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Abstract

Gradient-enhanced damage models and phase-field modete@mangly very dis-
parate approaches to fracture. Whereas gradient-enhdacegige models find their
roots in damage mechanics, which is a smeared approachlimanset, and gradients
were added to restore well-posedness beyond a criticah $szel, the phase-field ap-
proach to brittle fracture departs from a discontinuousdpson of failure, where the
distribution function is regularised, leading to the irgthn of spatial gradients as well.
Herein, we will consider both approaches, and discusss$imaitarities and dierences.
The averaging (diusion) equations for the averaging field and the phase-figldbav
compared, and it is shown that thefdsion equation for the phase-field can be con-
ceived as a special case of the averaging equation of a gtathenage model where
the damage is averaged. Further, the role of the drivingef@@examined, and it is
shown that subtle ffierences in the degradation functions commonly adoptednm da
age and phase-field approaches are key to the observatipditferent from damage
mechanics, the fracture process zone does not broadenwatteeof the crack tip.

Keywords: fracture, damage, gradient models, phase-field approach

1. Introduction

The numerical modelling to fracture can be approached fremndifferent points
of view. Discrete models for fracture, where the geomeltdiscontinuity is modelled
as such, i.e. by modifying the geometry of the original, éntstructure, are perhaps
intuitively the most appealing approach to fracture, amngehzeen pursued since the
late 1960s [1]. Developments such as remeshing [2, 3], oeXtended Finite Ele-
ment Method [4, 5, 6, 7, 8] have provided ways to decouple thekcpath from the
underlying discretisation. Also, isogeometric finite erhanalysis behold promise to
flexibly model propagating cracks [9].
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Nevertheless, issues remain such as the proper modellingreéd crack fronts
in three dimensions, while the robust implementation otmite cracks in a three-
dimensional setting is a non-trivial task, either when gsameshing, or when exploit-
ing the partition of unity concept as in the eXtended Finitenient Method. Hence,
smeared, or distributed, crack approaches have been puarhrwhere the disconti-
nuity is distributed over a finite width. Another interprigta is that the Dirac function
that arises for the strain at a discontinuity is replaced &yaoth function. The smear-
ing out of the discontinuity is accompanied by the introdrct at local continuum
level, of a stress-strain relation in which the limit strémg gradually reduced. The
strain-softening that is introduced in this manner, howdweally leads to a change of
the character of the governing partiaffdrential equations: loss of ellipticity in case
of quasi-static analyses, and loss of hyperbolicity foraipic calculations.

This change causes a loss of well-posedness of the rate dguvalue problem,
which in turn causes a complete dependence of the numeeisalts on the discreti-
sation, not only with respect to mesh refinement but also especially, with respect
to mesh alignment, since failure zones exhibit a strongepog to propagate along
lines of discretisation. This tendency can be amelioratedding elements in which
the kinematics have been enriched by locally adding shapstifins that can capture a
discontinuity, e.g. [10, 11, 12, 13]. However, to avoid logsvell-posedness, the stan-
dard, rate-independent continuum must be enhanced. $pussibilities exist: adding
viscosity, e.g. [14, 15], adding couple stresses and camgugnematic quantities like
microcurvatures, micromorphic continua with the Cosseaaitinuum as the classical
example [16], see [17, 18] for a numerical implementatioGo$serat elasto-plasticity,
spatial averaging [19], and the introduction of a dependemcspatial strain gradients,
e.g. [20, 21] for gradient plasticity, and [22, 23, 24, 25] dmadient-enhanced damage
models. Especially the latter class of models has becomelaofor computational
analysis.

Another class of continuum descriptions of cracking hasbdeveloped in the
context of brittle fracture. Pioneering work has been don§26, 27, 28], who pro-
posed a phase-field approximation of the variational foatioih for Grifith’'s theory
of brittle fracture based on the Mumfort-Shah potential]l[28 more mechanically
oriented formulation, which, however closely resemblesrttentioned developments,
has been derived by [30, 31]. Subsequently, phase-field imbedee been applied to a
large variety of fracture problems, including dynamic gewbs [32, 33] and cohesive
fracture [34].

