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Abstract The population of naive T cells in the periphery is best described by deter-
mining both its T cell receptor diversity, or number of clonotypes, and the sizes of its
clonal subsets. In this paper, we make use of a previously introduced mathematical
model of naive T cell homeostasis, to study the fate and potential of naive T cell clono-
types in the periphery. This is achieved by the introduction of several new stochastic
descriptors for a given naive T cell clonotype, such as its maximum clonal size, the
time to reach this maximum, the number of proliferation events required to reach this
maximum, the rate of contraction of the clonotype during its way to extinction, as
well as the time to a given number of proliferation events. Our results show that two
fates can be identified for the dynamics of the clonotype: extinction in the short-term
if the clonotype experiences too hostile a peripheral environment, or establishment
in the periphery in the long-term. In this second case the probability mass function
for the maximum clonal size is bimodal, with one mode near one and the other mode
far away from it. Our model also indicates that the fate of a recent thymic emigrant
(RTE) during its journey in the periphery has a clear stochastic component, where
the probability of extinction cannot be neglected, even in a friendly but competitive
environment. On the other hand, a greater deterministic behaviour can be expected in
the potential size of the clonotype seeded by the RTE in the long-term, once it escapes
extinction.
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1 Introduction

T cells are the set of lymphocytes characterised by the expression of a specialised
receptor, called the T cell receptor (TCR). T cells can thus, be classified in “families”
(or clonotypes) according to the molecular structure of the TCR they display on their
membrane (Murphy et al. 2008). On average a T cell expresses 3×104 identical copies
of a given TCR molecule. The number of T cells in the adaptive immune system of
an adult human tends to a stationary “homeostatic” distribution (McLean et al. 1997;
Freitas and Rocha 2000), specified by its size (the total number of T cells) and TCR
diversity (the number of different clonotypes or TCR molecular structures). The size
and diversity of the naive T cell pool (those T cells that have not taken part in a previous
immune response) is essential to recognise a broad range of pathogens (Freitas and
Rocha 1999, 2000; Tanchot and Rocha 1998). An adult mouse has a homeostatic
population of 108 naiveT cells (Mason 1998) and aTCRdiversity estimated around 2×
106 (Zarnitsyna et al. 2013), and a healthy adult human has a homeostatic population
of 1011 naive T cells (Hazenberg et al. 2003) distributed in 2.5 × 107 different TCR
specificities (Zarnitsyna et al. 2013; Johnson et al. 2014).

Naive T cells originate from T cell precursors (or thymocytes) that survive positive
and negative selection in the thymus (Stritesky et al. 2012; Moran and Hogquist 2012;
Bird 2009). Thus, naive T cells have not been activated by exposure to pathogen-
derived peptide fragments or antigens. During their lifetime, naive T cells constantly
circulate in the blood to visit lymphnodes,whichwe refer to as the “periphery” (Takada
and Jameson 2009). The population of naive T cells, which have never taken part in an
immune response, is maintained by continuous, yet slow, division in the periphery (or
homeostatic proliferation) (Tanchot and Rocha 1998; Troy and Shen 2003; Takada and
Jameson 2009). Antigen presenting cells provide the stimulatory signals that induce
naive T cell division. The signals are delivered via the interaction between TCRs (on
the surface of T cells) and the ligands (also referred to as self-peptides or self-antigens)
expressed on the surface of antigen presenting cells. Although the number of naive
T cells is approximately constant for much of an individual’s life, as one ages both
the size and the TCR diversity of the naive pool decline (Goronzy et al. 2007). This
loss of T cell receptor diversity is also observed for B cells (Gibson et al. 2009),
and is associated with increased susceptibility to infection and poor health. In the
long-term, during the ageing process, it is important to study both the probability of
extinction and the mean time to extinction for different T cell clonotypes. This clearly
requires a stochastic framework. Some of the homeostatic mechanisms which ensure
that a maximum of “antigen space coverage” is achieved with the available numerical
diversity of T cell clonotypes (Correia-Neves et al. 2001; Mahajan et al. 2005), have
been analysedmathematically before bymeans of deterministic (DeBoer and Perelson
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1997) and stochastic (Stirk et al. 2008) models. Yet, the question of how the naive
T cell population remains diverse is still not completely understood (De Boer et al.
2012).

During the homeostatic period the organisation of the peripheral naive T cell pool
requires that an existing T cell must die if a new T cell is generated in the thymus or
by peripheral cell division (Tanchot and Rocha 1998). It is then reasonable to pose
a second challenge: to quantify the probability that a given TCR specificity, namely,
a single recent thymic emigrant (RTE), can be established in the periphery, while
competing with the pre-existing population of naive T cells. Recent thymic emigrants
are those naive T cells that have justmigrated out of the thymus, after surviving positive
and negative selection, to become part of the peripheral T cell population (Fink 2013).
Given that double positive thymocytes hardly divide in the thymic cortex and that single
positive thymocytes divide at most once in the medulla of the thymus (Sinclair et al.
2013; Stritesky et al. 2013; Sawicka et al. 2014; Yates 2014), one expects a given TCR
specificity to be introduced in the periphery by a single recent thymic emigrant. There
is evidence to support the fact that RTEs do not have an intrinsic lifespan (Tanchot
and Rocha 1998). Given the requirement of naive T cells for continuous TCR ligation
to survive in the periphery, it is natural to hypothesise that the TCR cross-reactivity of
a given RTE (how many self-peptides can provide a homeostatic stimulus to the TCR
under consideration) (Sewell 2012), the number of different clonotypes (competitor
clonotypes) that can bind those self-peptides, and the clonal size of each competitor,
are key parameters that will determine the fate and potential in the periphery of a
recent thymic emigrant.

The aim of this paper is to make use of a previously introduced mathematical
model of naive T cell homeostasis (Stirk et al. 2008, 2010), and define new stochastic
descriptors that allow us to provide answers to the previous questions. In Refs. Stirk
et al. (2008, 2010), a continuous time birth and deathMarkov model that describes the
time evolution of a peripheral naive T cell clonotype was introduced. In this reference,
it was shown that extinction takes place with certainty for all parameter values of the
model, and the average time to extinctionwas computed. However, the question of how
the affinity and the cross-reactivity of a given T cell clonotype (or RTE) determines
(1) its ability to become part of the peripheral naive T cell repertoire, (2) its maximum
size if the clone is to get established in the naive peripheral pool, and (3) the timescale
to get established in the periphery at its maximum size, was not considered. We study
these questions by defining novel stochastic descriptors for a given TCR clonotype or
RTE.

The paper is organised as follows: in Sect. 2 we introduce the stochastic birth and
death process and define a number of stochastic descriptors (continuous and discrete)
to characterise the maximum clonal size (Sect. 2.1) and the time to reach that size, the
number of divisions to reach the maximum clonal size (Sect. 2.2), and the time to get
to a given number of divisions (Sect. 2.3). Section 3 provides numerical results for the
previously introduced descriptors, exploring the three parameter regimes described in
Sect. 2. We conclude with a discussion of our results both from a mathematical and
immunological perspective in Sect. 4.
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2 Mathematical model

We make use of the mathematical model introduced in Stirk et al. (2008) to describe
the time evolution of the number of cells in a given T cell clonotype, that is, the number
of naive T cells that express identical T cell receptor molecules. The main assumption
of the model is that T cells of a given clonotype compete for signals delivered by
molecules (self-peptides also referred to as pMHC) expressed on antigen presenting
cells (APCs). These signals induce one round of cell division, that is, a birth event.
All cells of the given clonotype can also die and this is a death event in the model.

