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Abstract 

 
  
We study the international propagation of financial conditions from the 
United States to global financial markets. The impact is highly 
heterogeneous alongside the quantiles of the distribution of the two major 
funding sources, credit and equity. Indeed, it is greater on the lower 
quantiles, which means that analogous to vulnerable growth episodes, 
examined by the past literature, there exist as well vulnerable funding 
periods of a global scale, originated from financial weakness in the US. 
These episodes are related to downside risk in terms of credit creation and 
firms’ market value around the world. Our estimates differentiate between 
first and second moment (i.e. uncertainty) shocks to financial conditions. 
This distinction proves to be relevant as it uncovers a complex propagation 
of shocks via different economic channels. On the one hand, credit growth 
largely responds to first moment shocks of US financial conditions four 
quarters after their occurrence, which is consistent with a credit view 
explanation of the transmission. On the other hand, stock markets react 
more sensitively and rapidly (mainly within a quarter) to second moment 
shocks, which can be theoretically associated with a portfolio channel 
underlying the shocks spread. We also document a heterogeneous impact 
across countries. In the case of credit growth this heterogeneity is better 
explained by the size or depth of the markets, while in the case of stock 
markets, the explanation is rooted on the strength of the financial 
connectedness with the US. 
 

 
 
JEL classification: E44, F34, F37, F44, G15. 
 
 
 
Keywords: Financial conditions, Financial uncertainty, Quantile regression, Credit growth, Stock 
market. 

 
 
 
Helena Chuliá: Riskcenter- IREA, Department of Econometrics, University of Barcelona, 
Av.Diagonal, 690, 08034. Barcelona, Spain. Email: hchulia@ub.edu 
 
Ignacio Garrón: University of Barcelona, Av.Diagonal, 690, 08034. Barcelona, Spain. Email: 
ignaciogarron@gmail.com 
 
Jorge M. Uribe: Riskcenter- IREA, University of Barcelona, Faculty of Economics and Business, 
Open University of Catalonia, Barcelona, Spain. Email: juribeg@uoc.edu 
  
 
 
 
 
 
 



 2 

1. Introduction 

An influential group of recent studies has documented significant predictive power of financial 

conditions on real economic activity during distressed macroeconomic scenarios, that is, on 

the left (and negative) tail of the GDP growth distribution. This literature, pioneered by the 

works of Giglio et al. (2016) and Adrian et al. (2018, 2019) has coined the term Growth at Risk 

(GaR), which echoes the concept of Value at Risk, widely used and understood by regulators 

and practitioners everywhere for at least two decades1 . In fact, the indicator has gained 

popularity among international regulators to the point of becoming part of the toolkit of 

central banks and financial supervisors available to monitor financial stability. Hence, 

estimating and reporting the lowest quantiles of the GDP distribution, predicted by financial 

conditions, one or several quarters ahead, has become standard practice (Prasad et al., 2019). 

This practice, which originated as a domestic economy exercise, in which the aim was to 

predict the GDP of the US with an index of financial conditions of the same country, usually 

the National Financial Conditions Index (NFCI)2, quickly became global in nature, so the 

ability of financial conditions to predict the left tail of economic activity in a relatively large set 

of different countries has been examined and evaluated as well (e.g. Brownlees and Souza, 

2020; Arrigoni et al. 2020).  

We contribute to this literature in three ways. i) First, unlike previous studies that examine the 

effect of financial conditions on international real economic activity, we focus on a crucial 

intermediate step:  We study how financial conditions in the US impact funding markets (credit 

and stocks) on a large set of countries around the world, under macro-financial distress 

scenarios. In other words, we focus on vulnerable funding instead of vulnerable growth. This 

intermediate step is crucial because financial shocks do not transit directly, or in a vacuum, 

from the US to the global economic activity. On the contrary, US financial conditions mainly 

impact global economic activity by deteriorating funding opportunities for households and 

firms around the world. This distinction is also important from a policy perspective, because it 

is at this intermediate financial level where policies that seek to safeguard the financial stability 

                                                        
1 See as well on the vulnerable growth literature the works by Kiley (2018), Boyarchenko et al. (2019), Loria et al. 
(2019), Figueres and Jarociński (2020), and Delle Monache et al. (2020).  
2 The NFCI calculated by the Chicago’s Fed captures financial risk, leverage, and credit quality within a single 
indicator. It offers a comprehensive view of U.S. financial conditions in money debt and equity markets alongside 
both, traditional and shadow banking systems.  
 



 3 

of domestic economies can expect to exert some type of mitigation of the adverse effects of 

the large and negative financial shocks that may emerge from the United States market. In this 

respect we document a larger and more significant impact of US Financial conditions on the 

lowest quantiles of credit and stock prices on a global scale than on the central quantiles. ii) 

Second, also unlike the previous literature, we acknowledge that financial conditions must be 

understood in a broader sense that includes not only changes in the first moment of financial 

conditions (as measured by the NFCI) but also changes in the second moment of financial 

conditions (which are better approximated by the index of financial uncertainty proposed by 

Ludvigson et al. (2021)). First and second moment shocks impact in dissimilar ways global 

funding. On the one hand, credit growth largely responds to first moment shocks in US 

financial conditions four quarters after their origination, which is consistent with a reduction of 

international funding sources for financing domestic investment, and therefore with the 

international credit view for the transmission of financial shocks across different countries. On the 

other hand, stock markets react more sensitively and rapidly (mainly within a quarter) to 

second moment shocks. This latter effect is more consistent with an expectations channel of 

the transmission of shocks, which in turn is associated with likely portfolio rebalancing by 

international portfolio holders, following an increase of US financial uncertainty. We 

empirically show that both channels, the credit view and the portfolio view are complementary, and 

both are necessary to understand how financial conditions in the US spillover to the rest of the 

world. iii) Third, we examine what is the most likely reason for a given country’s vulnerability 

to changes in the financial conditions of the US. Namely, we test whether such vulnerability 

can be explained by the size or depth of a country’s financial market, as it can be inferred from 

previous studies (e.g., Alfaro et al., 2004; Kalemli-Özcan, 2019), or if the explanation is rooted 

on the strength of the financial connectedness of a given country with the US. We show that 

the answer depends on whether we focus on credit or stock markets. In the case of credit 

markets, the most persistent and negative outcomes in terms of vulnerability are clearly more 

associated with the size or depth of the market while, in the case of stock markets, vulnerable 

funding episodes are associated with financial closeness to the US. This result sheds new lights 

on the problem compared to the previous literature, which does not employ the large number 

of countries that we consider, and also does not focus on the macro-financially distressed 

scenarios when funding is vulnerable. 
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To achieve our objectives we analyze vulnerable funding around the world. Vulnerable funding 

consists of two indicators: Credit at Risk (CaR) and Equity at Risk (EaR). The former refers to 

the impact of financial conditions of the US (including financial uncertainty) on the lowest 

quantiles of real credit growth and the second, on the lowest quantiles of the stock market 

prices. Loans and shares are the two main funding sources used by corporations to finance 

their operations, especially their investment (Parson and Titman, 2008; Fama and French, 

2012). Therefore, evaluating the impact of financial conditions of the world’s largest economy, 

on the lowest quantiles of the growth of credit and stock prices of the rest of the world is a 

crucial gap in the literature that we aim to remedy. Our approach intends to be comprehensive, 

thus we include more than 40 countries in our estimations, with information spanning six 

decades (from 1960 to 2019) in most of the cases. Our data set consists of economies in all 

stages of development and comprises all sorts of recessionary and non-recessionary periods. 

To the best of our knowledge no previous article within the vulnerable growth literature has 

relied on such a large data set to back-up its claims.  

Methodologically speaking, thanks to the multinational point of view that we adopt, we are 

able to circumvent two controversial issues regarding the identification of the estimated effects 

in the vulnerable growth literature. The first one related to the lack of relevant controls on 

economic activity, required to assess the causal effect of financial conditions on future growth, 

and the second related to the presence of global macroeconomic and financial cycles which 

need to be considered when one estimates the propagation of shocks on a global scale. 

Regarding the former Reichlin et al. (2020) and Plagborg-Møller et al. (2020) emphasize that 

the predictive power of financial conditions seems to disappear once the model controls for 

(enough) real-economy variables. Therefore, the deterioration of financial conditions might be 

more of an endogenous response of the system than of an exogenous shock that deteriorates 

future real economic activity. In other words, by lacking enough controls on real variables, the 

vulnerable growth literature might be overstating the true impact of financial conditions on 

future economic activity. Nevertheless, recent proposals by Reichlin et al. (2020), Plagborg-

Møller et al. (2020), and the Adjusted-NFCI provided by the Chicago’s Fed on its web site, all 

of which seek to isolate the dynamics of financial variables from the dynamics of real 

economic variables, before estimating financial conditions, are not free of criticisms either. In 

short, if unobservable financial conditions are defined as a factor conditioned on the previous 

estimation of a main economic activity component (i.e. basically the effect of financial 
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conditions reduces to a residual of the unexplained variation of real economic variables), we 

are implicitly assuming in the estimation of the financial factor, that the real and financial sides 

of the economy can be in fact pristinely separated in such a way. Thus, the identification issue 

is translated from the estimation of the impact to the construction of the financial conditions 

factor, but the main controversy remains unsolved, whether the financial shock is an 

endogenous response of the system or an exogenous shock, presumably with effective 

forecasting power. This identification issue is related to the problem of identifying the effects 

of real and financial uncertainty on the real economy (Ludvigson et al., 2021; Carriero et al., 

2020), and also to the long-winded controversy in the macroeconomics literature that revolves 

about the extent to which we can isolate the effects of policy variables, like the interest rate, on 

the real economy series3.  

Our identification assumption is less controversial, owing to the fact that we do not assume 

any behavior about real or financial variables in our model. Instead, we assume that the US 

financial conditions are exogenous to the domestic economy series included in our data set. 

That is, that the US is the origin of financial shocks and not the other way around. Indeed, this 

assumption is backed-up by recent literature that documents the dominant role of the US 

economy relative to other countries, and in particular its monetary policy, which significantly 

influences the commonality of business and financial cycles around the world (Ammer et al., 

2018; Jordà et al., 2019; Miranda-Agripino and Rey, 2020 a,b). We also do not evaluate the 

interaction between real-economy and financial variables, because we estimate the effects of 

financial conditions of the US on stocks and credit of other countries, which are also financial 

variables. However, our main theoretical motivation does come from the theoretically and 

empirically grounded consensus in the literature, reached after the Great Recession, revised for 

instance by Isohätälä et al. (2016), Brunnermeier and Sannikov (2016) and Gertler and 

Gilchrist (2018). This literature emphasizes the role of borrowers’ balance sheets in 

constraining access to credit when capital markets are imperfect or the nonlinear amplification 

mechanisms that characterize financial crises. The strength of a bank’s balance sheet affects 

access to credit and thus the possibility to spend on the side of firms and households. In turn, 

financial collapses are characterized by borrower’s balance sheets severely contracted, which 

lead to significant disruptions of credit flows. In this way, important declines in spending and 

                                                        
3 See Nakamura and Steinsson (2018) for a recent summary on the non-neutrality of monetary policy. 
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economic activity are expected to follow. All these mechanisms place the role of funding as a 

priority to understand crises and carry out stabilization policies.  

Regarding the second identification issue, note that moving from the domestic economy to 

international grounds opens the door to another problem related to the identification of 

international shocks. Namely, US shocks might be correlated with global financial and 

economic activity shocks which cannot be ruled out only by stressing out the dominance of 

the US economy. This point has been explored for instance by Chudik and Pesaran (2015) and 

Cesa-Bianchi et al. (2020). Lacking to control for these common factors likely render omitted-

variables bias to the estimated effects on a domestic-economy level. This point has been 

mainly overlooked by the extant literature on (international) vulnerable growth, and the 

literature on the transmissions of (international) credit imbalances, which have mainly focused 

on a few number of countries or even on individual countries using granular micro-data.  

Our study is also related to the large corpus of theoretical and empirical literature that has 

expanded the credit-channel to international grounds, and therefore, has contributed to the 

explanation of the transmission of financial shocks across the world economy (Peek and 

Rosengren, 1997; Cetorelli and Goldberg, 2011; Ivashina et al., 2015; Bruno and Shin, 2015; 

Choi, 2018; Choi et al., 2018; Baskaya et al., 2017; Gete and Melkadse, 2018; Braüning and 

Ivashina, 2020a; Di Giovanni et al., 2029; among others). We revise this literature and connect 

it with our contributions in the next section, which in short aim to help regulators to foresee 

future risks to funding opportunities for domestic investment and consumption, and therefore 

to economic activity, after a financial shock to the US economy has been observed (as 

occurred for instance during the Great Recession). We also seek to document the main way in 

which vulnerable growth occurs, which is precisely through the propagation of financial shocks 

across the global financial markets, i.e., via vulnerable funding.  

The rest of this document is organized as follows: Section two briefly revises two perspectives 

in the literature that can explain the transmission of financial conditions of the US to the 

international funding markets, namely the credit view and the portfolio view and also revise 

the two main explanations underlying vulnerable funding, market depth and market 

connectedness. The third section consists of our methodology. Section four describes our data 

and sources, and presents details about the construction of our macroeconomic and financial 
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global factors. Section five contains our main empirical results and discussion. Section six 

concludes. 

2. International spread of US financial conditions  

In addition to the vulnerable growth literature summarized in the introduction, our study is 

related to two different sets of studies: Those who emphasize the channels through which 

financial shocks transit from a central economy (generally the US) to the rest of the global 

markets, and those who examine the macroeconomic determinants of financial vulnerability to 

external shocks. Both literatures are too rich as to be summarized in this subsection, so we 

only focus on those studies that directly provide a baseline for understanding our main results. 

In the former group of studies we find a subset of articles that highlight the role of credit in 

the international propagation of financial shocks, which we label as the credit view, and a second 

subset that emphasizes the transmission of financial shocks trough expectations, which we 

include in the portfolio view of the transmission of shocks.  

In the second group of studies we find a great majority of articles that have pointed-out to size 

and depth of the financial markets as the main determinants of financial vulnerability to 

external shocks, hence they are labeled as the financial development determinant, and a second 

subset that instead has stressed out the importance of financial connectedness across the 

global financial markets as the main explanatory factor, labeled the financial connectedness 

determinant. Both channels and determinants are important for our different definitions of 

financial conditions, based on first and second moment indicators. The classification does not 

pretend to be either exhaustive or exclusive. Indeed, in the referenced studies the channels and 

determinants are closely interviewed. For instance, as highlighted by Alfaro et al. (2007) the 

role of local financial markets is crucial in enabling foreign direct investment. The more 

developed the local financial markets, the easier it is for credit-constrained entrepreneurs to 

start their own business. Large varieties of intermediate goods imply positive spillovers to the 

final goods sector and, as a consequence, financial markets allow the backward linkages 

between foreign and domestic firms to turn into FDI spillovers.  

Hence, our revision is more oriented to serve as a starting point to understand the empirical 

results in the next section, and how they relate to our working hypothesis explained in the 

introduction about the existence of vulnerable funding episodes following first and second 

moment shocks to financial conditions in the US. 
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2.1. The channels 

A. The international credit view  

According to this literature external factors, such as the US interest rates and global financial 

conditions, are key determinants of capital flows, especially in the short run. Which is 

important because as highlighted by Kalemli-Özcan et al. (2020), there is evidence about a 

strong association between capital flows, GDP volatility, and financial crises. This general view 

consists of understanding that international creditors may react to a change of financial 

conditions, including monetary policy stances in their original economies, by reducing their 

exposition to foreign markets, to satisfy risk-taking constraints on their international credit 

portfolio holdings. Thus, as emphasized by Braüning and Ivashina (2020a), some intended 

consequences of the US monetary within its domestic economy, may end up having intended 

consequences on a global basis (i.e. spillover of “prudent risk-taking” or “productive risk-

taking”).  

