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Nonlinear projection filter for target

tracking using range sensor & optical

tracker ⋆
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∗ Institute of Design, Robotics & Optimisation (iDRO), School of
Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK

(e-mail: menjkim@leeds.ac.uk)

Abstract: Target tracking filters have a variety of applications in various areas. Typically,
a radar provides the range measurement and an optical sensor measures the orientation of a
target. The measurements provided by the sensors have very strong nonlinearities with the
states of the target given in the Cartesian coordinates while its dynamics is linear parameter
time-varying. The time-varying component exists because of the unknown acceleration input in
the target. Nonlinear projection filter provides a solution to the nonlinear estimation problem by
approximating the solution as a linear combination of orthogonal basis functions. The analytic
expression for propagating the joint probability density function is derived for the target tacking
problem and this reduces large amount of computation times, where the filter equations are
normally obtained numerically. The effectiveness of the filter is demonstrated by a numerical
simulation.

Keywords: Nonlinear estimation, Nonlinear projection filter, Target tracking

1. INTRODUCTION

Moving target tracking has been studied extensively in the
past and it has many areas of applications for tracking
various moving objects such as aircraft (Spingarn and
Weidemann, 1972), ships (Chen and Huang, 2013), mobile
robots (Benavidez and Jamshidi, 2011). One of the earliest
studies includes α-β filter (Rogers, 1987), α-β-γ filter
(Gray and Murray, 1993) derived from the steady-state
Kalman filter (Kalman, 1960). A stability analysis of α-
β-γ filter is shown in Tenne and Singh (2002). Target
tracking using particle filter is shown in Gustafsson et al.
(2002). A good survey of the target tracking problem for
various types of acceleration models is found in Li and
Jilkov (2003).

One of the main difficulties in target tracking filter design
stems from its strong nonlinearities in the measurement
equation. The range measurements from a radar and
the azimuth/elevation angles from an optical tracker are
typical sensor outputs in the target tracking problems.
These measurements have strong nonlinear relations with
a Cartesian coordinates dynamics of the moving target
(Park, 1999).

Nonlinear projection filter solves the nonlinear estimation
problem directly from the Fokker-Planck equation (Beard
et al., 1999). The Fokker-Planck equation is in general
difficult to solve in real-time because of its high compu-
tational demand. Nonlinear projection filter provides the
way to reduce the computational complexity through the

⋆ This research is supported by EPSRC Research Grant,
EP/N010523/1, Balancing the impact of city infrastructure engineer-
ing on natural systems using robots.

approximation of the solution as a linear combination of
a set of orthogonal basis functions. Recently, the filter
is further improved so that it requires less computation
and fits better to an array of parallel sensors and parallel
computation in (Single-Liertz et al., 2015).

In the following, firstly, a target tracking problem is intro-
duced in terms of its dynamics and measurement equation;
secondly, the nonlinear projection filter is summarised;
thirdly, the filter is developed for the target tracking;
fourthly, simulation results are discussed; and finally, con-
clusions are presented.

2. TARGET TRACKING

2.1 Dynamics & Measurements

A target dynamics for each axis can be written as follows:

d

dt

[

r
ṙ
wr

]

=

[

ṙ
−τ ṙ + u+ wr

−αwr

]

+

[

0
0
1

]

v (1)

where r is equal to x, y or z, which is the component of
each direction in the Cartesian coordinates, d/dt is the
time derivative, r is the position of the target in the given
axis, ṙ is the time derivative of r, τ is the target drag
coefficient in r-direction, u is the target control input in
r-direction, which is in the known bound in [u, ū], wr is
the uncertainty in the target acceleration (Singer, 1970),
α is the inverse of the manoeuvre time constant, and v is
zero-mean white noise Gaussian with the variance, σ2

v . Or,
in a compact form

dx = f(x, u)dt+Gdβ = (Ax + u) dt+Gdβ (2)

where f(x, u) = Ax + u,
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z

Fig. 1. Tracking coordinates, x, y, and z, and the measure-
ments, range, ρ, elevation, φ, and azimuth, θ

x =

[

r
ṙ
w

]

, A =

[

0 1 0
0 −τ 1
0 0 −α

]

,u =

[

0
u
0

]

, G =

[

0
0
1

]

, (3)

and E(β2) = σ2
vdt.