The underlying mathematical model is a birth and death process {X (t) : t ≥ 0} on
the state space X = N ∪ {0}, where the random variable X (t) describes the number
of cells of a given T cell clonotype as a function of time t . Its birth and death rates
(Fig. 1) are specified for i ∈ N ∪ {0} by Stirk et al. (2008):

λi = ϕ e−ν
∞∑

r=0

νr

r !
i

r〈n〉 + i
,

μi = μ i. (1)

Parameters ν ≥ 0, μ > 0, ϕ > 0, and 〈n〉 ≥ 1 were introduced in Stirk et al.
(2008), and they have the following meaning:

• μ is the per (naive) cell death rate for cells of the clonotype under consideration,
• ϕ is the per (naive) cell rate of homeostatic proliferation due to signals from the
self-peptides that can bind to the TCR of the clonotype under consideration,

• ν is the number of other clonotypes (different from the one under consideration)
that can compete for the same homeostatic proliferation signals, and

• 〈n〉 is the characteristic size of T cell clonotypes that compete for homeostatic
proliferation signals with the clonotype of interest. We note that these compet-
ing clonotypes are not explicitly modelled and by assuming that they all have a
characteristic number of naive T cells given by 〈n〉, the time evolution of the clono-
type of interest can be reduced to a univariate Markov process (details about this
approximation can be found in Stirk et al. (2008)).

It was shown in Stirk et al. (2008) that, for any value of the parameters, 0 ∈ X
is an absorbing state of the stochastic process, the time to extinction (or absorption)
from any other state i ∈ X is finite with probability one, and its mean is also finite.

As introduced above, parameter ϕ is a measure both of the affinity and the cross-
reactivity of the T cell receptor for self-pMHC molecules (Sewell 2012), in the sense
that the rate of homeostatic proliferation depends not only on how well a TCR can

Fig. 1 Birth and death process (with absorption) for the time evolution of the number of cells in a given
naive T cell clonotype
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bind a given pMHC complex, but how many different pMHC complexes can provide
survival signals to the T cell clonotype under consideration, characterised by its TCR
molecule. Parameter ν is the number of competitors of the clonotype under consid-
eration (Stirk et al. (2008)). Three regimes can be identified in parameter space that
describe different immunological scenarios: the first one is the limit of no inter-clonal
competition (ν � 1), the second is the limit of large inter-clonal competition (ν 	 1),
and the third one is the intermediate regime of competition (ν ≈ 1).

Hard niche clonotype In the special case ν � 1, the population under study (the
number of T cells that belong to a given TCR clonotype) does not compete with
any other clonotypes, and thus the previous expressions for the birth and death rates
simplify to (Stirk et al. (2008))

λi = ϕ,

μi = μ i.

Soft niche clonotype The opposite limit, ν 	 1, represents a highly competitive
environment, where the population of T cells under study competes with a large num-
ber of different clonotypes, and thus the expressions for the birth and death rates
become (Stirk et al. (2008))

λi = ϕ i

ν 〈n〉 + i
,

μi = μ i.

Intermediate niche clonotype In the case ν ≈ 1, the TCR clonotype will be referred
to as an intermediate niche clonotype, and its birth and death rates will be given by
Eq. (1).

These three regimes, hard, soft and intermediate niche clonotypes, will be explored
in Sect. 3. Under these regimes, we introduce in this Section several stochastic descrip-
tors which will allow us to study the dynamics of the clonotype under consideration.
In particular, in Sect. 2.1 our interest is in the maximum clonal size reached by the
clonotype and the time to reach this maximum size, for which we obtain analytical
expressions for its probability mass function and its different order moments, respec-
tively. We analyse the number of proliferation events to reach the maximum clonal
size in Sect. 2.2, and in Sect. 2.3 we focus on the time to reach a given number of pro-
liferation (or division) events, as a measure of the proliferative capacity (or potential)
of the clonotype under study. Finally, the rate of contraction of the clonotype during
its way to extinction can be studied by means of the time to contraction to a given
clonal size, which is also analysed in Sect. 2.1.

2.1 Maximum clonal size and time to reach it

Our interest in this section is in the maximum number of cells belonging to the clono-
type under consideration and the time needed to reach this maximum. To begin with,
we define the random variables
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Xmax
i = max{X (t) : t ≥ 0|X (0) = i},

Tmax
i = inf{t : X (t) = Xmax

i },

for i ∈ X , which amount to the maximum clonal size attained by the clonotype, under
the assumption that the initial size equals i , and the time to reach this maximum clonal
size, respectively; note that Xmax

0 = 0 and Tmax
0 = 0, since 0 is an absorbing state in

X . In order to study both variables in parallel, we define the time to reach a total clonal
size i�, given that the initial clonal size equals i , as the auxiliary random variable

Ti,i� = inf{t : X (t) = i�|X (0) = i},

for i, i� ∈ X , with Ti�,i� = 0. We point out here that these auxiliary random variables
have their own immunological interest, since attaining a given clonal size i� might
indicate that the clonotype has become large enough to mount an immune response in
a timely fashion, or it has grown too large and might lead to autoimmunity, so that a
tolerant immune state has been lost. The analysis of Ti,i� also allows the study of the
random variables of interest Xmax

i and Tmax
i .

For a particular clonal size i� ∈ X , the random variable Ti,i� might be analysed
in a different manner depending on whether i� < i (time to contraction to a given
clonal size i�), or i� > i (time to expansion to a given clonal size i�). We note that in
the latter case, reaching i� is not certain, so that Ti,i� is a defective random variable,
while reaching i� is certain in the former case, since absorption at state 0 occurs with
probability one (Stirk et al. 2008).