In these lines, Bruno and Shin (2015) highlight the role of financing costs of banks, which are 

closely tied to the reference policy rate chosen by the central bank. If funding costs affect 

decisions on how much exposure to take on, monetary policy will then affect the economy 

through greater risk-taking by the banking sector. Di Giovanni et al (2019) also document that 

an easing in global financial conditions leads to lower borrowing costs and to an increase in 

local lending. The shocks on credit can potentially transit via international banks as in Cetorelli 

and Goldberg (2011), foreign banks lending elsewhere as in Braüning and Ivashina (2020b) and 

Ivashina et al. (2015), via domestic banks borrowing from foreign banks and global investors 

over the global financial cycle as in Baskaya et al (2017) or even via credit trade by 

multinational establishments (Lin and Yee, 2018).  

B. The international portfolio view  

Even if we abstract from the direct link that provides lending, it could also be the case that if a 

peak of uncertainty in the US, associated to a worsening of financial conditions, is interpreted 

as signal of future higher domestic vulnerability in other countries, such an increase may lead 

to higher precautionary savings which do not remain within the domestic economies but that 

instead flow abroad, reducing domestic demand (Fernández-Villaverde et al., 2011) and 

similarly to a contraction of banks’ credit supply after facing greater uncertainty, which can be 
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rationalized by the arguments explored by Bordo et al. (2016), Valencia (2016), Caldara et al. 

(2016), Alessandri and Mumtaz (2019) and Alessandri and Botero (2020).  

We contribute to the previous literature on the transmission channels in two ways: first, we 

focus on the most vulnerable market scenarios, automatically identified by estimating Credit at 

Risk and Equity at Risk statistics, which has not been done before (all the aforementioned 

literature focus on the average scenarios, and most of them on a few number or individual 

countries). In this way, we acknowledge the non-linear dimension emphasized by the 

consensus of the macroeconomic literature in recent years, necessary to explain economic 

collapses (Isohätälä et al., 2016; Brunnermeier and Sannikov, 2016; Gertler and Gilchrist, 

2018). Second, we jointly analyze the impacts of first moment shocks proxied by the NFCI, 

and second moment financial conditions proxied by the index of financial uncertainty of 

Ludvigson et al. (2021). Thus we are able to disentangle the whole effects of financial 

conditions on the global economy. All in all, our results emphasize the role of the portfolio 

view for the propagation of second moment financial condition shocks and of the credit view 

to understand the propagation of first moment financial conditions shocks.    

2.1. The Determinants 

A. Size and depth of the domestic financial market   

The previous literature has reported an asymmetric impact of global financial conditions on 

economic activity of emerging and advanced economies. For example, Carrièrre-Swallow and 

Céspedes (2013) find that in comparison to the U.S. and other developed countries, emerging 

economies suffer much more severe falls in investment and private consumption following an 

exogenous uncertainty shock. They present evidence on the correlation of the dynamics of 

investment and consumption with the depth of financial markets. The authors emphasize the 

role of financial institutions and argue that the lack of development of local financial markets 

can limit the economy’s ability to take advantage of potential FDI spillovers.  Alfaro et al 

(2004) evaluate the various links among FDI, financial markets, and economic growth. They 

conclude that FDI alone plays an unclear role for economic growth. Instead it is well-

developed financial markets and institutions that enable a country to take advantage from 

increases in foreign investment. Kalemli-Özcan (2019) shows that changes in US monetary 

policy affect capital flows in and out of emerging markets more than they do in advanced 
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economies, since the capital flows of emerging markets are more risk sensitive, and US policy 

affects the risk sentiments of global investors.  

Other authors such as Braüning and Ivashina (2020a) document that global bank flows driven 

by U.S. monetary policy affect credit conditions in emerging markets, at the firm level, which 

confirms that the contraction of credit by global banks is not compensated by an increase in 

credit by local banks. On the contrary it leads to a general credit contraction, an increasing in 

interest rate spreads, and finally to a lower probability of refinancing.  

The same narrative can be tracked in the previous literature regarding the transmission of 

international stock market shocks to domestic economies across the world. For instance, 

Bhattarai et al (2020) document that unanticipated changes in US uncertainty have significant 

effects on financial and macroeconomic emerging market economies. The transmission is 

traced back to a depreciation of the local currency of domestic economies, which leads to a 

decline in local stock markets, increases long-term interest rate spreads in relation to the US, 

and is followed by a decrease in capital inflows into the domestic economies. 

B. Financial connectedness with the US   

It is important to think of this literature as a complement of the studies in literal A, which 

emphasizes the role of size and depth of the domestic markets that receive the shock, instead 

of as an alternative explanation. To illustrate this point, Fink and Schüler (2015) emphasize the 

importance of financial linkages with the US rather than via bilateral trade to explain the 

propagation of financial condition shocks across the global economy. However, precisely for 

this reason the transmission to emerging market economies (EME) may occur to a different 

extent than the transmission to advanced economies. Fink and Schüler (2015) find that, 

indeed, an adverse shock to the overall US financial system dries up capital flows from the US 

to the EME and that this decline in cross-border lending results in tighter financing conditions 

for the EME. 

Alfaro and Chen (2012), using granular data investigate the way in which multinationals around 

the world responded to the 2008 crisis relative to local firms. They explore three channels 

through which FDI affects establishment performance: production linkages, financial linkages, 

and multinational networks. These authors’ results point-out to an important although 

heterogeneous role of FDI flows at explaining multinational firms’ performance during the 
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Global Financial Crisis. They emphasized both the role of FDI linkages in the international 

transmission of shocks and the important interaction of the various facets that determine such 

transmissions, from financial constraints considerations to the engagement of some firms with 

vertical production linkages.  

Lin and Ye (2018) explore a trade credit channel through which FDI firms can propagate 

global liquidity shocks to host countries, despite these host countries implementing tight 

controls on portfolio flows. This is important because in practice, while many developing 

countries impose tight restrictions on non-FDI flows, they are significantly open to FDI 

inflows. These authors show that indeed a positive global liquidity shock eases raising 

international funds for FDI firms. This in turn, strengthens FDI firms’ advantage in trade 

credit provision to local downstream firms. In short, there exists a trade credit channel through 

which FDI firms can propagate global liquidity shocks to host economies despite the presence 

of tight controls on non-FDI financial flows.  

In terms of contributions, our multi-country and comprehensive approach, allows us to test 

what factor explains better the heterogeneous dynamic of Credit at Risk and Equity at Risk 

indicators that we estimate for the cross-section of countries. We find that vulnerability of 

credit markets is better explained by the size or depth of credit markets while financial 

connectedness to the US, measured as the relative importance of US foreign direct investment 

to a country’s GDP, better explains vulnerability of stock markets.  

3. Methodology 

To avoid the criticisms mentioned in the introduction regarding the likely endogeneity of 

financial first and second moment shocks with respect to credit and stock markets within a 

single economy, we estimate multi-country factor augmented quantile-regression models. Our 

models directly consider the influence of common real and financial factors of a global nature, 

on the domestic economic series. Thus, they allow us to better isolate the causal effects of 

financial conditions on funding markets around the world.   

Our base-line specification for each country i is given by Equation 1:  

𝑦 , (𝜏) = 𝛼 (𝜏) + 𝛽 (𝜏)𝑦 , + 𝛽 (𝜏)𝑢𝑠. 𝑓𝑐 + 𝛿 (𝜏)′𝑋 ,   (1) 
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where, i = 1, … N , refers to the country,  h = {0,1,4}, to the forecasting- horizon, and τ =

{0.05,0.10.0.20,0.50} to the quantile of the dependent variable. 𝑦 ,  is either the quarterly 

change of real credit growth in logarithms (Credit at Risk) or the quarterly change of the stock 

price index in logarithms (Equity at Risk), at time horizon 𝑡 + ℎ. On its side, 𝑢𝑠. 𝑓𝑐  is the US 

financial condition indicator, which can be either the NFCI of the Chicago’s Fed or the 

Financial Uncertainty Index provided by Ludvigson et al. (2021), publicly available on the we 

page of the authors. 𝑋 consists of a global macroeconomic factor and a global financial factor. 

𝛼 (𝜏), 𝛽 (𝜏), 𝛽 (𝜏) and 𝛿(𝜏) denote the parameters corresponding to the τ-th quantile.  

We emphasize that 𝑦 , (𝜏) is a conditional quantile of the response variable, and for this 

reason there is not a random term in equation 1. In other words, 𝑦 , (𝜏) characterizes 𝑦 ,  

but it is deterministic in nature. Nevertheless, we can present Equation 1 alternatively in the 

following way: 

𝑦 , = 𝛼 (𝜏) + 𝛽 (𝜏)𝑦 , + 𝛽 (𝜏)𝑢𝑠. 𝑓𝑐 + 𝛿 (𝜏)′𝑋 + 𝜀 , (𝜏) ,          (2) 

where 𝜀 (𝜏) is a random noise that is assumed to follow the following quantile-restriction 

𝑃 𝜀 , (𝜏) ≤ 0 𝛼 (𝜏) + 𝛽 (𝜏)𝑦 , + 𝛽 (𝜏)𝑢𝑠. 𝑓𝑐 + 𝛿 (𝜏)′𝑋 = 𝜏. The presentation of the 

model in equation 2 emphasizes the factor structure of the CaR and EaR statistics. The model 

for each country is estimated using individual conditional quantile regressions as proposed by 

Koenker and Basett (1978), but 𝑦 ,  in all countries are a function of common factors, 

𝑢𝑠. 𝑓𝑐  and 𝑋 , which do not have cross-sectional variation but only vary through time, via a 

country-specific intercept (𝛼 ) and country-specific slope coefficients (𝛽 , 𝛽 , 𝛿 ). All the 

variables were normalized before estimation to have zero mean and unitary variance. In this 

way, we are able to compare the magnitude of the effects across different countries. 

The model in Equation 1 expands a traditional conditional mean regression, in the sense that it 

explains the whole conditional time-series distribution of credit growth and stock returns. In 

particular,  𝑦 , (𝜏) solves the following optimization problem: 

𝑦 , (𝜏) = argmin (𝜏)𝐸 𝜌 𝑦 , (𝜏) − 𝑦 , (𝜏) ,                    (3) 
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where (𝜏) = 𝛼0(𝜏), 𝛽
0
(𝜏), 𝛽

1
(𝜏) , 𝛿(𝜏) ,  𝑦𝑖,𝑡+ℎ

(𝜏) = 𝛼0𝑖(𝜏) + 𝛽0𝑖
(𝜏)𝑦𝑖,𝑡 +  𝛽1𝑖

(𝜏)𝑢𝑠. 𝑓𝑐𝑡 +

𝛿𝑖(𝜏)′𝑋𝑡 , and 𝜌 (·) is a loss function, given by 𝜌 (𝜀) = (1 − 𝜏)𝐼{ }|𝜀| + 𝜏𝐼{ }|𝜀|, with 

𝐼{ } taking the value of 1 when the subscript is true and 0 otherwise. As it is well known, the 

mathematical formulation in Equation 3 leads to the solution of a linear programming 

optimization problem that we have omitted here. Its basic structure and the counterpart 

algorithm solution can be found in Koenker (2005). 

Quantile regressions have been employed in the factor models literature, since at least Ando 

and Tsay (2011). We estimate the global factors using PCA, following the tradition of the 

factor literature, as described for example by Bai and Ng (2008, 2020) and Stock and Watson 

(2010), and also the approach of aforementioned studies on GaR. An alternative to Equation 1 

would be incorporating the global factors as done by Chudik and Pesaran (2015) using the 

cross-sectional means for the variables in the data set, and this would result in a quantile factor 

model in the form of Harding et al. (2020). Both, these authors’ approach and our approach 

are inspired by the necessity to incorporate common factors to model the dynamics of the 

cross-sectional units, which are fundamental when conducting multinational comparisons, in 

order to reduce the risk of omitting relevant confounding variations.  

Note as well that we do not have a balanced-panel (and we do not require it), our approach is 

more flexible than that, in the sense that our factors use all the available cross-sectional units at 

each period in the sample, but the country-specific estimates depend on the number of time-

series units available for each country, which in most cases run from 1960:1Q to 2019:4Q, and 

only in two cases consist of shorter samples (which are indicated in the results).  

4. Data 

Our dataset includes a set of macroeconomic and financial variables for advanced and 

emerging economies and US data on financial conditions. Specifically, we use a long quarterly 

data panel constructed and provided by Monnet and Puy (2019), which covers real Gross 

Domestic Product (GDP), credit, consumer prices, nominal stock prices, and sovereign bond 

yields for advanced and emerging countries over the whole post-war period. Compared to 

other similar sources, such as the Organization for Economic Cooperation and Development 

(OECD) or the Bank of International Settlements (BIS), the coverage gains for these data is 

around 20% to 30% for advanced economies, and more 100% for emerging economies. More 
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specifically, real GDP is available for 37 countries, real credit for 45 countries, consumer prices 

for 48, nominal stock prices for 25 countries and bond yields for 18, with a sample size that 

ranges between 1950-Q1 and 2019-Q4 per country4. We restrict our sample to start in 1960-

1Q because of poor data quality for the earlier periods (we observed very extreme values and 

large volatility).  For the purposes of our analysis, we transform our variables in order to 

achieve stationarity before estimation. Table A2 in the Appendix shows the transformations 

applied to each series and Figure A1 plots both the untransformed and transformed series with 

their associated unit root tests5. 

As for US data on financial conditions, we use either the National Financial Condition Index6 

or the financial uncertainty indicator proposed by Ludvigson et al. (2021)7. On the one hand, 

following the seminal work of Adrian et al. (2019), NFCI is considered to be one of the most 

relevant predictors of the lower conditional quantiles of output growth for the US (e.g., 

Arrigoni et al., 2020; Brownlees and Souza, 2020; Beutel et al., 2020; Deuskar et al., 2020). 

Based on Brave and Butters (2012), the NFCI is a weighted average of 105 measures of 

financial activity, each one scaled to have zero mean and one standard deviation. Positive 

NFCI values imply that US financial conditions are tighter than average. Since the NFCI has 

weekly periodicity, for our analysis we aggregated it by taking the quarter averages for the 

overall sample, starting at 1971-Q1. This implies that for our econometric estimations that 

include this variable, the sample is reduced to around 200 observations. On the other hand, the 

financial uncertainty index is constructed by Ludvigson et al. (2021) using a rich-dataset of 

variables that fully characterize US financial markets. The authors of the index estimate a 

factor model for the large-dataset, and predict each variable using their latent factor structure. 

Then, they estimate the time-varying conditional volatility of each series residuals and average 

across all of them, in order to get the financial uncertainty indicator.   

