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Semiparametric Quasi-likelihood Estimation with Missing Data

Francesco Bravo∗

University of York

David T. Jacho-Chávez†
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Abstract

This paper develops quasi-likelihood estimation for generalized varying coefficient partially linear models

when the response is not always observable. The paper considers two estimation methods and shows that

under the assumption of selection on the observables the resulting estimators are asymptotically normal. As

an application of these results the paper proposes a new estimator for the average treatment effect parameter.

A simulation study illustrates the finite sample properties of the proposed estimators.
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JEL classification: C13; C14; C21

1 Introduction

Quasi-likelihood estimation is routinely used in econometrics and statistics to estimate known index structure

models for binary, counts and fractional responses, see for example McCullagh & Nelder (1989), Gourieroux,

Monfort & Trognon (1984) and especially Wooldridge (2010) for a comprehensive review of models and applica-

tions). Quasi-likelihood estimation can also be used in the context of semiparametric regression models and in

particular for generalized varying coefficients partially linear models. These models are semiparametric exten-

sions of the classical generalized linear models and include many important semiparametric regression models

such as the kernel generalized linear model of Fan, Heckman & Wand (1995), the generalized partially linear

model of Carroll, Fan, Gijbels & Wand (1997), and the varying-coefficient model of Hastie & Tibshirani (1993)

and of Cai, Fan & Li (2000). Compared to the popular partially linear model considered by Engle, Granger,

Rice & Weiss (1986) and Robinson (1988) generalized varying partially linear models offer additional flexibility

and allow interaction effects between covariates and the nonparametric components while avoiding the curse of

dimensionality typically associated with partially linear models. Furthermore as with classical (i.e. parametric)

generalized linear models using a canonical link function ensures that the final estimates have always the correct

range (e.g. Logit link leads to a probability), however as opposed to classical generalized linear models the choice

of the link function is less important, making them therefore more robust to potential misspecification of the

conditional mean.

In this paper we consider quasi-likelihood estimation for generalized varying coefficients partially linear models

when the responses are partially observable. Under the assumption of selection on the observables we propose a

new estimator for the unknown parameters based on inverse probability weighting method (Horvitz & Thompson

1952). This method has been used for regression models with missing data, see for example Robins, Rotnitzky &
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Zhao (1994) and Robins & Rotnitzky (1995), in the treatment effect literature, see for example Hirano, Imbens

& Ridder (2003), in nonclassical measurement error models, see for example Robins, Hsieh & Newey (1995) and

Chen, Hong & Tamer (2005), attrition in panel data, see for example Wooldridge (2002), and by Wooldridge

(1999) and Wooldridge (2007) for M -estimation with missing data. The probabilities of the weighting method are

typically unknown and therefore have to be estimated either with parametric or with nonparametric methods. In

this paper we consider the parametric approach because as opposed to the nonparametric one it does not suffer

from the curse of dimensionality and it is less negatively affected by a high proportion of missing data in the

sample, making it perhaps more useful from an empirical point of view. Furthermore, as noted by Wooldridge

(2007), as long as the conditional mean is correctly specified and the assumption of selection on the observables

holds misspecification of the parametric estimator for probabilities does not cause inconsistency of the weighted

estimator for the parameters of the generalized varying coefficient partially linear estimator.

The results of this paper are rather general and can be seen as a semiparametric extension of some of the

results obtained by Wooldridge (2007). The results are based on backfitting and profiling, which are the two

main approaches to estimate parameters for general semiparametric models and differ in the way they deal with

the infinite dimensional parameter. To be specific, backfitting involves iterating between the estimation of the

infinite dimensional parameter and that of the finite dimensional one until convergence, see for example Hastie &

Tibshirani (1990), Mammen, Linton & Nielsen (1999) and Opsomer (2000). Profiling involves reparameterizing

the infinite dimensional parameter as a certain function of the finite dimensional parameter and then estimate

simultaneously the resulting reparameterized infinite dimensional parameter as well as the finite dimensional

one, see for example Severini & Staniswalis (1994), Murphy & Van der Vaart (2000) and Lam & Fan (2008).

A similar procedure, albeit without reparameterization is considered by Ai & Chen (2003) for semiparametric

moment conditions models. Opsomer & Ruppert (1999) and more recently Van Keilegom & Carroll (2007)

compare backfitting and profiling and note that in certain situations they result in asymptotically equivalent

estimators as long as different level of smoothing is applied.

