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Abstract

Gradient-enhanced damage models and phase-field models areseemingly very dis-
parate approaches to fracture. Whereas gradient-enhanceddamage models find their
roots in damage mechanics, which is a smeared approach from the onset, and gradients
were added to restore well-posedness beyond a critical strain level, the phase-field ap-
proach to brittle fracture departs from a discontinuous description of failure, where the
distribution function is regularised, leading to the inclusion of spatial gradients as well.
Herein, we will consider both approaches, and discuss theirsimilarities and differences.
The averaging (diffusion) equations for the averaging field and the phase-field will be
compared, and it is shown that the diffusion equation for the phase-field can be con-
ceived as a special case of the averaging equation of a gradient-damage model where
the damage is averaged. Further, the role of the driving force is examined, and it is
shown that subtle differences in the degradation functions commonly adopted in dam-
age and phase-field approaches are key to the observation that, different from damage
mechanics, the fracture process zone does not broaden in thewake of the crack tip.

Keywords: fracture, damage, gradient models, phase-field approach

1. Introduction

The numerical modelling to fracture can be approached from two different points
of view. Discrete models for fracture, where the geometrical discontinuity is modelled
as such, i.e. by modifying the geometry of the original, intact structure, are perhaps
intuitively the most appealing approach to fracture, and have been pursued since the
late 1960s [1]. Developments such as remeshing [2, 3], or theeXtended Finite Ele-
ment Method [4, 5, 6, 7, 8] have provided ways to decouple the crack path from the
underlying discretisation. Also, isogeometric finite element analysis behold promise to
flexibly model propagating cracks [9].
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Nevertheless, issues remain such as the proper modelling ofcurved crack fronts
in three dimensions, while the robust implementation of discrete cracks in a three-
dimensional setting is a non-trivial task, either when using remeshing, or when exploit-
ing the partition of unity concept as in the eXtended Finite Element Method. Hence,
smeared, or distributed, crack approaches have been put forward, where the disconti-
nuity is distributed over a finite width. Another interpretation is that the Dirac function
that arises for the strain at a discontinuity is replaced by asmooth function. The smear-
ing out of the discontinuity is accompanied by the introduction, at local continuum
level, of a stress-strain relation in which the limit strength is gradually reduced. The
strain-softening that is introduced in this manner, however, locally leads to a change of
the character of the governing partial differential equations: loss of ellipticity in case
of quasi-static analyses, and loss of hyperbolicity for dynamic calculations.

This change causes a loss of well-posedness of the rate boundary value problem,
which in turn causes a complete dependence of the numerical results on the discreti-
sation, not only with respect to mesh refinement but also, andespecially, with respect
to mesh alignment, since failure zones exhibit a strong tendency to propagate along
lines of discretisation. This tendency can be ameliorated by using elements in which
the kinematics have been enriched by locally adding shape functions that can capture a
discontinuity, e.g. [10, 11, 12, 13]. However, to avoid lossof well-posedness, the stan-
dard, rate-independent continuum must be enhanced. Several possibilities exist: adding
viscosity, e.g. [14, 15], adding couple stresses and conjugate kinematic quantities like
microcurvatures, micromorphic continua with the Cosseratcontinuum as the classical
example [16], see [17, 18] for a numerical implementation ofCosserat elasto-plasticity,
spatial averaging [19], and the introduction of a dependence on spatial strain gradients,
e.g. [20, 21] for gradient plasticity, and [22, 23, 24, 25] for gradient-enhanced damage
models. Especially the latter class of models has become popular for computational
analysis.

Another class of continuum descriptions of cracking has been developed in the
context of brittle fracture. Pioneering work has been done by [26, 27, 28], who pro-
posed a phase-field approximation of the variational formulation for Griffith’s theory
of brittle fracture based on the Mumfort-Shah potential [29]. A more mechanically
oriented formulation, which, however closely resembles the mentioned developments,
has been derived by [30, 31]. Subsequently, phase-field models have been applied to a
large variety of fracture problems, including dynamic problems [32, 33] and cohesive
fracture [34].

However, the point of departure of both models is different. In gradient damage
models intrinsically a mechanical approach is adopted, andthe damage model is reg-
ularised by adding gradients to restore well-posedness of the boundary value problem
in the post-peak regime. The basic idea of phase-field models, on the other hand, is to
replace the zero-width discontinuity by a small, but finite zone with sharp gradients in
a mathematically consistent manner. Indeed, the latter requirement inevitably leads to
the inclusion of spatial derivatives in the energy functional, similar to gradient damage
models.

