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1 Introduction

The COVID-19 outbreak has lead to unprecedented crisis all over the world. Because vaccines or

widespread high-quality testing are not yet available, social distancing is the main tool to fight

the spread of the virus, and hence, face-to-face classes and examinations have been interrupted.

This is important especially in cases in which standardized test scores are used to allocate

scarce resources, namely students to college, or to scholarships. What can policy-makers do in

the absence of such information?

The main alternatives to be considered are either to postpone the exam, to use alternative

methods to define admissions or to use a predictive model to assign grades on the high-stakes

exam using historical data. If the exam is postponed it still may require some adjustments. In

Spain, for instance, exams were postponed and in autonomous communities such as Catalonia,

they adapted its format to ensure that all students had questions which they could answer

given what they had covered in school.1 In the UK, a predictive model was used for secondary

school examinations. Likewise, the International Baccalaureate announced by the end of March

that exams were cancelled and that a predictive model would be used to assign scores. The

aim of this paper is to analyse the consequences of cancelling high-stakes exams in a given

year and predicting them by using high school grades and information about the school and

track attended. We outline the promises and pitfalls of different methods and empirically assess

them.

There are two alternative policies that would be important to study: using a predictive

model to replace a high-stakes exam, or running anyway the high-stakes exam after a period

of prolonged school disruption. Ideally, we would like to compare the outcomes of each policy

with the counterfactual outcomes in a normal year without the COVID-19 outbreak and the

subsequent school disruption. This would allow us to empirically assess which policy ensures

that test scores are closer to the counterfactual. This paper mainly focuses on studying the

effect of the first policy - using a predictive model to replace a high-stakes exam. We use data

from past cohorts of high school graduates in the Spanish autonomous community of Catalonia,

leveraging information on both their high school grades and their test scores in the high-stakes

1Normally, students are given the option to pick between version A and B of the exam, but this year even
for a specific version, individuals were allowed to pick four out of the six problems to answer.
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exams to access college. We estimate various models using the first cohorts of students in the

sample, and test how well they can predict the high-stakes exams of the last cohort of students.

To the extent that the relationship between high school grades and high-stakes exams is stable

over time, this exercise allows us to quantify the effects of using predicted scores to allocate

students to college or other opportunities when it is not possible or desirable to run high-

stakes exam. While we cannot directly test the second policy - running anyway the high-stakes

exam after a period of prolonged school disruption-, in the last part of the paper we perform

simulations to explore the consequences of shocks to performance in the high-stakes exams for

college allocation.2

We estimate different predictive models for college admission scores, mainly based on high

school grades and school characteristics. Our aim is to implement models that combine trans-

parency and fairness with predictive power. This is important because although in principle

we are not interested in estimating the parameters of the prediction model -we would just care

about the out-of-sample predictive power-, models that make clear the way the information is

processed will have a much broader appeal for policymakers. We then use information on in-

dividual level characteristics to understand how different prediction models may harm or favor

different subgroups in the population.

In many countries, comprehensive standardized tests are used to select students along with

measures of continuous assessment such as high school grades or GPA. In Catalonia, the allo-

cation of students to majors and college is centralized and solely based on an admission score

that combines high school GPA with high-stakes standardizes exams, the so-called Selectivitat.3

We collected detailed administrative data on high school and high-stakes exams perfor-

mance, together with information on socio-demographic characteristics, for the universe of

students who graduate from public high schools in Catalonia in 2010-2012. In particular, we

use data on college applicants for 2010 and 2011, estimate a model to predict Selectivitat scores,

2Hopefully further access to data in the near future shall allow us to properly study this question. However,
it is noteworthy that this task will not be easy, because most countries either did not run high-stakes exams or
implemented a different exam, making the comparison with past outcomes challenging.

3Other examples of national exams include the Bagrut (Israel), the SAT (US), the Abitur (Germany), the
Baccalaureat (France), the Maturità (Italy), or A-levels (UK). In Spain, college admission is fully regulated:
colleges have no say in determining the final assignment. Hence, college admissions are similar to a school choice
problem. Gale-Shapley Deferred Acceptance is used, where priority for each degree is defined by a weighted
average of the Selectivitat results, giving higher weight to subjects that are more relevant for the particular
degree.
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and study what would have happened in 2012 if high-stakes exams had been cancelled and a

prediction model had been used to input Selectivitat scores instead.

There are two main takeaways from our results. The first is that high-stakes exams are

mainly explained by high school grades. The predictive accuracy of the model slightly improves

when school effects are added, but the change is not large. Even adding gender or family

background as predictors, which would not be politically implementable, does not substantially

improve the predictions’ accuracy. Results are similar using either linear models or machine

learning techniques. Our preferred specification, which includes high school grades, track and

school fixed effects, performs as well as linear regressions with a higher number of controls, or

a random forest, which allows for a rich number of implicit interactions between variables. We

also study how prediction accuracy differs across demographic groups. In our data, as in many

other settings, female and low socio-economic status (SES) students tend to do worse in high-

stakes exams than in high school grades. Given that gender or SES indicators are not included

in the prediction models, using predicted scores for college admission may favor them. Adding

school effects to the prediction reduces the prediction accuracy differences across students of

different SES groups, but it does not affect the one for females.

The second important lesson is that the unexplained variation is very large: errors made in

predicting correspond to half of the variance in high-stakes exams.4 Given that colleges have

capacity constraints and students’ rank ultimately determine college admissions, we also study

differences between students’ rank as implied by the predicted scores and their actual rank. On

average, the predicted and the observed rank differ by almost 17 percentiles.

Standardized exams are usually thought of as an objective measure of capabilities. Our

results suggest either that high-stakes exams measure some aspect about individuals that high

school grades and other school characteristics do not, or that they are a very noise measure of

these same characteristics. For instance, different schools may have different grading standards

and so it seems appropriate to somehow correct for grading standards when defining college

admissions. We have run specifications where school effects, peer quality and a rich set of

controls are included. But still, prediction errors remain very large. There is, to the best

of our knowledge, no study that directly studies the predictive power of high-stakes exams

4Exams and grades are normalized to have mean 0 and standard deviation 1. The out of sample mean
absolute error of our preferred specification is 0.55 s.d. (the root mean squared error id 0.7)
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on future outcomes, given that a particular college is attained. High-stakes exams correlate

with future outcomes because they greatly affect college admissions, but less is known about

its relationship with future outcomes beyond, almost mechanically, college admissions.5 This

is important in order to understand the impact of using predicted scores on the efficiency of

the resulting college assignment. On the basis of the available evidence, we can only conclude

that the most accurate prediction model that is transparent is an OLS model with a small

set of predictors, and it would deliver rather inaccurate predictions. Predictions would on

average favor some subgroups, in particular females, who otherwise do relatively worse in high-

stakes exams, compared to their performance in high school. Further research should aim at

understanding whether this prediction error captures a latent ability that no other measure

is capturing, or whether it captures irrelevant noise that distorts optimal matching in college

admissions.

Section 2 includes the data description and summary statistics. Section 3 presents the main

specifications used to train the prediction model and the in-sample and out-of-sample goodness

of fit results. Section 4 discusses the goodness-of-fit analysis for different subgroups of the

population. Section 5 presents the results of alternative prediction approaches, such as LASSO

regressions and random forest analysis. Section 6 discusses simulations to quantify the change

in ranking due to perturbation of the high-stakes exams. Section 7 concludes and discusses our

results in light of the current debate in the context of the pandemic.

2 Background and Data

2.1 Institutional Setting

In Catalonia, as in the rest of Spain, students are allocated to colleges and majors through

a centralized algorithm based solely on their entry score, which is a weighted average of high

school GPA and a comprehensive exam at the end of high school, the so-called “Selectivitat”.6

5Indirectly relating to this aspect is Ors, Palomino and Peyrache (2013), which suggests that gender differ-
ences observed in high-stakes exams do not correspond to performance in college for a set of applicants in an
elite college in France. Similarly Estevan, Gall and Morin (2020) for Brazil, analyze the impact of affirmative
action in college admissions. Affirmative action takes the form of requiring lower grades in the high-stakes exam.
They do not find that students in the subgroup benefited by the policy reform perform worse once in college.

6In this paper we focus on students who enrol in University right after completing two years of academic
upper secondary education (“Batxillerat”). A minority of students (20% of those enrolling for the first time)
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The high school GPA, in turn, averages the evaluations for all subjects undertaken in the last

two grades of secondary education. The teacher of a given subject assigns the evaluation taking

into account students performance in several tests that she administers and grades during the

year. Evaluations range from 1 to 10; the GPA is computed with up to two decimal digits, and

a 5 or more is required to graduate.

All students that sit Selectivitat have to take five written tests: (1) Catalan, (2) Spanish,

(3) Foreign Language (English, French, Italian or German), (4) History or Philosophy, and (5)

one subject specific to the high school track they attended (Science, Humanities and Social

Sciences, Arts).7 Tests are graded on a 1-10 scale, with two decimal digits, and the final score

is their average. Scoring at least 4 out of 10 is necessary to pass and be eligible to enrol in

College. Students may undertake up to two additional field-specific exams to increase their

entry score (“Selectivitat Espećıfica”). The baseline entry score for student i is given by

Entry Scorei = 0.6GPAi + 0.4SELi, (1)

and can be improved by at most 4 points taking field-specific exams. In this paper we mainly

focus on the relationship between GPA and SEL, which are common to everyone. We provide

more details on the regulation for non-compulsory exams and implement analyses that include

them in Appendix B.