The new results of the paper are the following: First we show that the proposed estimators defined as

the solutions to a set of local quasi-scores are consistent. This result is based on a generalization to infinite

dimensional parameters of the same approach used by Foutz (1977), and complements the standard approach

based on the global concavity of the quasi-likelihood function. Second, we show that both backfitting and

profiling lead to estimators that are asymptotically normal but they are not asymptotically equivalent even if we

consider different level of smoothing. Third, as an application of these results we propose a new semiparametric

estimator for the average treatment effect parameter. This new estimator is motivated by some recent literature

in health economics (see e.g. Basu, Polsky & Manning (2008) and references therein) advocating the use of

parametric generalized linear models to capture potential nonlinear effects and interactions between outcomes

and covariates as well as specific structures of the outcomes. Our estimator is flexible enough to capture these

important features while preserving some of the advantages of using parametric methods. Furthermore for

Normal, Bernoulli and Poisson quasi-likelihoods the new estimator enjoys the so-called doubly-robust property

as noted by Wooldridge (2007). Finally we use simulations to investigate the finite sample properties of the

estimators based on backfitting and profiling and for the new average treatment effect estimator. The latter are

compared with those based on commonly used alternatives.

The results of this paper generalize and/or complement a number of results including those obtained by Cai

et al. (2000), Wooldridge (2002), Chen, Fan, Li & Zhou (2006), Lam & Fan (2008), and Wooldridge (2007)

among others. The results can be used to show consistency and asymptotic normality for estimators defined as

the solutions to a set of semiparametric smooth estimating equations, which could be, for example, the result of

some economic theory restriction. The results can also be used to characterize the asymptotic behavior of the

solutions to a set of local first order conditions that are often easier to find than those corresponding to global
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maximum in models with an infinite dimensional parameters.

The rest of the paper is structured as follows: Section 2 introduces the basic model and discusses the two

general estimation approaches. Section 3 contains the main theoretical results. Section 4 considers average

treatment effect estimation and proposes a novel estimator based on the results of the previous sections. Section

5 illustrates the results with three examples and related simulations. Finally Section 6 contains some concluding

remarks. An Appendix contains all the proofs.

2 The Model and the Estimators

The model we consider is a generalized varying coefficient partially linear model (GVCPL henceforth)

E (Y |X) = g−1[X⊤
1 β0 +X⊤

2 α0 (X3)], (1)

where g−1 (·) is the inverse function of the known link function g (·), X1 and X2 are respectively a k1 and k2-

dimensional vectors, β0 is a vector of unknown parameters, α (·) is a vector of unknown smooth functions, and

X3 is a scalar covariate. GVCPL includes a number of important semiparametric regression models including

the kernel generalized linear model of Fan et al. (1995) (specification (1) without X1, X2, and β), the generalized

partially linear model of Carroll et al. (1997) (specification (1) with X2 = 1), the varying-coefficient model of

Hastie & Tibshirani (1993) and of Cai et al. (2000) (specification (1) without X1 and β).

Let W⊤
i =

(
Yi, X

⊤
i

)
(i = 1, ..., n) denote an i.i.d. sample from W⊤ =

(
Y,X⊤

)
; when the response Yi is

always observable the unknown parameters in (1) can be estimated by the same quasi-likelihood approach used

by Severini & Staniswalis (1994), Fan et al. (1995), Carroll et al. (1997) and many others. To be specific, let

Q
(
g−1 (·) , Y

)
denote a quasi-likelihood that is defined by

∂Q (µ, Y )

∂µ
=

Y − µ

V (µ)
,

where the variance function V (·) is known and may depend on an unknown scale parameter σ2 (see e.g. Mc-

Cullagh & Nelder (1989) for examples), and let

α0j (v) = aj + bj (v − u) j = 1, ..., k2

for v in a neighbourhood of u and aj = αj (u), bj = α′
j (u) denote a linear1 approximation for αj (v). Then for

a fixed x3

Qn (β, α, x3) :=

n∑

i=1

Q
[
g−1

(
X⊤

1iβ +X⊤
2i (a+ b (X3i − x3))

)
, Yi

]
Kh1

(X3i − x3) , (2)

where defines a local quasi-likelihood function that can be used to estimate α0 (·) and β0 using either the

backfitting or profiling method. If however, some of the responses are missing and this fact is not taken into

account into the estimation process, both approaches might result in inconsistent estimators.