To provide a proper setting we start by giving a brief outlineof damage models,
and their extension to nonlocality. An important issue in gradient damage models is
the observation that in the wake of the crack tip there is a broadening of the damage
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field. To eliminate this broadening it has been proposed to make the internal length
scale parameter a function of the local strain or damage level [35]. Next, a brief re-
view of the phase-field approach to brittle fracture is given, and the different point of
departure is emphasised. It is recalled that in this approach no broadening is observed
of the damage zone. It is also argued that the regularisationparameter and the degra-
dation function that are introduced are, in fact, material parameters, and have to be
calibrated to experiments. A discussion on the differences and similarities between
gradient-enhanced damage models and the phase-field approach to brittle fracture fol-
lows, including a comparison of the various formats of the diffusion equation for the
damage/phase field that ensues for the different formulations and a discussion of the
importance of the specific form of the driving force for the broadening of the damage
zone.

2. Nonlocal and gradient-enhanced damage models

2.1. Damage models

Herein, we restrict ourselves to an isotropic damage evolution, which is charac-
terised by a total stress-strain relation:

σσσ = (1− d1)E

(

(1− d2)ν
(1+ (1− d2)ν)(1− 2(1− d2)ν)

iii ⊗ iii +
1

1+ (1− d2)ν
I
)

: ǫǫǫ (1)

with iii the second-order identity tensor,I the fourth-order identity tensor,E the Young’s
modulus andν the Poisson ratio, which are degraded by the scalar damage variables
d1 andd2, respectively. A simplification is obtained by assuming thePoisson ratio to
remain constant during the damage process, so that:

σσσ = (1− d)De : ǫǫǫ (2)

with d a scalar damage variable which grows from zero to one (at complete loss of
integrity) andDe the fourth-order elastic stiffness tensor. For strain-based damage
models, the total stress-strain relation, Equation (2), iscomplemented by a damage
loading function

f = f (ǫ̃ , κ) (3)

with ǫ̃ a scalar-valued function of the strain tensor, andκ a history variable. The damage
loading functionf and the rate of the history variable, ˙κ, have to satisfy the discrete
Kuhn-Tucker loading-unloading conditions

f ≤ 0 , κ̇ ≥ 0 , κ̇ f = 0 (4)

The history parameterκ starts at a damage threshold levelκi and is updated by the
requirement that during damage growthf = 0. Damage growth occurs according to an
evolution equation, such that:

d = d(κ) (5)

which can be inferred from a uniaxial test.
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2.2. Nonlocal damage models

In a nonlocal generalisation, the equivalent strain ˜ǫ is normally replaced by a spa-
tially averaged quantity in the damage-loading function [19]:

f (ǭ , κ) = ǭ − κ (6)

where the nonlocal strain ¯ǫ is computed from

ǭ(x) =
1
Ψ(x)

∫

Ω

ψ(y, x)ǫ̃(y) dΩ, Ψ(x) =
∫

Ω

ψ(y, x) dΩ (7)

with ψ(y, x) a weight function. Often, the weight function is assumed tobe homoge-
neous and isotropic, so that it only depends on the norm

r =‖x − y‖ (8)

In this formulation, all the other relations remain local: the local stress-strain relation,
Equation (2), the loading-unloading conditions, Equation(4), and the dependence of
the damage variabled on the history parameter, Equation (5). As an alternative to
Equation (7), the local history parameterκ may be replaced in the damage-loading
function f by a spatially averaged quantity ¯κ, such that

f (ǫ, κ̄) = ǫ − κ̄ (9)

where

κ̄(x) =
1
Ψ(x)

∫

Ω

ψ(y, x)κ(y) dΩ (10)

2.3. Gradient-enhanced damage models

Nonlocal constitutive relations can be considered as a point of departure for con-
structing gradient models, although we wish to emphasise that the latter class of models
can also be defined directly by supplying higher-order gradients in the damage-loading
function. Yet, we will follow the first-mentioned route to underline the connection be-
tween integral and differential-type nonlocal models. This is done either by expanding
the kernel ˜ǫ of the integral in Equation (7) in a Taylor series, or by expanding of the
history parameterκ in Equation (10) as a Taylor series. If we truncate after the second-
order terms and carry out the integration implied in Equation (7) under the assumption
of isotropy, the following relation ensues:

ǭ = ǫ̃ + g∇2ǫ̃ (11)

whereg is a gradient parameter of the dimension length squared.
Equation (11) bears the disadvantage that it requires the computation of second-

order gradients of the local equivalent strain ˜ǫ. Since this quantity is a function of
the strain tensor, and since the strain tensor involves first-order derivatives of the dis-
placements, third-order derivatives of the displacementshave to be computed, which
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would necessitateC2-continuity of the shape functions. To obviate this problem, Equa-
tion (11) is differentiated twice and the result is substituted again into Equation (11).
Again neglecting fourth-order terms leads to

ǭ − g∇2ǭ = ǫ̃ (12)

In [25], see also [30], it has been shown that the implicit gradient formulation, Equa-
tion (12), becomes formally identical to a fully nonlocal formulation when, in three
dimensions, the weighting function is chosen as

ψ(y, x) =
1

4πgr
exp

(

− r
√

g

)

(13)

Indeed, the ’implicit gradient’ formulation has a truly nonlocal character, which is
different from the ’explicit gradient’ formulation, Equation (11).

In a fashion similar to the derivation of the gradient-damage models based on the
averaging of the equivalent strain ˜ǫ, we can elaborate a gradient approximation of Equa-
tion (10), i.e. by developing ¯κ in a Taylor series. For an isotropic, infinite medium, and
truncating after the second term, we have [23]:

κ̄ = κ + g∇2κ (14)

Similar to the second-order gradient model where the nonlocal strain has been ex-
panded, an ’implicit’ version can be developed by differentiating Equation (14) twice
and substituting the result back into Equation (14). Neglecting fourth-order terms then
yields:

κ̄ − g∇2κ̄ = κ (15)

A spatially averaged damage field̄d is now defined as a function of ¯κ: d̄ = d̄(κ̄).
Taking the special case of a linear relation betweend̄ andκ̄ [23, 24]:

d̄ = κ̄0 + aκ̄ (16)

Equation (15) becomes

d̄− g
a
∇2d̄ = κ̄0 + aκ (17)

or, settingd = κ̄0 + aκ andg′ = g/a,

d̄− g′∇2d̄ = d (18)

In the remainder the prime will be omitted for notational convenience – noting that
the gradient parameterg will have a different meaning depending on the exact gradient
formulation – and we will write for the averaging equation ofthe nonlocal damage
field:

d̄− g∇2d̄ = d (19)
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2.4. Discrete format of gradient-damage models

Numerical schemes for gradient-enhanced continua typically have the character
of a coupled problem and commonly depart from the weak form ofthe balance of
momentum, ∫

Ω

∇symηηη : σσσ dΩ =
∫

Γ

ηηη · t̄ dΓ (20)

with ηηη the test function for the displacements andt̄ the prescribed boundary tractions,
and a weak form of the averaging equation. For example, for the strain-based implicit
gradient damage model, Equation (12), one has:

∫

Ω

ζ(ǭ − g∇2ǭ − ǫ̃) dΩ = 0 (21)

with ζ the test function for the nonlocal strain ¯ǫ. Transforming Equation (21) using the
divergence theorem and the natural boundary conditionnΓ ·∇ǭ = 0, withnΓ the normal
to the external boundaryΓ, yields:

∫

Ω

(ζǭ + g∇ζ · ∇ǭ) dΩ =
∫

Ω

ζǫ̃ dΩ (22)

The displacementsu and the nonlocal strains ¯ǫ are discretised as:

u = Na and ǭ = N̄e (23)

with N and N̄ containing the interpolation polynomials. In a Bubnov-Galerkin ap-
proach we have for the test functions

ηηη = Nw and ζ = N̄z (24)

Substitution into Equations (20) and (22), and requiring that the result holds for arbi-
trary (w, z) yields the discrete formats of the equilibrium equation:

∫

Ω

BTσσσdΩ =
∫

Γ

NTtp dΓ (25)

and the averaging equation:
∫

Ω

(N̄TN̄ + g(∇N̄)T∇N̄) dΩ =
∫

Ω

N̄Tǫ̃ǫǫ dΩ (26)

The tangent stiffness matrix needed for an iterative solution via the Newton-Raphson
method reads [22]:

[

Kaa Kae

Kea Kee

] (

da
de

)

=

(

f ext
a − f int

a

f int
e − Keee

)

(27)

6



with f int
e given by the right-hand side of Equation (26). The stiffness matrices are given

by

Kaa =

∫

Ω

(1− d)BTDeB dΩ (28)

Kae =

∫

Ω

qBTDeǫǫǫN̄ dΩ (29)