College admissions here can be modelled as a one-sided matching market, where students

are allocated to capacity-constrained programs following the Deferred Acceptance algorithm,

where priorities for each of the colleges and majors are uniquely determined a major-specific

weighted average of test scores. Following Azevedo and Leshno (2016) the equilibrium in this

large market can be characterized by a set of thresholds for each program that define the

applicant with the lowest entry score. These thresholds are publicly presented together with

the final assignment.8 While the overwhelming majority of students pass Selectivitat, having a

follow a different path and enrol at an older age, either after completing tertiary vocational education (“Grau
Superior”) or after spending some years in the labor market. Their entry score is computed in a slightly different
way, while the allocation mechanism is the same.

7From 2017, only History can be chosen as (4), this change does not impact our analysis because the last
year in our data is 2012.

8Students have to choose their major before enrolling, thus a program is a major in a given University.
Before taking Selectivitat, they submit a list of preferences. Conditional on having a high enough entry score,
students can enrol in any program.
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high entry score is fundamental to have a shot at the most competitive programs.9

2.2 Data and sample selection

We use administrative data on students who graduate from a public high school in Catalonia

between 2010 and 2012, and pass Selectivitat in the same year. We exploit two main data

sources. The first one contains the universe on students applying to Catalan universities from

2010 to 2012, their entry scores, the assigned program, the high school they come from, and in-

formation on their background. In particular, we observe their gender, date of birth, postal code

of their home address, nationality, paternal and maternal education and occupation category.10

We work with the sub-sample of students who attended a public high school.11

The second data source includes the universe of students enrolled in a public high school

from school year 2009/2010 to school year 2011/2012. We observe in which track they are

enrolled (Sciences, Humanities and Social Sciences, or Arts), their end-of-the-year evaluations

and the final high school GPA for those who graduate. Moreover, we observe their gender,

date of birth, postal code and nationality. This data source was previously merged with census

and local registers to retrieve information on paternal and maternal education.12 We select the

students who graduate between 2010 and 2012 and proceed to merge the two data sources.13

We find a match for 95% of the observations in the Selectivitat data source.14 For 96.3% of

them, there exists a unique match based on high school code, year of graduation, date of birth,

gender, nationality, and postal code. An additional 0.7% of matching is retrieved exploiting

also the variables about parental education. For the remaining 3%, we perform a fuzzy merge

995% of students passed Selectivitat in Catalonia in the years of our sample.
10Education and occupation of the parents are self reported when submitting the application. We group

education levels in three categories: “low” for those who attained at most lower secondary education or voca-
tional training, “average” for upper secondary education and two years of vocational tertiary education, “high”
for college or higher qualifications. Occupation categories are “high skilled workers/managers”, “employee in
services”, “employee in other sectors”, “does not work or missing”.

11About 60% of Catalan high school students taking Selectivitat attended a public high school, while 40%
attended a private or semi-private high school. https://es.slideshare.net/coneixementcat/pau-dossier

(in Catalan)
12See Calsamiglia and Loviglio (2019) for additional details.
13We keep only observations that are uniquely identified by high school code, year of graduation, date of

birth, gender, nationality, postal code, mother education and father education. About 1.3% of observations are
dropped in both data sources; they probably are same-sex twins enrolled in the same school.

14About 75% of graduates in our sample are matched with an observations in the Selectivitat data source.
Usually, less than 80% of graduates undertake and pass Selectivitat. In fact only students who plan to enrol in
a Spanish public University have a reason to take the exam.
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that allows for discrepancy in postal code, nationality, and parental education.15 When these

variables are different, we keep the postal code in Selectivitat, the Spanish nationality, and the

highest level of education.

We infer the Selectivitat score from entry score and high school GPA, using the formula in

equation (1).16 While we do not observe separately the results for the five exams in Selectivitat,

we observe evaluations for the subject in school that are more likely to have affected performance

in the exams. To mimic the first three exams, we retrieve evaluations in the second grade of

high school for Catalan, Spanish, and the foreign language learned in school (English for 98%

of students). For the fourth exam, we take the highest evaluations at the end of second grade

between History and Philosophy. For the fifth exam, we take the average of the track-specific

subjects taught in second grade.17 When a students retake a subject twice because she repeats

second grade, we keep the most recent evaluation. For a small subset of students we could

not retrieve one or more of these variables. This issue affects less than 1% of students in 2011

and 2012, and 8% of them in 2010. In fact, in some cases retained students may be exempted

from retaking subjects that they passed the previous year. For students in the first cohort of

data, this means that we cannot observe the relevant evaluation. We standardize high school

GPA, Selectivitat, and all other evaluations to have mean 0 and standard deviation 1 in a given

year.18

For consistency, we run all the analyses on the subsample of students without missing

evaluations. The final sample has 31079 observations; we use the 20425 from students who

graduate in 2010 or 2011 for in-sample predictions and the 10654 observations from graduates

in 2012 for out-of-sample predictions. As a robustness check, we replicate some of the analyses

on the larger sample of 32154 observations.

15If the students moved after the enrollment in high school, the postal code in the enrollment data set may
not be updated. Students may have double nationality and report only one of them, or acquiring the Spanish
nationality when they turn 18. Information on parental education are self reported in the first data set while
they come from administrative sources in the second one, thus some discrepancy is not unexpected. To be
conservative, in the fuzzy merge we always require the education level of at least one parent to be the same.

16We drop 26 observations for which the retrieved score is smaller than 4 or larger than 10
17Usually students undertake between 3 and 5 track-specific subjects. In the final sample, only 0.8% have

less than 3 and 0.2% has more than 5.
18GPA and Selectivitat are standardized using the larger sample, to avoid deflating evaluations in 2010.

The main purpose of the standardization is to offsets small differences over time in the difficulty of Selectivitat
exams. Moreover, it makes the coefficients of the regressions easier to interpret. We replicate all the analyses
using raw evaluations and find fully aligned results.

8



2.3 Descriptive Statistics

Figure 1 plots the distributions of high school GPA (left) and Selectivitat (right). Both have

positive skewness, with a longer tail to the right, which is particularly thin for Selectivitat. In

fact, very few students obtain evaluations close to the maximum in all five tests. Having a high

GPA is relatively more common, and the density has a small pick at around +2 s.d. Moreover

the distribution of GPA is somewhat more asymmetric, with a lot of mass between -1 s.d. and

the mean, and a smaller left tail.19 In fact, most students who barely graduate from high school

choose to not pursue further academic studies and do not undertake Selectivitat.20 While the

truncation of the left tail is slightly more evident for Selectivitat, it is clear that few students

score the bare minimum to pass. This is not surprising given that mostly only those who have

graduated from high school and are planning on going to college take the test.

Figure 1: Distributions
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Note. Distribution of evaluations for students who graduate from 2010 to 2012 and pass Selectivitat. The

continuous black lines are kernel density plots.

Table 1 shows average GPA and Selectivitat by high school track, gender, and parental

19The local maximum in the right tail corresponds to a final GPA of 9 out of 10 in raw values. The interval
[−1, 0] corresponds approximately to raw scores from 6 to 7.

20In the sample used in this paper, only 31% of students whose high school GPA is lower than 5.5 undertake
and pass Selectividad. For comparison, 61% of students with GPA between 5.5 and 6.5 do so. The share raises
to 86% among those with a higher GPA.
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education. For each category, share in the sample is reported in the last line. In the remaining

of the paper we use parental education as main proxy for socioeconomic status (SES).21

About 46% of students in the sample attended the Humanities and Social Sciences track

(Humanities from now on), about 50% attended the Sciences track, and the remaining 4%, the

Arts track. The average GPA for students who did Sciences is almost 0.3 s.d. larger than for

those in Humanities. They also do better in Selectivitat, but the gap decreases by about 0.1 s.d.

Arts students have on average the lowest GPA, and the disadvantage is similar for Selectivitat.

We include dummies for high school tracks in some of the specifications implemented in next

Section, to account for systematic differences in the outcomes of students who come from

different tracks.

Table 1: Descriptive Statistics by subgroups

High School Track Gender Parental education
Arts Sciences Humanities Male Female Low Average High

GPA -0.233 0.184 -0.105 -0.092 0.123 -0.100 -0.039 0.218
(0.025) (0.008) (0.008) (0.009) (0.007) (0.011) (0.009) (0.010)

Selectividad -0.263 0.121 -0.064 0.028 0.016 -0.227 -0.046 0.276
(0.026) (0.008) (0.008) (0.009) (0.007) (0.011) (0.009) (0.010)

% in sample 3.925 50.291 45.738 40.716 59.284 24.924 40.043 34.805

Note. The table shows average high school GPA and Selectivitat by high school track, gender, and parental

education. Parental education is low if both parents have at most lower secondary education, high if one has

tertiary education and the other at least upper secondary education, average in the other cases.

Females, who account for almost 60% of the students in the sample, on average have a

GPA higher than males by 0.2 s.d. Conversely, they do not do better in Selectivitat (Azmat

et al., 2016). This rather striking difference may have several explanations. Females may do

better in tasks or subjects that are captured by the GPA but are not tested by the high-stakes

exams. Some teachers may have a positive bias for girls, or rewards non-cognitive traits (such

as good behavior in class) that perhaps are more common among females (Lavy and Sand,

2018). Females may be more likely to choke on high-stakes tests and under perform. In this

21The three categories of parental education can be thought as a “mean” of father and mother education.
Parental education is low if they both have low education, it is high if at least one is college educated and the
other graduated high school, it is average in the other cases. When one of the parents is missing, the category
of the other is used. Parental education is missing for 71 students in the sample. In Section 4, we also exploit
additional characteristics, such as parental broad category of occupation.
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paper we do not aim to provide any causal explanation about this difference in performance,

but we will discuss how using predicted scores would affect students differently depending on

their gender.