We characterize missing data with a binary indicator T = {0, 1} so that we have an i.i.d. sample
(
W⊤

i , Ti

)

from
(
W⊤, T

)
and the Yi are not observed if Ti is zero. The key of our results is that the covariates are good

predictors of the selection as the following assumption specifies:

S1 The vector W is always observed when T = 1;

1The results of the paper can be easily extended to the case of a polynomial approximation. The only change would be in

Lemma A.1 in Appendix A in which the order of approximation would change to h(p+1)q where p is the degree of the polynomial

approximation. As a result the order of the bias in Theorems 1 and 3 would also change to hp+1.
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S2 (i) Y ⊥ T |X , (ii) 0 < Pr (T = 1|X) ≤ 1.

Assumption S2(i) corresponds to the missing at random in the statistical literature, and it is related to the

so-called unconfoundness in the programme evaluation literature. A fundamental implication of S2 is that if

the selection probabilities π (Xi) were known, then the generalized varying coefficient partially linear model

specification (1) for the missing Y ’s can be recovered by weighting the selected observations by the inverse of the

probability of selection. This suggests the following inverse probability weighting (IPW henceforth) modification

of (2)

Qn (β, α, π̂, x3) :=

n∑

i=1

Ti

π̂ (Xi)
Q
[
g−1

(
X⊤

1iβ +X⊤
2i (a+ b (X3i − x3))

)
, Yi

]
Kh1

(X3i − x3) , (3)

where Kh1
(·) = K (·/h1), K (·) is a kernel function, h1 =: h1 (n) is the bandwidth and the π̂ (Xi)’s are consistent

estimates of the typically unknown selection probabilities π (Xi). Also let

Qn (β, α, π̂) :=

n∑

i=1

Ti

π̂ (Xi)
Q
[
g−1

(
X⊤

1iβ +X⊤
2iα (X3i)

)
, Yi

]
(4)

denote the inverse probability weighting quasi-likelihood.

The estimation of the unknown α0 (·) and β0 is based on both (3) and (4), and can be carried out using either

the backfitting or profiling algorithm. The estimators can be defined either as maximizers of (3) and (4) or as

the solution β̂ and α̂ to the quasi-score equations defined by the first order conditions from (3) and (4), that is

∂Qn (β, α, π̂, x3) /∂(β
⊤, a⊤, b⊤)⊤ = 0, (5)

∂Qn (β, α̂, π̂) /∂β = 0.

The results of the paper are valid for both cases and with simple modifications in the proofs also for estimators

β̂ and α̂ defined as the solution of

n∑

i=1

Ti

π̂ (Xi)
ϕ
(
Yi;X

⊤
1iβ +X⊤

2i (a+ b (X3i − x3))
) [

X⊤
1i, X

⊤
2i ⊗ [1, (X3i − x3)]

⊤Kh1
(X3i − x3)

]⊤
= 0,

n∑

i=1

Ti

π̂ (Xi)
ϕ
(
Yi;X

⊤
1iβ +X⊤

2iα̂
)
X1i = 0,

where ϕ is a known scalar function. In what follows we consider the case of estimators defined as solution to

quasi-score equations (5).

2.1 Backfitting Estimation

The idea of backfitting, often called two-step procedure, is to use first use a set of local first order conditions

(5) based on (3) to obtain local estimates of all the unknown parameters, and then to use the global set of first

order condition (5) based on (4) to improve the estimation of the finite dimensional parameter. To be specific,

the procedure consists of the following steps:

B1 Either find β̂, â and b̂ that solve the (k1 + 2k2) × 1 vector of local first-order conditions ∂Qn(β, α, π̂,

x3)/∂(β
⊤, a⊤, b⊤)⊤ = 0, or for a fixed β find â and b̂ that solve the 2k2 × 1 vector of local first-order

conditions ∂Qn (β, α, π̂, x3) /∂(a
⊤, b⊤)⊤ = 0;

B2 Let α̂ := â found at B1; find β̂ that solves the k1 × 1 vector of first-order conditions ∂Qn (β, α̂, π̂) /∂β = 0.
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The above two steps can then be iterated until convergence if needed. Note that the final estimate α̂ obtained

at the end of B2 can be improved by considering a third-step which involves solving the k2 × 1 vector of local

first-order conditions ∂Qn(β̂, α, π̂, x3)/∂a = 0. Unless the functions α are of particular interest, this last step

may be omitted.