Kea =

∫

Ω

N̄T

(

∂ǫ̃

∂ǫǫǫ

)

B dΩ (30)

Kee =

∫

Ω

(

N̄TN̄ + g(∇N̄)T∇N̄
)

dΩ (31)

whereq = ∂d
∂κ

for loading and vanishes otherwise.
In the above we have restricted the discussion to the case of the second-order im-

plicit gradient-damage model. Unlike for this second-order approximation to the non-
local damage model, an order reduction such thatC0-continuous shape functions suf-
fice for the interpolation of the additional independent variables can generally not be
achieved for higher-order approximations. For instance, when the fourth-order term is
retained, so that the averaging equation (12) is replaced by

ǭ − g1∇2ǭ − g2∇4ǭ = ǫ̃ (32)

with g1 andg2 two gradient constants,C1-continuous shape functions are necessary
for the interpolation of the nonlocal strain ¯ǫ. When incorporating the sixth-order term
C2-continuity is required, etc.

2.5. Broadening of the damage zone

We now consider the three-point bending beam of Figure 1 [36]. The beam has the
dimensions 2000× 300 mm2 and a thickness of 50 mm. It is supported by hinges on
the left and right bottom corners, and is loaded by a distributed loadt̄ over the central
section (100 mm) of the specimen.

A linear isotropic material is considered with modulus of elasticityE = 20 GPa in
the undamaged state and Poisson’s ratioν = 0.2. Plane-strain conditions have been
assumed, and the local equivalent strain is given by:

η(ǫ) =
√

〈ǫi〉2 =
√

〈ǫ1〉2 + 〈ǫ2〉2 (33)

whereǫ1 andǫ2 are the principal strains, and the Macaulay brackets distinguish between
tension and compression. The damage law proposed in Reference [35] has been used:

d(κ) =






0 κ ≤ κ0

1− κ0
κ

{

(1− α) + αexp
[

β(κ0 − κ)
]}

κ > κ0
(34)

with κ0 = 10−4, α = 0.99 andβ = 500. The gradient parameter is taken asg =
200 mm2.
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Figure 1: Three-point bending specimen. The thickness of the specimen is 50 mm

(a)

(b)

Figure 2: Meshes for the three-point bending specimen: Coarse mesh with 2,388 elements and fine mesh
with 9,552 elements

The computations have been done on the quadrilateral meshesof Figure 2. In the
central region of the beam, where the damage zone will evolve, hierarchical refine-
ments [37] have been used to improve the resolution. Becausethe mesh is refined
hierarchically, the elements in the central region can be kept square. The total number
of degrees of freedom with bilinear basis functions for boththe displacement field and
damage field is 7,246 for the coarse mesh and 28,816 for the finemesh.

A force F is defined as the distributed load̄t times the area to which it has been
applied. The displacement ¯u has been taken as the average downward displacement
of the loading region, see Figure 1. This displacement has been used as the constraint
in the path-following method used to trace the equilibrium path. The results obtained
for the second-order gradient formulation are shown in Figure 3. As can be seen, the
results obtained using the coarse mesh are in good agreementwith that of the fine mesh.

It is observed from Figure 4 that, upon propagation of the damage zone, it not
only extends, but also broadens. In Figure 5 the damage is plotted over the line
x1 ∈ [−300 mm, 300 mm] andx2 = 50 mm at various stages of the loading process
(measured by the downward deflection ¯u). The broadening effect is clearly visible
from thed = 0.95 contour line, and is observed to be insensitive to the meshsize. This
artefact was first observed in [35] and makes standard gradient damage formulations
less suitable to mimick a sharp crack. As indicated in [35] the broadening effect is a
consequence of the continued increase of the local and nonlocal equivalent strain af-
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Figure 3: Mesh convergence study for the three-point bending beam using the second-order gradient formu-
lation, discretised using the meshes shown in Figure 2

(a)

(b)

Figure 4: Damage profiles for (a) ¯u = 0.875 mm, and (b) ¯u = 2.00 mm obtained using the second-order
gradient formulation. Undamaged material is indicated in blue, fully damaged material in red

ter damage has fully developed. For the three-point bendingtest considered here, this
phenomenon is visualised in Figure 6.