The measurement given by a range sensor and an optical
tracker are

yk =

[

ρk

φk

θk

]

= h(xk) + vk (4)

where each component of the measurement represents the
range measurement from radar, ρk, the elevation, ψk,
and the azimuth, θk, measurements from optical trackers,
respectively, as shown in Figure 1. And, they satisfy the
following equations with the Cartesian coordinates:

h(xk) =
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, vk =

[

vρ

vφ

vθ

]

(5)

and xk, yk, zk are the Cartesian coordinates at the
k-th sampling time. Note that (1) can be discretised
and the filtering problem is considered purely in the
discrete domain together with the discrete measurement,
(4). Without introducing the discrete approximation, the
original continuous-discrete mixed filter problem is to be
solved.

2.2 Nonlinear projection filter

For a standard form of nonlinear stochastic differential
equation given in (2) with a fixed u, the corresponding
joint pdf (Probability Density Function), p(t,x), follows
the Fokker-Planck equation given by

∂p

∂t
= −

n
∑

i=1

∂ (pfi)

∂xi

+
1

2

n
∑

i=1

n
∑

j=1

∂2
[

p
(

GQGT
)

i,j

]

∂xi∂xj

(6)

where xi and fi are i-th element of the n-dimensional
vectors x and f(x, u), respectively, (GQGT )i,j is i-th row
and j-th column element of the matrix, GQGT , and Q is
equal to σ2

v .

The nonlinear projection filter assumes that the joint pdf
has the following form:

p(t,x) = cT (t)φ(x) (7)

where c is a time-varying vector, whose dimension is
Np, and φ is Np-dimensional vector, whose elements
form a set of orthogonal basis functions. Substituting the
approximation into the Fokker-Planck equation gives the
propagation equation for c(t).

Substituting the approximation into the following Bayes’
theorem, (Arulampalam et al., 2002), provides the update
equation for c(t):

p(t+k ,x|Yk) = η p(yk|x) p(t−k ,x|Yk−1) (8)

where η is the normalising constant, p(yk|x) is the sensor
model.

The full details on the derivation of nonlinear projection
filter for a general form of nonlinear equation can be found
in Beard et al. (1999).

2.3 Filter Model & Basis Functions

Not all parameters in the target dynamics shown in (1)
are known perfectly and they might change with time,
for example, depending on the acceleration input, u, or
the manoeuvre profile given by α. It is, hence, that the
following simpler equation would be more attractive in
deriving the projection filter:

d

[

r
ṙ

]

=

[

ṙ
ur

]

dt+

[

0
1

]

dγ (9)

where ur is a priori estimated acceleration bound for a
given target and E(γ2) = σ2

γdt, and σ2
γ is the variance.

In the projection filter, the pdf is approximated by a finite
sum of basis functions as follows:

p(t, r, ṙ) ≈ cT
r (t)φ(r, ṙ) (10)

where cr(t) is an N2-dimensional time-varying vector, (·)T

is the transpose,

φ(r, ṙ) = ξ(r)⊗ ξ(ṙ) (11)

⊗ is the Kronecker product, ξ(s) is a N -dimensional vector
for s = r or ṙ. The i-th component of ξ(s) is the element
of a set of orthogonal basis functions as follows:

ξi(s) =







1/
√

∆s for i = 1,
√

2

∆s

cos [κ(i)(s− as)] for 2 ≤ i ≤ Ns

(12)

where ∆s is equal to bs −as, as is the lower bound of s, bs
is the upper bound of s, i.e., s ∈ [as, bs], Ns is the number
of basis functions, and

κs(i) =
(i− 1)π

∆s

(13)

In addition, ξi(s) satisfies the following orthogonality
condition:

∫ bs

as

ξi(s) ξj(s) ds =

{

1 for i = j,

0 for i 6= j
(14)

for i, j = 1, 2, 3, . . . , Ns.

