
condition Equation (51) is not fulfilled. Transforming Equation (31) into row echelon form yields
the dependencyNF (ξ)−NG(ξ) = 0 in element f. In order to break this dependence, new anchors
need to be inserted. In the following, it will be shown how to identify potential locations for these
new anchors and how to select the ideal one.

Extension lines (solid blue) are drawn between the anchors Fand G as depicted in Figure 16(b).
These extension lines intersect at the location of the greensquares. These squares are located in the
rectangles g and h (dashed red line). Rectangle g cannot be further subdivided, but rectangle h can,
as shown in Figure 17.
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(a) The T-spline mesh is locally linearly dependent –
the row echelon version of Equation (31) gives the
dependencyNF (ξ)−NG(ξ) = 0 in element f.
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G intersect at the location of the green squares. The
rectangles g and h (dashed red line) contain the green
squares. Rectangle g cannot be further subdivided.
All options for subdividing rectangle h are given in
Figure 17.

Figure 16. Refined (non-standard) quadratic T-spline mesh from Figure 11(a) in the index domain.
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(a) Standard, not nested.
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(b) Standard, nested.
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(c) Standard, not nested.

1 2 3 4 5
1

2

3

4

5

6

7

0 0
1
2 1 1

0

0

1
3

1
3

2
3

1

1

u1

u2

ξu
1

ξu
2

Anchors

Edges

(d) Standard, nested.
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(e) Non-standard.
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(f) Non-standard.

1 2 3 4 5
1

2

3

4

5

6

7

0 0
1
2 1 1

0

0

1
3

1
3

2
3

1

1

u1

u2

ξu
1

ξu
2

Anchors

Edges

(g) Non-standard.

Figure 17. All possible subdivisions for the rectangle h in Figure 16(b): the dashed orange lines indicate the
new edges to be inserted, the orange points denote the location of the new anchors.

Table I gives a summary of the number of pairs of anchors with linearly dependent blending
functions, number of non-square matricesCe, nestedness and number of additionally inserted
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anchors for the options in Figure 17. This information can beused in order to determine the best
location and optimum number of additional anchors.

Table I. Summary of the number of pairs of anchors with linearly dependent blending functions, number of
non-square matricesCe, nestedness and number of additionally inserted anchors for the options in Figure 17.

Figure 17(a) 17(b) 17(c) 17(d) 17(e) 17(f) 17(g)

Number of pairs of anchors
0 0 0 0 0 0 0with linearly dependent

blending functions
Number of non-square

0 0 0 0 1 2 2
matricesCe

Nestedness ✗ ✓ ✗ ✓ ✗ ✗ ✗

Number of additional anchors 2 3 3 4 2 3 3

According to Figure 17 and Table I, only the options (b) and (d) are suitable for refinement of
the T-spline mesh in Figure 11 since they are standard and nested with the initial mesh. From an
implementational point of view, one could select the optionwhich introduces the smallest amount
of new anchors, i. e. option (b).

In case that no refinement option results in a standard and nested T-spline mesh, one can select
either the option with the smallest number of pairs of anchors with linearly dependent blending
functions or the option with the smallest number of non-square matricesCe and then continue with
the next refinement step until a standard and nested mesh is obtained, see Appendix C.

5.5. Summary for the local refinement of standard T-splines

The examples for the local refinement of standard T-spline meshes by adding anchors demonstrate
that the Bézier extraction operator allows to:

• enforce the necessary condition in Equation (51) for standard T-spline meshes:

– when the T-spline mesh is locally linearly independent but we do not have a square
matrixCe for each elemente, the Bézier extraction operator shows, which element does
not have enough anchors with a support (Figure 13(a));

– when there are local linear dependencies, the Bézier extraction operator shows, where
new anchors and edges need to be inserted (Figure 16(b))

• pinpoint for which blending functions two T-spline meshes are not nested (Figure 14).