2.1.1 Time to contraction to a given clonal size i� < i , given the initial clonal size i

For an initial clonal size i with i > i�, the random variable Ti,i� amounts to the time
until absorption into i� for a birth and death process defined on a single absorbing
state i� and the class of transient states, {i� + 1, i� + 2, . . . }, with birth rates {λ j :
j ≥ i� + 1} and death rates {μ j : j ≥ i� + 1}. Since absorption of the underlying
process {X (t) : t ≥ 0} occurs in a finite time almost surely (see Stirk et al. (2008)),
an appeal to Karlin and McGregor (1957) allows us to describe the expected values
of Ti,i� from the equality

E
[
T k
i,i�

]
= k

i−1∑

n=i�

ρn

∞∑

j=n+1

E
[
T k−1
j,i�

]

λ j ρ j
, k ≥ 1,

where ρi� = 1 and ρn = ∏n
k=i�+1 λ−1

k μk , for n ≥ i� +1; note that the expected values

E[T k
i,0] corresponding to i� = 0 are related to the total extinction of the clonotype. We

refer the reader to Artalejo et al. (2012), where an analogous descriptor is analysed
for the spread of an SIS epidemic among a population consisting of N individuals. In
this case, the series

∑∞
j=n+1 becomes the finite sum

∑N
j=n+1 and Ti,i� can be seen as

a phase-type random variable (see e.g., [Kulkarni (1996), Sect. 6.7] and [Latouche
and Ramaswami (1999), Chapter 2]).
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2.1.2 Time to expansion to a given clonal size i� > i , given the initial clonal size i ,
and analysis of Xmax

i and Tmax
i

For a fixed (and given) clonal size i� ∈ N, we introduce the following notation:

vi,i� = P(Ti,i� < ∞) = P(Xmax
i ≥ i�), 0 ≤ i ≤ i�,

φi,i� (s) = E
[
e−s Ti,i� 1{Ti,i� <∞}

]
, 0 ≤ i ≤ i�, �(s) ≥ 0, (2)

m(k)
i,i�

= E
[(
Ti,i�

)k 1{Ti,i� <∞}
]

= (−1)k
dk

dsk
φi,i� (s)

∣∣∣∣
s=0

, 0 ≤ i ≤ i�, k ≥ 0,

where 1{Ti,i� <∞} is a random variable that takes the values 1 if Ti,i� < ∞, and 0
otherwise. The quantities defined in Eq. (2) will allow us to analyse the random
variables Xmax

i and Tmax
i , but the distribution of Ti,i� is defective, since Ti,i� = ∞

if the clonotype becomes extinct before reaching the size i�; note that 1 − vi,i� is the
probability of such an extinction event, as

vi,i� =
{
0, if i = 0,
1, if i = i�,

with vi,i� ∈ (0, 1) in the case 1 ≤ i ≤ i� − 1.
By a first-step argument, the restricted Laplace-Stieltjes transforms satisfy the fol-

lowing set of linear equations:

φ0,i� (s) = 0,

φi,i� (s) = μi

s + λi + μi
φi−1,i� (s) + λi

s + λi + μi
φi+1,i� (s), 1 ≤ i ≤ i� − 1,

φi�,i� (s) = 1. (3)

These equations can be rewritten in multiplicative form as

βi φi−1,i� (s) + γi φi,i� (s) + αi φi+1,i� (s) = δi , 1 ≤ i ≤ i� − 1 ,

with

αi =
{−λi , if 1 ≤ i ≤ i� − 2,
0, if i = i� − 1,

βi =
{
0, if i = 1,
−μi , if 2 ≤ i ≤ i� − 1,

γi = s + λi + μi , 1 ≤ i ≤ i� − 1,

δi =
{
0, if 1 ≤ i ≤ i� − 2,
λi�−1, if i = i� − 1.
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Then, by using forward elimination, we may obtain

Gi φi,i� (s) + αi φi+1,i� (s) = Di , 1 ≤ i ≤ i� − 1,

with

Gi =
{

γ1, if i = 1,
γi − βi αi−1

Gi−1
, if 2 ≤ i ≤ i� − 1,

Di =
{
0, if 1 ≤ i ≤ i� − 2,
λi�−1, if i = i� − 1.

In terms of the functions gi (s) = Gi − (s + λi ), we may rewrite φi,i� (s) as

φi,i� (s) = Di − αi φi+1,i� (s)

s + λi + gi (s)
,

since gi (s) satisfies

gi (s) = μi
s + gi−1(s)

s + λi−1 + gi−1(s)
, 2 ≤ i ≤ i� − 1,

with g1(s) = μ1. This implies that

φi,i� (s) =
i�−1∏

k=i

λk

s + gk(s) + λk
, 1 ≤ i ≤ i� − 1, (4)

from which it follows that vi,i� ∈ (0, 1) for clonal sizes 1 ≤ i ≤ i� − 1, since
vi,i� = φi,i� (0).

In evaluating the restricted moments m(k)
i,i�

, we first derive the probabilities vi,i� as
the values φi,i� (0) from Eq. (4). In particular, it is seen that v0,i� = 0 and we can write

vi,i� =
⎛

⎝
i�−1∑

m=0

ζm

⎞

⎠
−1

i−1∑

k=0

ζk, 1 ≤ i ≤ i�,

where ζ0 = 1 and ζi = ∏i
k=1 λ−1

k μk , for 1 ≤ i ≤ i� − 1. Then, we have

m(0)
i,i�

= vi,i� , 0 ≤ i ≤ i�,

m(k)
0,i�

= 0, k ≥ 1,

m(k)
i�,i�

= 0, k ≥ 1.
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Moments m(k)
i,i�

, for clonal sizes 1 ≤ i ≤ i� − 1, are derived from Eq. (3). In fact, by
taking derivatives in Eq. (3) we obtain

(λi + μi ) m
(k)
i,i�

= μi m
(k)
i−1,i�

+ λi m
(k)
i+1,i�

+ k m(k−1)
i,i�

, 1 ≤ i ≤ i� − 1, k ≥ 1 .

(5)

In order to solve Eq. (5), for a fixed value k ≥ 1, we introduce some notation as
follows:

xi,i� = m(k)
i,i�

,

ξi,i� = k m(k−1)
i,i�

, 0 ≤ i ≤ i� ,

yi,i� = xi+1,i� − xi,i� , 0 ≤ i ≤ i� − 1.

Equation (5) is then equivalent to λi yi,i� + ξi,i� = μi yi−1,i� , for 1 ≤ i ≤ i� − 1,
which implies that

yi,i� = ζi y0,i� − ζi bi ,

where bi = ∑i
j=1

ξ j,i�
λ j ζ j

. As a result, for 1 ≤ i ≤ i� − 1, we have

xi+1,i� = x1,i�

i∑

j=0

ζ j −
i∑

j=1

ζ j b j .

We also have xi�,i� = 0 since m(k)
i�,i�

= 0, so that

x1,i� =
∑i�−1

j=1 ζ j b j
∑i�−1

j=0 ζ j

,

xi,i� =
∑i�−1

j=i ζ j
∑i−1

m=0 ζm
∑ j

k=m+1
ξk,i�
λk ζk

∑i�−1
j=0 ζ j

, 2 ≤ i ≤ i� − 1, (6)

xi�,i� = 0.

Equation (6) is a recursive procedure that allows us to compute the kth order moments,
m(k)

i,i�
, in terms of previously computed moments, m(k−1)

i,i�
, since xi,i� = m(k)

i,i�
and

ξi,i� = k m(k−1)
i,i�

. In the special cases k = 0 and 1, it is readily seen that

lim
i�→∞ vi,i� =

{
0, if 0 ≤ i ≤ i� − 1,
1, if i = i�,

and the asymptotic value limi�→∞ m(1)
i,i�

is always finite, with limi�→∞ m(1)
i,i�

= 0 for

initial clonal sizes i ∈ {0, i�}, since ∑∞
m=0 ζm = ∞, for any value of the parameter ν.
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We finally focus on the random variables Xmax
i and Tmax

i . Note that the distribution
of Xmax

i is readily derived from the values vi,i� , since vi,i� = P(Xmax
i ≥ i�), and the

kth order moment, mmax,(k)
i , of the time Tmax

i to reach the maximum clonal size can
be evaluated as

mmax,(k)
i =

∞∑

i�=i

E
[(
Tmax
i

)k ∣∣Xmax
i = i�

]
P(Xmax

i = i�)

=
∞∑

i�=i+1

m(k)
i,i�

(
1 − vi,i�+1

vi,i�

)
.