However, the point of departure of both models iffetient. In gradient damage
models intrinsically a mechanical approach is adopted thedlamage model is reg-
ularised by adding gradients to restore well-posednedseaboundary value problem
in the post-peak regime. The basic idea of phase-field moolelthe other hand, is to
replace the zero-width discontinuity by a small, but finibme with sharp gradients in
a mathematically consistent manner. Indeed, the latterirement inevitably leads to
the inclusion of spatial derivatives in the energy funcéibsimilar to gradient damage
models.

To provide a proper setting we start by giving a brief outlofelamage models,
and their extension to nonlocality. An important issue iadient damage models is
the observation that in the wake of the crack tip there is adeaing of the damage



field. To eliminate this broadening it has been proposed thentlae internal length
scale parameter a function of the local strain or damagd [88¢ Next, a brief re-
view of the phase-field approach to brittle fracture is gjvemd the dierent point of
departure is emphasised. It is recalled that in this approadroadening is observed
of the damage zone. It is also argued that the regularispommeter and the degra-
dation function that are introduced are, in fact, materaameters, and have to be
calibrated to experiments. A discussion on thffedences and similarities between
gradient-enhanced damage models and the phase-field appooarittle fracture fol-
lows, including a comparison of the various formats of th@udion equation for the
damaggphase field that ensues for thefdrent formulations and a discussion of the
importance of the specific form of the driving force for th@&adening of the damage
zone.

2. Nonlocal and gradient-enhanced damage models

2.1. Damage models

Herein, we restrict ourselves to an isotropic damage ewslutvhich is charac-
terised by a total stress-strain relation:

(1~ d)v igit— |-
TrA-dma-20-d) = " Tv@-d) )

a-:(l—dl)E( e (1)

with i the second-order identity tensbthe fourth-order identity tensde, the Young's
modulus and the Poisson ratio, which are degraded by the scalar damaigd e
di andd,, respectively. A simplification is obtained by assuming Bwésson ratio to
remain constant during the damage process, so that:

o=(1-d)D°:€ 2)

with d a scalar damage variable which grows from zero to one (at Emfoss of
integrity) andD® the fourth-order elastic $thess tensor. For strain-based damage
models, the total stress-strain relation, Equation (2pomplemented by a damage
loading function

f=1(«) 3)

with € a scalar-valued function of the strain tensor, aadistory variable. The damage
loading functionf and the rate of the history variable, have to satisfy the discrete
Kuhn-Tucker loading-unloading conditions

f<0,k>0,«f=0 (4)

The history parameter starts at a damage threshold lexelnd is updated by the
requirement that during damage growtl: 0. Damage growth occurs according to an
evolution equation, such that:

d = d(x) )

which can be inferred from a uniaxial test.



2.2. Nonlocal damage models

In a nonlocal generalisation, the equivalent straia fiormally replaced by a spa-
tially averaged quantity in the damage-loading functio®]{1

f(e,x) = €—« (6)

where the nonlocal strainis computed from

ax) = % fg VYY) 2, W) = fg Wy, x) dO @)

with ¥ (y, x) a weight function. Often, the weight function is assumethéchomoge-
neous and isotropic, so that it only depends on the norm

r=lx-yll (8)

In this formulation, all the other relations remain locéleocal stress-strain relation,
Equation (2), the loading-unloading conditions, Equa(); and the dependence of
the damage variabld on the history parameter, Equation (5). As an alternative to
Equation (7), the local history parametemay be replaced in the damage-loading
function f by a spatially averaged quantitysuch that

f(e,k) =€e—« 9)
where 1
R = 555 fg Wy, X)K(y) dO (10)

2.3. Gradient-enhanced damage models

Nonlocal constitutive relations can be considered as atpdideparture for con-
structing gradient models, although we wish to emphasetdtie latter class of models
can also be defined directly by supplying higher-order gmaidiin the damage-loading
function. Yet, we will follow the first-mentioned route to derline the connection be-
tween integral and dtierential-type nonlocal models. This is done either by edpan
the kernele”of the integral in Equation (7) in a Taylor series, or by exgliag of the
history parametet in Equation (10) as a Taylor series. If we truncate after duoad-
order terms and carry out the integration implied in Equa(i©) under the assumption
of isotropy, the following relation ensues:

€=¢+gV% (11)

whereg is a gradient parameter of the dimension length squared.