On average students with high educated parents perform substantially better than those

with low educated parents. The gap is about 0.3 s.d. for high school GPA, and it widens to

0.5 s.d. for Selectivitat. Again, various reasons may be behind this difference. On one hand,

students with low SES may be more likely to attend schools that set somewhat lower grading

standards (e.g., for some grading on the curve effects, if performance are below the average

in the population). In this case, their GPA would be somewhat inflated compared with their

Selectivitat. On the other hand, they may be less likely to receive private tutoring and specific

training for high-stakes exams. In this case high SES students may have an advantage in taking

the test that does not reflect a higher level of skills. Finally, low SES students may also be

vulnerable to high-stakes exams, for similar reasons that females do. As for gender, we will

study how predictions based on high school evaluations would affect differently students with

differing parental background.

Public schools in Catalonia vary widely in size and share of students who take Selectivitat.

In the models that require the estimation of school fixed effects, we include dummies only for

schools with at least 6 students in each of the three years in the sample, and pool together the

other schools in the baseline category. These schools are 369 out of 442, and they account for

95% of students in the sample.22

Figure 2 displays performance at the school level in two consecutive years. The left panel

plots GPA in 2012 on the y-axis and GPA in 2011 on the x-axis. The right panel do the same

for Selectivitat. In both years there is more dispersion in school average Selectivitat than in

school average GPA. For both GPA and Selectivitat, the correlation between current and past

average performance is positive and significant, but it is always below 0.5: there is clearly a lot

of yearly variation that could not be anticipated looking at average performance in the previous

year.

The correlation between average GPA and Selectivitat at the school/year level is about 0.4.

22As shown in Figure 9 in the Appendix, the number of graduates in a given year vary from 10 to more than
100, with most schools between 20 and 60. From 20% to 100% of them undertake and pass Selectivitat (the
median is 75%). The correlation between size and share of Selectivitat takers is almost 0.
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Figure 2: Average performance at the school level
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Note. The graph plots avereage performance for schools with at least 6 students in the sample for each year.

The dotted lines are a linear fit.

Figure 3: Average performance at the school level
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As shown in Figure 3, in some schools students do much better in Selectivitat than in the

internal grades, while in other schools the opposite happens. The left panel of the figure shows

that schools with a higher share of low SES students tend to have worse outcomes for Selectivitat

than for high school grades. This is not surprising given that, as discussed above, on average

low SES perform relatively worse in Selectivitat than in high school. This descriptive evidence

is also compatible with the grading on the curve documented for primary and lower secondary

education in Catalonia by Calsamiglia and Loviglio (2019): teachers tend to inflate grades in

classes where performance are below average, and to deflate them when average performance

are above average. The right panel of the figure documents a positive correlation between the

share of graduate who take (and pass) Selectivitat and the average gap between Selectivitat and

high school GPA. It is also possible that schools in which many students aim to pursue tertiary

education are more likely to provide specific training to maximize the score of the high-stakes

exams.23

3 Empirical analysis

In this section we discuss how Selectivitat, the region-wide exam to access University, can be

predicted using students’ performance in high school. It is worth noting that even though

covariates such as gender or socioeconomics may have an impact on the predicted grade, we

do not use them in the estimation, as the objective is to use the estimated parameters for

prediction. Considering covariates as gender or socioeconomics would imply that the policy

used would treat different students differently because of characteristics that they should not

be held responsible. In next Section 4 we test differences in the predictions across gender and

SES. Moreover, in Section 5 we discuss whether a model that includes individual characteristics

would deliver substantially better prediction, abstracting from any consideration about the

desirability of such model. Hence, for now we study various linear models of Selectivitat as

function of high school GPA, and school and track variables. Estimation is done by OLS,

exploiting observations from students who graduated in 2010 and in 2011. The estimated

23The correlations in the figure are -0.36 (left) and 0.35 (right). Low SES students are slightly less likely to
attend schools with a high share of college enrollment, but differences are small in size: the average low SES
student who enroll in college attended a high school in which 76% of graduates took Selectivitat. This share
slightly increases to 78% for the average high SES student.
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coefficients are then used to perform in-sample predictions, and out-of-sample predictions for

students who graduated in 2012.

3.1 Empirical specifications

Our analysis departs from the following empirical specification:

SELi = αGPA + x′iβ + εi, (2)

ŜELi = α̂GPA + x′iβ̂ (3)

where the dependent variable is student’s i score in Selectivitat, and the right hand side includes

high school GPA, a vector of other covariates xi and the error term, εi.
24

The specifications presented in Table 2 differ for the set of covariates xi used. We start

with a simple univariate regression of Selectivitat on high school GPA in column (1). For the

purpose of students’ allocation to majors and colleges, this model is fully equivalent to cancelling

Selectivitat and relying only on high school GPA. In the following columns, we augment this

specification with other covariates, to give more weight to subjects that are directly tested in

Selectivitat, and to account for systematic differences due to track or high school attended.

We add dummies for the track attended (from col(2)), peer GPA (col(2)), school fixed effects

(cols (3) and (5)). Moreover, in column (4) and (5), we include high school evaluations for

the subjects that are more relevant for Selectivitat (Catalan, Spanish, English, History or

Philosophy, and the mean of track-specific subjects, as described in Section 2).

Equation (2) is estimated using the first two cohorts of students. Estimated parameters

are used to predict SELi for all students. This approach relies on the assumption that the

parameters in equation (2) are time-invariant, and therefore that previous cohorts can be used

to infer the parameters and predict the outcomes of new cohorts. This is necessary for the

prediction to be correct, namely to ensure that on average the predicted Selectivitat equals the

observed one, but it is not enough to ensure that it is accurate, namely that the error in the

prediction is reasonably small for all individuals. In fact, the larger the unexplained variation

in the outcome (i.e. the larger the variance of the error εi in equation (2)), the less precise

24In the estimation, errors are clustered at the school level. The structure of the errors does not matter for
the prediction, but it is relevant to comment on the significance of the coefficients.
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the prediction is. Hence, for many students the predicted Selectivitat could be substantially

different from the actual one. For each specification, we compute several measures of in-sample

and out-of-sample goodness of fit to test the accuracy of the prediction: the coefficient of

determination (R2), the root mean square error (RMSE), the mean absolute error (AME), and

the absolute rank deviation. While the first three are pretty standard, the last one deserve

some additional explanations. The absolute rank deviation (ARD) gives us a measure of how

different two ranks are. To compute it, we rank students by year using the observed Selectivitat,

SELi, and the predicted, ŜELi. Ranks are rescaled to be between 0 and 1, thus the difference

between ranks corresponds to the percentiles lost or gained by a given students if ŜELi were

used rather than SELi.

abs rank dev =
1

N

N∑
i

|rank(SEL)i − rank(ŜEL)i| (4)

We believe that this statistic is particularly relevant to evaluate the goodness of fit in the

current setting. In fact, when high-stakes exams are used to allocate students to opportunities,

a student’s position in the rank can be more salient than the cardinal value of the test score.

This is particularly true in our case, where student assignment to majors is fully determined

by their rank and their stated preferences.25 The absolute rank deviation of two independent

variables is 1
3
, therefore in our analysis we expect this statistic to lie between 0 and 0.33.26

3.2 Results

As shown in column (1) of Table 2, more than 40% of the variance in Selectivitat is explained

by high school GPA alone. On average, the absolute value of the difference between actual and

25As explained in Section 2, the final rank used to allocate students relies on an entry score that is a weighted
average of Selectivitat and GPA. For the purpose of assessing the quality of our predictions, we believe that it
is more relevant to look at Selectivitat alone, given that the entry score is mechanically correlated with GPA,
the main regressor used to predict Selectivitat.

26Let (ai,ãi) be N realizations of two continuous random variables a and ã, and ri and r̃i their respective
ranks. If Cov(a, ã) = 0, then E(|ri − r̃i|) = 1

3 . In fact:

E(|ri − r̃i|) =

∫ 1

0

∫ 1

0

|t− s| dt ds =

∫ 1

0

(∫ t

0

t− s ds+

∫ 1

t

s− t ds
)
dt = (5)

=

∫ 1

0

t2 − t+
1

2
dt =

[
1

3
t2 − 1

2
t2 +

1

2
t

]1
0

=
1

3
(6)
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predict Selectivitat is 0.6 s.d., and the absolute rank deviation is almost 19 percentiles. These

statistics are remarkably similar for the in-sample and the out-of-sample prediction. On one

hand, this confirms that the relationship between the high-stakes exam and the high school

GPA is stable over time, therefore it is appropriate to use past cohorts to retrieve the relevant

parameters. On the other hand, there is a lot left unexplained and therefore predictions are

not very precise.

The remaining columns of the table show that adding covariates improves the out-of-sample

predictive power, but not dramatically. Column (2) shows that being in the Scientific or Art

tracks is associated with a small negative effects on Selectivitat (significant in some of the

specifications), but do not improve the fit of the model. Peer GPA (on top of own GPA) is not

correlated with the outcome.27 As shown in column (3) adding school dummies has a sizable

effects on the in-sample goodness of fit. In particular the R2 improves from 0.44 to 0.51, the

MAE decreases by almost 0.05 s.d. and the ARD decrease by about 1.6 percentiles. However,

the improvements are lower for the out-of-sample predictions, for instance the R2 goes from 0.42

to 0.45. Given that we use only two cohorts of data, school effects are probably capturing also

short term differences across schools, thus their contribution to the out-of-sample prediction is

positive but relatively low. We cannot rule out that exploiting a longer horizon to estimate the

model would bring a larger improvement to the predictive power.