In Figure 7 the broadening phenomenon is shown again, but nowfor the case that
the internal length scale of the damage formulation has beendecreased by a factor 2
(so that the gradient parameterg has been decreased by a factor 4), and where use has
been made of the fine mesh of Figure 2. Figure 8 shows the broadening effect for the
damage field and the corresponding behavior of the local and the smoothed equivalent
strain fields. The results show that for a smaller internal length scale the width of
the damage zone has decreased, but that the broadening effect remains. Indeed, the
problem can only be remedied by making the internal length scale a function of the
local equivalent strain. This, however, increases the computational effort [35].
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Figure 5: Evolution of the damage profile along the linex1 ∈ [−300 mm,300 mm] andx2 = 50 mm as the
downward deflection of the loading boundary, ¯u, increases, for the coarse (left) and the fine (right) meshes
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Figure 6: Evolution of the local (solid) and smoothed (dashed) equivalent strain profiles for both meshes
along the linex1 ∈ [−100 mm, 100 mm] andx2 = 50 mm as the downward deflection of the loading boundary,
ū, increases, for the coarse (left) and the fine (right) meshes

3. The phase-field approach to brittle fracture

3.1. Formulation

The basic idea of phase-field models is to approximate a discontinuity Γ by a
smeared surfaceΓℓ. In a one-dimensional setting the exponential function

d̄(x) = e−
|x|
2ℓ (35)

is used to approximate the discontinuous function of Figure9(a), with ℓ the internal
length scale parameter. The phase-field variabled̄ ∈ [0, 1] describes the phase field.
Following the earlier discussion on gradient-enhanced damage models, the bar indi-
cates that a regularised (or spatially averaged) quantity is considered, and̄d is defined
such thatd̄ = 0 characterises the intact state of the material, whiled̄ = 1 represents the
fully broken material, similar to the definition commonly adopted in damage mechan-
ics. In one dimension, Equation (35) is the solution to:

d̄− 4ℓ2d̄,xx = 0 (36)
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(a)

(b)

Figure 7: Damage profiles for (a) ¯u = 0.625 mm, and (b) ¯u = 2.00 mm obtained using the second-order
gradient formulation, but with the internal length scale decreased by a factor 2, so that the gradient parameter
has decreased by a factor 4 (g = 50 mm2)
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Figure 8: Evolution of the damage profile (left), and the local (solid) and smoothed (dashed) equivalent strain
profiles (right) along the linex1 ∈ [−300 mm, 300 mm] andx2 = 50 mm as the downward deflection, ¯u, of
the loading boundary (fine mesh andg = 50 mm2)

where a comma denotes differentiation, subject to the boundary conditions:d̄(0) = 1
andd̄(±∞) = 0. This can be demonstrated simply by applying the Ansatz function d̄ =
e−|λ||x| to Equation (36), solving forλ and subsequently using the boundary conditions
to determine the constant parameter. Using Equation (36) the discontinuityΓ can be
approximated by the functionalΓℓ

Γℓ =

∫

Ω

1
4ℓ

(

d̄2 + 4ℓ2d̄2
,x

)

︸              ︷︷              ︸

γℓ

dV (37)

with γℓ the crack surface density function, see [30] for details. Ina multi-dimensional
settingγℓ can be expanded as follows:

γℓ =
1
4ℓ

(

d̄2 + 4ℓ2∇d̄ · ∇d̄
)

(38)
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Figure 9: (a) A sharp crack, and (b) smeared crack modelled with the length scale parameterℓ

We consider a volumeΩ with an internal discontinuity boundaryΓd. As a starting
point we consider the potential energy for the case of a discrete description of brittle
fracture in the Griffith sense [26]:

Ψpot =

∫

Ω

ψe(ǫ) dV +
∫

Γd

Gc dA (39)

with the elastic energy densityψe a function of the infinitesimal strain tensorǫ: ψe =

ψe(ǫǫǫ). The elastic energy density is expressed by Hooke’s law foran isotropic linear
elastic material asψe(ǫ) = 1

2λǫii ǫ j j + µǫi j ǫi j , with λ andµ the Lamé constants, and the
summation convention applies. In Equation (39) the fracture energy, i.e. the amount of
energy dissipated upon the creation of a unit of fracture surface, is denoted byGc. In
the spirit of a regularised crack topology, the work required to create a unit crack area
is expressed as a volume integral which depends on the phase field variabled̄ and the
fracture energyGc: ∫

Γd

GcdA ≈
∫

Ω

Gcγℓ(d̄,∇d̄) dV. (40)

The next step is inspired by damage mechanics concepts and relies on the assump-
tion that the evolution of the phase field is directly relatedto crack growth. As such,
it can be thought of as a way to model the loss of stiffness of the bulk of the solid.
For this purpose a degradation functionh = h(d̄) is introduced, which must satisfy the
following conditions:






h : [0, 1]→ [0, 1]

h(0) = 1 , h(1) = 0

h′(d̄) < 0 d̄ ∈ [0, 1[

h′(1) = 0

(41)