We have found that when the necessary condition in Equation (51) is fulfilled and the refinement
matrix M in Equation (57) can be computed, we always obtain a nested standard T-spline mesh.
We have not experienced a single case where this resulted in anested semi-standard T-spline mesh.
However, should such a case arise, one can pinpoint for whichanchorsβi

R 6= 1 using Equation (59)
and insert an additional anchor in the supported domain of these anchors.

The local refinement of standard T-spline meshes of odd degreeis treated in Appendix A.
Furthermore, Appendix B demonstrates that also non-standard T-splines can be refined locally when
nestedness exists.

6. HIERARCHICAL REFINEMENT OF STANDARD, SEMI-STANDARD AND
NON-STANDARD T-SPLINES USING THE RECONSTRUCTION OPERATOR

In [15] another refinement strategy was introduced based on the reconstruction operator. Instead
of adding new anchors to the mesh as was proposed in the previous section, the method is based
on the division of elements while an invertible elemental B´ezier extraction operatorCe is needed
for the reconstruction operator. The hierarchical refinement method in [15] has been derived for
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analysis-suitable T-splines. Here, we show how the idea of this concept can also be applied to
standard, semi-standard and non-standard T-spline meshes.

6.1. Splitting elements

The hierarchical refinement algorithm based on the reconstruction operator requires local linear
independence. Moreover, it requires thatCe is a square matrix for the elemente that is subdivided,

rank(Ce) =

d∏

ℓ=1

pℓ + 1 (70)

since the reconstruction operator, defined as

Re = C
−1
e , (71)

is needed. Therefore, for this hierarchical refinement algorithm the Bézier extraction operator
plays again a key role: when Equation (70) is satisfied for element e, this element can be refined
hierarchically. Thus, this algorithm can be applied to standard, semi-standard and non-standard
T-spline meshes.

Consider an element with range[−1, 1] and suppose that we want to split it in half:[−1, 0] and
[0, 1]. The first Bernstein basisB1

1 with the knot vector{−1,−1,−1, 1} (black curve) in Figure 18 in
the element[−1, 1] can be defined in the two sub-elements[−1, 0] and[0, 1] as a linear combination
of the Bernstein polynomials in the two sub-elements: the Bernstein basis functions for the left part
of the element with support in[−1, 0] are given by the local knot vectors

B1
1 l for {−1,−1,−1, 0}, B2

1 l for {−1,−1, 0, 0}, B3
1 l for {−1, 0, 0, 0}. (72)
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Figure 18. The Bernstein polynomialB1
1 with support over the element[−1, 1] can be expressed in the

sub-elementel with range[−1, 0] as a linear combination of the Bernstein polynomialsBa
1 l: B

1
1(ξ1) =

B1
1 l(ξ1) +

1
2B

2
1 l(ξ1) +

1
4B

3
1 l(ξ1).

The Bernstein polynomialB1
1 in the left part of the element (solid black line) can now be

expressed as a linear combination of the Bernstein polynomialsBi
1 l as follows

B1
1(ξ1) =

[
1 1

2
1
4

]





B1
1 l(ξ1)

B2
1 l(ξ1)

B3
1 l(ξ1)



 . (73)

The coefficients in Equation (73) can either be obtained using the algorithm in [7] for the knot vector
{−1,−1,−1, 1} with an interior knot (causing a discontinuity) atξ1 = 0 or, alternatively, using the
relations in [21]. Applying the same procedure toB2

1 , B3
1 , and on the right part of the element (with
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the range[0, 1]) gives




B1
1(ξ1)

B2
1(ξ1)

B3
1(ξ1)





︸ ︷︷ ︸

B1(ξ1)

=





1 1
2

1
4

0 1
2

1
2

0 0 1
4





︸ ︷︷ ︸

A1 l





B1
1 l(ξ1)

B2
1 l(ξ1)

B3
1 l(ξ1)





︸ ︷︷ ︸

B1 l(ξ1)

+





1
4 0 0
1
2

1
2 0

1
4

1
2 1





︸ ︷︷ ︸

A1 r





B1
1 r(ξ1)

B2
1 r(ξ1)

B3
1 r(ξ1)





︸ ︷︷ ︸

B1 r(ξ1)

. (74)

