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Abstract—This paper proposes a novel dynamic Hierarchical
Dirichlet Process topic model that considers the dependence
between successive observations. Conventional posterior infer-
ence algorithms for this kind of models require processing of
the whole data through several passes. It is computationally
intractable for massive or sequential data. We design the batch
and online inference algorithms, based on the Gibbs sampling,
for the proposed model. It allows to process sequential data, in-
crementally updating the model by a new observation. The model
is applied to abnormal behaviour detection in video sequences. A
new abnormality measure is proposed for decision making. The
proposed method is compared with the method based on the non-
dynamic Hierarchical Dirichlet Process, for which we also derive
the online Gibbs sampler and the abnormality measure. The
results with synthetic and real data show that the consideration
of the dynamics in a topic model improves the classification
performance for abnormal behaviour detection.

I. INTRODUCTION

Unsupervised and semi-supervised learning for various

video processing applications is an active research area nowa-

days. In many situations supervised learning is inappropriate

or impossible. For example, in abnormal behaviour detection it

is difficult to predict in advance what kind of abnormality may

happen, collect and label a training dataset for some supervised

learning algorithm.

Within the unsupervised methods topic modeling is a

promising approach for abnormal behaviour detection [1]–

[3]. It allows not only to give warnings about abnormalities

but also provides an information about typical patterns of

behaviour or motion.

Topic modeling [4], [5] is a statistical tool for discovering

a latent structure in data. In text mining it is assumed that

unlabelled documents can be represented as mixtures of topics,

where the topics are distributions over words. The topics are

latent and the inference in topic models is aimed to discover

them.

In the conventional topic models, documents are indepen-

dent. They share the same set of topics, but weights in a topic

mixture for a particular document are independent of weights

for all other documents in a dataset. However, in some cases

it is reasonable to assume dependence in topic mixtures in

different documents.

Consider the analysis of scientific papers of a given con-

ference in text mining. It is expected that if a topic is “hot”

in a given year, it would be popular in the next year too.

The popularity of the topics changes through the years but in

each two successive years the set of popular topics would be

similar. It means that in a topic model the topic mixtures in

the documents in successive years are similar to each other.

The same ideas are valid for abnormal behaviour detection.

Documents are usually defined as short video clips extracted

from a whole video sequence. Topics represent some local

motion patterns. If the clips are sufficiently short, motions

started in a given clip would continue in the next clip.

Therefore it may be expected that the topic mixtures in the

successive clips would be similar.

In this paper the dynamic topic model is proposed to

improve the performance of abnormal behaviour detection.

Two types of dynamics are considered in the topic modeling

literature. In the first type the dynamics is assumed on the topic

mixtures in documents [6]–[8]. This type of the dynamics is

described earlier. In the second type the dynamics is assumed

on the topics themselves [9]–[11], i.e. the distributions over

words, which correspond to topics, change through time. There

are works where both types of the dynamics are consid-

ered [12], [13].

In the proposed model the first type of the dynamics is

considered. The model is constructed to encourage neighbour

documents to have similar topic mixtures. The second type

of the dynamics is not assumed, as in the video processing

the set of words and their popularity do not change, thus the

distributions over words are not expected to change.

Imagine there is an infinitely long video sequence. Motion

patterns, which are typical for a scene, may appear and

disappear and the total number of these patterns may be

infinite. The motion patterns are modelled as topics in the topic

model, hence the number of topics in the topic model may

potentially be infinite. This kind of intuition may be simulated

by a nonparametric model [14]. Therefore the proposed model

is nonparametric.

The most related model to the proposed one is presented

in [13], which is also a dynamic topic model. The main

difference between this model and the proposed one is that in

the later a document, although is encouraged to have a topic

mixture similar to the one in the previous document, may have

any of the topics used in the dataset so far.

In abnormal behaviour detection it is essential to make a

decision as soon as possible to warn a human operator to

react. We propose batch and online inference for the model

based on the Gibbs sampler. During the batch offline set



Figure 1. Quantisation of motion directions. Optical flow vectors are quantised
into the four directions — up, right, down and left. The vectors of the same
category have the same colour on the figure.

up the Gibbs sampler processes a training set of documents,

estimating distributions of words in topics. During the online

set up testing documents are processed one by one. The main

goal of the online inference is to estimate a topic mixture for

the current document, without reconsidering all the previous

documents. We also propose an abnormality measure, which

is used in the final decision making.