These properties ensure damage propagation and provide an upper bound to the phase
field d̄ variable of one [31]. A quadratic polynomial is widely used:

h(d̄) = (1− d̄)2 (42)
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In [27] the degradation functionh was multiplied with the elastic energy density of the
undamaged state,ψ0, such that the elastic energy density of the damaged state reads:

ψe(ǫǫǫ, d̄) = h(d̄)ψ0(ǫǫǫ) (43)

This formulation was refined to account for the fact that damage evolution occurs under
different straining modes [30, 38], and it was assumed that the elastic energy of the
undamaged state can be additively decomposed into a damagedand an intact part,
ψ0 = ψ

d
0 + ψ

i
0, such that the degradation functionh only acts on the damaged part:

ψe(ǫǫǫ, d̄) = h(d̄)ψd
0(ǫǫǫ) + ψi

0(ǫǫǫ) (44)

Substitution of Equations (40) and (44) into Equation (39) yields the total potential
energy of the smeared formulation for brittle fracture:

Ψpot =

∫

Ω

(

h(d̄)ψd
0(ǫǫǫ) + ψi

0(ǫǫǫ) + Gcγℓ(d̄,∇d̄)
)

dV (45)

Minimisation ofΨpot and introduction of a history fieldκ to enforce irreversibility [31]
lead to the equilibrium equation:

divσσσ = 0 (46)

and

h′(d̄)κ +
Gc

2ℓ

(

d̄− 4ℓ2∇2d̄
)

= 0 (47)

subject to the boundary conditionsn · σσσ = t̄, u = ū, n · ∇d̄ = 0, with t̄ and ū the
prescribed boundary tractions and displacements, respectively. We note that in the
phase-field literature often the symbolH is used instead ofκ to denote the history
variable. The present notation is preferred, however, as itemphasises the similarity
with gradient-enhanced damage models. The Cauchy stressσσσ and the driving forceF
are derived according to standard thermodynamic arguments:

σσσ =
∂ψe

∂ǫǫǫ
= h(d̄)

∂ψd
0

∂ǫǫǫ
+
∂ψi

0

∂ǫǫǫ
(48)

and

F = −∂ψ
e

∂d̄
= −h′(d̄)κ (49)

with ψe as defined in Equation (44). The history field reads:

κ = maxψd
0(ǫǫǫ) (50)

3.2. Discrete format of phase-field models for brittle fracture

The spatial discretisation of the domain involves the following approximations:

u = Na , d̄ = N̄d (51)

with N andN̄ containing the interpolation functions for the displacements and the phase
field, respectively. The arraysa andd contain the discrete variables of the displacement
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and the phase field. In order to capture possible snapback behaviour, the finite element
formulation can be augmented by an arc-length solver [39]. The resulting set of cou-
pled, nonlinear equations is linearised and solved using a Newton-Raphson iterative
scheme. For the iterative change of the state vector at iteration k this gives:





δd
δu
δλ





k

=





Kdd Kdu 0
Kud Kuu −f̂ ext

0T hT w





−1

k−1





−f int
d

λf̂ ext− f int
u

−ϕ





k−1

(52)

with

f int
d =

∫

Ω

[

Gc

(

1
2ℓ

NTNT + 2ℓBTBT

)

d + h′(d̄)κNT

]

dV (53)

f int
u =

∫

Ω

BT
(

h(d̄)Dd + Di
)

BTudV (54)

ϕ =
1
2

f̂ ext (λ0∆u − ∆λu0) − ∆τ (55)

Kdd =
∂f int

d

∂d
, Kdu =

∂f int
d

∂u
, Kud =

∂f int
u

∂d
, Kuu =

∂f int
u

∂u
, h =

∂ϕ

∂u
, w =

∂ϕ

∂λ
(56)

wheref̂ ext is the normalised load vector,λ is the load factor,∆τ is the arc length, andDd

andDi correspond to the damaged and intact parts of the elasticitymatrix, respectively.
λ0 andu0 are the converged values for the load factor and displacements of the previous
increment.