Equation (11) bears the disadvantage that it requires theutation of second-
order gradients of the local equivalent strain Since this quantity is a function of
the strain tensor, and since the strain tensor involvesdidgr derivatives of the dis-
placements, third-order derivatives of the displacembat® to be computed, which



would necessitat€?-continuity of the shape functions. To obviate this probl&uua-
tion (11) is diferentiated twice and the result is substituted again inteaign (11).
Again neglecting fourth-order terms leads to

e-gVie=¢ (12)

In [25], see also [30], it has been shown that the implicidggat formulation, Equa-
tion (12), becomes formally identical to a fully nonlocatfaulation when, in three
dimensions, the weighting function is chosen as

1 r
090 = gz oo - (19
Indeed, the 'implicit gradient’ formulation has a truly Hoaal character, which is
different from the 'explicit gradient’ formulation, Equatiobl().

In a fashion similar to the derivation of the gradient-damagpdels based on the
averaging of the equivalent strainwe can elaborate a gradient approximation of Equa-
tion (10), i.e. by developingin a Taylor series. For an isotropic, infinite medium, and
truncating after the second term, we have [23]:

kK =k+gVk (14)

Similar to the second-order gradient model where the nathlsgain has been ex-
panded, an 'implicit’ version can be developed bffelientiating Equation (14) twice
and substituting the result back into Equation (14). Negigdourth-order terms then
yields:

K—gVek =« (15)

A spatially averaged damage fieddis now defined as a function af d = d(x).
Taking the special case of a linear relation betweandx [23, 24]:
d=ko+ax (16)
Equation (15) becomes
d- gV2d=E0+aK (17)
or, settingd = «o + ax andg’ = g/a,
d-gvid=d (18)

In the remainder the prime will be omitted for notational wenience — noting that
the gradient parametgmwill have a diferent meaning depending on the exact gradient
formulation — and we will write for the averaging equationtbé nonlocal damage
field: B _

d-gvid=d (19)



2.4. Discrete format of gradient-damage models

Numerical schemes for gradient-enhanced continua typitave the character
of a coupled problem and commonly depart from the weak forrthefbalance of
momentum,

Lvsqu:adngrq-t_dr (20)

with  the test function for the displacements arttie prescribed boundary tractions,
and a weak form of the averaging equation. For example, fosttain-based implicit
gradient damage model, Equation (12), one has:

f l(e-gV2e-8)dQ=0 (21)
Q

with ¢ the test function for the nonlocal strainTransforming Equation (21) using the
divergence theorem and the natural boundary conditioWe = 0, with np the normal
to the external boundaly, yields:

f({?+ gV -Ve)dQ = fg% dQ (22)
Q Q
The displacements and the nonlocal strainsare discretised as:

u=Na and €= Ne (23)

with N and N containing the interpolation polynomials. In a Bubnov-&&in ap-
proach we have for the test functions

n=Nw and / = Nz (24)

Substitution into Equations (20) and (22), and requirireg the result holds for arbi-
trary (w, z) yields the discrete formats of the equilibrium equation:

f BTordQ = f N't, dr (25)
Q r
and the averaging equation:
f (N"N + g(VN)TVYN) dQ = f N'é dQ (26)
Q Q

The tangent sfiness matrix needed for an iterative solution via the NevRaphson

method reads [22]: '
da\ [f—fi
(de) B (f M Kee @7)

Kaa Kae
Kea Kee




with f 2“ given by the right-hand side of Equation (26). Théfsiss matrices are given
by

Kaa = f (1-d)B"D®B dQ (28)
Q

Kee = f gBTD%N dQ (29)
Q

Kea = fr\_ﬂ %) g o (30)

ea — A Je

Kee = f (NN + g(VN)TVN) dO (31)
Q

whereq = % for loading and vanishes otherwise.