The rest of the paper is organised as follows. In section II

visual words and documents are defined. The proposed model

is described in section III. Section IV presents the inference

for the model, while section V introduces the abnormality

detection procedure. The experimental results are given in

section VI. Section VII concludes the paper.

II. VIDEO REPRESENTATION

In order to apply the topic modeling approach to video

processing it is required to define visual words and visual

documents. In this paper a visual word is defined as a

quantised local motion measured by an optical flow [15]. The

optical flow vector is discretised spatially by averaging among

N×N pixels. The direction of the average optical flow vector

is further quantised into the four main categories — up, right,

down and left (Figure 1). The location of the averaged optical

flow vector and its categorised direction together form a visual

word.

The whole video sequence is divided into non-overlapping

clips. Each clip is a visual document. The document consists

of all the visual words extracted from the frames that form the

corresponding clip.

Topics in topic modeling are defined as distributions over

words. They indicate which words appear together. In the

video processing applications topics are distributions over

visual words. As visual words represent local motions, top-

ics indicate the set of local motions that frequently appear

together. They are usually called activities or actions (e.g. [2],

[6], [16], [17]).

Once visual documents, words and topics are defined, the

topic model for video processing can be formulated.

III. PROPOSED MODEL

There is a sequence of documents x1:J = {xj}j=1:J ,

where each document xj consists of Nj words xji: xj =
{xji}i=1:Nj

. It is assumed that words are generated from a

set of hidden distributions {φk}k=1:∞, that are called topics

and documents are mixtures of this shared set of topics. The

number of topics is not fixed. Moreover it is assumed that

observing the infinite amount of data we can expect to have

an infinite number of topics.

A. Hierarchical Dirichlet Process Topic Model

This kind of mixture models with a potentially infinite

number of mixture components can be modelled with the

Hierarchical Dirichlet Process (HDP) [18]. The HDP is a

hierarchical extension of the Dirichlet process (DP), which is a

distribution over random distributions [19]. Each document xj

is associated with a sample Gj from a DP:

Gj ∼ DP(α,G0), (1)

where α is a concentration parameter, G0 is a base measure.

Gj can be seen as a vector of mixture components weights,

where the number of components is infinite.

The base measure G0 itself is a sample from another DP:

G0 ∼ DP(γ,H), (2)

with the concentration parameter γ and the base measure H .

This shared measure G0 from a DP ensures that the documents

will have the same set of topics but with different weights.

Indeed, G0 is almost surely discrete [19], concentrating its

mass on the atoms φk drawn from H . Therefore, Gj picks

the mixture components from this set of atoms.

A topic, that is an atom φk, is often modelled as the

multinomial distribution with a probability φwk of choosing

a word w [4], [5]. The base measure H is therefore chosen

as the conjugate Dirichlet distribution, usually a symmetric

one. Let η = [η, . . . , η] denote a parameter of this Dirichlet

distribution.

The document j is formed by repeating the procedure of

drawing a topic from the mixture:

θji ∼ Gj (3)

and drawing a word from the chosen topic:

xji ∼ Mult(θji) (4)

for every token i, where Mult(·) is the multinomial distribu-

tion.

1) Chinese restaurant franchise: There are several ways

of the HDP representation (as well as the DP). In this

paper the representation called Chinese restaurant franchise

(CRF) is considered as it is used for the derivation of the

Gibbs sampling inference scheme. In this metaphor, each

document corresponds to a “restaurant”; words correspond to

“customers” of the restaurant. The words in the documents are

grouped around “tables”. Each table serves a “dish”, which

corresponds to a topic. The “menu” of dishes, i.e. the set of

the topics, is shared among all the restaurants.

Let tji denote a table assignment for the token i in the

document j, kjt denote a topic assignment for the table t in

the document j. Let njt denote the number of words assigned



to the table t in the document j and mjk denote the number

of tables in the document j serving the topic k. The dots

in subscripts mean marginalisation over the corresponding

dimension, e.g. m·k denotes the number of tables among all

the documents serving the topic k, while mj· denotes the total

number of tables in the document j. Marginalisation over both

dimensions m·· means the total number of tables in the dataset.

