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Highlights

• A Powell–Sabin B-splines formulation for higher-order gradient damage models.
• A discrete crack model exploiting Powell–Sabin B-splines based on the cohesive-zone concept.
• A remeshing strategy for Powell–Sabin B-splines with discrete cracks.

Abstract

Non-Uniform Rational B-splines (NURBS) and T-splines can have some drawbacks when modelling damage and fracture. The
use of Powell–Sabin B-splines, which are based on triangles, can by-pass these drawbacks. Herein, smeared as well as discrete
approaches to fracture in quasi-brittle materials using Powell–Sabin B-splines are considered.

For the smeared formulation, an implicit fourth-order gradient damage model is adopted. Since quadratic Powell–Sabin B-
splines employ C 1-continuous basis functions throughout the domain, they are well-suited for solving the fourth order partial
differential equation that emerges in this higher order damage model. Moreover, they can be generated from an arbitrary
triangulation without user intervention. Since Powell–Sabin B-splines are generated from a classical triangulation, they are not
necessarily boundary-fitting and in that case they are not isogeometric in the strict sense.

For discrete fracture approaches, the degree of continuity of T-splines is reduced to C 0 at the crack tip. Hence, stresses need
to be evaluated and weighted at the integration points in the vicinity of the crack tip in order to decide when the critical stress
is reached. In practice, stress fields are highly irregular around crack tips. Furthermore, aligning a T-spline mesh with the new
crack segment can be difficult. Powell–Sabin B-splines also remedy these drawbacks as they are C 1-continuous at the crack tip and
stresses can be directly computed, which vastly increases the accuracy and simplifies the implementation. Moreover, re-meshing
is more straightforward using Powell–Sabin B-splines. A current limitation is that, in three dimensions, there is no procedure (yet)
for constructing Powell–Sabin B-splines on arbitrary tetrahedral meshes.
c⃝ 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
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1. Introduction

Discrete crack models capture crack initiation and propagation by introducing a geometric discontinuity in the
domain. In order to model features like crack propagation in arbitrary directions and crack branching in finite element
methods, re-meshing must be adopted in order to align the discretisation to the crack path [1,2]. An interesting
alternative is the eXtended Finite Element Method (XFEM), which also allows for arbitrary crack propagation, but
positions extra degrees of freedom at existing nodes, thus preserving the original topology of the discretisation, see
e.g. [3,4] who used linear elastic fracture mechanics, [5–7] who used cohesive zone models, or [8,9] for the extension
to crack propagation in fluid-saturated media.

More recently, Non-Uniform Rational B-splines (NURBS) and T-splines have been used for the modelling of
crack initiation and propagation using the cohesive-zone approach [10]. The idea of utilising spline functions, which
are commonly used in Computer Aided Design (CAD) packages, also for analysis purposes was introduced in [11,12],
and is now commonly known as IsoGeometric Analysis (IGA). While in the original paper by Verhoosel et al. [10] a
number of interesting examples are shown of the power of the approach, structured T-splines may not be the optimal
spline technology for modelling fracture in a discrete sense. This is because the initial mesh needs to be aligned a
priori with the final crack path [10], which is normally not known beforehand. A further drawback is that the blending
functions of T-spline meshes are only C 0-continuous at the crack tip. Thus, stresses have to be computed at integration
points in the vicinity of the crack tip, which detracts from one of the advantages of using splines as basis functions
compared to standard Lagrangian basis functions, namely that the accuracy of the stress computation is vastly superior.
As a final point, it is noted that triangles are usually favoured for discrete fracture models since they are more flexible
for re-meshing, while T-splines have a layout which is based on a quadrilateral structure. For these reasons a spline
technology which is based on a triangulation, like Powell–Sabin B-splines [13,14], is potentially more attractive for
modelling discrete fracture. As an added benefit Powell–Sabin B-splines allow for a direct computation of the stress
tensor at the crack tip since they are C 1-continuous in the entire domain. It is noted though, that at present the extension
to three dimensions is not trivial.

The difficulties that adhere to discrete crack approaches, in particular in three-dimensional applications, have
motivated the development of smeared crack models. They approximate the crack by introducing a damage-like
variable and can be extended to three dimensions in a straightforward manner [15]. In non-local and gradient damage
models [16–18] the ill-posedness of the boundary value problem that arises at a generic stage of the loading process
when exploiting damage models or softening plasticity models, is removed by introducing a non-local quantity, e.g. a
non-local equivalent strain. A computationally efficient setting is obtained by treating this non-local quantity as an
independent variable, thus leading to a mixed problem.

However, the introduction of non-locality carries some drawbacks. First, boundary conditions are required for
the non-local equivalent strain. Furthermore, one or more internal length scale parameters are introduced. Finally,
most higher order gradient models require basis functions of a continuity that is higher than C 0. To meet the
latter requirement, NURBS and T-splines have been used in [19]. It is noted, however, that their use may be less
straightforward for more complicated geometries. Indeed, it is not always easy to preserve the higher continuity
throughout the domain, for example when three or more than four NURBS-patches meet at an extraordinary point.
In such cases, the use of Powell–Sabin B-splines can be more convenient since they provide basis functions that are
C 1-continuous throughout, and can be created from arbitrary triangulations.