As stated above, in our estimations we include a global macroeconomic factor and a global 

financial factor to control for the commonality of business and financial cycles previously 

                                                        
4 See Table A1 in the Appendix for details on data availability, Table A2 for details on transformations of the 
variables, and Table A3 for details on summary statistics. 
5 We test for unit roots using the Augmented Dickey-Fuller (ADF).  
6  The NFCI is constructed and published by the Federal Reserve Bank of Chicago and it is available at: 
https://www.chicagofed.org/publications/nfci/index 
7 The Financial Uncertainty indicator is available for the US in the web page of one of its authors, at: 
https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes 
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emphasized by the literature. The central idea of our approach is to summarize fluctuations in 

macroeconomic and financial variables for a large and heterogeneous panel of advanced and 

emerging economies by using factor models. In particular, we estimate two global factors: the 

first factor, which we refer to as the global financial factor (N=89; T=240, from 1960Q1 to 

2019Q4) contains real credit growth, stock returns and changes in sovereign bond yields; and 

the second factor, which we refer to as the global macroeconomic factor (N=174; T=240, 

from 1960Q1 to 2019Q4), includes real GDP growth, inflation, on top of the above-

mentioned variables.  

We estimate these common factors by a two-step procedure that combines first-step 

estimation via Principal Component Analysis (PCA)8 with the Kalman filter, where the latter is 

used to compute recursively the expected value of the common factors, which is iterated until 

convergence of the Expected-Maximization (EM) algorithm (Doz et al., 2012). This procedure 

is especially relevant for our work as we deal with some missing data for specific countries at 

the end of the sample. We compute the factors from the stationary variables and assume that 

can be represented by a VAR(1) process. However, the two factors (global macroeconomic 

and financial) estimated using the two –steps algorithm are very similar to the ones computed 

by direct estimation via PCA, thus we opt for reporting only the latter in our results (see Table 

A3). 

Figure 1 plots the NFCI jointly with the global macroeconomic and financial factors over the 

sample period. Consistent with Miranda-Aggrapino and Rey (2020), we find that our global 

factors point-out to the existence of a global cycle that commoves with the U.S. recession 

periods as identified by the NBER (red shaded areas). These global factors, the NFCI and the 

financial uncertainty index share a pronounced contemporaneous common component, 

especially around the global financial crisis. In this period, we notice a sharp movement of the 

global factors and a tightening in US financial conditions. This fact suggests that, in order to 

explore the international transmission of financial fragility in the US to the conditional 

distribution of global credit markets and stock markets, we should control for the 

contemporaneous global and financial cycles. Thus, we should focus on the additional 

“marginal” information provided by the indicator of financial fragility in the US. Additionally, 

                                                        
8 In order to estimate principal components in the first stage, missing values are imputed by the respective 
country-specific variable’s average. 
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we observe that the NFCI and the financial uncertainty index share some common spikes, e.g. 

around the 1973-1975 recession due to the oil crisis coupled with the stock market crash, or 

during the global financial crisis, but appear to be capturing different aspects of US financial 

fragility. In particular, the NFCI is more volatile and moved up notably during the recession 

periods in the early 80s, while the uncertainty index stayed subdued over the same period. 

However, the opposite happened in the late 1990s and during the collapse of the speculative 

dot-com bubble in the early 2000s. Moreover, during 2018-2019 the uncertainty index rose 

significantly while the NFCI remained stable.  

Figure 1.Global factors and US financial conditions 

 
Sources: Chicago National Financial Condition Index (NFCI) and author’s computation. 
Note: Standardized variables. Time span 1971Q1 to 2019Q4. Red shaded area represents NBER recessions at the 
end of the period. 
 

Finally, to assess cross-country heterogeneity, we construct three variables related to the size of 

credit and stock markets, respectively, and financial interconnection with the US. Specifically, 

we measure the size of credit markets by the annual average of the credit to GDP ratio for 

each country and the size of stock markets by the annual average of the market capitalization 

to GDP ratio. This data has been collected from the World Bank database9 and, in both cases, 

the time spam goes from 1960 to 2019. Financial interconnection with the US is measured by 

the total direct investment of the US as a percentage of the country’s GDP (for the sample 

period 1989 to 2019). To this end, we compute for each country the maximum value of US 
                                                        
9 Credit refers to financial resources (loans, securities, and other claims) provided to the private sector by banks. 
Market capitalization is the share price times the number of shares outstanding for listed domestic companies. 
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investment inflows relative to its GDP10 . We use historical data on US direct investment 

abroad from the National Bureau of Economic Research and nominal GDP from the 

International Monetary Fund statistics.11  

 

5. Results 

First, we present our estimation results of the impact of US financial conditions shocks on 

credit growth and stock returns. We distinguish between changes in the first moment of 

financial conditions (as measured by the NFCI) and changes in the second moment of 

financial conditions (as measured by the index of financial uncertainty proposed by Ludvigson 

et al. (2021)). Then, we assess the heterogeneity on the vulnerability of credit and stock 

markets to US financial conditions across countries. To this end, first, we graphically show our 

results sorting the countries according to different measures related with the size of credit and 

stock markets, and the relative importance of US foreign investment for each country. Finally, 

we carry out cross-sectional regressions that use as input the quantile slopes of CaR and EaR 

estimated in the first round of regressions, and as explanatory variables the ones mentioned 

above.  

5.1. Impact of NFCI shocks on global markets  

Table 1 summarizes the estimation results for real credit growth as the dependent variable for 

quantiles 𝜏 = {0.05,0.10.0.20,0.50} and for forecasting- horizons ℎ = {0,1,4}. We run two 

different regressions. The first one only includes the NFCI while the second one controls for 

the global financial and macroeconomic factors. The table reports the following information: 

the first and last quartiles of the distribution of estimated coefficients (q25-q75), the 

proportion of countries for which the variable is statistically significant at 90% confidence level 

(Sig.) and, for the NFCI, additionally it is showed the proportion of countries that displays 

negative or significant quantile slopes coefficients (Sig.<0).  

 

 

 

                                                        
10 Results are robust when we use the average instead of the maximum value. 
11 See Table A5 in the Appendix for information on these variables. 
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Table 1: Quantile regressions, Impact of NFCI on real credit growth (CaR) 

Note: Sig. denotes proportion of countries for which the variable is statistically significant at 90% confidence 
level; q25-q75 shows the first and third quartiles of the estimated coefficients. Intercepts are omitted in the table. 
Standard errors are based on bootstrap with 1000 replications. Sample: 1971Q1 to 2019Q4 for 44 countries, 
except for Bolivia (to 2019Q3), Iceland (to 2018Q4) and Taiwan (to 2018Q4). 

 𝝉 = 
0.05 0.1 0.2 0.5 

Regressions for 𝒉 = 𝟎 
 US financial conditions indicator 

𝑁𝐹𝐶𝐼  q25-q75 [-0.32;0.07] [-0.22;0.02] [-0.14;0.05] [-0.05;0.08] 
Sig.<0 0.25 0.16 0.14 0.07 

US financial conditions indicator + Global factors 
𝑁𝐹𝐶𝐼  q25-q75 [-0.25;0.02] [-0.24;0.01] [-0.16;0.02] [-0.06;0.07] 

Sig.<0 0.18 0.14 0.25 0.07 
𝐺_𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙  q25-q75 [0.02;0.56] [0.00;0.56] [0.03;0.52] [0.13;0.52] 

Sig. 0.25 0.34 0.45 0.5 
𝐺_𝑀𝑎𝑐𝑟𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐  q25-q75 [-0.08;0.63] [-0.1;0.52] [-0.05;0.53] [0.11;0.54] 

Sig. 0.27 0.3 0.45 0.5 
Regressions for 𝒉 = 𝟏 

 US financial conditions indicator  
𝑦  q25-q75 [0.05;0.32] [0.07;0.36] [0.06;0.35] [0.09;0.43] 

Sig. 0.30 0.48 0.59 0.70 
𝑁𝐹𝐶𝐼  q25-q75 [-0.28;-0.02] [-0.24;-0.06] [-0.19;-0.01] [-0.08;0.02] 

Sig.<0 0.23 0.25 0.30 0.07 
 US financial conditions indicator + Global factors  

𝑦  q25-q75 [0.06;0.30] [0.05;0.35] [0.09;0.37] [0.09;0.43] 
Sig. 0.36 0.48 0.57 0.68 

𝑁𝐹𝐶𝐼  q25-q75 [-0.26;-0.02] [-0.24;-0.03] [-0.17;-0.05] [-0.06;0.06] 
Sig.<0 0.16 0.27 0.25 0.02 

𝐺_𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙  q25-q75 [-0.45;0.37] [-0.27;0.23] [-0.16;0.17] [-0.08;0.19] 
Sig. 0.30 0.23 0.25 0.30 

𝐺_𝑀𝑎𝑐𝑟𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐  q25-q75 [-0.4;0.40] [-0.24;0.23] [-0.11;0.26] [0.00;0.27] 
Sig. 0.30 0.23 0.27 0.39 

Regressions for 𝒉 = 𝟒 
  US financial conditions indicator 

𝑦  q25-q75 [0.24;0.57] [0.32;0.55] [0.34;0.56] [0.33;0.62] 
Sig. 0.61 0.80 0.89 0.98 

𝑁𝐹𝐶𝐼  q25-q75 [-0.41;0.02] [-0.28;-0.02] [-0.22;0.00] [-0.09;0.02] 
Sig.<0 0.25 0.20 0.34 0.18 

 US financial conditions indicator + Global factors  
𝑦  q25-q75 [0.29;0.56] [0.27;0.60] [0.33;0.58] [0.34;0.60] 

Sig. 0.68 0.77 0.84 0.98 
𝑁𝐹𝐶𝐼  q25-q75 [-0.32;-0.01] [-0.31;-0.02] [-0.22;-0.02] [-0.07;0.04] 

Sig.<0 0.27 0.30 0.3 0.14 
𝐺_𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙  q25-q75 [-0.48;0.11] [-0.32;0.19] [-0.18;0.20] [-0.05;0.15] 

Sig. 0.16 0.09 0.20 0.16 
𝐺_𝑀𝑎𝑐𝑟𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐  q25-q75 [-0.49;0.05] [-0.37;0.15] [-0.23;0.16] [-0.03;0.16] 

Sig. 0.16 0.20 0.20 0.18 
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Three main messages emerge from the results in Table 1. First, the impact of the NFCI on real 

credit growth is more frequently (and significantly) negative on the lower quantiles than on the 

central quantiles of credit growth. In other words, the proportion of countries for which the 

effect is significant, is much higher in the lower quantiles. This result suggests that US financial 

fragility is an important predictor of downside risks to real credit growth in the global 

economy. Second, our results hold when we control for global financial and macroeconomic 

factors, i.e., the performance of the model including the global factors is basically 

indistinguishable from the model including only the NFCI. Third, the results also hold 

irrespective of the forecasting- horizon (h=0,1,4) but the highest percentage of countries for 

which the impact of NFCI on the quantile at 𝜏 =0.05 (0.10) of real credit growth is statistically 

significant and negative is obtained when h=4, with 27% (30%) for 44 countries. This latter 

fact suggests that the global economy requires one year to fully transmit most of the first 

moment shocks of US financial conditions to the rest of the credit markets in the world, which 

is consistent with a credit view explanation of the transmission of shocks, i.e., deterioration of 

financial conditions seem to generate a reduction of international funding sources for financing 

domestic investment which fully materializes one year after the shock. 

Interestingly, forecasting power of NFCI on the conditional distribution of credit is more 

heterogeneous than the effect of the other covariates in all our specifications. That is, financial 

conditions of the US clearly impact the negative tail of credit growth of a higher number of 

countries than in the case of the average quantiles, while the other variables, whether they are 

global common factors or idiosyncratic characteristics, exert a more homogeneous effect 

across the conditional distribution of credit.  

From Table 1 we also notice that the impact of financial conditions in the United States is very 

heterogeneous across countries. While it is a relevant predictor of negative credit dynamics at 

least four quarters ahead for around 25-30% of our sample, it is not for the rest of the 

countries. Moreover, the impact of the three global factors, namely, two global factors and the 

financial conditions index of the US, present a large variability across countries. That is, in 

most of the cases the effects contained between the first and the third quartiles of the cross-

sectional distribution of countries include both positive and negative magnitudes, meaning that 

global factors impact heterogeneously credit creation around the world.  
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Table 2 summarizes the estimation results for stock returns as the dependent variable. Again, 

for each quantile of the dependent variable (𝜏 = {0.05,0.10.0.20,0.50})  and forecasting- 

horizon (ℎ = {0,1,4}), we run two models. The first model only includes the NFCI while the 

second also considers controls for the global financial and macroeconomic factors. The table 

reports the following information: the first and last quartile of the distribution of estimated 

coefficients (q25-q75), the proportion of countries for which the variable is statistically 

significant at 90% confidence level (Sig.); for the NFCI, additionally it is shown the proportion 

of countries that is associated with negative and significant coefficients (Sig.<0).  

Results show that the highest impact of US financial conditions at the left tail of conditional 

stock returns are observed when h=0, i.e., NFCI significantly explains downside risk in stock 

markets in a contemporaneous fashion. This key result is observed even if we control for 

global financial and macroeconomic factors, as the percentage of countries for which the 

NFCI coefficient is statistically significant goes from 32% (𝜏 =0.05 quantile) to 48% (𝜏 =0.10 

quantile), out of 25 countries. Interestingly, the contemporaneous impact at the median is 

significant for a larger proportion of countries (60%) but this percentage drops to 12% when 

we control for the global factors. At horizons h=1 and h=4, the effects of NFCI on stock 

markets are less pronounced, both at the lower tail and at the central quantiles.  

An interesting pattern can be noticed as well in Table 2 that confirms the US as the likely 

origination of shocks to the global economy, which agrees with previous literature on global 

cycles, and which also validates our multinational approach. Namely, at h=1, local financial 

conditions in the United States, exert a significant impact in around 4-12% of the countries of 

our sample, for quantiles between 𝜏= 0.05 to 0.20, while the global financial factors impact the 

same quantiles for 12-16% of the countries and the global macroeconomic factors for 0-12%. 

In contrast, when h=4, the impact of the domestic financial conditions of the US only exert a 

significant influence in 4-12% of the countries, while the global financial and macroeconomic 

factors have gained in significance as to affect 40-52% and 28-64% of countries, respectively. 

This would be the case if one year after the US shock, this original shock has been fully 

transmitted to the global economy, and the non-linear amplification mechanisms operating in 

financial markets on a global scale are responsible for the newest sources of financial fragility 

to the global economy. 
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Table 2: Quantile regressions, Impact of NFCI on stock markets (EaR) 

Note: Sig. denotes proportion of countries for which the variable is statistically significant at 90% confidence 
level; q25-q75 shows the first and last quartile of the estimated coefficients. Standard errors are based on 
bootstrap with 1000 replications. 