The generative process of a dataset is as follows. A new

token comes to the document j and chooses one of the

occupied tables with a probability proportional to a number

of words njt assigned to this table, or the new token starts a

new table with a probability proportional to α:

p(tji = t|tj1, . . . , tji−1, α) =











njt

i− 1 + α
, if t = 1 : mj·;

α

i− 1 + α
, if t = tnew.

(5)

If the token starts a new table it chooses one of the used

topics with a probability proportional to a number of tables

m·k serving this topic among all the documents, or the token

chooses a new topic, sampling it from the base measure H ,

with a probability proportional to γ:

p(kjtnew = k|k11, . . . , kjt−1, γ) =











m·k

m·· + γ
, if k = 1 : K;

γ

m·· + γ
, if k = knew,

(6)

where K is a number of topics used so far.

Once the token is assigned to the table tji with the topic

kjtji , the word xji for this token is sampled from this topic:

xjt ∼ Mult(φkjtji
) (7)

The correspondence between two representations of the

HDP (1) – (4) and (5) – (10) is based on the following equality:

θji = φkjtji
.

B. Dynamic Hierarchical Dirichlet Process Topic Model

In the HDP exchangeability of documents and words is

assumed which means that the joint probability of the data

is independent of the order of the documents and the words in

the documents. However, in the video processing applications

this assumption may be invalid. While the words inside the

documents are still exchangeable, the documents themselves

are not. All actions and motions in the real life last for

some time, and it is expected that the topic mixture in the

current document is similar to the topic mixture in the previous

document. Some topics may appear and disappear but the

core structure of the mixture components weights only slightly

changes from document to document.

We propose the dynamic extension of the HDP topic model

to take into account this intuition. In this model the probability

of the topic k explicitly depends on the usage of this topic in

the current and previous documents mjk +mj−1k, therefore

the topic distribution in the current document would be similar

to the topic distribution in the previous document. The topic

probability still depends on the number of tables serving this

topic in the whole dataset m·k, but this number is weighted

by a non-negative value δ, which is a parameter of the model.

As in the previous case, it is possible to sample a new topic

from the base measure H .

The generative process can be then formulated as follows.

A new token comes to a document and, as before, chooses

one of the occupied tables t with a probability proportional to

the number of words njt already assigned to it, or it starts a

new table with a probability proportional to the parameter α:

p(tji = t|tj1, . . . , tji−1, α) =











njt

i− 1 + α
, if t = 1 : mj·;

α

i− 1 + α
, if t = tnew.

(8)

If the token starts a new table, it chooses a topic for it. One

of the used topics k is chosen with a probability proportional

to the sum of the number of tables having this topic in

the current and previous documents mjk + mj−1k and the

weighted number of tables among all the documents, which

serve this topic, δ m·k. A new topic can be chosen for the

table t with a probability proportional to the parameter γ:

p(kjt = k|k11, . . . , kjt−1, γ) =










mjk +mj−1k + δm·k

mj· +mj−1· + δm·· + γ
, if k = 1 : K;

γ

mj· +mj−1· + δm·· + γ
, it k = knew.

(9)

Finally, the word xji is sampled for the token i in the

document j, assigned to the table tji = t, which serves the

topic kjt = k. The word is sampled from the corresponding

topic k:

xji ∼ Mult(φk). (10)

IV. INFERENCE

Standard inference algorithms process an entire dataset. For

large or stream datasets this batch set up is computationally

intractable. Online algorithms process data in a sequential

manner, one data point at a time, incrementally updating the

variables, corresponding to the whole dataset. It allows to

save memory space and reduce the computational time. In this

paper a combination of offline batch and online inference is

proposed and this section describes it in details.

The Gibbs sampling scheme is used [20]. The inference

procedure consists of two parts. Firstly, the traditional batch

set up of the Gibbs sampling is applied to the training set of the

documents. Then an online set up of the inference is applied

for the testing documents. This means that the information

about a testing document is incrementally added to the model,

not requiring to process the training documents again.

In the Gibbs sampling inference scheme the hidden variables

t = {tji}j=1:J,i=1:Nj
and k = {kjt}j=1:J,t=1:mj·

are sampled

from their conditional distributions. In the Gibbs sampler for

the HDP model exchangeability of documents and words is

used by treating the current variable tji as the table assignment

for the last token in the last document and kjt as the topic

assignment for the last table in the last document. There is



no exchangeability of documents in the proposed model, but

words inside a document are still exchangeable. Therefore, the

variable tji can be treated as the table assignment for the last

token in the current document j, and the variable kjt can be

treated as the topic assignment for the last table in the current

document j. The documents are processed in the order they

appear in the dataset.