In the above we have restricted the discussion to the caseafeicond-order im-
plicit gradient-damage model. Unlike for this second-om@groximation to the non-
local damage model, an order reduction such @fatontinuous shape functions suf-
fice for the interpolation of the additional independeniafales can generally not be
achieved for higher-order approximations. For instandegsmthe fourth-order term is
retained, so that the averaging equation (12) is replaced by

e- 1 Vie—-gVie=¢ (32)

with g; andg, two gradient constantg;*-continuous shape functions are necessary
for the interpolation of the nonlocal strain When incorporating the sixth-order term
C2-continuity is required, etc.

2.5. Broadening of the damage zone

We now consider the three-point bending beam of Figure 1 [Bi6¢ beam has the
dimensions 200& 300 mn? and a thickness of 50 mm. It is supported by hinges on
the left and right bottom corners, and is loaded by a disteithloadt over the central
section (100 mm) of the specimen.

A linear isotropic material is considered with modulus afsticity E = 20 GPa in
the undamaged state and Poisson’s ratie 0.2. Plane-strain conditions have been
assumed, and the local equivalent strain is given by:

1) = V(@) = yKe? + (@)? (33)

wheree; ande; are the principal strains, and the Macaulay brackets disisih between
tension and compression. The damage law proposed in Re&j&%5] has been used:

a9 = {° k=Ko (34)
- 1-2{(1-a)+aexp[Bko-«)]} «>«ko

with kg = 10, @ = 0.99 andg = 500. The gradient parameter is takengas:
200 mnt.
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Figure 1: Three-point bending specimen. The thicknesseo§fiecimen is 50 mm

(b)

Figure 2: Meshes for the three-point bending specimen: $eoaresh with 2,388 elements and fine mesh
with 9,552 elements

The computations have been done on the quadrilateral mesitégure 2. In the
central region of the beam, where the damage zone will evdigarchical refine-
ments [37] have been used to improve the resolution. Becthiesenesh is refined
hierarchically, the elements in the central region can Im &guare. The total number
of degrees of freedom with bilinear basis functions for kbthdisplacement field and
damage field is 7,246 for the coarse mesh and 28,816 for thenfisé.

A force F is defined as the distributed loadimes the area to which it has been
applied. The displacementhas been taken as the average downward displacement
of the loading region, see Figure 1. This displacement has beed as the constraint
in the path-following method used to trace the equilibriuathp The results obtained
for the second-order gradient formulation are shown in Fed1 As can be seen, the
results obtained using the coarse mesh are in good agrewiitiettiat of the fine mesh.

It is observed from Figure 4 that, upon propagation of the aiggnzone, it not
only extends, but also broadens. In Figure 5 the damage tte@lover the line
X1 € [-300 mm300 mm] andx, = 50 mm at various stages of the loading process
(measured by the downward deflectiop The broadeningfeect is clearly visible
from thed = 0.95 contour line, and is observed to be insensitive to the raigeh This
artefact was first observed in [35] and makes standard grad@mage formulations
less suitable to mimick a sharp crack. As indicated in [38] thoadeningfect is a
consequence of the continued increase of the local and calrdguivalent strain af-
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Figure 3: Mesh convergence study for the three-point bgnidéam using the second-order gradient formu-
lation, discretised using the meshes shown in Figure 2

(b)

Figure 4: Damage profiles for (a) = 0.875mm, and (bl = 2.00 mm obtained using the second-order
gradient formulation. Undamaged material is indicatedlire bfully damaged material in red

ter damage has fully developed. For the three-point bentéistgconsidered here, this
phenomenon s visualised in Figure 6.