Hence, the Bernstein polynomialsB1 over one elemente with the span[−1, 1] can be expressed
as a linear combination of the Bernstein polynomialsB1 l andB1 r over the two smaller elements
el with the span[−1, 0] ander with the span[0, 1]. Extending Equation (74) into more dimensions
gives

B(ξ) = AlBl(ξ) +ArBr(ξ). (75)

We next assume that the Bézier extraction operator is knownfor the original, single elementCe

and for the two sub-elementsCe l andCe r. Then, we can express the weighted curveTwe with the
weighted control pointsP i

we over elemente using Equation (75)

Twe(ξ) =

ne∑

i=1

Ci
e

T
B(ξ)P i

we =

ne∑

i=1

Ci
e

T (
AlBl(ξ) +ArBr(ξ)

)
P i

we (76)

and over the two sub-elements

Twe(ξ) = Twe l(ξ) + Twe r(ξ) =

ne l∑

j=1

C
j
e l

T
Bl(ξ)P

j
we l +

ne r∑

k=1

Ck
e r

T
Br(ξ)P

k
we r (77)

with the weighted control pointsPwe l andPwe r for elementel ander, respectively. Comparing
Equation (76) and Equation (77) results in

ne∑

i=1

Ci
e

T
AlBl(ξ)P

i
we =

ne l∑

j=1

C
j
e l

T
Bl(ξ)P

j
we l (78)

ne∑

i=1

Ci
e

T
ArBr(ξ)P

i
we =

ne r∑

k=1

Ck
e r

T
Br(ξ)P

k
we r (79)

or in vector-matrix form

Ce
T
AlPwe

= Ce l
TPwe l

, (80)

Ce
T
ArPwe

= Ce r
TPwe r

. (81)

Hence, the weighted coordinates of the two sub-elements areobtained with the reconstruction
operator in Equation (71) as

Pwe l
= Re l

T
Ce

T
AlPwe

, Pwe r
= Re r

T
Ce

T
ArPwe

. (82)

6.2. Example

As an example we consider the quadratic non-standard T-spline mesh of Figure 19 which is globally
linearly independent but locally linearly dependent.

The dashed green element b is now divided vertically into twosub-element bl and br with range
[0, 14 ]× [ 24 ,

3
4 ] and [ 14 ,

1
2 ]× [ 24 ,

3
4 ], i. e. the knot valueξ1 = 1

4 is inserted in element b. Element b
can be subdivided since Equation (70) holds for it. In order to obtain the weighted control points
Pwe l

andPwe r
in Equation (82), the reconstruction operatorsRe l andRe r, which follow from

the Bézier extraction operatorsCe l andCe r, respectively, are needed for element b. These Bézier
extraction operators are based on the modified local knot vectors of the sub-elements bl and br
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Figure 19. Non-standard, globally linearly independent T-spline mesh in the index domain (from
Figure 7(b)). Element b (dashed green line) with range[0, 12 ]× [24 ,

3
4 ] is split vertically into two sub-elements

bl and br with range[0, 14 ]× [24 ,
3
4 ] and [14 ,

1
2 ]× [24 ,

3
4 ], respectively. Each local knot vector associated to

a blue anchor (i. e. those having a support in element b) needsto be modified. For instance, the anchor
A with ΞA

1 = {0, 0, 0, 1} becomesΞA
1 l = {0, 0, 0, 14} in element bl andΞA

1 r = {0, 0, 14 , 1} in element br.
ΞA
1 = {0, 0, 0, 1} remains unchanged for the other elements. The modified localknot vectors for the other

blue anchors are given in Appendix D.

which are obtained as follows. We pick from each blue anchori which has a support over element
b in Figure 19 the local knot vectorΞi

1. Then we insert into this local knot vector the knot value
ξ1 = 1

4 and split the resulting knot vector into two knot vectors of lengthpℓ + 2, where one knot
vector contains the firstpℓ + 2 entries and the other one the lastpℓ + 2 entries. For instance, taking
the anchor A in Figure 19 gives the local knot vectorΞA

1 = {0, 0, 0, 1}. The local knot vectors for
the elements bl and br are thenΞA

1 l = {0, 0, 0, 14} andΞA
1 r = {0, 0, 14 , 1}. We note that the local

knot vectorΞA
1 is modified only in the elements bl and br, while for the other elementsΞA

1 remains
unchanged. The local knot vectors for the blue anchors in thesub-elements bl and br are given in
Appendix D.