For practical or computational purposes, the above series should be replaced by the
finite sum

Kq∑

i�=i+1

m(k)
i,i�

(
1 − vi,i�+1

vi,i�

)
, (7)

where Kq can be selected as the (100q)th percentile of Xmax
i for a probability

q ∈ (0, 1) close enough to 1. Although an analytical study of
∑∞

i�=Kq+1 m
(k)
i,i�

(1 −
v−1
i,i�

vi,i�+1) does not seem to be feasible, we note that by using the finite sum in Eq. (7)
we ensure that the probability mass accumulated by Xmax

i is greater than q, whence
the probability 1 − q can be interpreted as a global error measure. Furthermore, this
type of truncation procedure has been efficiently used for epidemics (Almaraz et al.
2016) and competition processes (Gómez-Corral and López García 2011, 2012).

2.2 Number of proliferation events to reach the maximum clonal size

We are now interested in the number Nmax
i of one-step transitions i ′ → i ′ + 1 of X

occurring in the random interval [0, Tmax
i ], which allows us to record the number of

proliferation events to reach the maximum clonal size, for i ∈ X . This descriptor can
be seen as a discrete version of the random variable Tmax

i in Sect. 2.1, and its analysis
can be carried out bymeans of the number of proliferation events to reach a total clonal
size, which is defined as the number Ni,i� of one-step transitions i ′ → i ′ + 1 of X to
register X (t) = i� for the first time.

We first introduce the following notation:

ψi,i� (z) = E
[
zNi,i� 1{Ni,i� <∞}

]
, |z| ≤ 1,

ui,i� = P(Ni,i� < ∞),

m̃(k)
i,i�

= E
[
Ni,i� (Ni,i� − 1) · · · (Ni,i� − k + 1)1{Ni,i� <∞}

]
, k ≥ 0,

123



Stochastic descriptors to study the fate 683

for initial clonal sizes 1 ≤ i ≤ i�. It can be easily verified that ψ0,i� (z) = u0,i� =
m̃(k)

0,i�
= 0, ψi�,i� (z) = ui�,i� = 1 and m̃(k)

i�,i�
= 0, for k ≥ 1. For clonal sizes 1 ≤

i ≤ i� − 1, it is seen that ui,i� = vi,i� , since ψi,i� (1) = φi,i� (0) and, consequently, the
probabilities ui,i� can be computed from Eq. (4), and they amount to the probabilities
of reaching the clonal size i� before extinction, given that the initial clonal size is i .

By taking derivatives on the equality

ψi,i� (z) = μi

λi + μi
ψi−1,i� (z) + λi

λi + μi
z ψi+1,i� (z), 1 ≤ i ≤ i� − 1,

we obtain

(λi +μi ) m̃
(k)
i,i�

= μi m̃
(k)
i−1,i�

+λi m̃
(k)
i+1,i�

+λi k m̃(k−1)
i+1,i�

, 1≤ i ≤ i� − 1, k≥1,

(8)

which is similar to Eq. (5) with the term k m(k−1)
i,i�

replaced by λi k m̃(k−1)
i+1,i�

. This
implies that, similarly to the solution of Eq. (6), the solution of Eq. (8) has the form

m̃(k)
i,i�

=
∑i�−1

j=i ζ j
∑i−1

m=0 ζm
∑ j

n=m+1

k m̃(k−1)
n+1,i�
ζn

∑i�−1
j=0 ζ j

, 1 ≤ i ≤ i� − 1, k ≥ 1. (9)

Similarly to Sect. 2.1.2, it can be seen that limi�→∞ m̃(1)
i,i�

is always finite, with

limi�→∞ m̃(1)
i,i�

= 0 for initial clonal sizes i ∈ {0, i�}.
In the case of the random variable Ni,i� , not only every kth order factorial moment

can be obtained from Eq. (9), but also its distribution. We can write

x̃ j
i,i�

= P(Ni,i� = j), 0 ≤ i ≤ i�, j ≥ i� − i,

with x̃ j
0,i�

= 0 for j ≥ 0, x̃ j
i�,i�

= 1 if j = 0, and 0 if j ≥ 1, x̃ j
i,i�

= 0 for 1 ≤ i ≤ i�−1

and 0 ≤ j ≤ i� − i − 1, and x̃0i,i� = 0 for 0 ≤ i ≤ i� − 1. For j ≥ 1, we have

x̃ j
0,i�

= 0,

x̃ j
i,i�

= μi

λi + μi
x̃ j
i−1,i�

+ λi

λi + μi
x̃ j−1
i+1,i�

, 1 ≤ i ≤ i� − 1,

x̃ j
i�,i�

= 0,

so that a recursion on j and i can be obtained in order to compute the probability mass
function of Ni,i� . The probability mass function obtained in this way is consistent with
the expressions obtained in Eq. (9) for the factorial moments, but the proof is omitted
here.
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Finally, the factorial moments of the random variable Nmax
i can be approximated

in a similar way as described for Eq. (7). In particular, if we denote m̃max,(k)
i =

E[Nmax
i (Nmax

i − 1) · · · (Nmax
i − k + 1)], we have

m̃max,(k)
i =

∞∑

i�=i+1

m̃(k)
i,i�

(
1 − vi,i�+1

vi,i�

)

≈
Kq∑

i�=i+1

m̃(k)
i,i�

(
1 − vi,i�+1

vi,i�

)
. (10)

2.3 Time to reach a given number of proliferation events

In this section, we fix an initial clonal size i ′ and a number D ≥ 0 of proliferation
events, and we study the time T D

i ′ to reach a total number D of proliferation events
(one-step transitions i ′′ → i ′′ +1 ofX ), with T 0

i ′ = 0. In order to study this descriptor,
we consider the augmented process {(X (t), D(t)) : t ≥ 0}, where D(t) denotes the
number of division events up to time t , with (X (0), D(0)) = (i ′, 0). For the initial
clonal size i ′, the augmented process starts from state (i ′, 0) and is defined on the finite
state space

X0 ∪ XD(i ′) ∪ XT (i ′),

where

X0 = {(0, d) : 0 ≤ d ≤ D − 1},
XD(i ′) = {(i, D) : 2 ≤ i ≤ i ′ + D},
XT (i ′) = {(i, d) : 1 ≤ i ≤ i ′ + d, 0 ≤ d ≤ D − 1}.