This paper starts with a concise introduction to Powell–Sabin B-splines. Next, gradient damage models are
considered. Subsequently, Powell–Sabin B-splines are applied to discrete fracture using a cohesive zone model. Index
notation has been used with respect to a Cartesian frame throughout the paper.

2. Quadratic Powell–Sabin B-splines

In this section, we give a short introduction to Powell–Sabin B-splines. A more elaborate introduction into
Powell–Sabin B-splines is given in [20]. For computational efficiency, Bézier extraction is used for Powell–Sabin
B-splines [21].
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Fig. 1. Triangulation T (thick black lines), Powell–Sabin refinement T ∗ (thin black lines), Powell–Sabin points (green) and Powell–Sabin triangles
(red) for an L-shaped geometry. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

2.1. Powell–Sabin B-splines

In order to obtain basis functions with C 1-continuity for a triangulation T , some pre-processing steps are necessary.
Each triangle e of the triangulation T has to be split into six (n = 1 . . . 6) mini-triangles (cf Fig. 1). This yields the
Powell–Sabin refinement T ∗. Powell–Sabin points (green) are now defined for each vertex k of the triangulation T :
they are the vertex k itself and points that lie in the centre of edges of T ∗ that contain the vertex k. A Powell–Sabin
triangle (shown in red), which contains all Powell–Sabin points, is associated with each vertex k. The Powell–Sabin
triangle needs to contain all Powell–Sabin points in order to get positive basis functions. Furthermore, the triangle
needs to be small for a low condition number of the stiffness matrix. The Powell–Sabin triangles are chosen in
such a way that they share two edges with the convex hull of the Powell–Sabin points [22,23]. In this manner the
solution of an expensive optimisation algorithm is avoided [20]. We further constrain the Powell–Sabin triangles on
the boundary as follows: for an angle of γ < 180◦ two edges of the Powell–Sabin triangle lie on the boundary; for an
angle of γ = 180◦, one edge of the Powell–Sabin triangle lies on the boundary, Fig. 1. No restriction is imposed on
Powell–Sabin triangles at an internal discontinuity (see also Section 4).

After computing a Powell–Sabin triangle for each vertex k, the basis functions can be computed. Three ( j = 1, 2, 3)
Powell–Sabin B-splines N j

k are associated with each vertex k, with coordinates Vk = (xk, yk) of the triangulation T
and have the following properties. For any l ≠ k we have

N j
k (Vl) = 0,

∂

∂x
N j

k (Vl) = 0,
∂

∂y
N j

k (Vl) = 0, (1)

and otherwise

N j
k (Vk) = α

j
k ,

∂

∂x
N j

k (Vk) = β
j

k ,
∂

∂y
N j

k (Vk) = γ
j

k , (2)

with

3
j=1

α
j
k = 1,

3
j=1

β
j

k = 0,
3

j=1

γ
j

k = 0. (3)
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Fig. 2. A triangulation T consisting of two elements with a different choice for the bottom left Powell–Sabin triangle in (a) and (b). Both options
yield an affine transformation in (c) and (d) since the Powell–Sabin B-splines form a partition of unity.

The coefficients α j
k , β j

k and γ j
k in Eq. (3) can be obtained for each vertex k by solvingα

1
k α2

k α3
k

β1
k β2

k β3
k

γ 1
k γ 2

k γ 3
k


x1
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k 1

x2
k y2

k 1

x3
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k 1

 =

xk yk 1
1 0 0
0 1 0

 , (4)

where Q j
k

= (x j
k , y j

k ) are the coordinates of the Powell–Sabin triangle corners that correspond to vertex k. Once the

coefficients α j
k , β j

k and γ j
k have been determined, the Bézier ordinates can be computed in each mini-triangle n of

element e for the basis functions Ne
n . The Bézier ordinates are assembled in the Bézier extraction operator Ce

n
. This

allows for an efficient computation of the basis functions and their derivatives. For instance, the basis functions Ne
n

are computed from

Ne
n = Ce

n
B, (5)

where B is the vector containing the Bernstein polynomials. Further details on the calculation of the basis functions
Ne

n using Bézier extraction can be found in [21].

2.2. Patch test

Special care must be taken for the selection of the Powell–Sabin triangles in order to pass the patch test. For
instance, consider the triangulation T in Figs. 2(a) and (b) consisting of two elements. Figs. 2(a) and (b) show two
different options for the bottom left Powell–Sabin triangle. The bottom left Powell–Sabin triangle in Fig. 2(b) is
valid since it contains all Powell–Sabin points that correspond to the bottom left vertex. Both options yield an affine
transformation when applying to the control points Pi

= Qi the transformation

Pi
T = A Pi

+ b (6)
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Fig. 3. (a) Patch test for the meshes in Figs. 2(a) and (b). (b) The mesh in Fig. 2(a) passes the patch test — the basis function of the red control
point is zero along the left edge. (c) The mesh in Fig. 2(b) with the modified bottom left Powell–Sabin triangle does not pass the patch test—the
red control point has a non-zero basis function along the left edge due to the modified Powell–Sabin triangle. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

with the transformation matrix A, the displacement vector b and the control points Pi
T after the transformation, as

depicted in Figs. 2(c) and (d) since the basis functions fulfil the partition of unity property.
The mesh in Fig. 2(a) also passes the patch test depicted in Fig. 3(a). Fig. 3(b) shows the contour of the basis

function for the red control point corresponding to the mesh in Fig. 2(a). The basis function in Fig. 3(b) is zero along
the left edge. Shifting the corner of the bottom left Powell–Sabin triangle as in Fig. 2(b) results in a different basis
function for the red control point in Fig. 3(c): the basis function is now non-zero along the left edge. Furthermore,
the mesh in Fig. 2(b) does not pass the patch test—applying the boundary conditions in Fig. 3(a) does not result in a
constant stress in the x-direction.