3.3. Internal length scale and degradation function

To assess the impact of the internal length scale parameterℓ and the degradation
functiong we consider the one-dimensional bar of Figure 10. The bar hasa reduced
thickness in the centre and is loaded at the right edge by a force λ f̂ . The Young’s
modulus isE = 10MPa and the fracture toughnessGc = 0.1N/mm. The bar has a
lengthL = 1mm and a thicknessb = 1mm. The default value of the internal length
scale parameter is taken asℓ = L

20. Since the problem is one-dimensional,ψd
0 = E and

ψi
0 = 0. Hence, the degradation functionh directly acts on the Young’s modulusE.

λf̂

b b
2

b

L

L
3

L
3

L
3

Figure 10: 1D tension test for a bar with a reduced thickness in the centre
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Figure 11: Mesh refinement study for a constant length scaleℓ = 0.05mm. The circles denote loading steps
where force control has been used and the triangles denote the steps where arc-length control has been used

The dependence on the length scaleℓ is shown in Figure 12 for a constant mesh
size (150 elements,helem = 0.0067mm), which respects the rule of thumbℓ > helem

to accurately approximate the crack topology [30]. Clearly, an increasing length scale
results in a decreasing peak force. This makes it difficult to interpret the length scale
parameter for the brittle model. Whileℓ has been introduced on purely mathematical
ground, independent from the mechanical field problem, these simulations show that
the length scale parameter should be interpreted as a material parameter, cf [38].
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Figure 12: Influence of the length scale parameterℓ for a constant mesh size (150 elements,helem =

0.0067mm)

Figures 11 and 12 show that the model does not exhibit linear elastic behaviour
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prior to brittle fracture. Instead, the curves show nonlinearity from the onset of loading.
Therefore, a cubic degradation function has been proposed [40],

h(d̄) = s((1− d̄)3 − (1− d̄)2) + 3(1− d̄)2 − 2(1− d̄)3 (57)

which can result in an almost linear behaviour prior to failure. The drawback is that an
additional parameters is introduced. The quadratic and the cubic degradation functions
are compared in Figure 13 using different values fors.
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Figure 13: Comparison of the quadratic and cubic degradation functions

Figure 14: Problem setup and finite element mesh for the single edge notched pure shear test.
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3.4. Two-dimensional example

We consider the single-edge notched specimen of Figure 14 with pure shear bound-
ary conditions. A prescribed horizontal displacement, ¯us, is applied to the top bound-
ary. Plane-strain conditions and linear elasticity have been assumed with the Lamé
parametersλ = 121.15 kN/mm2 andµ = 80.77 kN/mm2. The critical energy release
rateGc = 2.7 · 10−3 kN/mm. The fracture length scale is equal toℓ = 0.015 mm. To
accurately capture the evolution of the phase field, the meshis refined along the an-
ticipated crack path, Figure 14. In phase-field models for brittle fracture the length
scale must be taken as small as possible to obtain an accurateapproximation to the
underlying linear elastic fracture mechanics problem. Evidently, very fine grids are
then required. In this case, the characteristic element size in this refinement region
helem= ℓ/4 = 0.00375 mm, which results in 26, 472 elements.

Figure 15: Phase-field solution and staggered solution algorithm step size study for the single edge notched
pure shear test

Figure 15 gives the solution when the shear crack has developed almost completely.
The force-displacement diagrams are shown for various stepsizes. The overestimation
of the amount of dissipated energy for large step sizes is a direct consequence of the
employed staggered solution procedure [41]. Most noteworthy, however, is that, dif-
ferent from the gradient-damage model, the crack does not broaden in the wake of the
crack tip upon propagation.

4. Gradient-damage models and phase-field models for fracture: similarities and
differences

4.1. The diffusion equation in gradient-damage models

The Euler-Lagrange equations that govern the phase-field evolution are, cf. Equa-
tion (47):

d̄− 4ℓ2∇2d̄ = −2ℓh′(d̄)κ
Gc

(58)
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where implicit use has been made of the natural boundary condition nΓ · ∇d̄ = 0. In
the context of phase-field models for fracture this can be interpreted as a condition
requiring cracks to be perpendicular to the external boundaries of the domain. The his-
tory parameterκ obeys the Kuhn-Tucker loading-unloading conditions with the loading
function defined as

f (ǫ, κ) = ψd
0(ǫ) − κ (59)

The partial differential equation that governs the evolution of the phase field, Equa-
tion (58), is closely related to gradient-damage models. Infact, when defining the local
damage field as

d = −2ℓh′(d̄)κ
Gc

(60)

and the gradient parameterg as
g = (2ℓ)2 (61)

the implicit form of the damage equation (19) is recovered:

d̄− g∇2d̄ = d

0 2 4 6 8 10
ǫ/ǫc
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unloading
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ǫ/ǫc