States in X0 ∪ XD(i ′) are absorbing states. In particular, states in X0 represent the
extinction of the clonotype when the number D of proliferation events has not been
reached, while states in XD(i ′) reflect that the number D of proliferation events has
been reached. States in XT (i ′) are transient states. Figure 2 illustrates the dynamics
of the augmented process in the case D = 3.

In a more general setting, we define the random variable

T D
(i,d) = inf{t : (X (t), D(t)) ∈ XD(i ′)|(X (0), D(0)) = (i, d)},

for states (i, d) ∈ X0∪XD(i ′)∪XT (i ′). Note that the descriptor T D
i ′ is equivalent to the

random variable T D
(i ′,0), and states in X0 and XD(i ′) lead to the values T D

(0,d) = ∞ and

T D
(i,D) = 0, respectively. For states in XT (i ′), the random variable T D

(i,d) is defective,

and P(T D
(i,d) = ∞) > 0 is the probability of reaching X0 before getting to XD(i ′).
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Fig. 2 Transitions between augmented states in the case D = 3

For states (i, d) ∈ X0 ∪ XD(i ′) ∪ XT (i ′), we introduce the notation

wD
(i,d) = P(T D

(i,d) < ∞),

�D
(i,d)(s) = E

[
e−sT D

(i,d) 1{T D
(i,d)

<∞}
]
, �(s) ≥ 0,

m̂D,(k)
(i,d) = E

[(
T D

(i,d)

)k
1{T D

(i,d)
<∞}

]
, k ≥ 0,

and we observe that

wD
(i,d) =

⎧
⎨

⎩

0, i f (i, d) ∈ X0,

∈ (0, 1), i f (i, d) ∈ XT (i ′),
1, i f (i, d) ∈ XD(i ′).

As a result, the Laplace-Stieltjes transforms �D
(i,d)(s) verify the boundary conditions

�D
(0,d)(s) = 0 if (0, d) ∈ X0, and �D

(i,D)(s) = 1 if (i, D) ∈ XD(i ′). For states
(i, d) ∈ XT (i ′), we have

�D
(i,d)(s) = μi

s + λi + μi
�D

(i−1,d)(s) + λi

s + λi + μi
�D

(i+1,d+1)(s), (11)

which yields a finite system of linear equations that can be solved in a recursivemanner
(Algorithm 1).

The boundary conditions for the moments m̂D,(k)
(i,d) are given by

m̂D,(0)
(i,d) = wD

(i,d), (i, d) ∈ X0 ∪ XD(i ′) ∪ XT (i ′),

m̂D,(k)
(i,d) = 0, (i, d) ∈ X0 ∪ XD(i ′),
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Algorithm 1 Computation of the Laplace-Stieltjes transforms �D
(i,d)

(s) for states (i, d) ∈
X0 ∪ XD(i ′) ∪ XT (i ′).

Step 1: d := D;
i := 1;
while i < i ′ + d, do

i := i + 1;
�D

(i,d)
(s) := 1;

enddo.
Step 2:While d > 1, do

d := d − 1;
i := 0;
�D

(i,d)
(s) := 0;

while i < i ′ + d, do
i := i + 1;

�D
(i,d)

(s) := μi�
D
(i−1,d)

(s)+λi�
D
(i+1,d+1)(s)

s+λi+μi
;

enddo;
enddo.

where the probabilitieswD
(i,d), for states (i, d) ∈ XT (i ′), are derived from Algorithm 1

by selecting s = 0. If we take derivatives in Eq. (11), we may write down

m̂D,(k)
(i,d) = k

λi + μi
m̂D,(k−1)

(i,d) + μi

λi + μi
m̂D,(k)

(i−1,d) + λi

λi + μi
m̂D,(k)

(i+1,d+1), (12)

for states (i, d) ∈ X T (i ′). Eq. (12) can be solved (Algorithm 2) by adapting our
arguments in Algorithm 1.

3 Numerical results

In this Section we carry out a set of numerical experiments in order to analyse the
potential of a recent thymic emigrant (of a given clonotype) in the periphery to expand
to different clonal sizes, or to proliferate for a given number of divisions, as well
as the random times of these events, and the rate of contraction of the clonotype
under consideration. We study these random variables under several competition and
signalling environments, which are specified by the choice of parameters ν, 〈n〉 and
ϕ. We point out here that parameters ϕ and ν should be seen as intrinsically related to
the particular TCR expressed by the T cells within the clonotype under consideration,
since this TCR determines the number of different self-peptides that the T cell can
interact with. On the other hand, 〈n〉 is not directly related to the TCR and should
be considered an environmental parameter, since it is the characteristic size of the
competing clonotypes. We set the per cell death rate μ = 1, so that the time unit in
the process under study is the mean lifetime of a T cell.

We consider throughout this Section homeostatic signalling rates that have been
selected for a wide range of parameter values, in view of some preliminary numerical
experiments. In particular, our results regarding the hard, the intermediate and the soft
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Algorithm 2 Computation of the moments m̂D,(k)
(i,d)

for states (i, d) ∈ X0 ∪ XD(i ′) ∪ XT (i ′).

Step 1: k′ := 0;
d := D;
i := 1;
while i < i ′ + d, do

i := i + 1;

m̂D,(k′)
(i,d)

:= 1;
enddo;
while d > 1, do

d := d − 1;
i := 0;

m̂D,(k′)
(i,d)

:= 0;

while i < i ′ + d, do
i := i + 1;

m̂D,(k′)
(i,d)

:= μi m̂
D,(k′)
(i−1,d)

+λi m̂
D,(k′)
(i+1,d+1)

λi+μi
;

enddo;
enddo.

Step 2:While k′ < k, do
k′ := k′ + 1;
d := D;
i := 1;
while i < i ′ + d, do

i := i + 1;

m̂D,(k′)
(i,d)

:= 0;
enddo;
while d > 1, do

d := d − 1;
i := 0;

m̂D,(k′)
(i,d)

:= 0;

while i < i ′ + d, do
i := i + 1;

m̂D,(k′)
(i,d)

:= k m̂D,(k′−1)
(i,d)

+μi m̂
D,(k′)
(i−1,d)

+λi m̂
D,(k′)
(i+1,d+1)

λi+μi
;

enddo;
enddo;

enddo;

niche cases amount to values of the signalling rate ϕ, the number ν of competitors, and
the characteristic size 〈n〉 of these competitors ranging from friendly scenarios, where
the T cell clonotype under consideration can become established in the periphery, to
hostile environments, where this establishment is not possible at all. In particular, we
analyse:

(a) The hard niche case, which corresponds to a clonotype (or RTE) with no competi-
tors (ν = 0), in Table 1, with numerical results based on the stochastic descriptors
Xmax
i , Tmax

i and Nmax
i , for various small-to-moderate homeostatic signalling

rates, ϕ ∈ {0.1, 1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 75.0, 100.0}. The hard
niche case is also analysed in Fig. 3, where the probability mass function of Xmax

i
is plotted for various homeostatic signalling rates, ϕ ∈ {0.1, 1.0, 5.0, 10.0},
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Fig. 3 Probability mass function of Xmax
i for different values of ϕ in the hard niche case (i.e., ν = 0), for

μ = 1.0 and the initial clonal size i = 1

(b) The intermediate niche case in Table 2 and Fig. 4, which corresponds to moder-
ate average numbers of competitors, ν ∈ {1, 10, 50}, and moderate homeostatic
signalling rates, ϕ = 50,

(c) The soft niche case in Table 3 and Fig. 5, which reflects large average numbers of
competitors, ν ∈ {500, 1000}, and high homeostatic signalling rates, ϕ = 500.