3. Higher order gradient damage model

In this section, the formulation and numerical elaboration of the implicit higher order gradient damage model
is given. Two examples are presented, including the advantages compared to NURBS and T-splines regarding the
discretisation.

3.1. Continuum formulation

Higher order gradient damage models require the solution of two coupled field problems. The first field problem
to be solved is the equilibrium equation:

σi j,i = 0 (7)

subject to the boundary conditions

σi j n j = hi on ∂Ωh , ui = ūi on ∂Ωu , (8)

with the decomposition of the boundary ∂Ω into the parts ∂Ωh and ∂Ωu (∂Ωh ∩ ∂Ωu = ∅, ∂Ωh ∪ ∂Ωu = ∂Ω ), and the
prescribed surface traction h, the prescribed displacement ū and the normal vector n on the external boundary. The
stress tensor is computed from

σi j = (1 − ω)Ci jklεkl , (9)

with C the elasticity tensor of the undamaged material, and

εi j =
1
2


ui, j + u j,i


(10)

the infinitesimal strain tensor. u is the displacement vector and ω ∈ [0, 1] is the scalar-valued damage parameter
(ω = 0 in the undamaged state, ω = 1 in the fully damaged state). The damage parameter ω is a function
of a monotonically increasing history parameter κ , ω = ω(κ). In order to ensure that κ can only grow, the
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Karush–Kuhn–Tucker [24,25] conditions

f ≤ 0, κ̇ ≥ 0, κ̇ f = 0 (11)

need to be satisfied. Monotonicity of κ involves monotonicity of ω.
Herein, the loading function f = η̄−κ is used, with η̄ the non-local equivalent strain. The latter quantity is defined

as the volume average of the local equivalent strain η

η̄(x) =


Ω g(x, x̃)η(x̃)dx̃

Ω g(x, x̃)dx̃
with g(x, x̃) = exp


−

∥x − x̃∥

2l2
c


(12)

the weighting function and lc the length scale parameter. Expressing the local equivalent strain η(x̃) in a Taylor series
around x̃ = x and since point x takes all values in x̃, i.e. x and x̃ are equivalent, we obtain

η̄(x) = η(x)+
l2
c

2
η,i i (x)+

l4
c

8
η,i i j j (x)+ . . . . (13)

We differentiate Eq. (13) twice and multiply by l2
c
2 , and subsequently differentiate Eq. (13) four times and multiply by

l2
c
8 . The resulting identities are combined with Eq. (13) to give:

η̄ −
l2
c

2
η̄,i i +

l4
c

8
η̄,i i j j = η +

l8
c

64
η,i i j jkkll + . . . . (14)

Neglecting higher order terms in Eq. (14) results in a fourth order partial differential equation for the non-local
equivalent strain η̄

η̄ −
l2
c

2
η̄,i i +

l4
c

8
η̄,i i j j = η, (15)

which must be solved in conjunction with Eq. (7). The boundary conditions

η̄,i ni = 0, η̄,i j ni = 0, η̄,i j j ni = 0 (16)

are imposed since it was observed in [19] that ignoring the boundary terms has a minor effect. Multiplying Eq. (7)
by a test function δu j , Eq. (15) by a test function δη̄, integrating over the domain Ω , exploiting integration by parts,
Gauss’ theorem and the boundary conditions in Eqs. (8) and (16) finally results in:

Ω
δui, jσi j dV =


∂Ωh

δui hi dA,
Ω
δη̄η̄ +

l2
c

2
δη̄,i η̄,i +

l4
c

8
δη̄,i j η̄,i j dV =


Ω
δη̄η dV.

(17)

3.2. Discretisation

Discretisation of the domain Ω into E elements,

Ω =

E
e=1

Ω e, (18)

and approximation of the displacement ui , the non-local strain η̄ and their derivatives,

ue
= N

u
u, δue

= N
u
δu, εe

= B
u

u, δεe
= B

u
δu,

η̄e
= NT

η̄ η̄, δη̄e
= NT

η̄ δη̄, η̄e
,i

= B
η̄
η̄, δη̄e

,i
= B

η̄
δη̄,

η̄e
,i j

= B
η̄η̄

η̄, δη̄e
,i j

= B
η̄η̄
δη̄,

(19)
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with

ue
=


ue

1
ue

2


, δue

=


δue

1
δue

2


, εe

=

 εe
11
εe

22
2εe

12

 , δεe
=

 δεe
11

δεe
22

2δεe
12

 ,
η̄e
,i

=


η̄e
,1
η̄e
,2


, δη̄e

,i
=


δη̄e
,1

δη̄e
,2


, η̄e

,i j
=

 η̄e
,11
η̄e
,22√

2η̄e
,12

 , δη̄e
,i j

=

 δη̄e
,11

δη̄e
,22√

2δη̄e
,12

 ,
N

u
=


N1 0 N2 0 . . .