The following formula for the derivatives of the basis
functions are useful later in deriving the projection filter
equation. Take the derivative of ξ(s) by s



ξ
′

(s) =
dξ(s)

ds
= −

√

2

∆s













0
κs(2) sin[κs(2)(s− as)]
κs(3) sin[κs(3)(s− as)]

...
κs(N) sin[κs(N)(s− as)]













(15)

and in a compact form,

ξ
′

(s) = −Ksψ(s) (16)

where

Ks = diag [κs(1) κs(2) . . . κs(N)] , (17a)

ψ(s) =

√

2

∆s













0
sin[κs(2)(s− as)]
sin[κs(3)(s− as)]

...
sin[κs(N)(s− as)]













, (17b)

and diag[. . .] is the diagonal matrix, whose diagonal terms
are given in the bracket. In addition, the second derivative
can be easily shown to equal to the followings:

ξ
′′

(s) =
d

ds
ξ
′

(s) = − d

ds
Ksψ(s)

= −
√

2

∆w

K2
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cos[κs(2)(s− as)]
cos[κs(3)(s− as)]

...
cos[κs(N)(s− as)]













= −K2
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cos[κs(3)(s− as)]

...
√

2

∆s

cos[κs(N)(s− as)]































(18)

where the first element is zero as κ(1) = 0. Hence,

ξ
′′

(s) = −K2
sξ(s) (19)

2.4 Propagation: target position & velocity

Apply the Fokker-Planck equation to (9)

∂p(t, r, ṙ)

∂t
= −∂ [p(t, r, ṙ) ṙ]

∂r
− ∂ [p(t, r, ṙ) ur]

∂ṙ

+
1

2

∂2 [p(t, r, ṙ) σα]

∂ṙ2
(20)

Substitute (10) with (11) into (20)

ċT
r [ξ(r)⊗ ξ(ṙ)] = ṙ cT

r [Krψ(r)⊗ ξ(ṙ)]
+ ur cT

r [ξ(r)⊗Kṙψ(ṙ)]

− σ2
α

2
cT
r [ξ(r)⊗K2

ṙξ(ṙ)] (21)

Multiply [ξ(r) ⊗ ξ(ṙ)]T both sides and integrate over
r ∈ [ar, br] and ṙ ∈ [aṙ, bṙ]

ċr(t) =

∫∫

{

[ξ(r)⊗ ξ(ṙ)][Krψ(r)⊗ ṙξ(ṙ)]T (22)

+ ur [ξ(r)⊗ ξ(ṙ)][ξ(r)⊗Kṙψ(ṙ)]T

−σ
2
α

2
[ξ(r)⊗ ξ(ṙ)][ξ(r)⊗K2

ṙξ(ṙ)]
T

}

drdv̇ cr(t)

Using the following identities

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (23a)

(A⊗B)T = AT ⊗BT (23b)

where all dimensions are appropriate for the matrix mul-
tiplication,

ċr(t) =

{
∫

[ξ(r)Krψ
T (r)]dr ⊗

∫

[ṙξ(ṙ)ξT (ṙ)]dṙ

+ur IN ⊗
∫

[ξ(ṙ)Kṙψ
T (ṙ)]dṙ − σ2

α

2
IN ⊗K2

ṙ

}

cr(t)

= A(ur) cr(t) (24)

where A(ur) is N2-dimensional square matrix, which is
defined by the terms inside the bracket in front of c(t)
in the right hand side of the equation. The discrete time
transition equation is given by

cr(tk+1) = Φ(tk+1, tk, ur)cr(tk) (25)

where

Φ(tk+1, tk, ur) = eA(ur)∆tk , (26)

and ∆tk = tk+1 − tk. Note that the transition matrix can
be calculated off-line and stored in on-board computer for
a finite set of samples of ur in [ur, ūr].