In Tables 1, 2 and 3, the mean values E[Xmax
i ], E[Tmax

i ] and E[Nmax
i ] are com-

puted by considering only clonal sizes up to the 99th percentile K0.99 of Xmax
i , and

by means of the truncating procedures given by Eqs. (7) and (10). However, for para-
meter values (ν, 〈n〉) ∈ {(500, 100), (1000, 50), (1000, 100)} in Table 3, values of
E[Xmax

i ], E[Tmax
i ] and E[Nmax

i ] are computed by considering only clonal sizes
up to the percentile K0.999 of Xmax

i , since K0.99 = 1 in these cases which could
lead to misleading results. In this way, the quantities obtained are approximations
to the true ones, and we focus on the particular case in which the clonotype under
study has been recently released to the periphery (RTE), so that i = 1. A direct
comparison of our results with results obtained by Gillespie simulations suggests
a significant level of precision for the truncation procedures proposed by Eqs. (7)
and (10). For example, values E[Xmax

i ] = 8.40494, E[Tmax
i ] = 12.72341 and

E[Nmax
i ] = 67.15374 reported in Table 1 forϕ = 5.0 haveGillespie (106 simulations)

counterparts E[Xmax
i ] = 8.49793, E[Tmax

i ] = 12.91816 and E[Nmax
i ] = 68.21512,

leading to relative error values, 1− truncated value
simulated value = 0.0109, 0.0150 and 0.0155, respec-

tively.
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Fig. 4 Probability mass function of Xmax
i as a function 〈n〉, in the intermediate niche case for (from top

to bottom) ν ∈ {1, 10, 50}, the parameters (μ, ϕ) = (1.0, 50.0) and the initial clonal size i = 1
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Fig. 5 Probability mass function of Xmax
i in the soft niche case, for ν ∈ {500, 1000}, the parameters

(μ, ϕ) = (1.0, 500.0), 〈n〉 = 1 and the initial clonal size i = 1

The distribution of Xmax
i is analysed in Tables 1, 2 and 3 by computing its (100q)th

percentiles Kq for q ∈ {0.25, 0.5, 0.75, 0.99}, where the percentile Kq is the first
value x ≥ 1, such that P(Xmax

i ≤ x) ≥ q. The probability P(Xmax
i ≥ Kq) of

reaching the clonal sizes represented by Kq can be exactly obtained from Eq. (4).
However, these probabilities are replaced in Tables 1, 2 and 3 by their truncated
versions P̃(Xmax

i ≥ Kq) = P(K0.99 ≥ Xmax
i ≥ Kq). We have done so as these

truncated values result in good approximations to the true probabilities, but with the
advantage that, for the particular cases yielding Kq = 1 (for example, ϕ ∈ {0.1, 1.0}
and q = 0.25 in Table 1), they provide the total probability mass of Xmax

i considered
in the truncations given by Eqs. (7) and (10).

The time and the number of proliferation events to reach the maximum clonal size
can be analysed in greater depth by studying the conditional values E[Ti,Kq |Xmax

i ≥
Kq ], σ [Ti,Kq |Xmax

i ≥ Kq ], E[Ni,Kq |Xmax
i ≥ Kq ] and σ [Ni,Kq |Xmax

i ≥ Kq ], where
σ [X ] denotes the standard deviation of the random variable X . We note here that we
consider conditional values due to the fact that the random variables Ti,Kq and Ni,Kq

are defective; that is, we have Ti,Kq = Ni,Kq = ∞ if the clonal size Kq is not reached,
which occurs with non-zero probability. These values provide information about the
time and the number of proliferation events to reach different clonal sizes (Kq with
q ∈ {0.25, 0.5, 0.75, 0.99}), under the assumption that those clonal sizes have been,
in fact, reached.

When focusing on the hard niche case (Table 1; Fig. 3), the scenarios that allow
the establishment of the RTE in the periphery are given by values of E[Xmax

i ] and
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E[Tmax
i ] significantly larger than 1,which correspond to larger values of the homeosta-

tic signalling rate ϕ. It is clear that the mean value, E[Xmax
i ], has a clearly increasing

behaviour with respect to the signalling rate ϕ. Moreover, results corresponding to
those hostile environments within the hard niche case, corresponding to low signal
rates, represent the pressure against the survival and expansion of the clonotype in the
short-term. In those cases (ϕ ∈ {0.1, 1.0, 5.0}), the most representative sample path is
the one which amounts to the immediate extinction of the clonotype from the initial
clonal size i = 1, which gives Xmax

i = 1, or the occurrence of a few proliferation
events (yielding a maximum size of the clonotype near 1), and the subsequent extinc-
tion of the clonotype. On the other hand, in those cases where the clonotype survives in
themid-term (higher signalling rates), we observe a high concentration of the probabil-
ity mass function of Xmax

i around some mode, which is reflected in the concentrated
values obtained for the percentiles K0.25, K0.5, K0.75 and K0.99. In particular, the
probability mass function of Xmax

i is unimodal when the clonotype becomes extinct
in the short-term with high probability, and bimodal when the clonotype survives and
expands in the mid-term, with moderate probabilities.

The bimodal shape of Xmax
i in friendly, yet competitive peripheral environments,

within the hard niche case, becomes more apparent when analysing results plotted
in Fig. 3. In particular, we plot in Fig. 3 the probability mass function of Xmax

i for
the hard niche case for signalling rates ϕ ∈ {0.1, 1.0, 5.0, 10.0}. The clonotype under
consideration has higher potential for expansion for larger values of the homeostatic
signalling rate ϕ. However, in these cases, the probability mass function of Xmax

i
shows a bimodal shape, with a mode equal to 1 and the other taking different values
depending on the particular parameters. This shape, togetherwith the results of Table 1,
should be interpreted as a binary outcome scenario: in these cases, the clonotype has
moderate or high probabilities of reaching its potential clonal size represented by the
secondmode, which will only happen if it escapes the extinction at the beginning of its
lifetime; on the other hand, there exists, with some significant probability, the chance
of the clonotype becoming extinct in the short-term (during its first transitions), which
yields the firstmode equal to 1.Wepoint out here that this alsomeans that (for example,
see the case ϕ = 10.0 in Fig. 3), once the clonotype escapes extinction in the short-
term, the probabilities of reaching different clonal sizes, such as i� ∈ {5, 10, 15}, are
practically equal, since they represent the probability of reaching clonal sizes around
the second mode. Finally, when the rate of signal is not enough (see the case ϕ = 0.1
in Fig. 3), the probability mass function of Xmax

i is unimodal around 1. This represents
the case in which the clonotype will become immediately extinct (or extinct in the
short-term after reaching small sizes around 1) from its initial clonal size 1.