The initial non-standard T-spline mesh and the hierarchically refined non-standard T-spline mesh
in the physical domain are depicted in Figure 20. Both physical meshes represent the same geometry.

Anchors

Element corners

Element boundaries

(a)

Initial anchors

Hierarchical anchors for bl

Hierarchical anchors for br

Element corners

Element boundaries

(b)

Figure 20. (a) Initial and (b) hierarchically refined non-standard T-spline mesh from Figure 19 in the physical
domain.
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7. DISCUSSION AND CONCLUSIONS

We have classified T-spline meshes of arbitrary degree according to linear independence and the
partition of unity property. We have also shown how to refine standard T-spline meshes by adding
anchors, such that the initial and the refined T-spline mesh are nested. It has been demonstrated that
non-standard meshes can also be refined by adding anchors when nestedness exists. All methods
exploit the Bézier extraction operator, which appears to play a central role. Furthermore, it has been
shown that hierarchical refinement of standard, semi-standard and non-standard T-spline meshes
using the reconstruction operator basically also involvesthe Bézier extraction operator, since the
reconstruction operator is just its inverse.

We finally note that the term “analysis-suitable” might cause confusion. Analysis can be
performed with standard, semi-standard and non-standard T-spline meshes. In our view, the
requirements for a T-spline mesh to be suitable for analysisare

• the blending functionsN i are globally linearly independent (Equation (25) holds)
• the partition of unity property holds in order to satisfy theaffine transformation and the patch

test.

We note that the local/global linear independence of the blending functionsN i results in the
local/global linear independence of the rational blendingfunctionsRi. Hence, globally linearly
independent semi-standard and non-standard T-spline meshes which employ the rational blending
functionsRi in Equation (32) can be used for analysis since the rational blending functionsRi

always form a partition of unity. It has also been demonstrated that semi-standard and non-standard
T-spline meshes can be refined locally by either adding new anchors, or by splitting existing
elements. Refining semi-standard and non-standard T-spline meshes by adding anchors requires
nestedness, while the hierarchical refinement for semi-standard and non-standard meshes requires
the satisfaction of Equation (70).

A. LOCAL REFINEMENT OF STANDARD T-SPLINES OF ODD DEGREE BY ADDING
ANCHORS

Herein it is explained how the necessary condition for standard T-spline meshes of Equation (51)
and nestedness for meshes of odd degree can be enforced usingthe Bézier extraction operator.

A.1. Example 1: Ensuring thatCe is a square matrix and nestedness

Initial refinement
We start with the cubic standard T-spline mesh depicted in Figure 21 which is refined as in
Figure 22(a).

Ensuring that Ce is a square matrix
The mesh in Figure 22(a) is locally linearly independent, but non-standard andCe is not a square
matrix for all elements. For instance, we haverank(Ce) = ne in element b as there are only fifteen
anchors (blue) with a support, Figure 22(b). Hence, an additional anchor needs to be inserted.
Each local knot vector of the blue anchors in Figure 22(b) contains the sub-parameter values of
the boundaries of element b –[0, 12 ]× [ 13 ,

2
3 ] in theξ1 direction and theξ2 direction, respectively –

except for the anchors A and B in Figure 23(a). The local knot vectors of the anchors A and B in the
ξ1 direction do not contain the sub-parameter valueξ1 = 1

2 . Therefore, an additional anchor needs
to be inserted at the location of the red point c. This resultsin the standard mesh in Figure 23(b).