As displayed in column (4), high school subjects specific to Selectivitat have a large effect

on the outcome and capture most of the effect of the overall GPA. Including these covariates

raises goodness of fit both in-sample and out-of-sample in a similar way. Adding school effects,

as in column (5), further improve the statistics. Figure 10 in the Appendix shows that the

estimated school effects are sizeable (for instance the interquantile range is about 0.3 s.d.),

but their correlation with the average difference between Selectivitat and GPA in the school is

noticeably smaller in the out-of-sample year than in the previous year.

In this final specification, out-of-sample R2 is 0.51, MAE is 0.55 s.d., and ARD is 16.7

percentiles. In other words, the richest model cannot account for almost half of the variation in

the outcome. Consequently, prediction errors can be pretty large and this may have a sizable

effect on ranks and therefore on students’ allocation to majors.

27Peer GPA is the average GPA of students who graduate in the same school and year, including those who
did not take Selectivitat. Given that the coefficient is virtually 0 we do not include it in further analyses.
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Table 2: Selectivitat. Regressions and predictions

(a) In sample (cohorts 2010 and 2011)

(1) (2) (3) (4) (5)

High School GPA 0.670** 0.669** 0.681** 0.174** 0.0995**
(0.0099) (0.0090) (0.0111) (0.0235) (0.0192)

Art Track -0.106* -0.0794 -0.0959* -0.0335
(0.0495) (0.0684) (0.0488) (0.0568)

Scientific Track 0.00536 -0.0109 -0.0396** -0.0599**
(0.0149) (0.0152) (0.0140) (0.0140)

Peer average GPA -0.00101
(0.0522)

Catalan 0.0645** 0.108**
(0.0150) (0.0112)

Spanish 0.0632** 0.0858**
(0.0154) (0.0109)

History/Philosophy 0.0952** 0.118**
(0.0132) (0.0112)

Foreign Language 0.351** 0.354**
(0.0109) (0.0094)

Track subjects 0.0773** 0.0911**
(0.0132) (0.0106)

School FE No No Yes No Yes

N 20425 20425 20425 20425 20425
R2 0.442 0.442 0.518 0.507 0.585
RMSE 0.747 0.746 0.694 0.701 0.644
MAE 0.598 0.597 0.552 0.559 0.510
abs rank deviation 0.187 0.187 0.169 0.171 0.154

(b) Out of sample (cohort 2012)

(1) (2) (3) (4) (5)

N 10654 10654 10654 10654 10654
R2 0.424 0.425 0.448 0.493 0.512
RMSE 0.758 0.758 0.742 0.712 0.698
MAE 0.607 0.607 0.592 0.567 0.553
abs rank deviation 0.189 0.189 0.183 0.173 0.167

Note. The dependent variable is the score in the high-stakes exam Selectivitat. Selectivitat, high school GPA,

and other evaluations used as regressors have been standardized at the year level to have mean 0 and standard

deviation 1. The sample for panel (a) includes students who graduated from a public high school in Catalonia

in 2010 and 2011. The sample for panel (b) includes students who graduated from a public high school in

Catalonia in 2012. Errors are clustered at the school level. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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3.3 Robustness checks

As explained in Section 2, we drop from the main analysis students for whom we could not

retrieve all the evaluations used in columns (4) and (5) of Table 2. As a robustness checks, we

estimate the models in columns (1) to (3) on this larger sample. Columns (1) to (3) of Table 5

in Appendix A show that results are virtually unchanged.

Another potential concern is that most of the observations dropped belong to students who

repeated the last year of high school twice and graduated in 2009. Thus to some extent the 2009

cohort is positively selected because it has less retained students than the following cohorts 2010

and 2011. To show that this does not affect the results, we replicate the analysis in columns

(1), (4), and (5) using only the 2010 cohort to estimate the models. Again, Table 5 shows

that results are quite similar to the finding in Table 2. Out-of-sample statistics are virtually

identical for the models without school fixed effects, and only slightly worse for the model with

school FE (e.g. the R2 is 0.50 rather than 0.53, the MAE is 0.57 rather than 0.55). This is not

surprising given that the estimation relies only one cohort of data, thus it cannot average out

idiosyncratic shocks at the school/year level.

Moreover, we estimate models (1) and (5) on a subsample of “big” schools, namely the

schools in which at least 20 students each year undertake Selectivitat (about 60% of the sample).

The purpose of this exercise is to rule out that including school effects do not dramatically

improve predictions because they are not precisely estimate for smaller schools. Results in

column (7) and (8) of Table 5 show that the goodness of fit for this subsample is very similar

to the baseline one.

Finally, we replicate the analysis using only the subsample of observations for which a perfect

match was retrieved when merging high school and Selectivitat data (as described in Section

2.2). Column (9) replicates model (5) in Table 2. Results are almost identical, if anything the

fit of the model is marginally better.

4 Analysis by subgroups

Any prediction of students’ grades should aim at being both precise and fair, i.e., being equally

precise across demographic groups. This does not imply that any differences across groups
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between high school and Selectivitat test scores are fair, but simply that the prediction does

not affect those differences.

Figure 4 displays the density of the prediction error (ŜELi−SELi) for the simplest prediction

model (model (1), with only High School GPA), and the most saturated model (model (5),

including school effects and other academic variables). The figure shows that the predictions

are not very precise, and suggests that male test scores are relatively under-predicted. This is

consistent with the descriptive evidence in Section 2.3, and it is aligned with previous findings

in the literature that females tend to outperform males in lower stakes more often than in

high-stakes exams.28

To quantify these differences, Table 3 reports the estimates of regressions of different mea-

sures of prediction error on a female dummy. In the first two columns, the dependent variable is

the prediction error in test scores, which is the difference between predicted and actual scores:

ŜELi−SELi. In columns 3 and 4, the dependent variable is the absolute value of this prediction

error, which is a measure of its variability. In columns 5 and 6, it is the difference between the

student rank implied by the predicted test score and the actual rank: Rank(ŜELi)−Rank(SELi).

In columns 7 and 8, the absolute value of this rank difference. Rank differences are important

because the allocation of students to academic programmes with capacity constraints ultimately

depends on their rank. For instance, a high prediction error at a part of the distribution with

a low density of students may result in large differences in test scores prediction errors but in

modest differences in rank prediction errors, and hence, be less consequential.

In Table 3, the intercept shows the average prediction error for males (the omitted category),

and the female coefficient measures the gender difference in the prediction error. As suggested

by Figure 4, the estimates show that male test scores are under-predicted by the model (.095

s.d.), while female test scores are over-predicted. The gender difference in the prediction error

is around 0.156 standard deviations (s.d.), or between 6 and 7 percentiles.29 These differences

are large, because descriptive statistics in Table 1 show that the average gender difference in

Selectivitat test scores is 0.012 s.d. In absolute value, however, there are no significant gender

differences in the prediction error, which means that the dispersion of the prediction error

is about the same for male and female students. Importantly, models (1) and (5) perform

28Azmat et al. (2016); Cai et al. (2019); Arenas and Calsamiglia (2019); Schlosser et al. (2019).
29Figure 11 in the the Appendix shows the distribution of the prediction error in terms of students’ rank.
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rather similarly across all prediction quality measures, which means that school effects and

other academic variables are rather orthogonal to the gender differences in prediction quality.

Despite the significant difference in prediction errors by gender, the R2 of all the models in

table 3 is very low, indicating that gender differences in prediction quality explain very little

(2% at most) of the overall variation in prediction quality across students.

Figure 4: By gender
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Table 3: By gender

Predicted - Actual Score | Predicted - Actual Score | Predicted - Actual Rank | Predicted - Actual Rank |
(1) (2) (3) (4) (5) (6) (7) (8)

Female 0.156∗∗∗ 0.159∗∗∗ 0.00686 0.0102 0.0722∗∗∗ 0.0609∗∗∗ -0.00295 0.000705
(10.58) (11.69) (0.77) (1.22) (15.06) (14.28) (-0.95) (0.25)

Constant -0.0947∗∗∗ -0.0797∗∗∗ 0.603∗∗∗ 0.548∗∗∗ -0.0433∗∗∗ -0.0367∗∗∗ 0.191∗∗∗ 0.167∗∗∗

(-8.47) (-7.76) (89.91) (87.30) (-11.78) (-11.32) (80.16) (78.22)
Model Model (1) Model (5) Model (1) Model (5) Model (1) Model (5) Model (1) Model (5)
R2 0.0103 0.0126 0.0000554 0.000138 0.0209 0.0187 0.0000851 0.00000594
N 10654 10654 10654 10654 10654 10654 10654 10654

Header indicates the dependent variable. Omitted category: males. Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

In a similar vein, Figure 5 displays the density of the prediction error for the simplest and

the most saturated prediction models, across parental Socio Economic Status (SES) categories,

which are defined according to parental education. The figure suggests that high SES test

scores are the most under-predicted, especially in the simplest model, while low SES test scores

are over-predicted. Again, this is not surprising, given that, as discussed in Section 2.3, high

SES students tend to outperform other students especially in higher stakes exams.