In Figure 7 the broadening phenomenon is shown again, butfoiotie case that
the internal length scale of the damage formulation has beereased by a factor 2
(so that the gradient parametghas been decreased by a factor 4), and where use has
been made of the fine mesh of Figure 2. Figure 8 shows the moaygletect for the
damage field and the corresponding behavior of the localtendrhoothed equivalent
strain fields. The results show that for a smaller internagte scale the width of
the damage zone has decreased, but that the broadefeey remains. Indeed, the
problem can only be remedied by making the internal leng#tesa function of the
local equivalent strain. This, however, increases the edatjpnal éfort [35].
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Figure 5: Evolution of the damage profile along the ligee [-300 mm 300 mm] andx, = 50 mm as the
downward deflection of the loading boundauyjncreases, for the coarse (left) and the fine (right) meshes
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Figure 6: Evolution of the local (solid) and smoothed (dahequivalent strain profiles for both meshes
along the linex; € [-100 mm 100 mm] andk; = 50 mm as the downward deflection of the loading boundary,
u, increases, for the coarse (left) and the fine (right) meshes

3. The phase-field approach to brittle fracture

3.1. Formulation

The basic idea of phase-field models is to approximate a wiiseaty I' by a
smeared surfadg,. In a one-dimensional setting the exponential function

dx) =e# (35)

is used to approximate the discontinuous function of Fidi(eg, with ¢ the internal
length scale parameter. The phase-field variab& [0, 1] describes the phase field.
Following the earlier discussion on gradient-enhancedaggmmodels, the bar indi-
cates that a regularised (or spatially averaged) quastitpmsidered, and is defined
such thatd = 0 characterises the intact state of the material, whiel represents the
fully broken material, similar to the definition commonlyaated in damage mechan-
ics. In one dimension, Equation (35) is the solution to:

d—46%dy =0 (36)
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(b)

Figure 7: Damage profiles for (a) = 0.625mm, and (bl = 2.00 mm obtained using the second-order
gradient formulation, but with the internal length scalerdased by a factor 2, so that the gradient parameter
has decreased by a factorgi<£ 50 mn?)
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Figure 8: Evolution of the damage profile (left), and the I¢salid) and smoothed (dashed) equivalent strain
profiles (right) along the line; € [-300 mm 300 mm] andx, = 50 mm as the downward deflectiom, of
the loading boundary (fine mesh agé- 50 mn¥)

where a comma denotedi@irentiation, subject to the boundary conditiod€) = 1
andd(+o0) = 0. This can be demonstrated simply by applying the Ansatetiond =

e MM to Equation (36), solving for and subsequently using the boundary conditions
to determine the constant parameter. Using Equation (Z6jligtontinuityl” can be
approximated by the functionb}

(Y=, i2p
I, = fg E(d +40%d3) dv (37)
—————
Ye

with y, the crack surface density function, see [30] for detailsa multi-dimensional
settingy, can be expanded as follows:

ye = % (o + 4£°vd - vd) (38)

11
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Figure 9: (a) A sharp crack, and (b) smeared crack modellédthe length scale parameter

We consider a volum® with an internal discontinuity boundafy. As a starting
point we consider the potential energy for the case of a elisatescription of brittle
fracture in the Giffith sense [26]:

o= [ v+ [ Gean (39)
Q Iy

with the elastic energy density a function of the infinitesimal strain tenser ¢ =
Y&(e). The elastic energy density is expressed by Hooke’s lavaroisotropic linear
elastic material ag®(e) = %Aqi €jj + uaj&;, with A andu the Lamé constants, and the
summation convention applies. In Equation (39) the fracaurergy, i.e. the amount of
energy dissipated upon the creation of a unit of fracturéasar is denoted bg.. In
the spirit of a regularised crack topology, the work reqait@ create a unit crack area
is expressed as a volume integral which depends on the pletdedriabled and the

fracture energy.:
f GedA ~ f Geye(d, V) AV, (40)
T Q

The next step is inspired by damage mechanics concepts keslae the assump-
tion that the evolution of the phase field is directly relatearack growth. As such,
it can be thought of as a way to model the loss dfrstiss of the bulk of the solid.
For this purpose a degradation functioe: h(d) is introduced, which must satisfy the
following conditions:

h:[0,1] — [0, 1]
h0O)=1 , h(1)=0
h(d) <0 de[0,1]
h(1)=0
These properties ensure damage propagation and providggpan lbound to the phase
field d variable of one [31]. A quadratic polynomial is widely used:

(41)

h(d) = (1 - d)? (42)

12



In [27] the degradation functiomwas multiplied with the elastic energy density of the
undamaged statey, such that the elastic energy density of the damaged stds:re

¥%(e. d) = h(d)yo(e) (43)

This formulation was refined to account for the fact that dgenavolution occurs under
different straining modes [30, 38], and it was assumed that #®ti@knergy of the
undamaged state can be additively decomposed into a danaagedn intact part,
o = 1//8 + 1//‘0, such that the degradation functibonly acts on the damaged part:

(€. d) = h(d)wd(e) + vy(e) (44)

Substitution of Equations (40) and (44) into Equation (3@)ds the total potential
energy of the smeared formulation for brittle fracture:

Foor = [ (NAUE(E) + (e + Geyi(d. V) v (45)

Minimisation of ¥yt and introduction of a history fieldto enforce irreversibility [31]
lead to the equilibrium equation:

dive =0 (46)
and G
wwy+§§@—4ﬂv%)=o (47)

subject to the boundary conditions o = t, u = U, n - Vd = 0, with t andu the
prescribed boundary tractions and displacements, ragekyct We note that in the
phase-field literature often the symbd is used instead of to denote the history
variable. The present notation is preferred, however, amjphasises the similarity
with gradient-enhanced damage models. The Cauchy strasd the driving force™
are derived according to standard thermodynamic arguments

awd oyl

_ e 5% Mo
7= oe h(d) O€ * 3 (48)
and S0
F = -2 = - (d)x (49)

od
with € as defined in Equation (44). The history field reads:

« = maxy(e) (50)

3.2. Discrete format of phase-field models for brittle fraet
The spatial discretisation of the domain involves the feitay approximations:

u=Na , d=Nd (51)

with N andN containing the interpolation functions for the displacemtseand the phase
field, respectively. The arraysandd contain the discrete variables of the displacement

13



and the phase field. In order to capture possible snapbaciimein, the finite element
formulation can be augmented by an arc-length solver [38F fesulting set of cou-
pled, nonlinear equations is linearised and solved usingwatdh-Raphson iterative
scheme. For the iterative change of the state vector atigarathis gives:

-1

od Kaa Kau 9 A —f(ijnt
sul =|Kyg Ky -~ Jafext_fint (52)
oA K o’ h? Wl - kel
with L
fint = f [gc (ENTNT + 2€BTBT) d+ h'(d_)KNT] dv (53)
Q
fint — f B' (h(d)D" + D') BTudv (54)
Q
1"ext
@Y= Ef (ﬂoAU - AAUO) - At (55)
ofint ofint afint ofi A D
Kdd—m, du_m’KUd_ﬁ’ uu—m,h—ﬁ,w—a
(56)

wheref®is the normalised load vectorjs the load factorAr is the arc length, anB®
andD' correspond to the damaged and intact parts of the elagtigityix, respectively.
Ao andug are the converged values for the load factor and displacenéthe previous
increment.

3.3. Internal length scale and degradation function

To assess the impact of the internal length scale pararfieted the degradation
functiong we consider the one-dimensional bar of Figure 10. The baahasluced
thickness in the centre and is loaded at the right edge by fof. The Young's
modulus isE = 10MPa and the fracture toughnggs = 0.1N/mm. The bar has a
lengthL = 1mm and a thickneds = 1mm. The default value of the internal length
scale parameter is taken as: %. Since the problem is one—dimension@,z E and
¥, = 0. Hence, the degradation functibmlirectly acts on the Young’s modulis

b b b
/ / / )
/ / [
L L L
3 3 3
< L >

Figure 10: 1D tension test for a bar with a reduced thicknese centre
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—— 75 Elements, & = 0.0133mm
—— 150 Elements, A = 0.0067mm
—— 300 Elements, & = 0.0033mm