The following notation is used below. Let V denote the

size of the words vocabulary, tj1:j2 = {tji}j=j1:j2,i=1:Nj
is

the set of the table assignments for all the tokens in the

documents from j1 to j2. Let kj1:j2 = {kjt}j=j1:j2,t=1:mj·

and xj1:j2 = {xj}j=j1:j2 denote the corresponding sets for the

topic assignments and the observed data. Let mj1:j2 k denote

the number of tables having the topic k in the documents from

j1 to j2. Let also xjt = {xji}i=1:Nj
denote the words assigned

to the table t in the document j.

Let lwk denote the number of times the word w is associated

with the topic k, l·k denote the number of tokens associated

with the topic k: l·k =
∑

w

lwk, regardless the word assign-

ments. The notation l
j1:j2
wk is used for the number of times the

word w associated with the topic k in the documents from j1
to j2.

The superscript −ji indicates the corresponding variable

without considering the token i in the document j, e.g. the set

variable t
−ji = t \ {tji} or the count n

−ji
jt is the number of

words, assigned the table t in the document j, excluding the

word for the token i. Similarly, the superscript −jt means the

corresponding variable without considering the table t in the

document j.

A. Batch Gibbs sampling

1) Sampling topic assignment kjt: The topic assign-

ment kjt for the table t in the document j is sampled from

the conditional distribution given the observed data x and all

the other hidden variables, i.e. the table assignments for all the

tokens t and the topic assignments for all the other tables k−jt:

p(kjt = k|x, t,k−jt) ∝

p(xjt|kjt = k,k−jt, t,x−jt) p(kjt = k|k−jt). (11)

The likelihood term p(xjt|kjt = k,k−jt, t,x−jt) can be

computed by integrating out the distribution φk:

f
−jt
k (xjt)

def
= p(xjt|kjt = k,k−jt, t,x−jt) =

∫

p(xjt|φk) p(φk|k
−jt, t,x−jt)dφk =

∏

w Γ(lwk + η)

Γ(l·k + V η)

Γ(l−jt
·k + V η)

∏

w Γ(l−jt
wk + η)

, (12)

where Γ(·) is the gamma-function. In the case when k is a

new topic (k = knew) the integration is done over the prior

distribution for φknew . The obtained likelihood term (12) is

then:

f
−jt
knew (xjt) =

∏

w Γ(lwknew + η)

Γ(l·knew + V η)

Γ(V η)

(Γ(η))V
. (13)

The second multiplier in (11) p(kjt = k|k−jt) can be

further factorised as:

p(kjt = k|k−jt) ∝

p(kj+1:J |k
−jt
1:j , kjt = k) p(kjt = k|k−jt

1:j ). (14)

The first term in (14) is the probability of the topic as-

signments for all the tables in the next documents depending

on the change of the topic assignment for the table t in the

document j. Consider the topic assignments in the document

j + 1 firstly. From (9) it is:

g
−jt
k (kj+1)

def
= p(kj+1|k

−jt
1:j , kjt = k) =

γ|Kborn
j+1|

∏

s∈Kborn
j+1

(mj+1s − 1)!(1 + δ)mj+1s−1

∏mj+1·

n=1 (mj· + n− 1 + δ(m1:j · + n− 1) + γ)
×

∏

s 6∈Kborn
j+1

mj+1 s
∏

n=1

(m−jt→k
js + n− 1 + δ(m−jt→k

1:j s + n− 1)) ∝

∏

s 6∈Kborn
j+1

mj+1 s
∏

n=1

(m−jt→k
js + n− 1 + δ(m−jt→k

1:j s + n− 1)),

(15)

where the sign of proportionality is used w.r.t. kjt, K
born
j+1 is

the set of the topics that firstly appear in the document j +
1, the superscript −jt → k means that kjt is set to k for

the corresponding counts, | · | is the cardinality of the set.