The integrations in (24) have analytic expressions. For
brevity, all the integrations from now on are assumed to
be performed over the appropriate sampling space such
that s ∈ [as, bs], where s = r, or ṙ, or indicated otherwise.
For i ≥ 2, j ≥ 2 and i 6= j, the ith-row and jth-column
element of
{
∫

[ṙξ(ṙ)ξT (ṙ)]dṙ

}

ij or ji

(27)

=







0, for both i, j even or odd

−2∆ṙ

π2

[

1

(i− j)2
+

1

(i+ j − 2)2

]

, otherwise

or for i = 1 and j > 1, i.e. the first row elements,

{
∫

[ṙξ(ṙ)ξT (ṙ)]dṙ

}

1j

=







0, for j is odd

−2
√

2∆ṙ

π2(j − 1)2
, otherwise

(28)

and the first column elements are of the same form, and
for i = j and i ∈ [1, N ],

{
∫

[ṙξ(ṙ)ξT (ṙ)]dṙ

}

ii

=
aṙ + bṙ

2
(29)

In addition, for all i in [1, N ],
{
∫

[ξ(s)KψT (s)]ds

}

i1

= 0 (30)

i.e, the first column elements are all zero, where s is equal
to r or ṙ. The first row elements for j ∈ [2, N ] are equal to

{
∫

[ξ(s)KψT (s)]ds

}

1j

=







0, for j odd

2
√

2

∆s

, otherwise
(31)



All diagonal terms, for i = j, are zero. Finally, for i 6= j
and i, j ∈ [2, N ],

{
∫

[ξ(s)KψT (s)]ds

}

ij

=
j − 1

∆s

[

cos(i− j)π − 1

i− j

+
cos(i+ j − 3)π + 1

i+ j − 2

]

and it becomes
{
∫

[ξ(s)KψT (s)]ds

}

ij

(32)

=
j − 1

∆s







0, for both i, j even or odd

− 2

(i− j)
+

2

(i+ j − 2)
, otherwise

The same form of update equations for y or z-axis, i.e.,
cy(t) and cz(t), can be derived from the same procedures.

2.5 Update: target position & velocity

The full joint pdf for all three Cartesian axes has to be
considered to obtain an update algorithm. Let

p = p(x, ẋ)p(y, ẏ)p(z, ż) (33)

= [cT
x (t)φ(x, ẋ)][cT

y (t)φ(y, ẏ)][cT
z (t)φ(z, ż)]

where the joint pdf is multiplication of all three joint
pdfs for three axes, which are assumed to be statistically
independent to each other.

Substitute (33) into the Bayesian update equation, (8),
{

cT
x (t+k ) [ξ(x)⊗ ξ(ẋ)]

}{

cT
y (t+k ) [ξ(y)⊗ ξ(ẏ)]

}

{

cT
z (t+k ) [ξ(z)⊗ ξ(ż)]

}

= ηx p(yk|r)
{

cT
x (t−k ) [ξ(x)⊗ ξ(ẋ)]

}

(34)
{

cT
y (t−k ) [ξ(y)⊗ ξ(ẏ)]

}{

cT
z (t−k ) [ξ(z)⊗ ξ(ż)]

}

where ηx is the normalising constant to be determined,
and r includes all three coordinates, x, y, and z. Integrate
both sides by all parameters except x and ẋ and the left
hand side (LHS) of the equation becomes

(LHS) = cT
x (t+k ) [ξ(x)⊗ ξ(ẋ)] (35)

as the integrations of the other two brackets are simply
equal to 1. In addition, the term inside the second bracket
in the right hand side (RHS) of the update equation
becomes

cT
y (t−k )