 

 𝝉 = 
0.05 0.1 0.2 0.5 

Regressions for 𝒉 = 𝟎 
 US financial conditions indicator  

𝑁𝐹𝐶𝐼  q25-q75 [-0.65;-0.24] [-0.47;-0.2] [-0.37;-0.08] [-0.24;-0.08] 
Sig.<0 0.36 0.56 0.68 0.60 

 US financial conditions indicator + Global factors  
𝑁𝐹𝐶𝐼  q25-q75 [-0.34;0.00] [-0.24;0.02] [-0.15;-0.01] [-0.05;0.04] 

Sig.<0 0.32 0.48 0.36 0.12 
𝐺_𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙  q25-q75 [-0.79;-0.41] [-0.85;-0.42] [-0.83;-0.39] [-0.78;-0.35] 

Sig. 0.60 0.68 0.76 0.88 
𝐺_𝑀𝑎𝑐𝑟𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐  q25-q75 [-0.09;0.25] [-0.1;0.26] [-0.14;0.23] [-0.06;0.21] 

Sig. 0.20 0.08 0.40 0.24 
Regressions for 𝒉 = 𝟏 

US financial conditions indicator 
𝑦  q25-q75 [0.18;0.51] [0.19;0.47] [0.18;0.41] [0.26;0.37] 

Sig. 0.56 0.64 0.80 0.92 
𝑁𝐹𝐶𝐼  q25-q75 [-0.23;0.01] [-0.2;0.00] [-0.18;-0.02] [-0.1;0.01] 

Sig.<0 0.12 0.16 0.16 0.16 
US financial conditions indicator + Global factors 

𝑦  q25-q75 [-0.01;0.29] [0.08;0.33] [0.15;0.37] [0.16;0.38] 
Sig. 0.08 0.32 0.48 0.56 

𝑁𝐹𝐶𝐼  q25-q75 [-0.21;0.05] [-0.18;0.01] [-0.15;0.00] [-0.07;0.01] 
Sig.<0 0.12 0.04 0.08 0.16 

𝐺_𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙  q25-q75 [-0.35;0.09] [-0.53;-0.07] [-0.41;-0.09] [-0.24;-0.01] 
Sig. 0.12 0.12 0.16 0.00 

𝐺_𝑀𝑎𝑐𝑟𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝒕 q25-q75 [-0.20;0.40] [-0.31;0.03] [-0.26;-0.09] [-0.18;-0.03] 
Sig. 0.08 0.00 0.12 0.00 

Regressions for 𝒉 = 𝟒 
US financial conditions indicator 

𝑦  q25-q75 [-0.10;0.29] [0.00;0.17] [-0.02;0.10] [-0.09;0.03] 
Sig. 0.20 0.16 0.08 0.08 

𝑁𝐹𝐶𝐼  q25-q75 [-0.28;0.14] [-0.14;0.09] [-0.09;0.06] [-0.06;0.04] 
Sig.<0 0.04 0.04 0.04 0.12 

US financial conditions indicator + Global factors 
𝑦  q25-q75 [-0.07;0.16] [-0.13;0.17] [-0.11;0.12] [-0.10;0.04] 

Sig. 0.00 0.04 0.08 0.08 
𝑁𝐹𝐶𝐼  q25-q75 [-0.18;0.21] [-0.17;0.13] [-0.08;0.09] [-0.07;0.06] 

Sig.<0 0.04 0.12 0.04 0.08 
𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙  q25-q75 [-0.96;-0.33] [-0.79;-0.46] [-0.64;-0.34] [-0.36;-0.08] 

Sig. 0.40 0.52 0.52 0.36 
𝐺_𝑀𝑎𝑐𝑟𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝒕 q25-q75 [-0.82;-0.36] [-0.88;-0.36] [-0.62;-0.40] [-0.38;-0.11] 

Sig. 0.28 0.56 0.64 0.52 
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Once again, the effects across countries at the lowest quantiles of the stock market growth are 

heterogeneous. That is, the interquartile range of the cross-sectional distribution of countries 

includes both positive and negative values, not only for the financial condition index, but also 

in the case of macroeconomic and financial global factors, pointing out to a heterogeneous 

risk-sharing picture across countries. While an important fraction of the countries react 

negatively to a deterioration of either the financial conditions in the US or the two global 

factors, most of them do not react or even react positively to the shock.  

One way in which the transmission of shocks may occur across countries is through spillovers 

effects of the “prudent risk-taking” or “productive risk-taking” channel of monetary policy. 

This is a channel that leads to increased risk-taking by banks in response to monetary policy 

easing, which is consistent with traditional portfolio allocation models. Namely, lower policy 

rates make riskier investments more attractive. 

Importantly, the largest effects of US financial fragility on credit markets are observed one year 

after the realization of the shock, suggesting that US financial conditions can be used as a 

predictor of the future vulnerability of domestic credit conditions by regulators and central 

banks around the globe. On the contrary, the effects on stock markets are mainly 

contemporaneous, which prevents the use of this indicator to forecast future prices or as an 

early warning indicator that alerts on future limitation of internal (equity) funding.  

5.2. Impact of US financial uncertainty shocks on global markets  

5.2.1. Global credit markets 

Similar to Table 1, Table 3 summarizes the estimation results for credit growth as the 

dependent variable but this time bringing to play the US financial uncertainty index instead of 

the NFCI.  
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Table 3: Quantile regressions, Impact of Financial Uncertainty on real credit growth 

Note: Sig. denotes proportion of countries for which the variable is statistically significant at 90% confidence 
level; q25-q75 shows the first and last quartile of the estimated coefficients. Intercepts are omitted. Standard 
errors are based on bootstrap with 1000 replications. Sample: 1971Q1 to 2019Q4 for 44 countries, except for 
Bolivia (to 2019Q3), Iceland (to 2018Q4) and Taiwan (to 2018Q4). 

 

 𝝉 = 
0.05 0.1 0.2 0.5 

Regressions for 𝒉 = 𝟎 
 US financial uncertainty indicator 

𝐹_𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  q25-q75 [-0.23;0.05] [-0.2;0.02] [-0.13;0.02] [-0.07;0.02] 
Sig.<0 0.14 0.20 0.25 0.23 

US financial uncertainty indicator + Global factors 
𝐹_𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  q25-q75 [-0.29;0.02] [-0.21;-0.02] [-0.15;0.00] [-0.1;0.05] 

Sig.<0 0.16 0.25 0.25 0.20 
𝐺_𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙  q25-q75 [-0.15;0.57] [0.07;0.54] [0.05;0.61] [0.17;0.64] 

Sig. 0.36 0.48 0.57 0.68 
𝐺_𝑀𝑎𝑐𝑟𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐  q25-q75 [-0.13;0.48] [-0.09;0.52] [0.00;0.62] [0.10;0.67] 

Sig. 0.32 0.50 0.55 0.64 
Regressions for 𝒉 = 𝟏 

US financial uncertainty indicator 
𝑦  q25-q75 [0.00;0.25] [-0.03;0.28] [0.09;0.30] [0.13;0.41] 

Sig. 0.30 0.39 0.64 0.73 
𝐹_𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  q25-q75 [-0.22;0.04] [-0.17;0.01] [-0.1;0.00] [-0.09;-0.02] 

Sig.<0 0.18 0.20 0.23 0.25 
  US financial uncertainty indicator + Global factors  

𝑦  q25-q75 [-0.09;0.25] [-0.01;0.26] [0.05;0.27] [0.09;0.36] 
Sig. 0.30 0.43 0.57 0.73 

𝐹_𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  q25-q75 [-0.22;0.06] [-0.14;0.04] [-0.12;0.00] [-0.07;0.03] 
Sig.<0 0.16 0.18 0.23 0.14 

𝐺_𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙  q25-q75 [-0.31;0.21] [-0.33;0.16] [-0.14;0.23] [0.01;0.29] 
Sig. 0.27 0.25 0.34 0.30 

𝐺_𝑀𝑎𝑐𝑟𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐  q25-q75 [-0.21;0.28] [-0.23;0.25] [-0.18;0.27] [0.07;0.31] 
Sig. 0.25 0.27 0.39 0.34 

Regressions for 𝒉 = 𝟒 
   US financial uncertainty indicator 

𝑦  q25-q75 [0.22;0.57] [0.24;0.55] [0.29;0.57] [0.34;0.61] 
Sig. 0.61 0.70 0.89 0.98 

𝐹_𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  q25-q75 [-0.23;0.03] [-0.17;0.01] [-0.11;-0.01] [-0.1;0] 
Sig.<0 0.18 0.23 0.18 0.23 

  US financial uncertainty indicator + Global factors  
𝑦  q25-q75 [0.21;0.56] [0.26;0.56] [0.31;0.57] [0.33;0.58] 

Sig. 0.59 0.75 0.89 0.98 
𝐹_𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  q25-q75 [-0.24;-0.02] [-0.20;0.01] [-0.13;-0.03] [-0.09;0.01] 

Sig.<0 0.18 0.23 0.20 0.18 
𝐺_𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙  q25-q75 [-0.38;0.20] [-0.26;0.25] [-0.15;0.19] [0.02;0.18] 

Sig. 0.27 0.20 0.27 0.23 
𝐺_𝑀𝑎𝑐𝑟𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐  q25-q75 [-0.44;0.12] [-0.30;0.18] [-0.19;0.14] [0.02;0.21] 

Sig. 0.32 0.30 0.18 0.25 
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We observe that the impact of financial uncertainty on the lower quantiles of real credit growth 

is negative and higher in absolute value than on the central quantiles, although the proportion 

of countries for which the effect is significant, is similar across quantiles. These results hold 

when we control for global financial and macroeconomic factors. This time, the highest effects 

of financial uncertainty are recorded well in advance of h=4. Indeed, the impact is quite similar 

across all forecasting- horizons (h={0,1,4}). Importantly, on h=4, first moment financial 

shocks on credit growth (Table 1) exert an economically and statistically significant effect for a 

greater number of countries compared to other horizons. This is in accordance with first 

moment shocks associated with credit tightness and which consistently take more time to 

spillover to global markets, therefore supporting the credit view of the spread. 

As with NFCI, we notice that the impact of financial uncertainty in the US is very 

heterogeneous across countries. Not only because it is a relevant predictor of negative credit 

dynamics for around 16-25% of our sample of countries while it is not for the rest of the 

economies, but also because these effects can be positive or negative.  If we focus on the 

global factors, we observe that global factors impact heterogeneously credit creation around 

the world. In general, these covariates impact the average quantiles of credit growth of a higher 

number of countries than in the case of the negative tail. Additionally, the effects of these 

global factors include a wide range of values, often showing high positive values even on the 

lowest quantiles.  

Similar to Table 2, Table 4 summarizes the estimation results for stock returns as the 

dependent variable but using the US financial uncertainty index instead of the NFCI as our 

financial conditions indicator. 
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Table 4: Quantile regressions, Impact of Financial Uncertainty on stock markets 

Note: Sig. denotes proportion of countries for which the variable is statistically significant at 90% confidence 
level; q25-q75 shows the first and last quartile of the estimated coefficients. Standard errors are based on 
bootstrap with 1000 replications. 

 𝝉 = 
0.05 0.1 0.2 0.5 

Regressions for 𝒉 = 𝟎 
  US financial uncertainty indicator 

𝐹_𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  q25-q75 [-0.64;-0.36] [-0.57;-0.30] [-0.44;-0.23] [-0.27;-0.16] 
Sig.<0 0.88 0.88 0.92 0.88 

  US financial uncertainty indicator + Global factors  
𝐹_𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  q25-q75 [-0.31;-0.04] [-0.22;-0.02] [-0.13;-0.03] [-0.05;0.01] 

Sig.<0 0.48 0.48 0.32 0.12 
𝐺_𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙  q25-q75 [-0.89;-0.17] [-0.84;-0.29] [-0.80;-0.38] [-0.66;-0.32] 

Sig. 0.56 0.68 0.88 0.88 
𝐺_𝑀𝑎𝑐𝑟𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐  q25-q75 [-0.21;0.36] [-0.15;0.24] [-0.16;0.17] [0.00;0.23] 

Sig. 0.28 0.28 0.36 0.4 
Regressions for 𝒉 = 𝟏 

US financial uncertainty indicator 
𝑦  q25-q75 [0.09;0.45] [0.11;0.37] [0.18;0.33] [0.23;0.34] 

Sig. 0.52 0.56 0.72 0.96 
𝐹_𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  q25-q75 [-0.58;-0.33] [-0.42;-0.26] [-0.25;-0.12] [-0.13;-0.02] 

Sig.<0 0.88 0.76 0.56 0.24 
US financial uncertainty indicator + Global factors 

𝑦  q25-q75 [-0.02;0.36] [-0.04;0.38] [0.11;0.33] [0.21;0.39] 
Sig. 0.32 0.32 0.60 0.72 

𝐹_𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  q25-q75 [-0.64;-0.26] [-0.46;-0.21] [-0.27;-0.12] [-0.11;-0.03] 
Sig.<0 0.6 0.76 0.6 0.24 

𝐺_𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙  q25-q75 [-0.27;0.28] [-0.27;0.18] [-0.24;0.02] [-0.24;-0.02] 
Sig. 0.20 0.20 0.16 0.12 

𝐺_𝑀𝑎𝑐𝑟𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝒕 q25-q75 [-0.19;0.37] [-0.18;0.13] [-0.25;0.04] [-0.18;-0.08] 
Sig. 0.20 0.04 0.08 0.16 

Regressions for 𝒉 = 𝟒 
US financial uncertainty indicator 

𝑦  q25-q75 [-0.16;0.21] [-0.05;0.12] [-0.03;0.05] [-0.07;0.06] 
Sig. 0.04 0.08 0.12 0.12 

𝐹_𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  q25-q75 [-0.29;-0.09] [-0.22;-0.08] [-0.13;0] [-0.04;0.04] 
Sig.<0 0.12 0.08 0.16 0.04 

US financial uncertainty indicator + Global factors 
𝑦  q25-q75 [-0.18;0.16] [-0.15;0.15] [-0.11;0.06] [-0.12;0.09] 

Sig. 0.04 0.12 0.08 0.16 
𝐹_𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦  q25-q75 [-0.27;-0.07] [-0.19;-0.04] [-0.11;-0.04] [-0.08;0.00] 

Sig.<0 0.08 0.12 0.12 0.04 
𝐺_𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙  q25-q75 [-0.48;-0.02] [-0.50;-0.11] [-0.42;-0.17] [-0.40;-0.11] 

Sig. 0.12 0.16 0.52 0.64 
𝐺_𝑀𝑎𝑐𝑟𝑜𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝒕 q25-q75 [-0.56;-0.09] [-0.55;-0.08] [-0.49;-0.22] [-0.37;-0.25] 

Sig. 0.20 0.36 0.60 0.72 
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Results show that at horizons h=0 and h=1, the impact of financial uncertainty at the lower 

tail of the distribution of conditional stock returns is very high. At horizon h=4, the effects of 

financial uncertainty are much less pronounced.  This key result is observed even if we control 

for global financial and macroeconomic factors, as the percentage of countries for which the 

financial uncertainty coefficient is statistically significant goes from 60% (𝜏 =0.05 quantile) to 

76% (𝜏 =0.10 quantile), out of 25 countries. This fast and strong response of global stock 

markets to US financial uncertainty is consistent with portfolio rebalancing by international 

investors following an increase of US financial uncertainty, and thus, with the portfolio view of 

the transmission. 

As with NFCI, we observe that financial uncertainty impacts more frequently and significantly 

the lower quantiles of stock markets than the average quantiles while the impact of global 

common factors (financial and macroeconomic) is higher on the average quantiles. 

Interestingly, we observe a less heterogeneous response across countries than in the case of 

NFCI. That is, financial uncertainty is a relevant predictor of stock price declines for a larger 

percentage of countries than NFCI, and, in addition (in all cases), the effect documented for 

the lowest quartiles (𝜏 =0.05 and 𝜏 =0.1) is negative.  

Overall, our results confirm that both, first and second moment shocks to US financial 

conditions convey powerful signals on downside risks to funding markets. They suggest that, 

analogous to vulnerable growth episodes documented in the previous literature, there exist also 

vulnerable funding periods of a global scale, originating from financial fragility in the US. These 

results highlight the importance of funding for the transmission of recessionary shocks. In 

addition, our results emphasize the role of the portfolio view for the propagation of financial 

uncertainty (largely through the stock market), and of the credit view to understand the 

propagation of first moment financial conditions shocks (largely through the credit market). 