The similar probabilities of the topic assignments for all the

next documents j′ = j + 2 : J depend on k only in the

term m
−jt→k
1:j′−1 ·. It is assumed that the influence of k on these

probabilities is not significant and the first term in (14) is

approximated by the probability of the topic assignments in

the document j + 1 (15) only:

p(kj+1:J |k
−jt
1:j , kjt = k) ≈ g

−jt
k (kj+1). (16)

The second term in (14) is the prior for kjt:

p(kjt = k|k−jt
1:j ) ∝

{

m
−jt
jk +mj−1k + δm

−jt
1:j k, if k = 1 : K;

γ, if k = knew.
(17)

As a result, (14) is computed as follows:

p(kjt = k|k−jt) ∝
{

g
−jt
k (kj+1)(mjt +mj−1k + δm1:j k), if k = 1 : K;

g
−jt
knew (kj+1)γ, if k = knew.

(18)

Combining (12) – (13) and (18) the topic assignment

sampling distribution can be expressed as:

p(kjt = k|x, t,k−jt) ∝ f
−jt
k (xjt) p(kjt = k|k−jt). (19)



2) Sampling tji: The table assignment tji for the token i

in the document j is sampled from the conditional distribution

given the observed data x and all the other hidden variables,

i.e. the topic assignments for all the tables k and the table

assignments for all the other tokens t
−ji:

p(tji = t|x,k, t−ji) ∝

p(xji|t
−ji, tji = t,x−ji,k) p(tji = t|t−ji) (20)

The first term in (20) is the likelihood of the word xji. It

changes depending on whether t is one of the previously used

table or it is a new table. For the case when t is the table

which is already used the likelihood is:

f
−ji
kjt

(xji) = p(xji|tji = t, t−ji,k,x−ji) =
lxji kjt

+ η

l· kjt
+ V η

(21)

Consider now the case when tji = tnew, i.e. the likelihood

of the word xji being assigned to a new table. This likelihood

can be found by integrating out the possible topic assignments

kjtnew for this table:

rtnew(xji)
def
= p(xji|t

−ji, tji = tnew,x−ji,k) =
K
∑

k=1

f
−ji
k (xji) p(kjtnew = k|k)+

f
−ji
knew (xji) p(kjtnew = knew|k), (22)

where p(kjtnew = k|k) is as (18).

The second term in (20) is the prior for tji:

p(tji = t|t−ji) ∝

{

njt, if t = 1 : mj·;

α, if t = tnew.
(23)

Then the conditional distribution for sampling a table as-

signment tji is:

p(tji = t|x,k, t−ji) ∝
{

f
−ji
kjt

(xji)njt, if t = 1 : mj·;

rtnew(xji)α, if t = tnew.
(24)

If a new table is sampled, then a topic for it is sampled

from (19).

B. Online inference

In online or distributed implementations of inference al-

gorithms in topic modeling the idea is to separate global

variables, i.e. those that depend on the whole set of data,

and local variables, i.e. those that depend only on the current

document [21]–[23].

For the proposed dynamic HDP model the global variables

are the distributions φk, which are approximated by the counts

lwk, and the global topic popularity, which is estimated by the

counts m·k. Note, that the relative relationship between counts

is important, rather than the absolute values of the counts.

The local variables are the topic mixture weights for each

document, governed by the counts mjk. The training dataset

is assumed to be large enough such that the global variables are

well estimated by the counts available during the training stage

and a new document can only slightly change the obtained

ratios of the counts.

Following this assumption, the learning procedure is or-

ganised as follows. The batch Gibbs sampler is run for the

training set of the documents. After this training stage the

global counts lwk and m·k for all w and k are stored and used

for the online inference of the testing documents. For each

testing document the online Gibbs sampler is run to sample

table assignments and topic assignments for this document

only. The online Gibbs sampler updates the local counts mjk.

After the Gibbs sampler converges, the global counts lwk and

m·k are updated with the information obtained by the new

document.

The equations for the online version of the Gibbs sampler

slightly differ from the batch ones (19) and (24). Namely,

the conditional probability p(kjt = k|k−jt) in the topic

assignment sampling distribution (19) differs from (14). As

next documents are not observed during processing the current

document, this probability consists only of the prior term

p(kjt = k|k−jt
1:j ):

ponline(kjt = k|k−jt) =
{

m
−jt
jk +mj−1k + δm

−jt
1:j k, if k = 1 : K;

γ, if k = knew.
(25)

Substituting this expression into (19) the obtained sampling

distribution for the topic assignment in the online Gibbs

sampler is:

ponline(kjt = k|x, t,k−jt) ∝
{

f
−jt
k (xjt)(mjt +mj−1k + δm1:j k), if k = 1 : K;

f
−jt
knew (xjt)γ, if k = knew.