0 N1 0 N2 . . .


, B

u
=

N1,1 0 N2,1 0 . . .

0 N1,2 0 N2,2 . . .

N1,2 N1,1 N2,2 N2,1 . . .

 ,
NT
η̄ =


N1 N2 . . .


, B

η̄
=


N1,1 N2,1 . . .

N1,2 N2,2 . . .


, B

η̄η̄
=

 N1,11 N2,11 . . .

N1,22 N2,22 . . .
√

2N1,12
√

2N2,12 . . .



(20)

gives the following matrix–vector equation for Eq. (17):

δuT

Ω

BT
u
(1 − ω)C B

u
dVu  

f int
u
(u,η̄)

−δuT

∂Ωh

NT
u

h dA  
f ext

u

= 0,

δη̄T


Ω
Nη̄NT

η̄ +
l2
c

2
BT
η̄

B
η̄

+
l4
c

8
BT
η̄η̄

B
η̄η̄

dVη̄ −


Ω

Nη̄η dV  
f int
η̄
(u,η̄)


= 0.

(21)

For arbitrary δu, δη̄ and h = 0 this yields

H(u, η̄, λ) =

f int
u
(u, η̄)− λf̂
f int
η̄
(u, η̄)

ψ(u, λ)

 = 0, (22)

where λf̂ assembles the nodal forces, with f̂ the normalised load vector and λ the loading parameter.ψ is an arc-length

function. In the remainder we employ the arc-length function based on the rates of internal U̇ and dissipated energy
Ė D from [26]. Linearisation of Eq. (22) yields for the i +1th iteration in the n+1th increment:u

η̄

λ

n+1

i+1

=

u
η̄

λ

n+1

i

− K−1
T

n+1

i

·

f int
u
(u, η̄)− λf̂
f int
η̄
(u, η̄)

ψ(u, λ)


n+1

i

, (23)

with the tangential stiffness matrix

K
T
(u, η̄, λ) =



∂f int
u
(u, η̄)

∂u

∂f int
u
(u, η̄)

∂ η̄
−f̂

∂f int
η̄
(u, η̄)

∂u

∂f int
η̄
(u, η̄)

∂ η̄
0

∂ψ(u, λ)
∂u

0T ∂ψ(u, λ)
∂λ


. (24)

3.3. Examples

In this section, we first study the L-shaped specimen considered before in [19]. Next, a Single-Edge Notched Beam
(SENB) is considered subject to an antisymmetric four-point shear loading.
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Fig. 4. Set-up for the L-shaped specimen (dimensions in mm).

Fig. 5. Quadratic NURBS mesh with C 1-continuity everywhere for the knot vectors Ξ = {0, 0, 0, 1, 1, 1} and H = {0, 0, 0, 1
2 , 1, 1, 1}.

3.3.1. L-shaped specimen
The set-up for the L-shaped specimen is given in Fig. 4 and the parameters and coefficients have been chosen

according to [19].
The L-shaped specimen has been discretised using NURBS, T-splines and Powell–Sabin B-splines. A C 1-

continuous NURBS mesh is depicted in Fig. 5. This mesh contains two pairs of overlapping control points which
results in a vanishing determinant of the Jacobian matrix Ji j =

∂xi
∂ξ j

. It has been shown in [27] that these

discretisations can still be robust. However, when several NURBS-patches are used, they join with C 0-continuity only.
Regaining C 1-continuity, especially when three or more than four NURBS-patches join at an extraordinary point, is
cumbersome.

A mesh that is C 1-continuous throughout the L-shaped domain is shown in Fig. 6 for T-splines. According to [28],
this T-spline mesh is standard, i.e. all blending functions sum to one. Furthermore, the Bézier extraction operator is a
square matrix in each element. It is noted that the blue marked corner in Fig. 6(b) is not interpolatory, i.e. there is no
control point. If, instead, the L-shaped specimen is modelled with an interpolatory corner C 0-continuity is introduced.
The mesh in Fig. 6 has the disadvantage that it needs to be created by hand.
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Fig. 6. Quadratic T-spline mesh for the L-shaped geometry with C 1-continuity everywhere in (a) the index (uℓ) and parameter (ξu
ℓ

) domain and
(b) the physical (xℓ) domain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 7. Linear constraints along the bottom platen in Fig. 4 with Powell–Sabin B-splines.

Alternatively, Fig. 1 shows the Powell–Sabin B-spline mesh that is obtained directly from a standard triangulation.
The linear constraints along the platens in Fig. 4 are imposed using a master–slave relation as follows (see also Fig. 7
for the bottom platen). Let uA and uB be the displacement at the left and right corners of the bottom platen with
coordinates xA and xB, respectively. A and B are the master control points. Then, for any slave control point S with
coordinates xS along the edge, its displacement uS is set to

uS =


1 −

xS − xA

xB − xA


uA +

xS − xA

xB − xA
uB. (25)

This master–slave relation must be incorporated into Eq. (23) as described in [29]. Note, that Eq. (25) follows from
the intercept theorem

uS − uA

xS − xA
=

uB − uA

xB − xA
. (26)
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Fig. 8. Force–displacement curves for the L-shaped sample using the implicit fourth-order gradient damage model for four different mesh sizes.