Both mechanisms are complementary and help to better understand the propagation of US 

financial conditions across global markets. 
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5.3. Cross-country heterogeneity  

5.3.1. Graphical analysis 

To examine which is the most likely reason for a given country vulnerability to changes in the 

financial conditions of the US, first, we relate the size of each country credit and stock 

market’s responses to two classical determinants of the international spreading of financial 

shock, namely, the size of credit (stock) markets, and the relative importance of US foreign 

investment for each country. We measure the size of credit markets by the annual average of 

the credit to GDP ratio for each country, the size of stock markets by the annual average of 

the market capitalization to GDP ratio and, financial interconnection by the total direct 

investment of the US as a percentage of the country’s GDP. To this end, we compute for each 

country the maximum value of US investment inflows relative to its GDP12.  

In both cases, credit and stock markets, we show the results for the horizon and the ordering 

measure that provides the clearest pattern. This translates into showing the results for horizon 

h=0 and sorting the countries by the size or depth of the market in the case of credit markets 

and by its financial closeness to the US in the case of stock markets13.   

Figure 2 shows the impact of NFCI over the entire distribution of credit growth of the 

countries in the sample (for forecasting- horizon h=0), ordered according to their credit to 

GDP ratio. Interestingly, we find that there is a cluster in the lower left-hand corner of the 

heat map, suggesting that the economies with lower credit to GDP ratios are more sensitive to 

a first moment shock to US financial conditions and that the response is stronger in the left tail 

(lower quantiles) of the distribution. However, the response of economies with higher credit to 

GDP ratios is much weaker, or inexistent. This is, the smaller the credit market, the most likely 

that country will experience vulnerable funding episodes. In turn, credit market size is 

associated with market development, which suggest an asymmetric impact of financial 

conditions first moment shocks on emerging and advanced economies This result suggest that 

when we focus on shocks to the first moment of the financial conditions, vulnerable funding is 

clearly associated with the size or depth of a country’s credit market and it is consistent with 

the view advanced for instance by Alfaro et al. (2004) and Kalemli-Özcan (2019).  

 

                                                        
12 Results are robust when we use the average instead of the maximum value. 
13 Results for horizons h=1 and h=4 are available upon request. 
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Figure 2. Impact of NFCI over the distribution of future credit growth 

 

Note: The left-hand panel shows the NFCI coefficients for 𝜏 = 0.05 − 0.95 in 0.05  intervals, for all 44 

countries. The right-hand panel presents the statistically significance of the NFCI coefficients as well as the sign 

of the estimated coefficient. The blue (grey)-shaded areas are defined as being negative (positive) statistically 

significant at the 90% level of confidence, whereas the white-shaded area corresponds to insignificant coefficients 

associated with the NFCI. 

 

Figure 3 shows the impact of NFCI over the entire distribution of stock returns (for 

forecasting- horizon h=0) of the countries in the sample ordered by their degree of financial 

interconnection with the US. We find a cluster in the upper left-hand corner of the heat maps, 

suggesting that the sensitivity of the effect of NFCI on the lower part of the distribution of 

stock returns is related to the relative importance of US investment for a given country. This 

fact, ultimately suggests that stock markets of economies that share stronger financial links 

with the US are more severely affected by a tightening in US financial conditions than 

economies with weaker financial ties with the US.  
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Figure 3. Impact of NFCI over the distribution of current stock returns 

 

Note: The left-hand panel shows the NFCI coefficients for 𝜏 = 0.05 − 0.95 in 0.05  intervals, for all 25 

countries. The right-hand panel presents the statistically significance of the NFCI coefficients as well as the sign 

of the estimated coefficient. The blue (grey)-shaded areas are defined as being negative (positive) statistically 

significant at the 90% level of confidence, whereas the white-shaded area corresponds to insignificant coefficients 

associated with the NFCI. 

 

Interestingly, most of the countries showing larger stock market responses to first moment 

shocks in US financial conditions are developed markets. It seems that the relative importance 

of USD foreign flows to a country does determine to a great extent how domestic share value 

will react following a deterioration of US financial conditions, and indeed in general, to global 

financial factors. While FDI flows are more volatile for emerging countries as the past 

literature have documented, the stock markets of advanced economies, such as Ireland, 

Switzerland, the Netherlands, Canada and the United Kingdom (which are the five top main 

receptors of US foreign direct investment), are also among the most affected countries in our 

sample, after a deterioration of the financial conditions in the US. This can be observed 
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looking at the significance of the estimated effects for the five countries (right-hand side plot), 

and the darker color in the heat map associated to the quantile slope that measures the effect 

of NFCI in each market (left hand side plot) of Figure 3. Thus, the depth and liquidity of the 

local stock market may prevent the impact of the external shock on the real economy to be 

dramatic, but in any case, the local funding opportunities reduce following a deterioration of 

US financial conditions, as expected. These results point out to the vulnerability of local 

financial markets to external imbalances and credit restrictions, given the high degree of 

interconnectedness of current global finance.  

Figure 4 shows the impact of US financial uncertainty over the entire distribution of credit 

growth (for forecasting- horizon h=0) of the countries in the sample, ordered according to size 

or depth of the market. As with first moment shocks to US financial conditions, we observe 

that the size or depth of the credit markets is important to explain credit vulnerability to 

financial uncertainty and that most of the countries showing higher responses are emerging 

market economies. Again, the smaller the credit market size, the most likely a country will 

experience vulnerable funding episodes. This result is consistent with Carrière-Swallow and 

Céspedes (2003) who find that in comparison to the U.S. and other developed countries, 

emerging economies suffer much more severe falls in investment and private consumption 

following an exogenous uncertainty shock. Bhattarai et al (2020) also document that 

unanticipated changes in US uncertainty have significant effects on emerging market 

economies. 

We also find that, although in general the effect is more negative in the lower quantiles than on 

the central ones, the proportion of countries for which the effect is significant, is relatively 

similar across the entire distribution.  
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Figure 4. Impact of Financial Uncertainty index over the distribution of future credit 

growth 

 

Note: The left-hand panel shows the financial uncertainty coefficients for 𝜏 = 0.05 − 0.95 in 0.05 intervals, for 

all 44 countries. The right-hand panel presents the statistically significance of the financial uncertainty coefficients 

as well as the sign of the estimated coefficient. The blue (grey)-shaded areas are defined as being negative 

(positive) statistically significant at the 90% level of confidence, whereas the white-shaded area corresponds to 

insignificant coefficients associated with the financial uncertainty index. 

 

Finally, Figure 5 shows the impact of US financial uncertainty over the entire distribution of 

stock return (for forecasting- horizon h=0) of the countries in the sample, ordered according 

to the strength of their financial links with the US. Now, we observe graphically that the 

impact of financial uncertainty at the left tail of the conditional distribution of stock returns is 

very large for a high percentage of countries. As with first moment shocks, we find a cluster in 

the upper left-hand corner of the heat map, suggesting that the sensitivity of the effect of 

financial uncertainty on the lower part of the distribution of stock returns is related to the 

degree of US investment abroad. Again, the stock markets of advanced economies are among 

the most affected countries in our sample, after a shock to financial uncertainty in the US. 
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Figure 5. Impact of Financial Uncertainty index over the distribution of current stock returns 

 

Note: The left-hand panel shows the financial uncertainty coefficients for 𝜏 = 0.05 − 0.95 in 0.05 intervals, for 

all 25 countries. The right-hand panel presents the statistically significance of the financial uncertainty coefficients 

as well as the sign of the estimated coefficient. The blue (grey)-shaded areas are defined as being negative 

(positive) statistically significant at the 90% level of confidence, whereas the white-shaded area corresponds to 

insignificant coefficients associated with the financial uncertainty index. 

 

Overall, we find that the heterogeneous dynamic of Credit at Risk episodes is better explained 

by the size or depth of the credit market while, in the case of Equity at Risk episodes, 

heterogeneity is more related to the financial interconnections with the US. This result holds 

for both, first moment shocks and financial uncertainty shocks.  

5.3.2. Cross-sectional analysis 

 

In this subsection we present the results of our exploratory regressions that measure the 

association between financial vulnerability and the two classical determinants of the 

international spreading of financial shocks. We used as our right-hand-side variable the slope 

coefficients of CaR or EaR at various quantiles, and as left-hand-side variables both, the ratio 
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of US direct investment to the GDP of each country and the ratio of credit (market 

capitalization) to GDP of each country. We estimate these latter variables using the average of 

the yearly indicators across the sample period (1960 Q1- 2019 Q4) and using the annual 

maximum across the sample (as to emphasize the most extreme scenarios). Table 5 to 7 

present the results using the maxima version, which are virtually the same than using the 

averages (which are available upon request).  Table 5 and 6 focus on the credit market and 

Table 7 and 8 on the stock market. 

 

Table 5:  Cross-sectional determinants of vulnerable credit (first moment shock) 

 𝝉 = 
 0.05 0.1 0.2 0.5 0.8 0.9 0.95 
Regressions for 𝒉 = 𝟎 
US inv./GDP (%) 0.000200 -0.000584 -0.000856 -0.00101 -0.00118* -0.000904 0.000164 
 (0.00104) (0.000800) (0.000615) (0.000776) (0.000675) (0.000715) (0.000798) 
        
Credit/GDP (%) 0.00249** 0.00175** 0.00144** 0.00138*** 0.00124* 0.00120* 0.00172* 
 (0.00109) (0.000777) (0.000584) (0.000445) (0.000656) (0.000679) (0.000911) 
        
Constant -0.317*** -0.213*** -0.158*** -0.0596* 0.0301 0.0330 -0.0210 
 (0.0813) (0.0615) (0.0472) (0.0297) (0.0412) (0.0493) (0.0665) 
Regressions for 𝒉 = 𝟏 
US inv./GDP (%) -0.000358 -0.000884 -0.00125 -0.000886*** -0.000679* -0.000343 -0.000486 
 (0.000936) (0.00112) (0.00108) (0.000267) (0.000361) (0.000879) (0.000866) 
        
Credit/GDP (%) 0.00193* 0.00111 0.000585 0.000496 0.000961** 0.000534 0.00121 
 (0.00102) (0.000662) (0.000462) (0.000468) (0.000431) (0.000541) (0.000939) 
        
Constant -0.280*** -0.196*** -0.126*** -0.0183 0.0192 0.0907** 0.0722 
 (0.0813) (0.0527) (0.0304) (0.0260) (0.0287) (0.0382) (0.0625) 
Regressions for 𝒉 = 𝟒 
US inv./GDP (%) -0.00284 -0.00236 -0.00161* -0.00198*** -0.000739 -0.00132 -0.00135 
 (0.00218) (0.00149) (0.000853) (0.000429) (0.000771) (0.00145) (0.00108) 
        
Credit/GDP (%) 0.00244** 0.000960 -0.000108 0.000800** 0.000561 -0.000139 -0.000281 
 (0.00114) (0.000755) (0.000443) (0.000309) (0.000465) (0.000621) (0.00100) 
        
Constant -0.303*** -0.201*** -0.0792** -0.0429* 0.0420 0.142*** 0.160** 
 (0.0935) (0.0661) (0.0376) (0.0239) (0.0281) (0.0444) (0.0630) 
N 44 44 44 44 44 44 44 
Robust standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. 
 

From a general reading of Table 5 when h=0, we have that market size significantly explains 

the transmission of NFCI shocks. The effect is the one expected from the theory and in 

accordance to previous studies, namely, the larger the market the lower the negative effect of 

US financial conditions on that market. When h=1, 4 market size loses its significance in most 

of the cases as it only remains significant at the lowest quantiles (0.05) and the median of the 

distribution. On its side, financial closeness to the US helps to explain the central quantiles 
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when h=1 (𝝉 = 0.8) and h=4 (𝝉 = 0.5) but not the vulnerable funding episodes associated with 

the lowest quantiles. The same narrative suits Table 6, namely market size helps to explain the 

propagation of financial uncertainty across the world credit markets, when h=0, while at other 

horizons and especially for the lowest quantiles the explanation escapes from these two 

traditional determinants. 

 

Table 6:  Cross-sectional determinants of vulnerable credit (second moment shock) 

 𝝉 = 
 0.05 0.1 0.2 0.5 0.8 0.9 0.95 
Regressions for 𝒉 = 𝟎 
US inv./GDP (%) -0.000269 -0.000502 -0.000436 0.000299 0.000801* 0.000584* 0.00170*** 
 (0.000905) (0.00123) (0.000972) (0.000582) (0.000430) (0.000324) (0.000410) 
        
Credit/GDP (%) 0.00138 0.00146** 0.000987** 0.000936* 0.00140** 0.00178** 0.00242** 
 (0.000837) (0.000549) (0.000487) (0.000536) (0.000642) (0.000797) (0.000962) 
        
Constant -0.206*** -0.193*** -0.124*** -0.0844** -0.104** -0.118** -0.177*** 
 (0.0601) (0.0390) (0.0362) (0.0341) (0.0423) (0.0524) (0.0643) 
Regressions for 𝒉 = 𝟏 
US inv./GDP (%) -0.00177 -0.000651 -0.000769 0.0000613 0.000471* 0.000766** 0.000461 
 (0.00183) (0.000984) (0.000751) (0.000478) (0.000267) (0.000347) (0.00139) 
        
Credit/GDP (%) -0.000280 0.000302 0.000504 0.000586 0.000659 0.00110 0.00250* 
 (0.000923) (0.000491) (0.000419) (0.000401) (0.000538) (0.000714) (0.00127) 
        
Constant -0.0672 -0.0713* -0.0756** -0.0572* -0.0366 -0.0585 -0.148** 
 (0.0841) (0.0398) (0.0353) (0.0293) (0.0341) (0.0487) (0.0724) 
Regressions for 𝒉 = 𝟒 
US inv./GDP (%) -0.000462 -0.00135 -0.00109** -0.00110*** 0.000539* 0.000190 0.000662 
 (0.00141) (0.000864) (0.000507) (0.000380) (0.000294) (0.000447) (0.000554) 
        
Credit/GDP (%) 0.00103 -0.000441 -0.000644** 0.000369 0.000225 0.000322 0.0000929 
 (0.000758) (0.000510) (0.000258) (0.000285) (0.000615) (0.000780) (0.00118) 
        
Constant -0.192*** -0.0627* -0.0249 -0.0482** -0.00561 0.0371 0.0458 
 (0.0501) (0.0353) (0.0186) (0.0180) (0.0342) (0.0466) (0.0801) 
N 44 44 44 44 44 44 44 
Robust standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. 
 