Force F in N

0() 2 4 6 8 10 12 14 16

Displacement v in mm 1072

Figure 11: Mesh refinement study for a constant length gtal®.05mm. The circles denote loading steps
where force control has been used and the triangles dereottahs where arc-length control has been used

The dependence on the length scéle shown in Figure 12 for a constant mesh
size (150 elementsigem = 0.0067mm), which respects the rule of thumib- hejem
to accurately approximate the crack topology [30]. Cleatyincreasing length scale
results in a decreasing peak force. This makesfiitadilt to interpret the length scale
parameter for the brittle model. Whitehas been introduced on purely mathematical
ground, independent from the mechanical field problem gls@mulations show that
the length scale parameter should be interpreted as a algtarameter, cf [38].

\ —— £ = 0.0500mm — £ = 0.0250mm —— £ = 0.0125mm \

0.8 - i

0.6 - i

Force F in N

0.4} |

| | | | 1 I T = - L L
00 2 4 6 8§ 10 12 14 16 18 20 22

Displacement « in mm 1072

Figure 12: Influence of the length scale parametdor a constant mesh size (150 elemertigem =
0.0067mm)

Figures 11 and 12 show that the model does not exhibit linkeetie behaviour
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prior to brittle fracture. Instead, the curves show nordrity from the onset of loading.
Therefore, a cubic degradation function has been propdsid [

h(d) = s((1 - d)* - (1 - d)?) + 3(1- d)? - 2(1 - d)® (57)

which can result in an almost linear behaviour prior to fiaglur he drawback is that an
additional parametesis introduced. The quadratic and the cubic degradatiortiome
are compared in Figure 13 usingf@rent values fos.

—— Quadratic —— Cubic s =1-10°
— Cubics =1-10"1 Cubics =1-1072

1.2+ .
1 - -
z 08 i
k= L
S 06) ]
Q
5 L
=
0.4} *
0.2 .
0 o LA I
0 2 4 6 8 10 12 14 16

Displacement u in mm 1072

Figure 13: Comparison of the quadratic and cubic degrauétinctions

Figure 14: Problem setup and finite element mesh for theesiedgie notched pure shear test.
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3.4. Two-dimensional example

We consider the single-edge notched specimen of Figurethdwrre shear bound-
ary conditions. A prescribed horizontal displacemestjs applied to the top bound-
ary. Plane-strain conditions and linear elasticity havenbassumed with the Lamé
parametersl = 12115 kN/mn? andu = 80.77 kN/mn?. The critical energy release
rateG. = 2.7- 10°°kN/mm. The fracture length scale is equalfte- 0.015mm. To
accurately capture the evolution of the phase field, the neestfined along the an-
ticipated crack path, Figure 14. In phase-field models fdtldrfracture the length
scale must be taken as small as possible to obtain an ac@ppateximation to the
underlying linear elastic fracture mechanics problem. dewtily, very fine grids are
then required. In this case, the characteristic elemestigizhis refinement region
helem = €/4 = 0.00375 mm, which results in 2872 elements.

[}

o

o
T

v
=]
o

7,

\
\

— Au,=4-10"mm

B

o

o
T

w
o
o

Force [N]

N
o
o

— " Au, =2.5-10" mimn
— Au,=1 10 mm

— A, =0.510"mm

=

=]

o
T

09000 0.605 0.610 0.615 0.020
Displacement [mm]

Figure 15: Phase-field solution and staggered solutiorrigthgo step size study for the single edge notched
pure shear test

Figure 15 gives the solution when the shear crack has dexglimost completely.
The force-displacement diagrams are shown for varioussites. The overestimation
of the amount of dissipated energy for large step sizes isextdionsequence of the
employed staggered solution procedure [41]. Most notdwoptowever, is that, dif-
ferent from the gradient-damage model, the crack does wailen in the wake of the
crack tip upon propagation.