Table 4 reports the estimates of regressions of different measures of prediction error on a
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dummy for being high SES and a dummy for being average SES, the base category being low

SES. As suggested by Figure 5, the estimates show that the test scores of high SES students

are under-predicted by the model and those of low SES students are over-predicted, while the

predicted test scores of average SES students are well predicted, on average. This is consistent

with the descriptives in Table 1, which show that the magnitude of the high school differences

in GPA across SES groups is amplified in Selectivitat test scores. The estimates in Table 4

show that when compared to the baseline category of low SES students, high SES students’

scores are under-predicted by between 0.15 and 0.3 s.d. while average SES students’ scores are

under-predicted by between 0.7 and 0.14 s.d. on average. The magnitude of these estimates is

large, considering that the average unconditional differences in Selectivitat test scores between

high and low SES students are 0.5 s.d.; and between average and low SES students, around

0.2 s.d. At the same time, the results in columns 3 and 4, where the dependent variable is the

absolute value of the prediction error, show that the prediction error for lower SES students

has a higher dispersion.30

However, in contrast with gender differences, a more saturated model with school fixed

effects (i.e., model (5)) considerably reduces the differences in prediction errors across groups,

both on average and in dispersion, even if significant differences remain. This means that school

effects and other academic covariates pick up some of the differences in prediction quality across

SES categories, but very few gender differences. A similar pattern emerges in columns 5 to 8,

which report regressions where the dependent variables are the prediction errors in terms of

actual and predicted student ranks. Compared to the base category of low SES students, the

rank of high SES students is underpredicted by between 6 and 1.5 percentiles, and the rank

of average SES students is underpredicted by between 4 and 1 percentiles. Again, despite the

significant differences in prediction errors across groups, the R2 of all the models in Table 4 is

very low, indicating that SES differences in prediction quality explain very little (2.4% at most)

of the overall variation in prediction quality across students.

The low R2 of the regressions of prediction errors on individual characteristics suggest that

differences across gender and SES explain only a small part of the differences between high

school grades and Selectivitat at the individual level. In next Section we confirm this intuition

augmenting the prediction models with a vector of individual characteristics.

30Figure 12 in the the Appendix shows the distribution of the prediction error in terms of students’ rank.
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Figure 5: By SES
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Table 4: By SES

Predicted - Actual Score | Predicted - Actual Score | Predicted - Actual Rank | Predicted - Actual Rank |
(1) (2) (3) (4) (5) (6) (7) (8)

High SES -0.303∗∗∗ -0.147∗∗∗ -0.0471∗∗∗ -0.0283∗∗ -0.0600∗∗∗ -0.0145∗∗ -0.0267∗∗∗ -0.0132∗∗∗

(-15.74) (-8.25) (-4.03) (-2.61) (-9.52) (-2.58) (-6.62) (-3.66)

Avg SES -0.144∗∗∗ -0.0678∗∗∗ -0.0389∗∗∗ -0.0225∗ -0.0398∗∗∗ -0.0123∗ -0.0108∗∗ -0.00507
(-7.54) (-3.84) (-3.35) (-2.07) (-6.28) (-2.20) (-2.71) (-1.41)

Constant 0.162∗∗∗ 0.0928∗∗∗ 0.639∗∗∗ 0.573∗∗∗ 0.0362∗∗∗ 0.00902∗ 0.203∗∗∗ 0.174∗∗∗

(10.64) (6.62) (69.15) (67.08) (7.17) (2.04) (63.96) (61.46)
Model Model (1) Model (5) Model (1) Model (5) Model (1) Model (5) Model (1) Model (5)
R2 0.0237 0.00660 0.00169 0.000679 0.00866 0.000695 0.00440 0.00133
N 10638 10638 10638 10638 10638 10638 10638 10638

Header indicates the dependent variable. Omitted category: low SES. Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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We report additional results in the Appendix, splitting the sample using other parental

background covariates, with similar conclusions. Concretely, in Figure 14 and Table 15 in

the Appendix the sample is split according to students’ expected Selectivitat scores based on

a more precise set of parental background variables (rather than the high-average-low SES

classification based on education). These are estimated with a regression of Selectivitat scores

on the full vector of dummies for mother and father high, average, low, or missing education,

and for maternal and paternal occupational categories (services, manager, or unknown), for

the prediction sample. The predicted performance is split in 3 quantiles, to make it easier to

visualize. The prediction is done solely with parental background variables, which are not used

in the prediction of grades, to avoid any mechanical correlation between the prediction error

and the actual prediction. The results show, in a similar vein, that students that tend to do

well based on parental variables are especially good at Selectivitat (compared to high school),

and hence the prediction models underestimates their performance, although the variance of

the prediction is lower for them.

5 Alternative prediction approaches

The baseline results are based on simple linear models. These models have the advantage of

being transparent and easy to understand by policy-makers and the public. However, other

more sophisticated prediction methods could outperform the linear model’s predictions. In this

section, we study the performance of two machine learning methods, namely Lasso Regressions

and Random Forests.

Lasso (least absolute shrinkage and selection operator) regressions are a form of

penalized regressions, typically estimated on a large number of candidate predictors,

with a penalty for each non-zero coefficient. Lasso’s β̂ are the solution to: β̂ =

arg minβ

{
1

2n

∑n
i=1 (yi − xiβ

′)
2

+ λ
∑p

j=1 ωj|βj|
}

, where λ > 0 is the Lasso penalty param-

eter, and ωj are the penalty loadings. Lasso regressions are estimated via cross-validation:

slicing the sample into different parts, a training sample and a testing sample, the estimates

maximize the predictive power of the training samples on the testing samples (Athey and Im-

bens, 2019).31 In principle, we would expect LASSO to outperform OLS, because it keeps the

31In this case, the prediction sample is sliced into 10 folds, as suggested by Kuhn and Johnson (2013) or
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same functional form, and reduces the prediction’s noise by setting the coefficients of irrelevant

predictors to zero.

Random forests are estimated by randomly drawing bootstrap samples and estimating re-

gression trees over them, and then averaging out the results. A regression tree is estimated in

a step-wise fashion. At each step, the algorithm splits the data into subsets, and among all the

possible splits, the algorithm selects the one that minimizes the prediction error, jointly defined

by choosing an independent variable and a splitting value. Whether the random forest model

outperform OLS is a matter of relative functional form misspecification. If the relationship be-

tween high school GPA and Selectivitat is quite non-linear, we would expect random forests to

improve on linear models, but not necessarily otherwise. See (Mullainathan and Spiess, 2017)

and (Athey and Imbens, 2019) for further details.

Figure 6 displays the density of the prediction error from different methods, using the

predictors of model (5) (school dummies and other academic variables). The results show that

in this context, LASSO does slightly better but almost identically, and Random Forests do a

little worse.

Finally, one may wonder whether including individual characteristics as predictors could

improve the quality of the prediction. This is often seen as problematic for a variety of reasons

which we do not aim at discussing in this paper, but it is nonetheless interesting to see how

far individual characteristics go in improving test scores’ predictions. To this aim, we replicate

the analysis in Section 3 and in this section including also gender and socio-economic charac-

teristics of the students. More specifically, Table 6 augments our preferred linear specification

with gender (column (1)), parental background (column (2)), gender and parental background

together (column (3)), postal code effects (column (4)), all of the above (column (5)). Adding

gender and parental background characteristics slightly improve the out-of-sample predictions,

but the difference is almost negligible. For instance the RMSE decreases from 0.7 to 0.6 and

the absolute rank deviation decreases from 16.7 to 16.5 percentiles. Including the postal code

fixed effects probably causes an over fit of the model in-sample, because the fit of the model

out-of-sample is worse. The estimated coefficients for gender and parental education are signifi-

cant and sizeable, but, as already stressed in Section 4, average differences across gender or SES

explain only a small part of the overall variation between high school grades and Selectivitat.

Kohavi (1995), but other methods of selecting λ (3 folds, or the one-standard-error rule) give similar results.

24



Most of it appears to be idiosyncratic. It is also worth noting the school effects estimated when

socio-economic characteristics are added are extremely similar to the one in our preferred spec-

ification.32 This suggests that at least part of the school effects measure across school variation

in grading policy: if they were only capturing systematic variation in the demographics of the

schools, they would shrink when socio-economic characteristics are added as covariates.

We also augment the LASSO and RF models discussed in this Section with individual

characteristics. The density of the prediction error from the different errors are displayed in

Figure 16 in the Appendix. This provides further confirmation that in this setting there appears

to be no major gain from including individual pre-determined characteristics in the prediction

model.

Figure 6: OLS vs. LASSO vs. RF
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6 Simulation: perturbed Selectivitat

Previous sections discuss to what extent predictions based on high school evaluations are a

viable replacements for high-stakes exams to access college. A different but related question is

how much school disruption would affect high-stakes exams and therefore students’ allocation

to college. Ideally, one would like to know the counterfactual score in the absence of disruption

and estimate the expected loss (or gain) among individuals with given characteristics. Results

32The correlation of school effects from the baseline specification with the school effects from column (3) in
Table 6 is 0.97. The two distributions are also very similar.
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could be compared with the loss or gain that would take place if predicted scores were used

instead. While a precise quantification of the effects of school disruption on students’ allocation

to colleges is beyond the scope of this paper, in this section we perform some simulation exercises

to explore the consequences of perturbing Selectivitat on student rank.

Let G1, ..., Gg be a partition of the population into g subgroups (for instance a partition by

low, average, and high SES). Let SELi be the true performance of student i who belongs to

group Gj. The perturbed performance is

S̃ELi = SELi + εi, εi ∼ N (µGj
, σGj

) (7)

where the error term is a random draw from a normal distribution with group-specific mean µGj

and standard deviation σGj
. In this section we denote ri and r̃i the rank of student i computed

using SELi and S̃ELi respectively.33

Figure 7: Perturbed Selectivitat (simulation)
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In the first exercise, we assume that εi ∼ N (0, σ), i.e. the noise generating process, is the

same for everyone. We perform the same simulation for 300 values of σ, from 0.01 to 3: we

33Note that the perturbed score should be rescaled or truncated so that it belongs to the appropriate interval
for Selectivitat. Focusing on the rank rather than on the cardinal values allow us to ignore this technicality.
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draw random shocks for every individual in the sample, generate the perturbed Selectivitat,

rank students, and finally compute the absolute difference between r̃i and ri. This is replicated

100 times and results are averaged out to compute the absolute rank deviation for each σ.