Nestedness
Unfortunately, the initial mesh in Figure 21(a) and the refined mesh in Figure 23(b) are not nested.
Transforming Equation (57) into row echelon form gives no solution for the anchors C, D, E and
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Figure 21. Initial cubic standard T-spline mesh in (a) the index domain and (b) the physical domain.
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Figure 22. (a) Refined cubic non-standard T-spline mesh fromFigure 21(a) in the index domain; (b) the
T-spline mesh is locally linearly independent, but in element b (dashed green line) are only fifteen anchors

(blue) with a support and thereforeCe is not a square matrix for this element.

F in the initial mesh, see Figure 24, i. e. the blending functions associated to these anchors in the
initial T-spline mesh cannot be represented as a linear combination of the blending functions of the
refined T-spline mesh in Figure 23(b).
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Figure 23. Determination of the location of a new anchor whenCe is not a square matrix for a cubic T-spline
mesh. (a) The local knot vectors in theξ1 direction of the blue anchors A and B do not contain the sub-
parameter valueξ1 = 1

2 , which is a boundary of element b (dashed green). Therefore,an anchor is required
at the location of the red point c. (b) The resulting standardT-spline mesh. This T-spline mesh and the initial

T-spline mesh in 21(a) are not nested.
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Figure 24. Superposition of the initial T-spline mesh in theindex domain from Figure 21(a) and the refined
mesh in Figure 23(b). The row echelon form of Equation (57) gives no results for the anchors C, D, E and
F (blue) and therefore, the meshes in Figure 21(a) and Figure23(b) are not nested. Edges and anchors from
the refined mesh in Figure 23(b), which were added during refinement, are inserted in the initial mesh from
Figure 21 and marked with green. In the grey domain all four anchors C, D, E and F have a common support,
while the grey domain is bounded by the newly inserted green edges. Within the grey domain, no anchor is
at the position of the red point d. In order to obtain a refined mesh which is standardand nested with the
initial mesh in Figure 21, the anchor d needs to be inserted into the mesh of Figure 23(b), see also Figure 25.

Therefore, an additional anchor has to be inserted. We draw the new edges and anchors of the
refined T-spline mesh of Figure 23(b) in the initial T-splinemesh of Figure 21(a) as illustrated with
solid green lines and points in Figure 24. Then, the domain where all four anchors C, D, E and F
have a common support is drawn while this domain needs to be cut by the green edge. This domain
is indicated with a grey colour. It can be observed that within the grey domain no anchor is sitting at
the location of the red point d. Therefore, the red point d represents the location of an anchor which
has to be inserted into the T-spline mesh. The resulting T-spline mesh is depicted in Figure 25(a).
This T-spline mesh is standard. Furthermore, the initial T-spline mesh in Figure 21(a) and the refined
T-spline mesh in Figure 25(a) are nested.

Refined physical mesh
After obtaining a standard and nested T-spline mesh in the index domain we can now consider
the computation of the physical mesh. The location of the weighted control points for the refined
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meshPwR can be determined using Equation (69). The physical mesh after refinement is shown in
Figure 25(b) which represents the same geometry as the physical mesh in Figure 21(b).
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Figure 25. Refined cubic T-spline mesh of Figure 21 in (a) the index domain and (b) the physical domain.
This T-spline mesh is standard and nested with the initial T-spline mesh of Figure 21.

A.2. Example 2: Removing linear dependencies

Initial refinement
As a next example, the initial cubic standard T-spline mesh in Figure 21 is refined as shown in
Figure 26(a).
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(a) The T-spline mesh is locally linearly dependent –
the row echelon form of Equation (31) results in
the dependency−2NG(ξ) + 2NH (ξ) + 3NJ (ξ) = 0

in element f (dashed green).
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(b) Illustration for the determination of the location
of new anchors. Extension lines (solid blue) for
the anchors with locally linearly dependent blending
functions G, H and J are drawn. The extension lines
intersect at the location of the red squares g, h and i.
Only the square g represents a location for a new anchor
(see Figure 27) since at h and i anchors are already
located.

Figure 26. Refined (non-standard) cubic T-spline mesh from Figure 21(a) in the index domain.