0.0
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0.6
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σ
/σ

c
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unloading

Figure 16: Homogeneous solution to the one-dimensional phase-field formulation in brittle fracture for the
degradation functionh(d̄) = (1− d̄)2

4.2. One-dimensional solution for phase-field models underhomogeneous deforma-
tions

The behavior of the phase-field model can further be illustrated from the homo-
geneous solution to the one-dimensional problem. Takingψd

0 =
1
2Eǫ2, σ = Eǫ and

h(d̄) = (1 − d̄)2, the homogeneous solution to Equation (58) shown in Figure 16 is
obtained. Hence, after a sufficient amount of damage has accumulated, i.e. ford̄c =

1
4,

a critical load level is reached, with

σc =
9
16

√

GcE
6ℓ

ǫc =

√

Gc

6ℓE
(62)

after which softening occurs. In the phase-field formulation unloading occurs using a
secant stiffness, similar to damage models. From the expression for the critical stress
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it is clear that when the internal length scaleℓ goes to zero, the critical stress goes
to infinity. This behavior of the phase-field model correctlyreplicates linear elastic
fracture mechanics, which is also not capable of nucleatingfractures in the absence of
singularities.

4.3. The driving force

As discussed, a marked difference between gradient-enhanced damage models and
the phase-field approach to brittle fracture is the observation that the latter class of
models does not lead to a broadening of the damage zone in the wake of the tip of the
fracture process zone. This can be directly explained when comparing the expressions
that result from the driving force, defined in Equation (49).

For damage models the degradation function typically has the format

h(d̄) = 1− d̄ (63)

Substitution into Equation (49) then results in:

F = κ (64)

Hence,F does not vanish at complete loss of integrity, i.e. whend̄ = 1, which explains
the continued broadening of the damage zone. This is different for phase-field mod-
els. Indeed, the conditions that are imposed on the degradation function, in particular
Equation (41)3, make that the driving force vanishes whend̄ = 1. For instance, the
quadratic degradation function of Equation (42),

h(d̄) = (1− d̄)2 (65)

results in:
F = (1− d̄)κ (66)

which becomes zero when̄d = 1, and ensures a constant band width in the wake of the
crack tip.

5. Concluding remarks

The damage-based gradient-damage and the phase-field formulations are almost
identical in terms of their mathematical structure, and therefore the difference be-
tween gradient-damage models and phase-field models is mainly in their interpreta-
tion. Whereas in gradient-damage models the left-hand sideof Equation (19) can be
interpreted as a spatial averaging operator, the left-handside in phase-field models,
Equation (58), follows from the regularised energy variation due to fracture evolution.
The right-hand-side in Equation (19) can therefore be interpreted as a local damage
field, while that in Equation (58) mimicks the thermodynamicdriving force for the
smeared fracture. It is in this right-hand side that the mostrelevant differences en-
ter between gradient-damage models and phase-field models for brittle fracture. From
Equation (60) we observe that the phase-field formulation naturally introduces a length
scale into the driving force for the damage field. In combination with the vanishing
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derivative of the degradation function at complete loss of integrity this ensures that,
once a phase field fracture has fully developed, it does not broaden. Equation (60)
suggests that the vanishing derivative of the degradation function is key to driving the
internal length scale to zero, which closely resembles a strategy proposed in gradient-
damage modeling to avoid damage zone broadening [35].
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[37] A.V. Vuong, C. Giannelli, B. Jüttle, B. Simeon, A hierarchical approach to adap-
tive local refinement in isogeometric analysis, Computer Methods in Applied Me-
chanics and Engineering 200 (2011) 3554–3567.

[38] H. Amor, J.-J. Marigo, C. Maurini, Regularized formulation of the variational
brittle fracture with unilateral contact: Numerical experiments, Journal of the
Mechanics and Physics of Solids 57 (2009) 1209–1229.

[39] R. de Borst, M.A. Crisfield, J.J.C. Remmers, C.V. Verhoosel, Nonlinear Finite
Element Analysis of Solids and Structures. John Wiley & Sons, Chichester, 2012.

22



[40] M.J. Borden, Isogeometric Analysis of Phase-Field Models for Dynamic Brittle
and Ductile Fracture. PhD Thesis, The University of Texas atAustin (2012).

[41] J. Vignollet, S. May, R. de Borst, C.V. Verhoosel, Phase-field models for brittle
and cohesive fracture, Meccanica 49 (2014) 2587–2601.

23