The increase of E[Xmax
i ] associated with increasing values of the homeostatic

signalling rate in Table 1 leads also to increasing mean values for E[Tmax
i ], E[Nmax

i ],
E[Ti,Kq |Xmax

i ≥ Kq ] and E[Ni,Kq |Xmax
i ≥ Kq ]. This is easily explained by noting

that, in these cases, the clonotype has a greater potential to reach bigger clonal sizes,
so that the time and number of proliferation events to reach those sizes should also be
larger. The variability of these random variables increases, as well, which is observed
by analysing the values σ [Ti,Kq |Xmax

i ≥ Kq ] and σ [Ni,Kq |Xmax
i ≥ Kq ]. Moreover,

the coefficient of variance CV (X) = σ [X ]/E[X ] of these random variables seems to
slowly increase to one, when increasingϕ. In any case, the large values of E[Tmax

i ] and
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E[Nmax
i ] imply that, although in friendly conditions a substantial clonotypemaximum

size will be reachedwith high probability, there exists a significant impediment against
this event, represented by the large number of proliferation and cell death events taking
place until this maximum size is reached.

The intermediate niche case is analysed in Table 2 and Fig. 4. In this case, friendly
environments can be identified with small values of ν (ν = 1 and 〈n〉 ∈ {1, 50, 100}
in Table 2), or with moderate values of ν together with small values of 〈n〉 (ν = 10
and 〈n〉 = 1 in Table 2), while hostile scenarios correspond to greater numbers of
competitors and larger clonal sizes for them.Again, the clonotype (orRTE) canbecome
established in the periphery under friendly enough environments, reaching amaximum
clonal size near E[Xmax

i ], represented by the larger mode of the distribution of Xmax
i

(given by the value around which its percentiles are concentrated). Under too hostile
scenarios, the clonotype will not become established and its maximum clonal size
remains near 1. Again, this binary outcome scenario can be properly identified by
analysing the results in Fig. 4, where the probability mass function of Xmax

i is plotted
for different parameter regimes for the intermediate niche case. It is worth noting
that even in the case in which the most probable outcome is the establishment of the
clonotype (e.g., ν = 1 and 〈n〉 = 1 in Fig. 4), there exists a non-negligible probability
of extinction in the short-term. This probability is identified with the probability mass
of Xmax

i around the value 1.
We note here that there exist several scenarios where a certain expected behaviour

can be identified. For example, in the particular case (ν, 〈n〉) = (50, 50) in Table 2, we
obtain the following percentiles of Xmax

i : (K0.25, K0.5, K0.75, K0.99) = (1, 1, 1, 2),
which represent a high concentration of the probability mass function around the
value 1. That is, there is a high probability of the clonotype becoming immediately
extinct from its initial clonal size i = 1. In particular, for percentiles Kq = 1, the
corresponding time Ti,Kq to reach the clonal size Kq is equal to 0, since the initial
clonal size is already i = 1, and the standard deviation equals 0. Similar comments
can be made for Ni,Kq . The number of proliferation events to reach Kq = 2 (given that
it is reached) is equal to 1, with probability 1, and then its standard deviation is 0. It
should be noted that the distribution of the random time Ti,2, under the assumption that
Ti,2 < ∞, can be seen as the distribution of the minimum between two independent
and exponentially distributed random variables X and Y with means λ−1

1 and μ−1
1 in

the case X < Y . As a result, Ti,2 is exponentially distributed with mean (λ1 + μ1)
−1,

and E[Ti,2|Xmax
i ≥ 2] = σ [Ti,2|Xmax

i ≥ 2] = 1/(λ1+μ1) = 0.98000.Moreover, we
note that one should carefully interpret the value of E[Xmax

i ] in Tables 1, 2 and 3, since
these values have been obtained making use of the truncation procedure described in
Eqs. (7) and (10).

Finally, the soft niche case representing a hostile environment given by a large
number of competitors and big clonal sizes for them, is analysed in Table 3 and Fig. 5.
Results in Table 3 represent scenarios where the most probable outcome is the short-
term extinction of the clonotype (values of E[Xmax

i ], E[Tmax
i ] and E[Nmax

i ] near 1,
percentiles Kq accumulated around 1). This outcome can be identified by analysing
the probability mass function of Xmax

i for these cases, which is concentrated around
1 (see Fig. 5).
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In Figs. 6, 7, 8 and 9 and Table 4, we focus on the auxiliary descriptors Ti,i� , with
i� < i , and T D

i , which have not been analysed previously. In particular, we consider in
Figs. 6, 7, and 8 the intermediate niche case andwe analyse the time Ti,i� to contraction
to a given clonal size i� < i . The mean time, E[Ti,i� ], and the standard deviation,
σ [Ti,i� ], are computed for different values of i (i = 10, 100 and 500 for Figs. 6, 7
and 8, respectively), i�, and parameters ν, ϕ and 〈n〉. The results in these figures show
relatively little dependence of this time to contraction on the competition parameters
(ν, 〈n〉). The initial i and final i� clonal sizes, and the signalling rate ϕ seem to have
a higher impact on the behaviour of this random variable, since larger values of ϕ are
related to a higher resistance of the clonotype against contraction.

In Table 4 and Fig. 9, the time T D
i to reach a particular number of proliferation

events, D, is studied for the soft niche case. In particular, the probabilitiesP(T D
i < ∞)

Fig. 6 Expected value E[Ti,i� ] plus and minus standard deviation σ [Ti,i� ] for i = 10, in the intermediate
niche case, for μ = 1.0 and various choices of i� , ν, ϕ and 〈n〉
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Fig. 7 Expected value E[Ti,i� ] plus and minus standard deviation σ [Ti,i� ] for i = 100, in the intermediate
niche case, for μ = 1.0 and various choices of i� , ν, ϕ and 〈n〉

are given in Table 4, and the conditionalmean values E[T D
i |T D

i < ∞] and conditional
standard deviations σ [T D

i |T D
i < ∞] are shown in Fig. 9 for different values of i , D

and 〈n〉. In contrast to the time to contraction, the results of Table 4 and Fig. 9 indicate
that T D

i (which is a measure of the proliferation capacity of the clonotype) seems to
be highly sensitive to 〈n〉, the characteristic number of naive T cells in a competitor
clonotype. When the competition environment is too hostile, which is represented by
large values of 〈n〉, the potential of the clonotype in the periphery to reach a certain
number, D, of proliferation events is notably reduced, and this is reflected by the
decrease of the probabilities P(T D

i < ∞). At the same time, means and standard
deviations in Fig. 9 increase in those scenarios. On the other hand, for small values of
〈n〉, there exist parameter regimes where the target number of divisions, D, is easily
reached (see, for example, the cases associated with the initial clonal size i = 100 in
Table 4).
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Fig. 8 Expected value E[Ti,i� ] plus and minus standard deviation σ [Ti,i� ] for i = 500, in the intermediate
niche case, for μ = 1.0 and various choices of i� , ν, ϕ and 〈n〉

4 Discussion

In this paper we have analysed the fate of a given naive T cell clonotype or a recent
thymic emigrant (with initial clonal size i = 1), when competing with pre-established
peripheral T cell clonotypes for homeostatic proliferation signals. The dynamics of a
given clonotype has been based on a mathematical stochastic model originally devel-
oped in Stirk et al. (2008). Here, our objective is to study the fate and potential of
naive T cell clonotypes in the periphery by analysing, for a given clonotype, its maxi-
mum clonal size, the time to reach this maximum, the number of proliferation events
required to reach this maximum, the rate of contraction of the clonotype during its
way to extinction, as well as the time to a given number of proliferation events.