When we turn our attention to the stock markets, a different landscape emerges. In Table 7 we 

can observe that when h=0 the relative size of US investment (market closeness to the US) 

significantly explains the transmission of NFCI shocks. The effect is the one expected from 

the theory: the closest markets to the US (i.e. larger relative reception of US annual investment 

as a percentage of local GDP) are the most affected (independently on the size of the market), 

which can be rationalized with the portfolio view operating on the global transmission of US 

financial conditions. This time the size of the market does not offer explanatory power for the 

vulnerable funding episodes (or even for the transmission on the highest quantiles).  
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Table 7:  Cross-sectional determinants of vulnerable equity (first moment shock) 

 
 𝝉 = 
 0.05 0.1 0.2 0.5 0.8 0.9 0.95 
Regressions for 𝒉 = 𝟎 
US inv./GDP (%) -0.00206** -0.00172*** -0.000933** -0.00102*** -0.00154*** -0.00205*** -0.00208* 
 (0.000889) (0.000542) (0.000361) (0.000255) (0.000337) (0.000592) (0.00107) 
        
Market Cap./GDP 
(%) 

-0.00124 -0.00129* -0.000317 -0.000117 0.000412 0.000103 0.000128 

 (0.00106) (0.000713) (0.000415) (0.000366) (0.000887) (0.000773) (0.00121) 
        
Constant -0.00952 -0.0128 -0.0351 0.0324 0.117* 0.217*** 0.216** 
 (0.0766) (0.0554) (0.0395) (0.0360) (0.0647) (0.0650) (0.0906) 
Regressions for 𝒉 = 𝟏 
US inv./GDP (%) -0.000509 -0.0000444 -0.000627** -0.000906*** -0.000740** -0.0000370 0.000994 
 (0.000816) (0.000462) (0.000225) (0.000246) (0.000342) (0.000395) (0.00106) 
        
Market Cap./GDP 
(%) 

-0.00144 -0.000531 -0.000890** -0.0000682 0.00182* 0.00275*** 0.00237*** 

 (0.00119) (0.000933) (0.000424) (0.000437) (0.000888) (0.000791) (0.000772) 
        
Constant -0.0116 -0.0382 -0.00695 -0.00529 -0.0441 -0.0617 -0.0108 
 (0.1000) (0.0714) (0.0371) (0.0354) (0.0579) (0.0676) (0.0705) 
Regressions for 𝒉 = 𝟒 
US inv./GDP (%) -0.000400 -0.000130 -0.00130*** -0.000229 -0.000937** -0.0000656 -0.000329 
 (0.00177) (0.000544) (0.000434) (0.000495) (0.000375) (0.000623) (0.000711) 
        
Market Cap./GDP 
(%) 

-0.00199 -0.00240** -0.00145** -0.000563 0.0000627 0.00117 0.000862 

 (0.00127) (0.000895) (0.000611) (0.000483) (0.000817) (0.00118) (0.00114) 
        
Constant 0.178 0.167* 0.122** 0.0469 0.0791 0.0915 0.205** 
 (0.109) (0.0869) (0.0533) (0.0516) (0.0725) (0.0748) (0.0850) 
N 25 25 25 25 25 25 25 
Robust standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. 

 

When we move from h=0 to h=1, 4, financial closeness keeps its explanatory power for the 

central quantiles but not for the lowest. Moreover, for the central cases the market size gains 

some statistical power, which nevertheless is accompanied by a negative sign, meaning that 

advanced economies are more susceptible to receive shocks from the US than emerging 

economies.  A very similar panorama arises when we move to the last table of our estimations 

(Table 8). This table focuses on the second moment shocks (financial uncertainty) effect on 

the stock markets. Again it is financial closeness instead of market size which offers significant 

explanatory power of vulnerable funding episodes. The size of the stock market only matters 

four quarters after the shock has occurred.  

All in all, our cross-sectional regressions tell us that market size and financial closeness to the 

US explain vulnerable funding episodes, at least contemporaneously. Nevertheless, the 
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explanation depends on the market. Credit markets react according to market size, while stock 

markets to financial closeness. There are not notable differences in this case between the 

explanatory power of first and second moment shocks of these two variables.  

 

Table 8:  Cross-sectional determinants of vulnerable equity (second moment shock) 

 𝝉 = 
 0.05 0.1 0.2 0.5 0.8 0.9 0.95 
Regressions for 𝒉 = 𝟎 
US inv./GDP (%) -0.00109** -0.00124*** -0.000714*** -0.000578*** -0.00108*** -0.00147*** -0.00102** 
 (0.000431) (0.000277) (0.000191) (0.000140) (0.000294) (0.000414) (0.000486) 
        
Market Cap./GDP (%) -0.00103 -0.000489 -0.000257 0.0000940 0.000817** 0.000897 -0.000184 
 (0.000684) (0.000605) (0.000444) (0.000326) (0.000373) (0.000591) (0.00102) 
        
Constant -0.107 -0.0684 -0.0467 -0.00853 0.0265 0.105* 0.201* 
 (0.0678) (0.0489) (0.0331) (0.0223) (0.0326) (0.0547) (0.104) 
Regressions for 𝒉 = 𝟏 
US inv./GDP (%) -0.00316** -0.00142*** -0.000857* -0.000213 -0.000283 0.000396 0.0000253 
 (0.00130) (0.000404) (0.000437) (0.000176) (0.000185) (0.000346) (0.000389) 
        
Market Cap./GDP (%) -0.00195* -0.000895 -0.000746* -0.000278 0.000753* 0.00162*** 0.00126 
 (0.00100) (0.000730) (0.000389) (0.000397) (0.000379) (0.000528) (0.000753) 
        
Constant -0.271*** -0.248*** -0.124*** -0.0477* -0.0195 -0.0333 0.0816 
 (0.0795) (0.0590) (0.0367) (0.0264) (0.0285) (0.0360) (0.0595) 
Regressions for 𝒉 = 𝟒 
US inv./GDP (%) 0.000271 0.000310 -0.000418* -0.000448 -0.000262 -0.000353 0.000387 
 (0.000509) (0.000283) (0.000202) (0.000327) (0.000412) (0.000330) (0.000549) 
        
Market Cap./GDP (%) -0.00212*** -0.00166** -0.000471 -0.000232 0.000436 0.00112 0.00136 
 (0.000677) (0.000681) (0.000495) (0.000299) (0.000448) (0.000904) (0.00114) 
        
Constant -0.0346 -0.0297 -0.0368 -0.00249 0.00279 0.00531 0.0163 
 (0.0715) (0.0456) (0.0339) (0.0253) (0.0334) (0.0565) (0.0632) 
N 25 25 25 25 25 25 25 
Robust standard errors in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. 
 

6. Conclusions 

We systematically document vulnerable funding episodes in the world economy. That is, 

financial conditions in the United States have significant predictive power on the lowest 

quantiles of credit growth and stock market prices around the global economy. However, the 

established effects are very heterogeneous in several dimensions. Vulnerable funding depends 

on the country, the funding market, i.e., credit or stock, and the type of shock, i.e., mean-shock 

to financial conditions or second-moment uncertainty shock. We also show that vulnerable 

funding can be explained, mainly contemporaneously, by the relative market size in the case of 
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credit markets and by the financial links with the US (measured by the total direct investment 

of the US as a percentage of the country’s GDP) in the case of the stock market.  

Our methodological approach uses quantile regressions, following the emphasis of the Growth 

at Risk literature, which allows us to examine the impact of financial conditions in the US in 

the whole conditional distributions of credit and stock market prices around the world, and 

hence to document the asymmetric impacts summarized before. We complement our model 

specification with global economic and financial factors, that we construct using a rich data set 

that comprises more than 40 countries, most of the time with information spanning almost six 

decades. Our results are robust to include both, a global macroeconomic factor and a global 

financial factor.  

The impact of financial conditions of the United States on global stock markets is immediate, 

so that the strongest effects are observed in the same period of the realization of the shock. 

Reducing the possibility of using the indicator of financial conditions of the US as a measure 

of future market performance, or as an early warning indicator foreseeing future limited 

funding by corporations. The opposite occurs in the case of credit markets, the larger effects 

are observed according to our specification, one year after the origination of the shock, which 

means that financial conditions in the US may serve as a predicting variable of future 

vulnerability of domestic credit markets. These two effects put together emphasize on the 

importance of funding for the transmission of recessionary shocks throughout the global 

economy, and on the necessity of monitoring funding variables and their relationship with 

global financial shocks in financial stability exercises conducted by central banks and regulators 

around the world, on a regular basis. 

The policy implications of our results are clear. We show that international funding markets 

are a source of persistence and amplification of financial conditions shocks across the global 

economy. This means that a deterioration of financial conditions in the US calls for policy 

actions in other economies around the world. For instance, an increase in market uncertainty 

that is associated with lower global liquidity and credit availability might amplify the fall in 

investment (and slows down economic recovery) observed after an international shock to US 

financial conditions. Under such scenarios it may be determinant on the side of domestic fiscal 

and monetary authorities, to foster internal demand, by reducing the cost of financing and 

providing liquidity to companies that look to invest once uncertainty has returned to its normal 
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levels. We show that this line of reasoning is more general than the previous literature has 

indicated, because the deterioration of funding opportunities either via credit or the stock 

market is observed in all types of economies, regardless of the side of their financial markets. 

Indeed such differentiation does not matter at all for stock markets, and although it is 

important for credit markets, in the sense that larger markets are less prone to vulnerable 

funding episodes than smaller markets, vulnerable funding continues to be a concern for 

developed economies as well, according to our estimation results.  

References 

Adrian, T., Boyarchenko, N., Giannone, D. (2019) Vulnerable Growth. American Economic 

Review 109: 1263-1289.  

Adrian, T., Grinberg, F.,  Liang, N., Malik, S. (2018) The Term Structure of Growth-at-Risk,  

IMF Working Paper No. 18/180.  

Alessandri, P., Bottero, M, (2020) Bank Lending in Uncertain Times, European Economic Review 

128: 103503.  

Alessandri, P., Mumtaz, H. (2019) Financial Regimes and Uncertainty Shocks, Journal of 

Monetary Economics, 101:31-46. 

Alfaro, L., Chanda, A., Kalemli-Ozcan, S., Sayek, S. 2004 FDI and Economic Growth, The 

Role of Local Financial Markets, Journal of International Economics 64: 113-134. 

Alfaro, L., Chen M.X. (2012) Surviving the Global Financial Crisis: Foreign Ownership and 

Establishment Performance, American Economic Journal: Economic Policy 4(3): 30-55. 

Alfaro, L., Kalemli-Ozcan, S. Chanda, A., Sayek, S. (2021) Does Foreign Direct Investment 

Promote Growth? Exploring the Role of Financial Markets on Linkages. Journal of 

Development Economics 91(2): 242–256 

Allen, F., Carletti, E. (2013). What Is Systemic Risk? Journal of Money, Credit and Banking, 45: 

121-127. 

Ammer, J., De Pooter, C. Erceg, and S. Kamin, (2018). “International Spillovers of Monetary 

Policy”, IFDP Notes, Board of Governors of the Federal Reserve.  

Ando, T., Tsay, R. S. (2011). Quantile regression with factor-augmented predictors and 

information criterion. The Econometrics Journal 14: 1-24. 



 39

Arrigoni, S., Bobasu, A., Venditti, F. (2020) The simpler the better: measuring financial 

conditions for monetary policy and financial statbility, European Central Bank, working 

paper No. 2451.  

Bai, J., Ng., S (2020). Simpler Proofs for Approximate Factor Models of Large Dimensions. 

working paper, Available at arXiv:2008.00254  

Bai, J., Ng., S. (2008). Large Dimensional Factor Analysis. Foundations and Trends in Econometrics, 

3: 89-163. 

Baskaya, Y.S., di Giovanni, J., Halemli-Özcan, S., Peydró, J.L., Ulu, M.F. (2017). Capital Flows 

and the International Credit Channel, Journal of International Economics 108 (S1): S15-S22. 

Bhattarai, S., Chatterjee, A., Park, W.Y. (2020). Global Spillover Effect of US Uncertainty, 

Journal of Monetary Economics, 114:71-89. 

Bordo, M.D., Duca, J.V., Koch, C. (2016) Economic policy uncertainty and thecredit channel: 

aggregate and bank level U.S. evidence over several decades, Journalof Financial Stability, 

26: 90-106. 

 Boyarchenko, N., Adrian, T., Giannone, D. (2019) Multimodality in Macro-Financial 

Dynamics  Staff Reports 903, Federal Reserve Bank of New York.  

Bräuning, F., Ivashina, V. (2020a) U.S. Monetary Policy and Emerging Market Credit Cycles, 

Journal of Monetary Economics 112: 57-76. 

Bräuning, F., Ivashina, V. (2020b) Monetary Policy and Global Banking, The Journal of Finance 

75(6): 3055-3095. 

Brownlees, C. Souza, A.B. (2020) Backtesting Global Growth-at-Risk, Journal of Monetary 

Economics, forthcomming. 

Brunnermeier, M., Sannikov, Y. (2016) Macro, Money, and Finance: A Continuous-Time 

Approach, Chp. 18 in: John B. Taylor, Harald Uhlig (Ed.s), Handbook of 

Macroeconomics, volume 2, pp. 1497-1545. 

Bruno, V., Shin, H. S. (2015) Capital Flows and the Risk-taking Channel of Monetary Policy, 

Journal of Monetary Economics 71: 119-132. 

Carrière-Swallow, Y., Céspedes, L.F. (2013) The impact of uncertainty shocks in emerging 



 40

economies, Journal of International Economics 90(2): 310-325. 

Carriero, A., Clark, T. E., Marcellino, M. (2020). Assessing international commonality in 

macroeconomic uncertainty and its effects. Journal of Applied Econometrics 35: 273-293. 

Cesa-Bianchi, A., Pesaran, M.H., Rebucci, A. (2020) Uncertainty and Economic Activity: A 

Multicountry Perspective, Review of Financial Studies 33: 3393-3445. 

Cetorelli, N., Goldberg, L.S. (2011) Global Banks and International Shock Transmission: 

Evidence from the Crisis, IMF Economic Review 59(1): 41-76. 

Choi, S. (2018) The impact of US financial uncertainty shocks on emerging market economies: 

An international credit channel, Open Economies Review 29: 89-118. 

Choi, S., Furceri, D., Huang, Y., and Loungani, P., (2018) Aggregate uncertainty and sectoral 

productivity growth: the role of credit constraints, Journal of International Money and Finance 

88: 314-330. 

Chudik, A., Pesaran, M. H. (2015) Common correlated effects estimation of heterogeneous 

dynamic panel data models with weakly exogenous regressors. Journal of Econometrics 188: 

393-420. 

Delle Monache, D., Polis, A.D., Petrella, I.  (2020) Modeling and Forecasting Macroeconomic 

Downside Risk,  EMF Research Papers 34. 

Di Giovanni, J., Kalemli-Özcan, S., Ulu., M.F., Baskaya, Y.S. (2019). International Spillovers 

and Local Credit Cycles, Working Paper 23149, National Bureau of Economic 

Research. 

Fama, E. F., French, K. R. (2012). Capital Structure Choices. Critical Finance Review 1: 59-101. 

Fernández-Villaverde, J., Guerrón-Quintana, P., Rubio-Ramírez, J.F, Uribe, M. (2011): Risk 

Matters: The Real Effects of Volatility Shocks, American Economic Review 6: 2530-61.  

Figueres, J. M. Jarociński, M. (2020) Vulnerable Growth in the Euro Area: Measuring the 

Financial Conditions. Economic Letters 191: forthcoming. 

Fink, F. and Y. Schüler (2015). The Transmission of US Systemic Financial Stress: Evidence 

for Emerging Market Economies, Journal of International, Money and Finance 55, 6-26. 

Gertler, M. and S. Gilchrist (2018) What Happened: Financial Factors in the Great Recession 



 41

Journal of Economic Perspectives 32: 3-30.  

Gete, P., Melkadze, G. (2018) Aggregate volatility and international dynamics. The role of 

credit supply. Journal of International Economics 111: 143-158. 

Giglio, S., Kelly, B., Pruitt, S. (2016) Systemic risk and the macroeconomy: An empirical 

evaluation. Journal of Financial Economics 119: 457-471.  

Graham, J. R., Leary, M. T., Roberts, M. R. (2015). A Century of Capital Structure: The 

Leveraging of Corporate America. Journal of Financial Economics 118: 658-683.  

Harding, M., Lamarche, C., Pesaran, H. (2020) Common Correlated Effects Estimation of 

Heterogeneous Dynamic Panel Quantile Regression Models. Journal of Applied 

Econometrics 35: 294-314. 

Isohätälä, J.,  Klimenko, N., Milne, A. (2015) Post-Crisis Macrofinancial Modeling: Continuos 

Time Approaches, In: Haven E., Molyneux P., Wilson J.O.S., Fedotov S., Duygun M. 