[

ξ(y)⊗
∫ bẏ

aẋ

ξ(ẏ)dẏ

]

(36)

= cT
y (t−k )























ξ(y)⊗













√

∆ẏ

0
0
...
0



































=
√

∆ẏc
T
y (t−k )ξ(y)

where cy(t−k ) is the N -dimensional vector constructed by
every Nth-element from the first to N2-th elements in
cy(t−k ). The similar steps can apply to the third term as
follows:

cT
z (t−k )

[

ξ(z)⊗
∫ bż

aż

ξ(ż)dż

]

=
√

∆żc
T
z (t−k )ξ(z) (37)

Hence,

cT
x (t+k ) [ξ(x)⊗ ξ(ẋ)] = η

∫∫

{

p(yk|r)[cT
y (t−k )ξ(y)]

[cT
z (t−k )ξ(z)]

}

dydz
{

cT
x (t−k ) [ξ(x)⊗ ξ(ẋ)]

}

(38)

where
√

∆ṙ and
√

∆ż are absorbed in the normalising
constant, ηx.

Multiply [ξ(x) ⊗ ξ(ẋ)]T both sides and integrate over the
sampling spaces, respectively,

cT
x (t+k ) =

∫∫∫∫

{

p(yk|r)[cT
y (t−k )ξ(y)][cT

z (t−k )ξ(z)]
}

dydz
{

cT
x (t−k ) [ξ(x)⊗ ξ(ẋ)] [ξ(x)⊗ ξ(ẋ)]T

}

dxdẋ ηx (39)

Again using the Kronecker product identity, the update
equation becomes

cx(t+k ) = ηxBxcx(t−k ) (40)

where

Bx =

∫∫∫

{

p(yk|r)[cT
y (t−k )ξ(y)][cT

z (t−k )ξ(z)]
[

ξ(x)ξT (x)
]

⊗ IN

}

dxdydz (41)

Note that Bx is symmetric.

The normalising constant is determined by the fact that
the pdf must be equal to 1 after it is integrated over the
sampling space.

∫∫

cT
x (t+k ) [ξ(x)⊗ ξ(ẋ)] dxdẋ (42)

=ηx cT
x (t−k )Bx

∫∫

[ξ(x)⊗ ξ(ẋ)] dxdẋ = 1 (43)

Then,

ηxc
T
x (t−k )Bx



































√

∆x

0
0
...
0













⊗













√

∆ẋ

0
0
...
0



































= 1 (44)

Therefore,

ηx =
1√

∆x∆ẋ

[

cT
x (t−k )bx1

] (45)

where bx1 is the first column of Bx.

Similarly, the update equations for cy(t+k ) and cz(t
+
k ) are

obtained as follows:

cy(t+k ) = ηyBycy(t−k ) (46a)

cz(t
+
k ) = ηzBzcz(t

−

k ) (46b)

where

By =

∫∫∫

{

p(yk|r)[cT
x (t−k )ξ(x)][cT

z (t−k )ξ(z)]
[

ξ(y)ξT (y)
]

⊗ IN

}

dxdydz (47a)

Bz =

∫∫∫

{

p(yk|r)[cT
x (t−k )ξ(x)][cT

y (t−k )ξ(y)]
[

ξ(z)ξT (z)
]

⊗ IN

}

dxdydz (47b)



Fig. 2. Velocity history: each segment of the straight line
corresponds to a 3g-turn.

and the normalising constant for each is defined by

ηy =
1

√

∆y∆ẏ

[

cT
y (t−k )by1

] (48a)

ηz =
1√

∆z∆ż

[

cT
z (t−k )bz1

] (48b)

3. NUMERICAL SIMULATIONS

Initially, a target is at x = 2.0km, y = 0.7km, and
z = 0km with the initial velocity is equal to 50m/s,
50m/s and 30m/s in x, y, and z direction, respectively.
The drag coefficient, τ , is equal to 0.01. The manoeuvre
time constant, α−1, is set to 10s. The variance, σ2

v , is equal
to 0.01 (Park, 1999). The acceleration input, u, is between
±30 m/s2.