Results are shown in the left panel of Figure 7: the y-axis plots the ARD and the x-axis plots

the noise to Selectivitat ratio. Given that Selectivitat is normalized to have mean 0 and s.d. 1,

the noise to Selectivitat ratio corresponds to σ. Not surprisingly, the ARD is increasing in σ.34

For comparison, the ARD for our preferred predictive model using high school evaluations is

16.7 percentiles. To obtain the same value, σ should be about 0.95. In other words, the variance

of the noise should be almost as large as the variance of the true measure of performance to

produce the same ARD as the prediction based on internal evaluations.

In the right panel of Figure 7, we replicate the analysis allowing µG to vary by parental

education: more specifically, we assume that low SES are hit more negatively than high SES,

and average SES are somewhere in between, i.e. µL ≤ µM ≤ µH . In fact, not all students are

affected in the same way by a prolonged period of school closure: those who do not have at

home the necessary resources to access distance-learning or study on their own are for sure more

severely hit. Kuhfeld et al. (2020) revise the literature on school absenteeism: averaging the

finding of several papers they suggest that missing a school day decreases test scores by almost

0.007 s.d.35 During the COVID-19 outbreak, schools were closed for almost 3 months; taking

at face value the estimate in Kuhfeld et al. (2020), this would correspond to a loss of about 0.4

s.d. for those who did not have access to education in that period.36 In one of the simulation in

Figure 7, we set µL = −0.4, while µM and µH stay at 0 (continuous red line). For small values

of σ, the ARD is sizeably larger than in the baseline case (it is 4 percentiles when σ is close

to 0); the gap decreases with σ and the two lines in the graph eventually overlap. In another

simulation, we assume that also students with average SES are negatively hit, although less

34A graph with a longer x-axis would show that it slowly converges to 33 p.p. ARD is above 30 p.p. for
σ > 10.

35Maldonado and De Witte (2020) is the only study in our knowledge that analyze the drop in test scores
after the COVID-19 outbreak, using data from Flemish schools in Belgium. They find that after 7 weeks of
school closures, test scores decreases by 0.19-0.29 s.d. These estimates are remarkably similar to the figures
suggested by the literature on school absenteeism. Both this study and Kuhfeld et al. (2020) consider students
in primary or lower secondary education, and focus only on Mathematics and reading or literature. Admittedly,
their external validity for students near the end of upper secondary education is unclear. Given the illustrative
purpose of our exercises, we believe that their estimates provide a nice benchmark nonetheless.

36Schools were closed from March 13, 2020 to June 19, 2020; assuming a school week of 5 days and not
counting holidays, this corresponds to 62 days.
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than those with low SES, and set µM = −0.2 (continuous green line in the figure). For all values

of σ, the ARD is slightly smaller than the one in the previous simulation: if more students are

negatively affected by school disruption, overall performance decrease but the ranking changes

relatively less, because the gap between low and average SES is reduced. Figure 7 also shows

the outcomes of simulations that set much larger penalties for low and average SES ( µL = −1

and µM = −0.5, dotted red and green lines in the figure). While for small values of σ the ARD

is much larger than in the baseline exercise, it is still lower than the ARD of our preferred

predictive model for σ < 0.9.

Low performing students are generally favored by a larger noise. At the extremes, perturbing

the score can only improve the rank of the worst student, while it can only worsen the rank of

the best student. More in general, as previously shown in Figure 1, the density of Selectivitat

is much higher around the mean than in the tails. When someone in the left tail is hit by a

positive shock, they typically gain more positions in the rank that what they would lose if hit

by a negative shock of the same size. Vice-versa, students in the right tail usually gain fewer

positions when receiving a positive shock than what they would lose for a negative shock of the

same size. This intuition is confirmed by panel (a) of Table 7 in the Appendix, which displays

the average difference r̃i − ri by quantile of Selectivitat, for various values of σ, when µG = 0

for all groups G. On average, for students in the bottom quartile the rank r̃i is higher than the

baseline rank ri, and the gain is increasing in σ. Conversely, on average r̃i is lower than ri for

those in the top quartile. Given that students with low SES are over-represented in the left tail

of the distribution, and those with high SES are over-represented in the right tail, on average

for low SES r̃i is larger than ri on average. As shown in panel (b), the gains for low SES are

sizable only for large values of σ. Therefore it seems likely that they would be completely offset

by a decrease in µL, which would negatively affect all low SES, while an increase in noise would

only benefit the low performers among them.

We explore the effects of varying the mean shock in the simulations plotted in Figure 8. µL

ranges from -1 s.d. to 0, and µM = 0.5µL. For simplicity, we set µH = 0. In the left panel,

the variance of the shock is negligible ( σ2 = 0.0001), while in the right panel it is as large as

the variance of performance ( σ2 = 1). The rank of students with low parental background

decreases linearly with −µL, while the rank of students with high parental background increases

linearly. Almost nothing changes for those with average parental background: in fact, they do
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relatively worse than the high SES due to the negative shock, but they do relatively better than

the low SES who are hit by a larger shock. When σ is small, shocks have a sizable effects on the

expected rank. For instance, for µL = −0.4, the rank for low SES decreases by 5.6 percentiles,

while the rank for high SES increases by 4.5 percentiles. For µL = −1, the rank decreases by

12.9 and increases by 10.4 respectively. Increasing the variance of the shock reduces the gap,

and reverses it if |µL| is small relatively to σ: this happens for |µL| < 0.2 in the right panel of

the figure. In fact, as we discussed above, adding noise favors students in the left tail of the

distribution of performance, who are over represented among students with low SES.

Figure 8: Perturbed Selectivitat by SES
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7 Discussion and conclusions

College admissions match students to colleges using a combination of high-stakes exams, high

school grades, and potentially other characteristics. The COVID-19 outbreak has forced social

distancing worldwide, and this has made it harder to run large scale exams and hence to decide

on college admissions. Some countries have postponed admission exams, and others have used

historical data to predict students’ performance in the high-stakes exams which would have

taken place in absence of the pandemic. In this paper, we analyse how using the optimal
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predictive model would affect college admissions. That is, we use historical data to train a

model and evaluate its accuracy in a year where the high-stakes exam was run normally. We

find that the optimal prediction is rather simple: a linear model with high school grades and

school characteristics does similarly than more complex and less transparent prediction models.

However, predictions are rather inaccurate in general, and more so for particular subgroups.

Hence, if one aims at constructing a policy that perfectly substitutes high-stakes exams, using

prediction models is questionable.

This paper studies the effect of using a prediction model a relatively short time after an

unexpected shock occurs. More specifically, it is reasonable to assume that in 2020 high school

GPA was not affected by COVID-19: in March most of the grades have already been assigned,

the majority of the material is covered, and mostly the preparation for the high-stakes exams

is relevant. Therefore, differences in access to online teaching, tutoring, and other educational

resources when schools are closed would mainly distort the outcomes of high-stakes exams.

The models presented here would require some adjustments if the outbreak continues to be

inhibiting face-to-face exam taking next year, as the GPA would be itself distorted by the

pandemic. In fact, access to online teaching and educational resources has been extremely

unequal: many students with low SES faces more severe challenges their high SES peers, and

may perform worse than in normal times.37 Understanding these effects is not only crucial for

eventual future predictions of high-stakes exams, but also for evaluating the consequences of

an alternative policy of running high-stakes exams after months of school closure.

In what remains, we will go over some of the solutions adopted by different countries and

discuss the problems that they seem to have generated. In Catalonia, the authorities announced

that the exam was easier, giving students the option to choose a subset of questions to answer.

This ensured that not having covered particular material in school would not harm students

too much. But it also meant that the exam was less difficult than in previous years. Hence

we expect student scores to exhibit more of a bimodal distribution: for those more heavily hit

by the outbreak, the exam was most likely still inaccessible given that they had been locked

at home for four months. For those with a relative stability around them and access to online

37A large number of surveys have evidenced these inequalities worldwide. See, for example, the
policy brief run by the European Comission “Educational inequalities in Europe and physical school
closures during COVID-19”: https://ec.europa.eu/jrc/sites/jrcsh/files/fairness_pb2020_wave04_

covid_education_jrc_i1_19jun2020.pdf
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schooling or tutoring, we expect their grades to be higher than in the past (given that the exam

is substantially easier). Data about the distribution of grades are not available yet, but we

do know that the fraction of students with a grade higher than 9 over 10 has increased and

so has the fraction of students who failed.38 Given that access is determined by the weighted

average of Selectivitat and high school grades, it is likely that if a student was affected by the

outbreak, Selectivitat reduced her capacity to compete for selective programs, while for those

less affected by the outbreak, most variation in entry grades was most likely coming from high

school grades, since variation coming from Selectivitat was smaller at the top. Future access to

these data should help understand the implications of the chosen policy further.