In the calculations, the following parameters have been used: Young’s modulus E = 10,000 MPa, Poisson’s ratio
ν = 0.2 and an internal length scale parameter lc = 5

√
2 mm2. Plane-stress conditions are assumed. The thickness of

the specimen is t = 200 mm. The modified von Mises local equivalent strain defined in [30]

η(ε) =
k − 1

2k(1 − 2ν)
I1(ε)+

1
2k


k − 1

1 − 2ν
I1(ε)

2

+
12k

(1 + ν)2
J2(ε), (27)

with the first invariant of the strain tensor,

I1(ε) = εkk, (28)

and the second invariant of the deviatoric strain tensor,

J2(ε) =
1
2
εi jεi j −

1
6

I1(ε)
2, (29)

has been used. In Eq. (27), k = 10 is set in order to account for different strengths in compression and tension. The
following damage law [31] has been utilised

ω(κ) =


0 κ ≤ κ0

1 −
κ0

κ


1 − α + α exp


β(κ0 − κ)


κ > κ0

, (30)

with the parameters κ0 = 4 × 10−4, α = 0.98 and β = 80.
Displacement control has been applied to the left corner of the bottom platen and the bottom corner of the left

platen with an increment of ∆ū = 0.05 mm. The meshes for the Powell–Sabin B-splines have been refined uniformly.
Fig. 8 shows the force–displacement curves for four different mesh sizes. The legend entry displays the number of

degrees of freedom (DOF). Fig. 9 shows the contours for the damage field ω and the first principal stress σ1 for the
mesh with 20,322 degrees of freedom at a displacement ū = 1.9 mm. Finally, Fig. 10 shows a comparison in terms
of the force–displacement curve between the second order and the fourth order gradient damage formulations (for the
mesh with 20,322 degrees of freedom).

3.3.2. Single-edge notched beam
The second example concerns a Single-Edge Notched Beam (SENB). The parameters and coefficients have been

taken from [32]. The geometry and the boundary conditions are depicted in Fig. 11.
The two platens at the top and at the bottom have not been modelled explicitly in the finite element model. Instead,

they are incorporated by means of linear constraints with a master–slave dependency as in the previous example. For
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Fig. 9. L-shaped sample in the deformed configuration at a displacement of ū = 1.9 mm for the mesh with 20,322 degrees of freedom.
Displacements are amplified by a factor of 20. Contours for (a) damage field ω and (b) first principal stress field σ1.

Fig. 10. Force–displacement curves for the L-shaped sample using second and fourth order formulations for the mesh with 20,322 degrees of
freedom.

Fig. 11. Set-up for the SENB (dimensions in mm).

the platen at the top (Fig. 12(a)), the displacement of the orange control points (circles) is set to zero. The master
control point C is marked blue. The displacement of the slave control points (green) is set to

uS =


1 −

xS − xC

xD − xC


uC. (31)

It is noted that at the vertex D (which is not a control point) the displacement is zero.
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Fig. 12. Applying the linear constraints along the platens in Fig. 11 to the control points. Control points are indicated by circles, vertices by squares.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Applying the boundary conditions in Fig. 11 to the control points.

At the bottom platen (cf. Fig. 12(b)), f̂ j
k = α

j
k has been imposed for the two orange control points (circles). The

orange control points correspond to the vertex G marked with an orange square. Since one edge of the Powell–Sabin
triangle for vertex G lies on the boundary, we have α j

k = 0 for the third control point. With Eq. (3)a, we get the
required prescribed load for the bottom platen. Furthermore, the relation

uS =


1 −

xS − xE

xF − xE


uE +

xS − xE

xF − xE
uF (32)

has been incorporated into Eq. (23), where S are the slave control points (green) and E and F are the master control
points (blue). For the fixed boundary condition at the top right, the displacement in the vertical direction of the two
control points (marked orange) in Fig. 13(a) is set to zero. The boundary condition at the bottom left is imposed by
setting f̂ j

k = α
j
k for the two control points (orange) in Fig. 13(b).

The material parameters of the concrete are: Young’s modulus E = 35,000 MPa, Poisson’s ratio ν = 0.2
with a plane-stress assumption. The thickness of the specimen is t = 100 mm. The internal length scale is set to
lc =

√
2 mm2. The modified von Mises local equivalent strain, Eq. (27), and the damage law Eq. (30) have been used

again, but now with k = 10, κ0 = 6 × 10−5, α = 0.96 and β = 100. In order to trace the equilibrium path, the
arc-length method proposed in [26] has been employed with ∆τ = 8 kN and a = 0.25. The meshes have been refined
uniformly.

Fig. 14 shows the force–displacement curves. Along the x-axis the crack mouth sliding displacement (CMSD, the
difference in the vertical displacement between the right and the left notch tips) has been plotted, and along the y-axis
the force P =

11
10λ.
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Fig. 14. Force–displacement curves for the SENB with the implicit fourth-order gradient damage model for three different mesh sizes.