(26)

The updating distribution for the topic assignment in the

online Gibbs sampler remains the same as in the batch

version (24).

V. ABNORMALITY DETECTION

Topic models provide a probabilistic framework for ab-

normality detection. Under this framework the abnormality

measure is the likelihood of data. The low value of the

likelihood means the built model cannot explain the current

observation, i.e. there is something atypical in the observation,

which is not fitted to the typical motion patterns, learnt by the

model.

From the Gibbs sampler we have estimates of the dis-

tributions φk and posterior samples of the table and topic

assignments. This information can be used to estimate the

predictive likelihood of a new clip. The predictive likelihood,

normalised by the length Nj of the clip in terms of visual

words, is used as an abnormality measure in this paper.

The predictive likelihood is estimated via a harmonic

mean [24], as it allows to use the information from the



Figure 2. Graphical representation of the topics in the synthetic dataset. There
are 25 words, organised into a 5× 5 matrix, where a word corresponds to a
cell in this matrix. The topics are represented as the coloured matrices, where
the colour of the cell indicates the probability of the corresponding word in
a given topic, the lighter the colour the higher the probability value.

posterior samples:

p(xj |x1:j−1) =




∑

t1:j ,k1:j

p(t1:j ,k1:j |xj ,x1:j−1)

p(xj |t1:j ,k1:j ,x1:j−1)





−1

≈

(

1

S

S
∑

s=1

1

p(xj |ts1:j ,k
s,x1:j−1)

)

, (27)

where S is the number of the posterior samples, t
s
1:j and

k
s
1:j are from the s-th posterior sample obtained by the Gibbs

sampler, and

p(xj |t
s
1:j ,k

s,x1:j−1) =

K
∏

k=1

∏

w Γ(l1:j swk + η)

Γ(l1:j s·k + V η)

Γ(l1:j−1 s
·k + V η)

∏

w Γ(l1:j−1 s
wk + η)

. (28)

The superscript s on the counts means these counts are from

the s-th posterior sample.

The abnormality detection procedure is then as follows. The

batch Gibbs sampler is run on the training dataset. Then for

each clip from the testing dataset first the online Gibbs sampler

is run to obtain the posterior samples of the hidden variables

corresponding to the current clip. Afterwards the abnormality

measure:

a(xj) =
1

Nj

p(xj |x1:j−1) (29)

is computed for the current clip. If the abnormality measure is

below than some threshold, the clip is labelled as abnormal,

otherwise as normal. And the next clip from the testing dataset

is processed.

VI. EXPERIMENTS

In this section the proposed method is applied to abnormal-

ity detection1. The method is compared with the one, based

on the HDP topic model, where for the HDP topic model the

online version of the Gibbs sampler and the abnormality mea-

sure are derived similarly to the dynamic HDP (for the batch

1The code is available on https://github.com/OlgaIsupova/dynamic-hdp
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Figure 3. The ROC-curves for the synthetic data obtained by both models.
The ROC-curve, obtained by the likelihood, computed with the known true
hidden variables, is labelled as a “true” model.

Gibbs sampler of the HDP topic model the implementation

by Chong Wang is used2). Each of the algorithms has 5 runs

with different initialisations to obtain 5 independent posterior

samples. Both batch and online samplers are run for 1000

“burn-in” iterations.

The methods are compared on both synthetic and real

data. The abnormality classification accuracy is used for the

quantitative comparison of the methods. For computing clas-

sification accuracy the ground truth about abnormality should

be provided. For the synthetic data the ground truth is known

from the generation, for the test real data the clips are labelled

manually as normal or abnormal. Note, the methods use only

unlabelled data, labels are applied for performance measure.

In statistics the following measures are used for binary

classification: true positive (TP) is the number of observations

which are correctly detected by an algorithm as positive,

false negative (FN) is the number of observations which

are incorrectly detected as negative, true negative (TN) is

the number of observations which are correctly detected as

negative, and false positive FP is the number of observations

which are incorrectly detected as positive [25].