(eds) The Handbook of Post Crisis Financial Modeling. Palgrave Macmillan, London.  

Ivashina, V., Scharfstein, D.S., Stein, J.C. (2015) Dollar Funding and the Lending Behavior of 

Global Banks, The Quarterly Journal of Economics, 130(3): 1241-1281. 

Jordà, O., Schularick, M., Taylor, A. M., Ward, F. (2019). Global Financial Factors and Risk 

Premiums, IMF Economic Review 67: 109-150. 

Kalemli-Özcan, S. (2019) U.S. Monetary Policy and International Risk Spillovers, NBER 

Working Papers 26297, National Bureau of Economic Research, Inc. 

Kalemli-Özcan, S., Nikolsko–Rzhevskyy, A., Kwak, J.H. (2020) Does Trade Cause Capital to 

Flow? Evidence from Historical Rainfall, Journal of Development Economics 147: 102537. 

Kiley, M. T. (2018) Unemployment Risk, FIDS 2018-067, Board of Governors of the Federal 

Reserve System (U.S.).  

Lin, S., Ye, H. (2018) Foreign Direct Investment, Trade Credit, and Transmission of Global 

Liquidity Shocks: Evidence from Chinese Manufacturing Firms. The Review of Financial 

Studies 31 (1): 206-238. 

Loria, F., Matthes, C., Zhang, D. (2019) Assessing Macroeconomic Tail Risk, Working Paper 

19-10, Federal Reserve Bank of Richmond.  



 42

Ludvigson, S., Ma S., and Ng, S. (2020). Uncertainty and Business Cycles: Exogenous Impulse 

or Endogenous Response? American Economic Journal: Macroeconomics, forthcoming. 

Matsumoto, A. (2011) Global liquidity: availability of funds for safe and risky assets, IMF 

Working Paper 11/136. 

McCracken, M., Ng, S. (2020) FRED-QD: A Quarterly Database for Macroeconomic 

Research, NBER working paper 26872 Availabe at 10.3386/w26872.  

Miranda-Agrippino, S. Rey, H. (2020a) US Monetary Policy and The Global Financial Cycle. 

The Review of Economic Studies forthcoming. 

Miranda-Agrippino, S., Rey, H. (2020b) The Global Financial Cycle after Lehman.  AEA 

Papers and Proceedings 110: 523-28. 

Monnet, E., and Puy, D., (2020) One ring to rule them all? New evidence on world cycles, 

IMF working paper wp/19/202. 

Nakamura, E., Steinsson, J. (2018) Identification in macroeconomics, The Journal of Economics 

Perspectives 32: 59-86. 

Parsons, C., Titman, S. (2008). Empirical Capital Structure: A Review.  Foundations and Trends in 

Finance, 3(1):1-93 

Peek, J., Rosengren, E.S. (1997) The International Tranmission of Financila Shocks: The Case 

of Japan. The American Economic Review 87(4): 495-505. 

Popp, A., Zhang, F. (2016) The macroeconomic effects of uncertainty shocks: The role of the 

financial channel, Journal of Economic Dynamics and Control 69, 319-349. 

Prasad, A., S. Elekdag, P. Jeasakul, R. Lafarguette, A. Alter, A. X. Feng,. Wang, C. (2019) 

Growth at Risk: Concept and Application in IMF Country Surveillance, Working Paper 

Series 19/36, International Monetary Fund.  

Reichlin, L., G. Ricco, Hasenzagl, T. (2020) Financial Variables as Predictors of Real Growth 

Vulnerability CEPR Discussion Papers 14322, C.E.P.R. Discussion Papers.  

Stock, J. H.,  Watson, M. W. (2010). Dynamic factor models. Oxford Handbook of Economic 

Forecasting. Oxford University Press, USA, 35-59. 

 



 43

Appendix 
 
 

Table A1: Availability of information for each country and variable in Monnet and Puy 
(2019) macro-financial dataset. 

Country Variable Start End T 
Argentina CPI 1950 Q1 2019 Q4 280 
Argentina Real credit 1950 Q1 2019 Q4 280 
Argentina Real GDP 1957 Q1 2019 Q4 252 
Australia CPI 1950 Q1 2019 Q4 280 
Australia Real credit 1950 Q1 2019 Q4 280 
Australia Real GDP 1957 Q1 2019 Q4 252 
Australia Nominal stock prices 1950 Q1 2019 Q4 280 
Australia Bond Yield 1955 Q1 2019 Q4 260 
Austria CPI 1950 Q1 2019 Q4 280 
Austria Real credit 1950 Q1 2019 Q4 280 
Austria Real GDP 1950 Q1 2019 Q4 280 
Austria Nominal stock prices 1950 Q1 2019 Q4 280 
Belgium CPI 1950 Q1 2019 Q4 280 
Belgium Real credit 1950 Q4 2019 Q4 277 
Belgium Real GDP 1950 Q1 2019 Q4 280 
Belgium Nominal stock prices 1951 Q1 2019 Q4 276 
Belgium Bond Yield 1957 Q1 2017 Q4 244 
Bolivia CPI 1950 Q4 2019 Q4 277 
Bolivia Real credit 1950 Q4 2019 Q3 276 
Brazil CPI 1950 Q4 2019 Q4 277 
Brazil Real credit 1950 Q4 2019 Q4 277 
Brazil Real GDP 1957 Q1 2019 Q4 252 
Canada CPI 1950 Q1 2019 Q4 280 
Canada Real credit 1950 Q1 2019 Q4 280 
Canada Real GDP 1950 Q1 2019 Q4 280 
Canada Nominal stock prices 1950 Q1 2019 Q4 280 
Canada Bond Yield 1950 Q1 2017 Q2 270 
Chile CPI 1950 Q1 2019 Q4 280 
Chile Real credit 1950 Q4 2019 Q4 277 
Chile Real GDP 1950 Q1 2019 Q4 280 
Chile Nominal stock prices 1953 Q1 2019 Q4 268 
Colombia CPI 1952 Q4 2019 Q4 269 
Colombia Real credit 1952 Q4 2019 Q4 269 
Costa Rica CPI 1950 Q4 2019 Q4 277 
Costa Rica Real credit 1950 Q4 2019 Q4 277 
Cyprus CPI 1957 Q1 2019 Q4 252 
Cyprus Real credit 1958 Q1 2019 Q4 248 
Denmark CPI 1950 Q1 2019 Q4 280 
Denmark Real credit 1950 Q1 2019 Q4 280 
Denmark Real GDP 1950 Q1 2019 Q4 280 
Denmark Nominal stock prices 1950 Q1 2019 Q4 280 
Denmark Bond Yield 1955 Q1 2019 Q4 260 
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El Salvador CPI 1957 Q1 2019 Q4 252 
Finland CPI 1950 Q1 2019 Q4 280 
Finland Real credit 1950 Q4 2019 Q4 277 
Finland Real GDP 1950 Q1 2019 Q4 280 
Finland Nominal stock prices 1951 Q1 2019 Q4 276 
France CPI 1950 Q1 2019 Q4 280 
France Real credit 1950 Q1 2019 Q4 280 
France Real GDP 1950 Q1 2019 Q4 280 
France Nominal stock prices 1950 Q1 2019 Q4 280 
France Bond Yield 1955 Q1 2017 Q2 250 
Germany CPI 1950 Q1 2019 Q4 280 
Germany Real credit 1950 Q1 2019 Q4 280 
Germany Real GDP 1950 Q1 2019 Q4 280 
Germany Nominal stock prices 1953 Q1 2019 Q4 268 
Germany Bond Yield 1957 Q1 2017 Q2 242 
Greece CPI 1950 Q1 2019 Q4 280 
Greece Real credit 1953 Q4 2019 Q4 265 
Greece Real GDP 1950 Q2 2019 Q4 279 
Guatemala CPI 1950 Q1 2019 Q4 280 
Guatemala Real credit 1950 Q4 2019 Q4 277 
Honduras CPI 1950 Q4 2019 Q4 277 
Honduras Real credit 1950 Q4 2019 Q4 277 
Iceland CPI 1955 Q1 2019 Q4 260 
Iceland Real credit 1955 Q1 2018 Q4 256 
Iceland Real GDP 1957 Q2 2019 Q4 251 
India CPI 1950 Q1 2019 Q4 280 
India Real credit 1950 Q1 2019 Q4 280 
India Real GDP 1950 Q1 2019 Q4 280 
India Nominal stock prices 1950 Q1 2019 Q4 280 
Ireland CPI 1950 Q1 2019 Q4 280 
Ireland Real credit 1950 Q1 2019 Q4 280 
Ireland Real GDP 1950 Q1 2019 Q4 280 
Ireland Nominal stock prices 1955 Q1 2019 Q4 260 
Ireland Bond Yield 1957 Q1 2017 Q2 242 
Israel CPI 1951 Q4 2019 Q4 273 
Israel Real credit 1951 Q4 2019 Q4 273 
Israel Real GDP 1957 Q1 2019 Q4 252 
Israel Nominal stock prices 1955 Q1 2019 Q4 260 
Italy CPI 1950 Q1 2019 Q4 280 
Italy Real credit 1950 Q1 2019 Q4 280 
Italy Real GDP 1950 Q1 2019 Q4 280 
Italy Nominal stock prices 1950 Q1 2019 Q4 280 
Italy Bond Yield 1955 Q1 2019 Q4 260 
Japan CPI 1950 Q1 2019 Q4 280 
Japan Real credit 1950 Q1 2019 Q4 280 
Japan Real GDP 1950 Q1 2019 Q4 280 
Japan Nominal stock prices 1950 Q1 2019 Q4 280 
Japan Bond Yield 1950 Q1 2017 Q2 270 
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Korea CPI 1950 Q1 2019 Q4 280 
Korea Real credit 1951 Q4 2019 Q4 273 
Korea Real GDP 1957 Q1 2019 Q4 252 
Luxembourg CPI 1950 Q1 2019 Q4 280 
Luxembourg Real GDP 1950 Q1 2019 Q4 280 
Malaysia CPI 1950 Q1 2019 Q4 280 
Malaysia Real credit 1952 Q4 2019 Q4 269 
Malta CPI 1957 Q1 2019 Q4 252 
Mexico CPI 1950 Q1 2019 Q4 280 
Mexico Real credit 1950 Q1 2019 Q4 280 
Mexico Real GDP 1950 Q1 2019 Q4 280 
Mexico Nominal stock prices 1950 Q1 2019 Q4 280 
Morocco CPI 1957 Q1 2019 Q4 252 
Morocco Real credit 1959 Q1 2019 Q4 244 
Morocco Real GDP 1957 Q1 2019 Q4 252 
Netherlands CPI 1950 Q1 2019 Q4 280 
Netherlands Real credit 1950 Q1 2019 Q4 280 
Netherlands Real GDP 1950 Q1 2019 Q4 280 
Netherlands Nominal stock prices 1950 Q1 2019 Q4 280 
Netherlands Bond Yield 1955 Q1 2019 Q2 258 
New Zealand CPI 1950 Q1 2019 Q4 280 
New Zealand Real credit 1950 Q1 2019 Q4 280 
New Zealand Real GDP 1957 Q1 2019 Q4 252 
New Zealand Nominal stock prices 1950 Q1 2019 Q4 280 
New Zealand Bond Yield 1957 Q1 2019 Q4 252 
Norway CPI 1950 Q1 2019 Q4 280 
Norway Real credit 1950 Q1 2019 Q4 280 
Norway Real GDP 1950 Q1 2019 Q4 280 
Norway Nominal stock prices 1950 Q1 2019 Q4 280 
Norway Bond Yield 1957 Q1 2019 Q4 252 
Pakistan CPI 1950 Q1 2019 Q4 280 
Pakistan Real credit 1950 Q4 2019 Q4 277 
Pakistan Real GDP 1950 Q1 2019 Q4 280 
Peru CPI 1950 Q4 2019 Q4 277 
Peru Real credit 1950 Q4 2019 Q4 277 
Peru Nominal stock prices 1950 Q1 2019 Q4 280 
Philippines CPI 1950 Q4 2019 Q4 277 
Philippines Real credit 1950 Q4 2019 Q4 277 
Philippines Real GDP 1963 Q1 2019 Q4 228 
Philippines Nominal stock prices 1953 Q1 2019 Q4 268 
Portugal CPI 1950 Q1 2019 Q4 280 
Portugal Real credit 1950 Q1 2019 Q4 280 
Portugal Real GDP 1955 Q1 2019 Q4 260 
Portugal Bond Yield 1955 Q1 2017 Q2 250 
South Africa CPI 1950 Q1 2019 Q4 280 
South Africa Real credit 1950 Q4 2019 Q4 277 
South Africa Real GDP 1957 Q1 2019 Q4 252 
South Africa Nominal stock prices 1950 Q1 2019 Q4 280 
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South Africa Bond Yield 1955 Q1 2019 Q4 260 
Spain CPI 1950 Q1 2019 Q4 280 
Spain Real credit 1953 Q4 2019 Q4 265 
Spain Real GDP 1950 Q1 2019 Q4 280 
Spain Nominal stock prices 1950 Q1 2019 Q4 280 
Sweden CPI 1950 Q1 2019 Q4 280 
Sweden Real credit 1950 Q1 2019 Q4 280 
Sweden Real GDP 1950 Q1 2019 Q4 280 
Sweden Nominal stock prices 1950 Q1 2019 Q4 280 
Sweden Bond Yield 1955 Q1 2017 Q2 250 
Switzerland CPI 1950 Q1 2019 Q4 280 
Switzerland Real credit 1950 Q1 2019 Q4 280 
Switzerland Real GDP 1955 Q1 2019 Q4 260 
Switzerland Nominal stock prices 1950 Q1 2019 Q4 280 
Switzerland Bond Yield 1955 Q1 2019 Q4 260 
Taiwan CPI 1957 Q1 2019 Q4 252 
Taiwan Real credit 1957 Q1 2018 Q4 248 
Taiwan Real GDP 1957 Q1 2019 Q4 252 
Thailand CPI 1950 Q1 2019 Q4 280 
Thailand Real credit 1950 Q4 2019 Q4 277 
Turkey CPI 1950 Q4 2019 Q4 277 
Turkey Real credit 1950 Q4 2019 Q4 277 
Turkey Real GDP 1957 Q1 2019 Q4 252 
United Kingdom CPI 1950 Q1 2019 Q4 280 
United Kingdom Real credit 1950 Q1 2019 Q4 280 
United Kingdom Real GDP 1950 Q1 2019 Q4 280 
United Kingdom Nominal stock prices 1950 Q1 2019 Q4 280 
United Kingdom Bond Yield 1955 Q1 2019 Q4 260 
United States CPI 1950 Q1 2019 Q4 280 
United States Real credit 1950 Q1 2019 Q4 280 
United States Real GDP 1950 Q1 2019 Q4 280 
United States Nominal stock prices 1950 Q1 2019 Q4 280 
United States Bond Yield 1953 Q2 2019 Q4 267 
Uruguay CPI 1950 Q4 2019 Q4 277 
Uruguay Real credit 1950 Q4 2019 Q4 277 
Uruguay Real GDP 1957 Q1 2019 Q4 252 
 
 