Figure 2 shows the velocity histories of the target and the
corresponding trajectory is shown in Figure 3 indicated by
the solid blue line. The manoeuvre is composed of several
3g-turns during 20 seconds.

In the model for the projection filter, ur is in the range
of ± 33 m/s, i.e., 10% margin to the actual range of
acceleration. The variance of the process noise in the
model, σ2

γ is set to 0.01. The number of basis function
for each state, N , is set to 15. Hence, the dimension of
A(ur) for the propagation in the filter is 225 (=15×15).
The acceleration input, ur, in the model is not measured
directly. Possibly choose several candidate ur in the range
and run multiple filters at the same time. On the other
hand, physically the position and the velocity will be
confined in an envelop by two extreme possible position
and velocity trajectories, which are resulted from two
extreme acceleration input, i.e., ur = −33 or ur = 33,
respectively.

The sensor model is assumed to be of the normal distribu-
tion as follows:

p(yk|x) =
e
−

1

2
[yk−h(x)]T R

−1

k
[yk−h(x)]

√

(2π)3|Rk|
,

where Rk = E(vkv
T
k ), which is assumed to be constant as

follows (Park, 1999):

Fig. 3. Target trajectory in the Cartesian coordinates: the
true in blue solid line and the estimated in red dots

Rk = diag
[

(7.5 [m])
2

(0.002 [rad])
2

(0.002 [rad])
2
]

(49)

The measurement is available every 0.02s and this is
relatively higher frequency compared to the given range
of acceleration range. As a result, the position estimation
based on the maximum acceleration and the one based on
the minimum acceleration does not make any significant
difference.

The mean value or the expected value of the position
based on the estimation of joint pdf is shown in Figure
3 indicated in the red dots, where the mean value of the
position is calculated as follows:

E[x(tk)] =

∫ bx

ax

xp(x)dx =

∫ bx

ax

cx(t+k )ξ(x)dx (50)

where [ax, bx] is equal to [1.0, 6.4]km. Similarly, for the
estimate of y(tk) and z(tk) are calculated, where [ay, by] =
[0.35, 2.84]km and [az, bz] = [0, 2.25]km. The position esti-
mation error in the average sense is shown in Figure 4. The
maximum error occurs in x-direction, whose magnitude is
about 250m.

Similarly, the mean estimation of velocity can be calcu-
lated but the velocity estimation error in the mean sense
is in general very poor. The estimated joint pdf at tk = 20s
for the velocity is shown in Figure 5. Two joint pdfs for
the velocity based on two different accelerations are very
different. Unlike Kalman filter, which tracks only the first
two moments, the projection filter tracks whole joint pdf
as shown in Figure 5. Additional information from the
joint pdf could be used to optimally select source of the
measurements or place the position of sensors in order to
improve the accuracy of the pdf.

4. CONCLUSIONS

For a typical target tracking estimation problem, an an-
alytic expression for the propagation part of nonlinear
projection filter is derived and higher dimensional expres-
sion can be obtained more efficiently without performing
any numerical integration. The update part still requires
some multi-dimensional integration in real-time. The per-



Fig. 4. Position estimation error for each direction

Fig. 5. Estimated velocity joint pdf with maximum or
minimum acceleration assumption at tk = 20s

formance of the algorithm is demonstrated with a realistic
target tracking scenario where a radar sensor provides the
range measurement and an optical sensor provides the
azimuth and the elevation angles measurements. Thorough
comparisons with existing nonlinear filtering algorithms
would be performed in future to reveal possible advantages
and disadvantages of the proposed filtering algorithm.
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