In the UK a predictive model imputed external examinations’ grades.39 When the results

came out there were a number of complaints. A first issue related to how the authorities

dealt with schools with small class sizes or limited historical data (mostly private schools): in

those cases, high school evaluations were used as the predictor. Instead, for other schools a

prediction model similar to the one proposed in this paper was introduced and hence, inequities

present in societies were mirrored by the prediction.40 In particular, schools located in low SES

neighborhoods found that their prediction was lower than the prediction of students with the

same high school GPA but in more affluent neighborhoods. In Catalonia, similarly, in schools

with high concentration of low SES students, on average Selectivitat is lower than high school

GPA. Therefore, for some of them the prediction of a model with school fixed effects is lower

than the prediction without school fixed effects.41

The International Baccalaureate has followed a different strategy that has also induced a

38Number of failures may also be affected by the fact that the fraction of stu-
dents who graduated from high schools also increased. The Spanish press covered ex-
tensively the topic, see for instance https://www.elperiodico.com/es/sociedad/20200728/

selectividad-catalunya-2020-notas-pau-8056577 or https://www.lavanguardia.com/vida/20200806/

482688617975/notas-corte-selectividad-acceso-universidad-catalunya-2020.html
39England, Northern Ireland, Wales, and Scotland regulate separately their exams, but they adopted a similar

approach and incurred in similar controversies. For a summary, see https://en.wikipedia.org/wiki/2020_

UK_GCSE_and_A-Level_grading_controversy. The controversy was covered by The Guardian, the BBC and
on twitter as #alevels2020.

40More specifically, teachers formulate a recommendation for the grades of the high-stakes exams, based on
student performance in school and in mock exams administered during the year. For the first group of schools
the final grades simply mirrored the teachers’ proposals. For the other schools, proposals were adjusted using
historical data.

41In the end, in the UK the administrations decided not to use any prediction model, but to use teacher
evaluations for all students, because the prediction model was harming more vulnerable students.
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large number of complaints.42 In their case the problem is slightly different. They used historical

data on grades provided by teachers and analysed how they related to final grades. However

they also complemented grades provided by teachers this year with externally provided grades.

The problem was that it was not clear how they used these external evaluations to correct their

prediction models, since this external source of data was only available to them this year, not

in historical data. This lack of transparency complicated the process and led to a subsequent

adjustment in grades.

To sum up, COVID-19 has inhibited the capacity to run high-stakes exams and has forced

countries to think how to resolve college admissions, usually heavily based on high-stakes exams.

This paper highlights some of the challenges of using historical high school data to predict high-

stakes exams in a given year, but also indirectly opens an important question: is the result of

the high-stakes exams what we want to predict? High-stakes exams are used to measure college

preparedness and originated in an era when college performance data were limited. Nowadays,

it seems relevant to study whether high-stakes exams capture skills that other data do not

capture, and whether they are better predictor of success in college than performance in high

school. Also, in cases like the current pandemic, given that in most countries data on high

school and college performance are available, we may want to contrast predicting high-stakes

exams versus directly predicting college performance to resolve college admissions.
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A Additional Tables and Figures

Figure 9: High schools
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black lines are kernel density plots.

Figure 10: Estimated school effects and raw differences in the school
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Table 5: Selectivitat. Robustness checks.

(a) In sample

Cohorts 2010-2011 Cohorts 2011 Large schools 1-1 match
(1) (2) (3) (4) (5) (6) (7) (8) (9)

High School GPA 0.661** 0.662** 0.671** 0.668** 0.157** 0.0389 0.685** 0.118** 0.0942**
(0.0129) (0.0102) (0.0146) (0.0151) (0.0314) (0.0247) (0.0087) (0.0268) (0.0197)

Art Track -0.107* -0.0711 -0.0754 -0.0535 -0.0473 -0.0384
(0.0466) (0.0652) (0.0672) (0.0587) (0.0647) (0.0581)

Scientific Track 0.00422 -0.0115 -0.0703** -0.0947** -0.0534** -0.0637**
(0.0149) (0.0155) (0.0205) (0.0214) (0.0162) (0.0143)

Peer average GPA -0.0424
(0.0770)

Catalan 0.0496* 0.124** 0.104** 0.112**
(0.0194) (0.0136) (0.0139) (0.0113)

Spanish 0.0638** 0.103** 0.0882** 0.0846**
(0.0193) (0.0130) (0.0144) (0.0110)

History/Philosophy 0.0977** 0.127** 0.116** 0.120**
(0.0164) (0.0157) (0.0136) (0.0117)

Foreign Language 0.353** 0.362** 0.351** 0.356**
(0.0132) (0.0116) (0.0120) (0.0095)

Track subjects 0.105** 0.117** 0.0901** 0.0934**
(0.0179) (0.0147) (0.0139) (0.0107)

School FE No No Yes No No Yes No Yes Yes
N 21426 21426 21426 10367 10367 10367 12474 12474 19684
R2 0.437 0.438 0.510 0.445 0.509 0.606 0.467 0.598 0.590
RMSE 0.750 0.750 0.700 0.744 0.700 0.627 0.728 0.633 0.639
MAE 0.600 0.600 0.556 0.591 0.553 0.490 0.585 0.504 0.508
Abs. rank deviation 0.188 0.188 0.171 0.185 0.169 0.146 0.184 0.153 0.153

(b) Out of sample

(1) (2) (3) (4) (5) (6) (7) (8) (9)

N 10728 10728 10728 10654 10654 10654 6381 6381 10260
R2 0.423 0.424 0.447 0.424 0.493 0.487 0.448 0.527 0.519
RMSE 0.759 0.759 0.743 0.758 0.711 0.716 0.741 0.685 0.692
MAE 0.608 0.608 0.593 0.607 0.567 0.568 0.593 0.546 0.550
Abs. rank deviation 0.190 0.190 0.183 0.189 0.173 0.172 0.186 0.166 0.166

Note. Errors are clustered at the school level. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 6: Selectivitat. Regressions and predictions adding individual characteristics.

(a) In sample (cohorts 2010 and 2011)

(1) (2) (3) (4) (5)

Female -0.198** -0.193** -0.194**
(0.0107) (0.0107) (0.0108)

Mother high school 0.0224+ 0.0220+ 0.0216+
(0.0125) (0.0125) (0.0124)

Mother college 0.0574** 0.0495** 0.0462**
(0.0156) (0.0155) (0.0145)

Father high school 0.0503** 0.0447** 0.0438**
(0.0124) (0.0124) (0.0131)

Father college 0.0897** 0.0790** 0.0773**
(0.0128) (0.0127) (0.0128)

School FE Yes Yes Yes Yes Yes

Other Parental background No Yes Yes No Yes

Zip Code FE No No No Yes Yes

N 20425 20425 20425 20425 20425
R2 0.593 0.587 0.595 0.593 0.603
RMSE 0.637 0.642 0.636 0.638 0.630
MAE 0.504 0.508 0.503 0.506 0.499
abs rank deviation 0.151 0.153 0.151 0.152 0.150

(b) Out of sample (cohort 2012)

(1) (2) (3) (4) (5)

N 10654 10654 10654 10654 10654
R2 0.518 0.516 0.521 0.508 0.517
RMSE 0.693 0.695 0.691 0.701 0.695
MAE 0.549 0.551 0.547 0.556 0.552
abs rank deviation 0.165 0.166 0.165 0.168 0.166

Note. “Male”, “Mother primary/middle school”, “Father primary/middle school” are the omitted categories

when gender and/or parental education variables are used. Other parental background variables include in (2),

(3), and (5) are, for both mother and father, dummies for missing info about education, and dummies for

broad categories of occupation (Manager, Services, Blue collar job, Does not work or retired). Errors are

clustered at the school level. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Figure 11: By gender
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Figure 12: By parental background
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Figure 13: By expected score
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Figure 14: By expected score
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Figure 15: By Expected Score

Predicted - Actual Score | Predicted - Actual Score | Predicted - Actual Rank | Predicted - Actual Rank |
(1) (2) (3) (4) (5) (6) (7) (8)

High Expected Rank -0.279∗∗∗ -0.133∗∗∗ -0.0417∗∗∗ -0.0281∗∗ -0.0513∗∗∗ -0.0101 -0.0255∗∗∗ -0.0135∗∗∗

(-15.67) (-8.06) (-3.86) (-2.80) (-8.85) (-1.95) (-6.84) (-4.03)

Avg Expected Rank -0.144∗∗∗ -0.0682∗∗∗ -0.0266∗ -0.0107 -0.0391∗∗∗ -0.0120∗ -0.00808∗ -0.00178
(-7.96) (-4.08) (-2.44) (-1.04) (-6.57) (-2.26) (-2.14) (-0.52)

Constant 0.136∗∗∗ 0.0796∗∗∗ 0.629∗∗∗ 0.566∗∗∗ 0.0290∗∗∗ 0.00629 0.201∗∗∗ 0.172∗∗∗

(10.53) (6.70) (80.19) (78.00) (6.76) (1.67) (74.19) (71.07)
Model Model (1) Model (5) Model (1) Model (5) Model (1) Model (5) Model (1) Model (5)
R2 0.0223 0.00596 0.00143 0.000729 0.00786 0.000576 0.00453 0.00174
N 10654 10654 10654 10654 10654 10654 10654 10654

Header indicates the dependent variable. Omitted category: low expected rank. Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Expected rank based on a regression of test scores on parental characteristics.