Table A2. Variables and Transformations 
Original Transformation Definition 

Real GDP (𝒙𝟏𝒕) ∆log (𝑥1 ) Real GDP growth (q-o-q) 
CPI (𝒙𝟐𝒕) ∆ log (𝑥2 ) Inflation growth (q-o-q) 
Credit (𝒙𝟑𝒕) ∆log (𝑥3 /𝑥2 ) Real credit growth (q-o-q) 
Stock price (𝒙𝟒𝒕) ∆log (𝑥4 ) Stock returns (q-o-q) 
Bond yield (𝒙𝟓𝒕) ∆ (𝑥5 ) Bond yield change (q-o-q) 
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Table A3: Descriptive statistics of the variables after transformations 
Country Variable Mean Sd Min Max 
Argentina Real credit 0.01 0.11 -0.91 0.61 
Argentina Real GDP 0.01 0.02 -0.08 0.08 
Argentina CPI 0 0.16 -1.52 0.94 
Australia Real credit 0.02 0.01 -0.02 0.06 
Australia Real GDP 0.01 0.01 -0.02 0.04 
Australia CPI 0 0.01 -0.04 0.05 
Australia Nominal stock prices 0.01 0.08 -0.49 0.2 
Australia Bond yield -0.02 0.48 -1.65 1.83 
Austria Real credit 0.01 0.02 -0.04 0.08 
Austria Real GDP 0.01 0.01 -0.02 0.04 
Austria CPI 0 0.02 -0.13 0.08 
Austria Nominal stock prices 0.01 0.09 -0.61 0.45 
Belgium Real credit 0.01 0.02 -0.07 0.1 
Belgium Real GDP 0.01 0.01 -0.02 0.04 
Belgium CPI 0 0.01 -0.02 0.02 
Belgium Nominal stock prices 0.01 0.07 -0.37 0.21 
Belgium Bond yield -0.02 0.34 -1.39 1.09 
Bolivia Real credit 0.02 0.1 -0.58 0.71 
Bolivia CPI 0 0.13 -1.04 0.69 
Brazil Real credit 0.02 0.07 -0.41 0.34 
Brazil Real GDP 0.01 0.02 -0.08 0.07 
Brazil CPI 0 0.11 -1.15 0.49 
Canada Real credit 0.01 0.02 -0.03 0.08 
Canada Real GDP 0.01 0.01 -0.02 0.03 
Canada CPI 0 0.01 -0.03 0.02 
Canada Nominal stock prices 0.01 0.07 -0.37 0.19 
Canada Bond yield -0.01 0.47 -2.19 2.15 
Chile Real credit 0.03 0.08 -0.34 0.54 
Chile Real GDP 0.01 0.02 -0.14 0.11 
Chile CPI 0 0.07 -0.45 0.39 
Chile Nominal stock prices 0.07 0.16 -0.38 0.88 
Colombia Real credit 0.01 0.04 -0.19 0.13 
Colombia CPI 0 0.04 -0.22 0.22 
Costa Rica Real credit 0.01 0.04 -0.18 0.13 
Costa Rica CPI 0 0.02 -0.11 0.06 
Cyprus Real credit 0.02 0.03 -0.16 0.13 
Cyprus CPI 0 0.02 -0.06 0.05 
Denmark Real credit 0.01 0.01 -0.03 0.07 
Denmark Real GDP 0.01 0.01 -0.08 0.06 
Denmark CPI 0 0.01 -0.04 0.04 
Denmark Nominal stock prices 0.02 0.08 -0.39 0.3 
Denmark Bond yield -0.03 0.63 -3.34 2.75 
El Salvador CPI 0 0.02 -0.05 0.05 
Finland Real credit 0.01 0.02 -0.05 0.14 
Finland Real GDP 0.01 0.01 -0.07 0.05 
Finland CPI 0 0.01 -0.04 0.04 
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Finland Nominal stock prices 0.02 0.1 -0.35 0.42 
France Real credit 0.01 0.02 -0.04 0.08 
France Real GDP 0.01 0.01 -0.05 0.08 
France CPI 0 0.01 -0.02 0.01 
France Nominal stock prices 0.01 0.08 -0.33 0.23 
France Bond yield -0.02 0.42 -1.62 1.81 
Germany Real credit 0.01 0.01 -0.02 0.05 
Germany Real GDP 0.01 0.01 -0.05 0.04 
Germany CPI 0 0.01 -0.02 0.03 
Germany Nominal stock prices 0.01 0.08 -0.32 0.23 
Germany Bond yield -0.03 0.37 -1.37 1.07 
Greece Real credit 0.01 0.03 -0.07 0.1 
Greece Real GDP 0.01 0.02 -0.05 0.08 
Greece CPI 0 0.03 -0.07 0.07 
Guatemala Real credit 0.01 0.11 -1.44 0.58 
Guatemala CPI 0 0.02 -0.08 0.09 
Honduras Real credit 0.02 0.03 -0.1 0.12 
Honduras CPI 0 0.02 -0.06 0.05 
Iceland Real credit 0.01 0.05 -0.15 0.28 
Iceland Real GDP 0.01 0.02 -0.09 0.1 
Iceland CPI 0 0.03 -0.15 0.12 
India Real credit 0.02 0.04 -0.11 0.15 
India Real GDP 0.01 0.02 -0.07 0.09 
India CPI 0 0.03 -0.13 0.09 
India Nominal stock prices 0.02 0.11 -0.64 0.37 
Ireland Real credit 0.01 0.03 -0.1 0.11 
Ireland Real GDP 0.01 0.02 -0.06 0.21 
Ireland CPI 0 0.01 -0.07 0.04 
Ireland Nominal stock prices 0.02 0.09 -0.49 0.35 
Ireland Bond yield -0.02 0.66 -2.19 2.4 
Israel Real credit 0.03 0.05 -0.17 0.45 
Israel Real GDP 0.01 0.02 -0.12 0.1 
Israel CPI 0 0.04 -0.3 0.23 
Israel Nominal stock prices 0.05 0.14 -0.84 0.61 
Italy Real credit 0.01 0.03 -0.05 0.09 
Italy Real GDP 0.01 0.01 -0.03 0.1 
Italy CPI 0 0.01 -0.05 0.04 
Italy Nominal stock prices 0.01 0.1 -0.3 0.35 
Italy Bond yield -0.02 0.56 -2.3 2.34 
Japan Real credit 0.01 0.02 -0.07 0.08 
Japan Real GDP 0.01 0.01 -0.05 0.03 
Japan CPI 0 0.01 -0.04 0.05 
Japan Nominal stock prices 0.01 0.08 -0.36 0.22 
Japan Bond yield -0.03 0.35 -1.22 1.5 
Korea Real credit 0.03 0.04 -0.13 0.19 
Korea Real GDP 0.02 0.02 -0.07 0.08 
Korea CPI 0 0.03 -0.13 0.17 
Luxembourg Real GDP 0.01 0.02 -0.05 0.06 
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Luxembourg CPI 0 0.01 -0.03 0.02 
Malaysia Real credit 0.03 0.04 -0.07 0.24 
Malaysia CPI 0 0.01 -0.06 0.03 
Malta CPI 0 0.02 -0.04 0.05 
Mexico Real credit 0.01 0.06 -0.31 0.28 
Mexico Real GDP 0.01 0.02 -0.06 0.08 
Mexico CPI 0 0.03 -0.22 0.09 
Mexico Nominal stock prices 0.05 0.15 -0.72 0.7 
Morocco Real credit 0.02 0.04 -0.13 0.12 
Morocco Real GDP 0.01 0.03 -0.14 0.17 
Morocco CPI 0 0.02 -0.07 0.04 
Netherlands Real credit 0.01 0.02 -0.04 0.08 
Netherlands Real GDP 0.01 0.01 -0.05 0.06 
Netherlands CPI 0 0.01 -0.06 0.04 
Netherlands Nominal stock prices 0.01 0.08 -0.42 0.17 
Netherlands Bond yield -0.02 0.37 -1.23 1.31 
New Zealand Real credit 0.01 0.04 -0.12 0.17 
New Zealand Real GDP 0.01 0.02 -0.08 0.11 
New Zealand CPI 0 0.01 -0.06 0.05 
New Zealand Nominal stock prices 0.01 0.08 -0.44 0.23 
New Zealand Bond yield -0.02 0.61 -2.33 4.35 
Norway Real credit 0.01 0.02 -0.05 0.08 
Norway Real GDP 0.01 0.01 -0.03 0.04 
Norway CPI 0 0.01 -0.05 0.06 
Norway Nominal stock prices 0.02 0.1 -0.51 0.34 
Norway Bond yield -0.01 0.37 -1.45 1.56 
Pakistan Real credit 0.02 0.06 -0.21 0.24 
Pakistan Real GDP 0.01 0.02 -0.05 0.09 
Pakistan CPI 0 0.02 -0.1 0.11 
Peru Real credit 0.02 0.08 -0.52 0.34 
Peru CPI 0 0.15 -1.56 1.23 
Peru Nominal stock prices 0.08 0.35 -0.47 3.37 
Philippines Real credit 0.02 0.05 -0.23 0.13 
Philippines Real GDP 0.02 0.11 -0.1 1.62 
Philippines CPI 0 0.03 -0.12 0.11 
Philippines Nominal stock prices 0.01 0.13 -0.36 1.09 
Portugal Real credit 0.01 0.03 -0.07 0.07 
Portugal Real GDP 0.01 0.01 -0.03 0.06 
Portugal CPI 0 0.02 -0.08 0.06 
Portugal Bond yield 0 0.72 -3.76 3.07 
South Africa Real credit 0.01 0.02 -0.04 0.09 
South Africa Real GDP 0.01 0.01 -0.02 0.05 
South Africa CPI 0 0.01 -0.04 0.03 
South Africa Nominal stock prices 0.02 0.09 -0.26 0.24 
South Africa Bond yield 0.02 0.61 -2.07 3.39 
Spain Real credit 0.01 0.02 -0.07 0.08 
Spain Real GDP 0.01 0.01 -0.03 0.04 
Spain CPI 0 0.01 -0.04 0.04 
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Spain Nominal stock prices 0.01 0.09 -0.28 0.36 
Sweden Real credit 0.01 0.02 -0.06 0.06 
Sweden Real GDP 0.01 0.01 -0.04 0.03 
Sweden CPI 0 0.01 -0.04 0.03 
Sweden Nominal stock prices 0.02 0.09 -0.29 0.33 
Sweden Bond yield -0.02 0.45 -1.76 2.06 
Switzerland Real credit 0.01 0.01 -0.05 0.05 
Switzerland Real GDP 0.01 0.01 -0.05 0.03 
Switzerland CPI 0 0.01 -0.02 0.03 
Switzerland Nominal stock prices 0.01 0.07 -0.34 0.16 
Switzerland Bond yield -0.02 0.27 -0.82 0.87 
Taiwan Real credit 0.02 0.03 -0.14 0.12 
Taiwan Real GDP 0.02 0.02 -0.05 0.08 
Taiwan CPI 0 0.02 -0.16 0.08 
Thailand Real credit 0.02 0.03 -0.09 0.13 
Thailand CPI 0 0.02 -0.06 0.08 
Turkey Real credit 0.02 0.06 -0.25 0.18 
Turkey Real GDP 0.01 0.02 -0.11 0.07 
Turkey CPI 0 0.04 -0.2 0.14 
United Kingdom Real credit 0.01 0.02 -0.04 0.07 
United Kingdom Real GDP 0.01 0.01 -0.03 0.05 
United Kingdom CPI 0 0.01 -0.08 0.04 
United Kingdom Nominal stock prices 0.02 0.08 -0.27 0.35 
United Kingdom Bond yield -0.02 0.54 -1.88 1.76 
United States Real credit 0.01 0.02 -0.04 0.04 
United States Real GDP 0.01 0.01 -0.02 0.04 
United States CPI 0 0.01 -0.04 0.02 
United States Nominal stock prices 0.02 0.06 -0.36 0.19 
United States Bond yield -0.01 0.46 -2.45 1.54 
Uruguay Real credit 0 0.07 -0.31 0.22 
Uruguay Real GDP 0.01 0.02 -0.07 0.09 
Uruguay CPI 0 0.04 -0.17 0.18 
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Table A4. Correlations between global factors 
Coefficient of 
correlation 

Financial factor 
(PC1) 

Financial factor 
(2 stage) 

Macroeconomic 
factor (PC1) 

Macroeconomic 
factor (2 stage) 

Financial factor 
(PC1) 

1 0.98 -0.88 -0.98 

Financial factor 
(2 stage) 

0.98 1 -0.89 -0.99 

Macroeconomic 
factor (PC1) 

-0.88 -0.89 1 0.93 

Macroeconomic 
factor  
(2 stage) 

-0.98 -0.99 0.93 1 

 
 

Table A5. Cross-section variables 

Country 
Credit/ GDP (%) Market Cap./GDP (%) US inv./GDP (%) 
Mean N Mean N Max N 

Argentina 16.44 58 10.86 43 10.04 31 
Australia 65.1 60 79.36 41 13.25 30 
Austria 90.24 19 17.74 45 4.43 31 
Belgium 61.95 19 46.02 44 13.27 31 
Bolivia 29.15 60   6.1 31 
Brazil 41.07 60 49.3 20 6.2 31 
Canada 64.04 49 108.49 41 23.26 31 
Chile 44.14 60 95.97 29 14.83 31 
Colombia 28.23 60 45.84 15 4.45 31 
Costa Rica 30 60 6.45 18 15.21 31 
Cyprus 193 19 25.72 14 23.48 30 
Denmark 81.41 54 29.21 30 5.4 30 
El Salvador 34.73 55   17.58 31 
Finland 81.15 19 63.67 22 1.39 30 
France 90.71 19 48.45 44 3.37 31 
Germany 92.08 19 32.13 45 3.84 31 
Greece 89.29 19 37.06 19 0.79 31 
Guatemala 19.18 60   4.61 31 
Honduras 30.03 60   8.61 31 
Iceland 72.1 60   3.4 14 
India 26.94 60 76.27 17 1.75 30 
Ireland 98.38 19 51.83 22 135.64 31 
Israel 52.25 60 49.75 41 7.98 31 
Italy 50.44 30 45.69 10 2.05 31 
Japan 119.36 60 70.48 45 2.59 31 
Korea 65.03 60 47.69 40 2.63 31 
Luxembourg 56.23 30 104.14 45 1095.82 31 
Malaysia 78.15 60 132.34 39 7.74 31 
Malta 57.2 26 43.01 20 21.5 18 
Mexico 21.12 60 21.19 44 9.34 31 
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Morocco 31.49 56 55.38 10 0.7 31 
Netherlands 71.03 30 66.59 43 111.54 31 
New Zealand 63.4 60 38.94 35 10.6 31 
Norway 62.94 60 40.37 39 8.5 31 
Pakistan 22.24 60 21.94 24 0.96 30 
Peru 18.04 60 37.78 23 7.47 31 
Philippines 28.47 60 58.04 24 7.34 31 
Portugal 81.5 30 23.07 42 2.3 30 
Singapore 77.43 60 166.79 41 85.84 31 
South Africa 52.37 59 167.8 45 2.88 31 
Spain 84.2 30 48.1 44 5.37 31 
Sweden 62.66 60 48.19 29 11.29 31 
Switzerland 126.4 57 142.54 45 37.09 31 
Taiwan     5.09 30 
Thailand 70.51 60 66.1 31 5.79 31 
Turkey 25.24 60 24.86 27 0.82 31 
United Kingdom 83.1 60 86.3 34 30.54 31 
Uruguay 27.63 60 4.06 2 5.09 30 

Note: N denotes the annual non-missing sample size available for each indicator. Time spam for Credit/ GDP 
and Market Cap./GDP is 1960 to 2019, and for US inv./GDP is 1989 to 2019. 
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Figure A1. Original series, transformed series and unit root tests  

 

 

 
  



 54

 

 
 
 

 



 