Fig. 15. Single-Edge Notched Beam in the deformed configuration at a CMSD = 0.04 mm for the mesh with 74,448 degrees of freedom.
Displacements are amplified by a factor of 200. Contours for (a) damage field ω and (b) stress field σxx .

Fig. 15(a) shows for the Single-Edge Notched Beam with 74,448 degrees of freedom at a CMSD = 0.04 mm
the damage and stress field ω and σxx , respectively. It is noted that for coarser meshes (less than 19,044 degrees of
freedom), the Single-Edge Notched Beam may fail due to the damage zone which starts to grow at the bottom left
edge while the damage zone at the notch does not propagate. Hence, fine meshes are required in order to obtain results
that are in agreement with the experiments in [33].

4. Discrete crack modelling

This section introduces a discrete approach to fracture where a cohesive zone model is used for the tractions
between the faces of the crack. The re-meshing procedure is explained, and as an example the Single-Edge Notched
Beam is considered again.
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Fig. 16. (a) Domain Ω with internal discontinuity Γd and decomposition of the boundary ∂Ω into ∂Ωh and ∂Ωu . (b) Discontinuity Γd with
overlapping positive and negative side Γ+

d and Γ−

D , respectively.

4.1. Continuum formulation

For the cohesive zone modelling, a discontinuity Γd is present within the domain Ω . It consists of two overlapping
boundaries, Γ+

d and Γ−

d see Fig. 16(b). Along each boundary Γ+

d and Γ−

d we impose

σi j n
+

j = t+i on Γ+

d , σi j n
−

j = t−i on Γ−

d . (33)

t+ and t− are the tractions in the cohesive zone on the positive and negative side, respectively. n+ and n− are the
normal vectors on Γ+

d and Γ−

d . Setting

ti = t−i = σi j n
−

j (34)

results in

t+i = σi j n
+

j = −σi j n
−

j = −ti . (35)

For the intact bulk material the stress tensor σ in Eq. (7) is assumed to be linearly related to the (infinitesimal)
strain tensor ε:

σi j = Ci jklεkl . (36)

Multiplying Eq. (7) by a test function δu j and integrating over the domain Ω yields
Ω
δui, jσi j dV +


Γ+

d

δu+

i ti dA −


Γ−

d

δu−

i ti dA =


∂Ωh

δui hi dA (37)

after integration by parts, use of Gauss’ theorem and application of the boundary conditions, Eqs. (8)–(35). Since
Γ+

d
. . . dA =


Γ−

d
. . . dA =


Γd
. . . dA, Eq. (37) can be replaced by

Ω
δui, jσi j dV +


Γd

δ[[ui ]]ti dA =


∂Ωh

δui hi dA (38)

with [[ui ]] = u+

i − u−

i the crack opening.

4.2. Discretisation

Discretisation of the domain Ω into E elements,

Ω =

E
e=1

Ω e, (39)
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and approximation of the displacements and their derivatives,

ue
= N

u
u, δue

= N
u
δu, εe

= B
u

u, δεe
= B

u
δu, (40)

with

ue
=


ue

1
ue

2


, δue

=


δue

1
δue

2


, εe

=

 εe
11
εe

22
2εe

12

 , δεe
=

 δεe
11

δεe
22

2δεe
12

 ,
N

u
=


N1 0 N2 0 . . .

0 N1 0 N2 . . .


, B

u
=

N1,1 0 N2,1 0 . . .

0 N1,2 0 N2,2 . . .

N1,2 N1,1 N2,2 N2,1 . . .


(41)

results in the following matrix–vector equation:

δuT


Ω
BT

u
C B

u
dVu +


Γd

(N+

u

T
− N−

u

T
)t dA


  

f int
u
(u)

−δuT

∂Ωh

NT
u

h dA  
f ext

u

= 0. (42)

The traction t in the global coordinate system can be obtained from the local traction td via the transformation

t = QT td , (43)

with Q the orthogonal rotation matrix,

Q = Q−
=


n−

x n−
y

−n−
y n−

x


, (44)

and n− the normal vector from the minus side of the internal discontinuity, Γ−

d , Fig. 16(b). td is a function of the
crack opening [[ud ]] in the local coordinate system of the discontinuity Γd , td = td([[ud ]]). The local jump [[ud ]] can
be evaluated from

[[ud ]] = Q[[u]]. (45)

The vectors for the local traction td and local jump [[ud ]] consist of a normal and shear component

td =


tn
ts


, [[ud ]] =


[[un]]

[[us]]


. (46)

It is emphasised that the Bézier ordinates of the Bézier extraction operator in Eq. (5) that are required to compute N+

u
and N−

u
in Eq. (42) are different on both sides of the internal discontinuity Γd . This stems from the fact that pairs of

Powell–Sabin triangles on either side of Γd are in general not symmetric, Fig. 17.
Since Eq. (42) must hold for any δu, the following discrete system results with h = 0:

H(u, λ) =


f int

u
(u)− λf̂
ψ(u, λ)


= 0, (47)

where, again, λ is the loading parameter, f̂ the normalised load vector and ψ an arc-length function. Linearisation of
Eq. (47) yields the solution for the i +1th iteration in the n+1th increment:


u
λ

n+1

i+1
=


u
λ

n+1

i
− K−1

T

n+1

i

·


f int

u
(u)− λf̂
ψ(u, λ)

n+1

i

, (48)
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Fig. 17. Pairs of Powell–Sabin triangles (red) along the discontinuity Γd (thick black line) are not symmetric. This results in different Bézier
ordinates for the Bézier extraction operator and in different basis functions N+

u
and N−

u
on both sides. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

with

K
T
(u, λ) =


∂f int

u
(u)

∂u
−f̂

∂ψ(u)
∂u

∂ψ(u, λ)
∂λ

 (49)

the tangential stiffness matrix.