Figure 16: OLS vs. LASSO vs. RF (w parental covariates)
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Table 7: Simulation. Differences in rank by subgroups

(a) Quantiles of Selectivitat

σ = 0.1 σ = 0.5 σ = 1 σ = 2
r̃ − r |r̃ − r| r̃ − r |r̃ − r| r̃ − r |r̃ − r| r̃ − r |r̃ − r|

1 (low SEL) 0.2 1.8 4.3 8.7 11.8 16.2 21.5 25.2
2 0.1 2.8 1.4 12.5 3.9 19.0 7.2 23.2
3 -0.1 2.7 -2.1 12.1 -4.9 18.9 -7.7 23.4
4 (high SEL) -0.2 1.5 -3.6 7.4 -10.8 14.9 -21.0 24.6
All 0.0 2.2 0.0 10.2 0.0 17.2 0.0 24.1

(b) Parental education

σ = 0.1 σ = 0.5 σ = 1 σ = 2
r̃ − r |r̃ − r| r̃ − r |r̃ − r| r̃ − r |r̃ − r| r̃ − r |r̃ − r|

Low 0.0 2.2 0.8 10.4 2.5 17.4 4.0 23.9
Average 0.0 2.2 0.3 10.3 0.3 17.3 0.8 24.2
High -0.1 2.1 -0.9 9.9 -2.1 17.0 -3.8 24.2
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B Selectivitat Total

In the main analysis, we have focused on the first and compulsory component of Selectivitat,

the so-called Selectivitat General, because it has the advantage of having a common structure

for all students in the sample. The second part, the Selectivitat Espećıfica, consists of exams

in the remaining high school track subjects, and is not compulsory. At most, two additional

exams may count for admission, and the weight that these subjects carry in the admission score

depends on how relevant they are for the program where the student is applying. In this section

we provide the main results when predicting the Selectivitat Total score (sum of the general

and specific parts), which is the relevant score for admission. This additional analysis leads to

very similar conclusions.

The admission score is computed according to the following formula:

Admission score = 60× (High School GPA) + 40× (Selectivitat General GPA)

+WA × (Field Subject A GPA) +WB × (Field Subject B GPA)︸ ︷︷ ︸
Selectivitat Espećıfica

, (8)

where WA, WB can be 10 or 20 depending on their relevance for the degree where the

student is applying. The initial score used in the admission process is computed using weights

and exams that maximize the admission score for the preferred program in the application list.

If the student cannot be allocated to the preferred choice, the score for the second best program

is used, and so on moving down the list.

In June of each year, a first round of the application algorithm to match students and

programs is performed. At this point, students have the option to accept the outcome of

the algorithm: to do so they have to delete the programs in their application list above the

assigned one, and they can then enrol in the accepted program. In our data, these students are

recorded as having accepted their preferred choice, and we do not observe deleted programs.

Alternatively, they can wait for additional re-allocation rounds performed during Summer: in

case some other student initially allocated to one of their most preferred programs do not

enrol, they can take their slot. For this second group of students we observe the full list of

preferences.43 Overall, 78% of students in our sample are recorded has having enrolled in their

43As a further alternative, in September they can submit a new application for the programs which have not
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preferred choice; this suggests that probably many of them accepted the initial allocation after

the first round without waiting for additional rounds.

In the analysis in this section we compute “Selectivitat Total” as a weighted sum of Selec-

tivitat General and Selectivitat Espećıfica. For the latter, we use exams and weights for the top

program that we observe, with the caveat that it is either the actual preferred choice, or the

program accepted after deleting the higher ranked options. In our sample, 85% of students take

at least one additional exam, and 55% take two additional exams. The average unconditional

weight in our sample is 13.2 (with zero weights for students who do not take the additional

exams). The average weight conditional on taking an exam is 18.9, in fact the weight is 20 in

90% of the cases.

Columns (1) to (5) of Table 8 replicate Table 2. Columns (6) and (7) augment the regressors

in (4) and (5) with the additional covariates “Best subject” and “Second best subject”. To

compute those variables we associate each observed elective subjects in high school with an

exam that students can undertake for Selectivitat Espećıfica. Then, we multiply the evaluations

for the weights that the associated exams have for the student preferred choice and rank the

resulting scores. Finally, we identify the best and second best subject according to the rank,

and use their evaluation as regressors.44 Overall results are extremely similar to what discussed

in Section 3. Model (7) has the best out-of-sample performance; for instance the MAE is 0.55

s.d. and the ARD is 16.2 percentiles.

Figures 17 and 18 and Tables 9 and 10 are the analogous of Figures 4 and 5 and Tables 3

and 4. Again, the results are very similar, with only one exception, which is that when looking

at Selectivitat Total, female test scores are still over-predicted by a similar magnitude, but also

the prediction error is a little less disperse (columns 3 and 4, Table 9).

reached their capacity constraint, and the same allocation procedure takes place for these students and slots.
44If no observed subjects has positive weight, a 0 is imputed instead.
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Table 8: Selectivitat total. Regressions and predictions.

(a) In sample (cohorts 2010 and 2011)

(1) (2) (3) (4) (5) (6) (7)

High School GPA 0.663** 0.671** 0.686** 0.121** 0.0650** 0.132** 0.0757**
(0.0091) (0.0086) (0.0100) (0.0249) (0.0215) (0.0245) (0.0212)

Art Track 0.128* 0.146+ 0.105* 0.133 0.150** 0.178*
(0.0520) (0.0863) (0.0509) (0.0822) (0.0469) (0.0745)

Scientific Track -0.108** -0.123** -0.102** -0.117** -0.0910** -0.107**
(0.0170) (0.0165) (0.0178) (0.0172) (0.0175) (0.0169)

Peer average GPA 0.0304
(0.0456)

Catalan 0.0191 0.0543** 0.0194 0.0546**
(0.0145) (0.0114) (0.0141) (0.0108)

Spanish 0.0661** 0.0749** 0.0644** 0.0736**
(0.0155) (0.0109) (0.0151) (0.0103)

History/Philosophy 0.0564** 0.0761** 0.0523** 0.0717**
(0.0122) (0.0093) (0.0123) (0.0092)

Foreign Language 0.194** 0.191** 0.194** 0.190**
(0.0102) (0.0078) (0.0102) (0.0076)

Track subjects 0.337** 0.357** 0.151** 0.180**
(0.0147) (0.0122) (0.0173) (0.0148)

Best subject 0.0223** 0.0230**
(0.0070) (0.0071)

Second best subject 0.106** 0.100**
(0.0053) (0.0056)

School FE No No Yes No Yes No Yes

N 20425 20425 20425 20425 20425 20425 20425
R2 0.438 0.442 0.522 0.479 0.560 0.497 0.576
RMSE 0.744 0.741 0.686 0.716 0.659 0.703 0.646
MAE 0.604 0.601 0.551 0.579 0.528 0.566 0.517
abs rank deviation 0.186 0.185 0.166 0.176 0.157 0.171 0.154

(b) Out of sample (cohort 2012)

(1) (2) (3) (4) (5) (6) (7)

N 10654 10654 10654 10654 10654 10654 10654
R2 0.429 0.427 0.447 0.462 0.480 0.503 0.520
RMSE 0.754 0.755 0.742 0.732 0.719 0.703 0.691
MAE 0.605 0.605 0.589 0.584 0.570 0.560 0.547
abs rank deviation 0.184 0.184 0.178 0.175 0.170 0.167 0.162

Note. + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Figure 17: By gender (Sel. Total)
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Note. Differences between predicted and actual rank, cohort 2012

Table 9: By gender (Sel. Total)

Predicted - Actual Score | Predicted - Actual Score | Predicted - Actual Rank | Predicted - Actual Rank |
(1) (2) (3) (4) (5) (6) (7) (8)

Female 0.119∗∗∗ 0.123∗∗∗ -0.0442∗∗∗ -0.0300∗∗∗ 0.0624∗∗∗ 0.0534∗∗∗ -0.00600 -0.00219
(7.97) (8.72) (-5.01) (-3.49) (13.24) (12.18) (-1.96) (-0.76)

Constant -0.0626∗∗∗ -0.0520∗∗∗ 0.630∗∗∗ 0.588∗∗∗ -0.0378∗∗∗ -0.0326∗∗∗ 0.187∗∗∗ 0.171∗∗∗

(-5.41) (-4.75) (94.13) (90.58) (-10.39) (-9.70) (78.92) (77.38)
Model Model (1) Model (5) Model (1) Model (5) Model (1) Model (5) Model (1) Model (5)
R2 0.00600 0.00714 0.00233 0.00113 0.0163 0.0137 0.000362 0.0000536
N 10654 10654 10654 10654 10654 10654 10654 10654

Header indicates the dependent variable. Omitted category: males. Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Figure 18: By SES (Sel. Total)
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Note. Differences between predicted and actual rank, cohort 2012

Table 10: By SES (Sel. Total)

Predicted - Actual Score | Predicted - Actual Score | Predicted - Actual Rank | Predicted - Actual Rank |
(1) (2) (3) (4) (5) (6) (7) (8)

High SES -0.214∗∗∗ -0.132∗∗∗ -0.0303∗∗ -0.0265∗ -0.0349∗∗∗ -0.0152∗∗ -0.0186∗∗∗ -0.0109∗∗

(-11.20) (-7.22) (-2.59) (-2.37) (-5.69) (-2.66) (-4.69) (-2.94)

Avg SES -0.107∗∗∗ -0.0626∗∗∗ -0.00665 -0.00148 -0.0294∗∗∗ -0.0143∗ -0.00360 0.0000534
(-5.58) (-3.44) (-0.57) (-0.13) (-4.79) (-2.53) (-0.92) (0.01)

Constant 0.126∗∗∗ 0.0920∗∗∗ 0.618∗∗∗ 0.581∗∗∗ 0.0229∗∗∗ 0.00980∗ 0.192∗∗∗ 0.174∗∗∗

(8.29) (6.41) (65.65) (65.37) (4.70) (2.19) (61.65) (60.03)
Model Model (1) Model (5) Model (1) Model (5) Model (1) Model (5) Model (1) Model (5)
R2 0.0119 0.00497 0.000804 0.000782 0.00336 0.000794 0.00263 0.00128
N 10638 10638 10638 10638 10638 10638 10638 10638

Header indicates the dependent variable. Omitted category: low SES. Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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