Removing linear dependencies
The T-spline mesh in Figure 26(a) is non-standard using Equation (38). The row echelon version of
Equation (31) yields the dependency−2NG(ξ) + 2NH(ξ) + 3NJ(ξ) = 0 in element f. Therefore,
an additional anchor needs to be inserted. This will be done in a manner similar to Section 5.4:
extension lines (solid blue) are drawn between the anchors with locally linearly dependent blending
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functions G, H and J, Figure 26(b). The intersections of the extension lines are marked with the red
squares. These squares denote possible positions for a new anchor if there does not already exist
one. It can be observed from Figure 26(b) that only the intersection at the red square g is a candidate
for a new anchor. However, the T-spline mesh with a new anchorin Figure 27 is still locally linearly
dependent and semi-standard, so that more anchors and edgesneed to be inserted by applying the
aforementioned methods until a standard and nested T-spline mesh is obtained.
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Figure 27. Refined cubic T-spline mesh from Figure 26(a). This T-spline mesh is semi-standard.

A.3. Example 3: Non-standard T-spline fulfils necessary condition for standard T-splines

In the examples considered so far, enforcing Equation (51) resulted in a standard T-spline mesh.
However, this is not always the case as Equation (51) is not sufficient for obtaining a standard
T-spline mesh – it is only a necessary condition for standardT-splines. Figure 28(b) presents a case
where enforcing Equation (51) does not result in a standard T-spline mesh.
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(a) Standard,rank(Ce) =
d∏

ℓ=1

pℓ + 1 for e = 1 . . . E.
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1 . . . E.

Figure 28. (a) Initial standard T-spline mesh and (b) refinednon-standard T-spline mesh. For both meshes
Equation (51) holds, but both T-spline meshes are not nestedas shown in Figure 29(a).

Both T-spline meshes in Figure 28 are locally linearly independent with a square matrixCe. The
initial T-spline mesh, Figure 28(a), is standard, while therefined T-spline mesh, Figure 28(b), is non-
standard. We recall, that a standard and a non-standard T-spline mesh cannot be nested according
to Equation (59): evaluating the refinement matrix in Equation (57) gives no solution for the anchor
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K – and therefore both T-spline meshes are not nested. Applying the same procedure as previously
explained (see also Figure 24) gives the possible locationsfor new anchors (red) as depicted in
Figure 29(a).

1 2 3 4 5
1

2

3

4

5

6

7

0 0
1
2 1 1

0

0

1
3

2
3

2
3

1

1

u1

u2

ξu
1

ξu
2

K

j

Anchors initial mesh

Anchor initial mesh,
not nested

Anchors refined mesh

Potential new anchors

Edges initial mesh

Edges refined mesh

Support non-nested anchor

(a)

1 2 3 4 5
1

2

3

4

5

6

7

0 0
1
2 1 1

0

0

1
3

2
3

2
3

1

1

u1

u2

ξu
1

ξu
2

Anchors

Continuity reduction lines

Edges

Elements

(b)

Figure 29. (a) Superposition of the initial T-spline mesh from Figure 28(a) and the newly inserted edges and
anchors (green) from the refined T-spline mesh in Figure 28(b). The blending function of anchor K in the
initial T-spline mesh cannot be represented as a linear combination of the blending functions of the refined
T-spline mesh, i. e. both T-spline meshes are not nested since the row echelon form of Equation (57) gives
no result for anchor K. The support of anchor K – bounded by thenew green edges and anchors – is depicted
with a grey domain. Within the grey domain, new anchors can beinserted at the location of the red points in
order to obtain a standard and nested T-spline mesh. For instance, inserting the red anchor j would result in

a standard and nested T-spline mesh as presented in (b).

B. LOCAL REFINEMENT OF NON-STANDARD T-SPLINES BY ADDING ANCHORS

In the previous examples in Section 5.4 and Appendix A, we demonstrated how to refine a standard
T-spline mesh and obtain a standard mesh based on Algorithm 1. In this section we give an example
that non-standard meshes can also be refined locally by adding anchors – the only requirement is
that the initial and the refined mesh are nested.