Different from Section 3, a dissipation-based arc-length method for ψ is not used. Since the crack length does not
increase in each increment, new interfaces are not inserted in each increment. Therefore, the amount of energy that
can be dissipated is different depending on whether a new cohesive element has been added or not, which makes the
use of an energy-based constraint less obvious. Instead, an arc-length method has been employed which controls the
crack mouth sliding displacement (CMSD) [34], although the present formulation is slightly different. Herein, the
constraint

uR
n − uL

n = n∆ūCMSD (50)

is enforced, where uR
n is the displacement on the right and uL

n is the displacement on the left tip of the notch (Fig. 11)
in the nth increment, and ∆ūCMSD the prescribed CMSD. In the n+1th increment,

uR
n+1 − uL

n+1 = (n + 1)∆ūCMSD (51)

must be fulfilled. Subtracting Eq. (50) from Eq. (51) results in

uR
n+1 − uR

n − (uL
n+1 − uL

n ) = (n + 1 − n)∆ūCMSD, (52)

∆uR
− ∆uL

= ∆ūCMSD, (53)

so that the following arc-length method constraint applies in each increment

ψ(u) = ∆uR
− ∆uL

− ∆ūCMSD. (54)

Since ψ depends only on the displacement vector u in Eq. (54), the term ∂ψ(u,λ)
∂λ

becomes zero in Eq. (49). This would
result in a singular tangential stiffness matrix K

T
. Therefore, Eq. (48) cannot be used to solve our problem. However,
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Fig. 18. Mesh in the deformed configuration (a) before and (b) after re-meshing. The black circle marks the old crack tip where the critical stress
tult is exceeded. The red circle shows the location of the new crack tip. Within the blue polygon, a local re-meshing procedure is applied. Vertices
along the existing crack path, the new crack tip and vertices on and outside the blue polygon are held fixed. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

the linearised form of Eq. (47) can be solved for un+1
i+1 and λn+1

i+1 in a staggered manner [35]. At first, we solve for

δun+1
i+1

I
=


∂f int

u
(u)

∂u

n+1

i

−1

· f̂ , (55)

δun+1
i+1

I I
=


∂f int

u
(u)

∂u

n+1

i

−1

·


λn+1

i f̂ − f int
u
(un+1

i )


(56)

and use these to compute

δλn+1
i+1 =

−ψ −
∂ψ
∂u δu

n+1
i+1

I I

∂ψ
∂u δu

n+1
i+1

I
+

∂ψ
∂λ

, (57)

δun+1
i+1 = δλn+1

i+1 δu
n+1
i+1

I
+ δun+1

i+1
I I
. (58)

Finally, we obtain

un+1
i+1 = un+1

i + δun+1
i+1 , (59)

λn+1
i+1 = λn+1

i + δλn+1
i+1 . (60)

4.3. Re-meshing

After obtaining an equilibrium in increment n+1 for Eq. (47), the first principal stress at the crack tip (black vertex
in Fig. 18) is evaluated. Benefiting from the C 1-continuity, it can be directly computed at the vertex. When the first
principal stress exceeds the critical stress tult, the vector normal to the first principal stress direction is computed. The
location, where this vector intersects an element edge is highlighted red in Fig. 18. This marks the location of the
new crack tip. As a next step, elements in the neighbourhood of the new crack tip have to be re-meshed while the
position of the vertices along the crack path and the new crack tip are held fixed. For instance, vertices on and outside
the blue polygon and the new crack tip in Fig. 18 are not allowed to move and re-meshing is applied within the blue
polygon. For local re-meshing, the approach from [36] is used which interprets the mesh as a truss structure and finds
an equilibrium such that forces at the vertices are zero.

After re-meshing, we have to determine locally the new Powell–Sabin triangles and solve again Eq. (47) for
increment n +1 with the extended crack. When solving Eq. (47) for increment n +1, the displacement vector ũn
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Fig. 19. Cohesive traction law in the normal direction. The branch represents unloading for the case [[un ]] < κ . The shaded grey area is equivalent
to the fracture energy Gc .

for increment n on the updated mesh is required. In order to find the displacement vector ũn , the following problem is
solved locally for the re-meshed domain

min


1
2


Ω

∥Ñ
u
ũn − N

u
un∥

2
2 dV


, (61)

where Ñ
u

contains the basis functions on the updated mesh. Eq. (61) results in the system
Ω

Ñ
T

u
Ñ

u
ũn dV =


Ω

Ñ
u
N

u
un dV, (62)

which can be solved directly for ũn .