Wehave introduced in Sect. 2 several stochastic descriptors in terms of defective and
non-defective random variables. The use of Laplace-Stieltjes transforms, probability
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Fig. 9 Conditional expected value E[T D
i |T D

i < ∞] plus and minus conditional standard deviation

σ [T D
i |T D

i < ∞] for (from top to bottom) i ∈ {1, 10, 100}, in the soft niche case, and for various choices
of the number D of proliferation events, and the parameters μ = 1.0, ϕ = 1000.0 and ν = 200.0
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Table 4 Probabilitiy
P(T D

i < ∞) as a function of the
initial clonal size i in the soft
niche case, for various choices
of the number D of proliferation
events, and the parameters
μ = 1.0, ϕ = 1000.0 and
ν = 200.0

i D 〈n〉 1 10 100 1000

1 1 0.83263 0.33322 0.04761 0.00497

5 0.79944 0.05986 <10−5 <10−9

10 0.79876 0.01653 <10−9 <10−18

10 1 0.99999 0.98249 0.38600 0.04865

5 0.99999 0.74816 0.00113 <10−7

10 0.99999 0.41791 <10−6 <10−16

100 1 1 1 0.99230 0.39263

5 1 0.99999 0.58648 0.00022

10 1 0.99999 0.05467 <10−9

generating functions, auxiliary random variables and absorbing augmented Markov
processes, together with first-step analysis, allow us to obtain, in some cases, the
distribution of the random variables of interest, or to exactly compute or approximate
the different order moments of these variables.

In Sect. 3 several numerical experiments have been carried out in order to study
the descriptors previously defined, under different environmental conditions for the
clonotype under consideration. In particular, when a recent thymic emigrant reaches
the periphery, it will compete with a small or large number of different clonotypes
depending on the TCR it expresses (which in turn determines its cross-reactivity). The
parameter that encodes the number of competitors is ν in the model. The characteristic
clonal size of these competitors, 〈n〉, as well as the total rate of stimulatory signal
provided by the self-peptides that the given clonotype can recognise, ϕ, also affect
the dynamics of the clonotype under study, so that three different regimes are defined
(hard, soft or intermediate niche). For these three different scenarios, numerical results
have been provided for our descriptors, which allow us to follow the survival and
extinction dynamics of the clonotype or RTE. Our main results can be summarised as
follows:

1. Two fates can be identified for the dynamics of the clonotype: if the clonotype
under study does not receive enough stimulatory signal, or if it faces too hostile a
competitive environment (encoded by a large number of competitors and/or large
clonal sizes of these competitors), the survival probability of the clonotype in
the mid-term is low. This fate can be seen by analysing the results in Fig. 4 for
ν = 50, or Fig. 5. If the clonotype faces moderate competitive environments, the
probability of the clonotype escaping extinction and surviving in the long-term is
significant, and it can be approximated in terms of the probability mass function
of Xmax

i .
2. In this second case, the bimodal structure of the probability mass function of Xmax

i
(where one mode is 1 or near 1, and the other mode is far away from it) reflects a
binary outcome scenario:
• One possibility is the extinction of the clonotype in the short-term, with non-
negligible probability. The probability of this event can be identified with the
sum of the probabilities around 1 in the probability mass function of Xmax

i .
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• If such an event does not occur, the clonotype escapes extinction and it reaches
itsmaximumsize,whichwill be a value near the secondmode of the probability
mass function of Xmax

i .
For example, in Fig. 4 for ν = 1 and 〈n〉 = 1, the probability mass around 1 rep-
resents the probability of the clonotype becoming extinct after a few proliferation
and death events (then, the maximum clonal size will be 1 or a value near 1). The
long term survival probability of the clonotype can be approximately identified
with P(Xmax

i ≥ 6). We note here that the probability mass for states between
6 and 110 is almost null, which reflects the fact that once the clonotype escapes
extinction, it will reach maximum clonal sizes above 110 almost surely. Moreover,
the high concentration of the probability mass function around the second mode
(which can also been identified by analysing the percentiles of Xmax

i in Tables 1, 2
and 3) should be interpreted as the fact that the set of parameters (ϕ, ν, 〈n〉) (and,
thus, the molecular properties of the corresponding TCR and the clonal sizes of
competing T cell clonotypes) highly determines the maximum size of a clonotype
in the periphery.

Recent experimental work suggests that whether a recent thymic emigrant survives or
not upon its arrival in the periphery, depends on the clonal sizes of the pre-existing and
competing naive T cell clonotypes: under lymphopenic conditions, that is, small values
of 〈n〉, RTEs seem to be able to proliferate and become established in the periphery,
but when the peripheral naive T cell pool is full, RTEs struggle to get incorporated into
the population of recirculating lymphocytes (Fink and Hendricks 2011; Houston et al.
2011; Berkley and Fink 2014). This empirical observation is in line with our results:
the fate of a recent thymic emigrant during its initial journey in the periphery has a
clear stochastic component, where the probability of extinction cannot be neglected,
even under favourable conditions for the RTE, and which can be studied in terms
of the mass probability function of Xmax

i . On the other hand, a greater deterministic
component can be identified in the potential size of the clonotype seeded by the RTE
in the long-term, once it escapes extinction (which is more likely for small values of
〈n〉), which is reflected in the concentration of the mass probability function of Xmax

i
around the second mode.

Other interesting results that have been derived from our study of the stochastic
descriptors defined here are:

1. There seems to exist some threshold value for the parameter ϕ when analysing
the time and the number of proliferation events to reach the maximum clonal
size. This threshold behaviour can be observed, for example, in Table 1 for para-
meters ϕ ∈ {10.0, 20.0} and ν = 0 (hard niche case). It can be observed that,
for these cases, small changes in E[Xmax

1 ] are, however, associated with large
changes in E[Tmax

1 ] and E[Nmax
1 ]. These results suggest that different clono-

types with similar maximum clonal sizes can display very different behaviours
as to how this maximum size is achieved (average time and number of divi-
sions), depending on the value of ϕ, the homeostatic proliferation signalling
rate.

2. Figures 6, 7 and 8 allow us to show that the rate of contraction of the given clono-
type on its way to extinction seems to depend much more on ϕ, the homeostatic
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proliferation signalling rate, than on the competition parameters (ν, 〈n〉). At the
same time, the competition parameters do significantly affect the proliferation rate
of the clonotype, which is analysed in Table 4 and Fig. 9, in terms of the time to
reach a particular number of proliferation events.
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