Figure 30 shows the initial non-standard and Figure 31 the refined semi-standard quadratic
T-spline mesh in the index and physical domain, respectively. Both meshes are nested, which allows
the calculation of the weighted control pointsPwR in Equation (69).
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Figure 30. Initial (non-standard) quadratic T-spline meshin (a) the index domain and (b) the physical
domain.
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Figure 31. Refined (semi-standard) quadratic T-spline meshof Figure 30 in (a) the index domain and (b) the
physical domain.

C. OBTAINING THE OPTIMISED NUMBER OF ADDITIONALLY INSERTEDANCHORS

Consider the initial (standard) and refined (non-standard)T-spline mesh in Figure 32.
Figure 33 shows all the options where additional anchors canbe inserted by applying the routines

from Section 5.4, while due to symmetry only the options for the lower part of Figure 32(b) are
considered.
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Figure 32. (a) Initial standard and (b) refined non-standardT-spline mesh in the index domain.
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Figure 33. All possible subdivisions for Figure 32(b): the dashed orange lines indicate the new edges to be
inserted, the orange points denote the location of the new anchors.

Table II gives the number of pairs of anchors with linearly dependent blending functions, number
of non-square matricesCe, nestedness and number of additionally inserted anchors for the options
in Figure 33.

According to Table II, the optimum option would be either Figure 33(e) or Figure 33(g) since
they yield the smallest number of pairs of anchors with linearly dependent blending functions and
number of non-square matricesCe. After inserting the additional anchors, again, the rectangles to be
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Table II. Summary of the number of pairs of anchors with linearly dependent blending functions, number of
non-square matricesCe, nestedness and number of additionally inserted anchors for the options in Figure 33.

Figure 33(a) 33(b) 33(c) 33(d) 33(e) 33(f) 33(g) 33(h) 33(i)

Number of pairs of anchors
5 5 6 6 5 6 5 6 6with linearly dependent

blending functions
Number of non-square

8 8 8 8 6 6 6 6 6
matricesCe

Nestedness ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Number of additional anchors 2 2 2 2 3 3 3 3 4

subdivided are determined for the updated mesh and the optimum option is selected. This procedure
needs to be repeated until a standard and nested T-spline mesh is obtained, see for example Figure 34
after six iterations.
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Figure 34. Standard and nested T-spline mesh after inserting additional anchors in six iterations into the
refined T-spline mesh of Figure 32(b)

D. MODIFIED LOCAL KNOT VECTORS

Table III gives the local knot vector in element b and in the sub-elements bl and br for each of the
blue anchors in Figure 19.
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Table III. Local knot vectorsΞ1 for the blue anchors in Figure 19 in element b and in the sub-elements bl
and br.

Coordinates in Local knot Local knot Local knot
index domain vector vector in bl vector in br

(1.5, 2.5) {0, 0, 0, 1} {0, 0, 0, 14} {0, 0, 14 , 1}
(3, 2.5) {0, 0, 1, 1} {0, 0, 14 , 1} {0, 14 , 1, 1}
(1.5, 4) {0, 0, 0, 1} {0, 0, 0, 14} {0, 0, 14 , 1}
(3, 4) {0, 0, 1, 1} {0, 0, 14 , 1} {0, 14 , 1, 1}

(4.5, 3.5) {0, 1, 1, 1} {0, 14 , 1, 1} { 1
4 , 1, 1, 1}

(4.5, 4.5) {0, 1, 1, 1} {0, 14 , 1, 1} { 1
4 , 1, 1, 1}

(1.5, 5.5) {0, 0, 0, 12} {0, 0, 0, 14} {0, 0, 14 ,
1
2}

(2.5, 5.5) {0, 0, 12 , 1} {0, 0, 14 ,
1
2} {0, 14 ,

1
2 , 1}

(3.5, 5.5) {0, 12 , 1, 1} {0, 14 ,
1
2 , 1} { 1

4 ,
1
2 , 1, 1}
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application as an adaptive basis for isogeometric analysis. Computer Methods in Applied Mechanics and
Engineering2015;284:1–20.
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