4.4. Single-edge notched beam

As an example, the Single-Edge Notched Beam is re-considered. The parameters and coefficients have been taken
from [10]. The material parameters are: Young’s modulus E = 35,000 MPa and Poisson’s ratio ν = 0.2 with a plane-
stress assumption. The concrete is modelled linearly elastic. The thickness of the beam is t = 100 mm and the value
of the critical stress is set to tult = 2.8 MPa. For the local traction td , the relations from [5] are used. The cohesive law
in the normal direction reads

tn = tultexp


−
tult

Gc
κ


, (63)

see Fig. 19, where the history parameter κ is determined by the loading function f = [[un]] − κ which evolves
according to the Karush–Kuhn–Tucker conditions of Eq. (11). The fracture energy and the penetration stiffness are
taken as Gc = 0.1 N/mm and kp = 104 N/mm3, respectively.

In the shear direction,

ts = dint[[us]] (64)

has been used with an initial shear stiffness dint = 1 MPa/mm. At the onset of the simulation, ∆ūCMSD =

1.5×10−3 mm has been taken. Fig. 20 shows the resulting force–displacement curves for six different mesh sizes. The
mesh is refined uniformly. Along the x-axis, the CMSD is plotted, while the y-axis gives the reaction force P =

11
10λ.

The legend entry displays the number of degrees of freedom at the beginning and at the end of the simulation. Fig. 21
shows the final crack paths for six different discretisations. Fig. 22 gives the stress field σxx at CMSD = 0.04 mm for
the mesh with 49632–49860 degrees of freedom. This mesh size is equivalent to that using the implicit fourth-order



S. May et al. / Comput. Methods Appl. Mech. Engrg. 307 (2016) 193–214 211

Fig. 20. Force–displacement curve for the SENB with cohesive zone modelling for six different mesh sizes.

Fig. 21. Final crack paths for six different mesh sizes.

Fig. 22. Stress field σxx for the SENB in the deformed configuration at a CMSD of 0.04 mm for the mesh with 49632–49860 degrees of freedom.
Displacements are amplified by a factor of 200. The mesh size is equivalent to the one showing the results for the implicit fourth-order gradient
damage model in Fig. 15.

gradient damage model with 74,448 degrees of freedom, Fig. 15. Finally, Fig. 23 gives an overlap of the initial and
final mesh with 744 and 768 degrees of freedom, respectively.
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Fig. 23. Comparison of the initial (744 degrees of freedom) and the final mesh (768 degrees of freedom).

Fig. 24. Cohesive zone modelling using structured T-splines. (a) T-spline mesh from [10] when the location of the blue control points is prescribed.
(b) Not prescribing the location of the blue control points results in inverted elements around the notch. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

The discrete approach with cohesive zones along the crack path requires less degrees of freedom than the implicit
fourth order gradient damage model for numerical results that are in good agreement with the experiments carried
out in [33]. Also, since derivatives of second order are required for the implicit fourth order gradient damage model,
the computation of the tangential stiffness matrix and force vector is more expensive. Nevertheless, implementation
is easier for the implicit fourth order gradient damage model since no re-meshing is necessary.

4.5. The use of structured T-splines for the single-edge notched beam

Structured T-splines have been used for cohesive zone modelling for the Single-Edge Notched Beam in [10].
Fig. 24(a) shows the initial T-spline mesh. In order to determine the position of the control points, an elliptic problem
is solved in the parameter domain, while the location of some control points has to be prescribed, for instance control
points on the boundary. It is observed from Fig. 24 that not only the position of control points on the boundary, but
also the position of the blue control points in the interior has to be prescribed. Furthermore, the blue control points
have to be positioned such that the initial mesh has to be aligned with the final crack path (red). Only then, elements
can be split vertically. If the location of the blue control points were not prescribed, the mesh in Fig. 24(b) would be
obtained after solving the elliptic problem in the parameter domain. This would result in inverted elements around the
notch. Since the final crack path is not always known a priori, the capabilities of structured T-splines to model discrete
fracture therefore seem somewhat limited. Furthermore, the degree of continuity across elements sharing one edge
that touches the crack tip is only C 0, so that stresses need to be evaluated and weighted at the integration points in the
vicinity of the crack tip in order to determine when the critical stress tult is reached, which detracts from the usual gain
in terms of accuracy of splines compared to Lagrangian basis functions.

5. Concluding remarks

Powell–Sabin B-splines can be an appealing alternative to NURBS or T-splines when applied to damage and
fracture. C 1-continuous Powell–Sabin B-splines can be obtained from any triangulation and Bézier extraction allows
an efficient computation. The C 1-continuity of Powell–Sabin B-splines makes them suitable candidates not only for
the implicit fourth-order gradient damage model, but also for discrete fracture simulations, since they remain C 1-
continuous at the crack tip. This property allows for a direct evaluation of stresses at the crack tip. Furthermore,
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re-meshing Powell–Sabin B-splines is always possible and the initial mesh does not have to be aligned with the final
crack path as for structured T-splines.

A disadvantage of Powell–Sabin splines is that there is at present no procedure for obtaining Powell–Sabin B-
splines on arbitrary tetrahedral meshes in three dimensions since certain constraints with neighbouring tetrahedrons
have to be fulfilled [37]. Hence, three-dimensional Powell–Sabin B-splines currently work only for structured meshes.
Indeed, a “perfect” solution for C 1-continuous tetrahedra does not (yet) seem to exist [38].
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