4. Gradient-damage models and phase-field models for fracta: similarities and
differences

4.1. The dffusion equation in gradient-damage models

The Euler-Lagrange equations that govern the phase-fieldtsn are, cf. Equa-
tion (47):

G (58)
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where implicit use has been made of the natural boundaryittemah- - Vd = 0. In
the context of phase-field models for fracture this can berpreted as a condition
requiring cracks to be perpendicular to the external botieslaf the domain. The his-
tory parametex obeys the Kuhn-Tucker loading-unloading conditions wlith bbading
function defined as

f(e, ) = y3(e) — « (59)

The partial diferential equation that governs the evolution of the phakk fijua-
tion (58), is closely related to gradient-damage model§adh when defining the local
damage field as _

200 (dy«

d=
Ge

(60)

and the gradient parametgas
g=(20)? (61)

the implicit form of the damage equation (19) is recovered:

d-gvid=d

— loading
1.0
- - unloading

— loading
-~ unloading

0 2 4 6 8 10

€e/e.

Figure 16: Homogeneous solution to the one-dimensionadesfiald formulation in brittle fracture for the
degradation functioh(d) = (1 - d)?

4.2. One-dimensional solution for phase-field models uind@nogeneous deforma-
tions
The behavior of the phase-field model can further be illtsttdrom the homo-
geneous solution to the one-dimensional problem. Talgig'ng: %Eez, o = Ee and
h(d) = (1 - d)?, the homogeneous solution to Equation (58) shown in Figérés1
obtained. Hence, after afficient amount of damage has accumulated, i.edfct %,
a critical load level is reached, with

_ 3 |GE _ |G
T AY; “= VeE (62)

after which softening occurs. In the phase-field formulatimloading occurs using a
secant sfiness, similar to damage models. From the expression foritieat stress
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it is clear that when the internal length scdlgoes to zero, the critical stress goes
to infinity. This behavior of the phase-field model correctyplicates linear elastic
fracture mechanics, which is also not capable of nucledtangures in the absence of
singularities.

4.3. The driving force

As discussed, a markedfflirence between gradient-enhanced damage models and
the phase-field approach to brittle fracture is the obsemwahat the latter class of
models does not lead to a broadening of the damage zone iretkeeaf the tip of the
fracture process zone. This can be directly explained wberparing the expressions
that result from the driving force, defined in Equation (49).

For damage models the degradation function typically hadaimat

h(dy=1-d (63)
Substitution into Equation (49) then results in:
F =k (64)

HenceF does not vanish at complete loss of integrity, i.e. wenl, which explains

the continued broadening of the damage zone. Thisfierént for phase-field mod-
els. Indeed, the conditions that are imposed on the degoadanction, in particular

Equation (413, make that the driving force vanishes whar= 1. For instance, the
quadratic degradation function of Equation (42),

h(d) = (1 - d)? (65)

results in: _
F=0A-dx (66)

which becomes zero wheh= 1, and ensures a constant band width in the wake of the
crack tip.

5. Concluding remarks

The damage-based gradient-damage and the phase-fieldldtions are almost
identical in terms of their mathematical structure, andéfare the diference be-
tween gradient-damage models and phase-field models idymaitheir interpreta-
tion. Whereas in gradient-damage models the left-handdfiduation (19) can be
interpreted as a spatial averaging operator, the left-tsiohel in phase-field models,
Equation (58), follows from the regularised energy vaoatilue to fracture evolution.
The right-hand-side in Equation (19) can therefore be mtted as a local damage
field, while that in Equation (58) mimicks the thermodynarditving force for the
smeared fracture. It is in this right-hand side that the mekdvant dfferences en-
ter between gradient-damage models and phase-field madtddsttle fracture. From
Equation (60) we observe that the phase-field formulatidarally introduces a length
scale into the driving force for the damage field. In comboratvith the vanishing
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derivative of the degradation function at complete lossntégrity this ensures that,
once a phase field fracture has fully developed, it does mmden. Equation (60)
suggests that the vanishing derivative of the degradatinotion is key to driving the

internal length scale to zero, which closely resemblesaegiy proposed in gradient-
damage modeling to avoid damage zone broadening [35].
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