For the quantitative comparison the area (AUC) under the

receiver operating characteristic (ROC) curve is used in this

paper. The curve is built by plotting the true positive rate

versus the false positive rate while the threshold varies. The

true positive rate (TPR), also known as recall, is defined as:

TRP =
TP

TP + FN
. (30)

The false positive rate (FPR), also known as fall-out, is defined

as:

FPR =
FP

FP + TN
. (31)

2It is available on https://github.com/Blei-Lab/hdp



(a) (b) (c) (d)

Figure 4. QMUL-junction dataset snapshots. (a) is an example of a normal motion, (b) is an example of jay-walking abnormality, (c) is an example of a car
moving on the wrong lane in the opposite to normal direction, (d) is an example an emergency service car disrupting a normal traffic flow.
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Figure 5. The ROC-curves for the QMUL data.

A. Synthetic data

The popular “bar” data is used as a synthetic data (intro-

duced in [24]). In this data the vocabulary consists of V = 25
words, organised into a 5 × 5 matrix. There are 10 topics in

total, the word distributions φk of these topics form vertical

and horizontal bars in the matrix (Figure 2).

The training dataset consisting of 2000 documents is gen-

erated from the proposed model (8) – (10), where 1% noise

is added to the distributions φk. Each of the documents has

20 words. The hyperparameters are set to the following values

for the generation: α = 1.5, γ = 2, δ = 0.5.

Similarly, the testing dataset consisting of 1000 documents

is generated, but where 300 random documents are generated

as “abnormal”. In the proposed model it is assumed that topic

mixtures in neighbour documents are similar. Contrarily to

this assumption topics for an abnormal document are chosen

uniformly from the set of all the topics except those used in

the previous document.

The both algorithms are run for these datasets, computing

the abnormality measure for all the testing documents. The

hyperparameters α, γ, δ are set to the same values as for the

generation, η = 0.2 (η is not used in the generation as the

word distributions in topics are set manually).

In Figure 3 the ROC-curves for the obtained abnormality

measures are presented. There is also presented the ROC-curve

Table I
AUC RESULTS

Dataset Dynamic HDP HDP “True” model

Synthetic 0.7118 0.4751 0.7280

QMUL 0.7100 0.4644 —

for the “true” abnormality measure. The “true” abnormality

measure is computed using the likelihood given the true

distributions φk and the true table and topic assignments t and

k, i.e. it corresponds to the model that can perfectly restore

the latent variables. Table I contains the obtained AUC values.

The results show that the proposed dynamic HDP can detect

the simulated abnormalities and its performance is competitive

to the “true” model. The original HDP method should not

detect this kind of abnormalities, as they do not contradict

to its generative model, it is confirmed by the experimental

results.

B. Real data

The algorithms are applied to the QMUL-junction real

data [6]. This is a 45-minutes video captured a road junc-

tion (Figure 4a). The frame size is 360×288. The 8×8-pixel

grid cells are used for spatial averaging of the optical flow.

For the optical flow estimation the sparse pyramidal version

of the Lucas-Kanade optical flow algorithm is used [26]

(the implementation is available in the opencv library). The

resulting vocabulary size is V = 6480. Non-overlapping clips,

1-second length, are treated as visual documents. A 5-minute

video sequence is used as a training dataset.

The algorithms are run with the following hyperparameters:

α = 1, γ = 1, η = 0.5. The weight parameter δ for the

dynamic HDP is set to 1.

The data is manually labelled as normal/abnormal to mea-

sure classification accuracy, where abnormal event examples

are jay-walking (Figure 4b), driving wrong direction (Fig-

ure 4c), disruption in traffic flow (Figure 4d).

The ROC-curves for the methods are presented in Figure 5.

The corresponding AUC values can be found in Table I. The

proposed dynamic HDP method outperforms the other one.

The provided results show that consideration of dynamics



in a topic model may improve the classification results in

abnormality detection.

VII. CONCLUSIONS

In this paper a novel Bayesian nonparametric dynamic topic

model is proposed, denoted as dynamic HDP. The Gibbs

sampling scheme is applied for inference. The online set up

for the inference is designed, allowing to incrementally train

the model when the data is processed sequentially. The model

is applied for abnormal behaviour detection in video. The

abnormality decision rule is based on the predictive likelihood

of the data that is developed in this paper. We show that

the proposed method, based on the dynamic topic model,

improves the classification performance in comparison to the

method, based on the model without dynamics. We compare

the proposed dynamic HDP method with the method based

on the HDP, introduced in [18]. The experiments both on

synthetic and real data confirm the superiority of the proposed

method.
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