Backfitting delivers n1/2-consistent estimators for β0; however, in order to achieve the n1/2-rate, they require

undersmoothing (see Theorem (3.2) below for details). To avoid undersmoothing, we propose an alternative

method that is computationally more involved.

2.2 Profiling Estimation

The method of profiling, or one-step estimation, is based on the notion of least favourable curve that is defined

to be the parameterization αβ (·) of α (·) which has the smallest possible (Fisher) information for β and such

that at β0, αβ0
(·) = α (·). As long as this curve can be estimated, it can be used to compute the least favorable

quasi-score for β, which coincides with the efficient one. The procedure consists of the following steps:

P1 For a given β let α̂β := â that solve the 2k2 × 1 vector of local first-order conditions

∂Qn (β, αβ , π̂, x3) /∂(a
⊤, b⊤)⊤ = 0;

P2 Find β̂ that solves the k1 × 1 vector of first-order conditions ∂Qn (β, α̂β , π̂) /∂β = 0.

It is important to note that the IPW profile quasi-score for β is

∂Qn (β, α̂β , π̂)

∂β
=

n∑

i=1

Ti

π̂i (Xi)
q1
(
g−1

(
X⊤

1iβ +X⊤
2iα̂β (X3i)

)
, Yi

)
(
X1i +

(
∂α̂β (X3i)

∂β⊤

)⊤

X2i

)
,

where q1 (x, y) = ∂Q
[
g−1 (x) , y

]
/∂x. This involves the difficult computation of the k2×k1 matrix ∂α̂β (X3i) /∂β

⊤

(the so-called least favorable direction) using, for example, numerical derivatives. To overcome this difficulty we

can use as in Severini & Staniswalis (1994) and Lam & Fan (2008) a simple estimator that is based on a local

version of its explicit expression (given in (A− 22) of the Appendix) that is

∂α̂β (x3) /∂∂β
⊤ =

(
1

n

n∑

i=1

Ti

π̂i (Xi)
q2
(
g−1(X⊤

1iβ +X⊤
2iα̂β (X3i)), Yi

)
X2iX

⊤
2iKh (X3i − x3)

)−1

×

1

n

n∑

i=1

Ti

π̂i (Xi)
q2
(
g−1(X⊤

1iβ +X⊤
2iα̂β (X3i)), Yi

)
X2iX

⊤
1iKh (X3i − x3) ,

where q2 (x, y) = ∂2Q
[
g−1 (x) , y

]
/∂x2; see Section 4 for further details on the computation of this estimator.

3 Main Results

We begin this section by introducing some auxiliary notation and the following convention: A quantity with a

superscript π indicates that the relevant expectation is weighted by the inverse of the propensity score, so for

example ∆ (x) = E [g (x)] and ∆π (x) = E [g (x) /π (x)]. For j = 0, 1, . . . let qj (x, y) = ∂jQ
[
g−1 (x) , y

]
/∂xj ,

ρj (x) =
(
∂g−1 (x) /∂x

)j
/var (y|x), κj =

∫
tjK (t) dt, υj =

∫
tjK2 (t) dt and η = X⊤

1 β +X⊤
2 α (X3). Let B (β0)

denote an open neighbourhood of β0; and assume that:

A1 The random variable X3 has compact support X3, and its density f (x3) is twice continuously differentiable

and is uniformly bounded away from 0 on X3;
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A2 The functions α′′
j (·) (j = 1, . . . , k2) are continuous in X3; the functions V (·) and g (·) are, respectively,

twice and three times continuously differentiable in B (β0);

A3 The matrices E
[
q21 (η, Y )XjX

⊤
k |X3 = x3

]
(j, k = 1, 2) are twice continuously differentiable in x3 ∈ X3; the

least favourable curve αβ (·) is three times continuously differentiable in x3 ∈ X3 and B (β0);

A4 The matrices E
{
ρ2 (η0)XjX

⊤
j |X3 = x3

}
(j = 1, 2) are nonsingular, E{ρ2 (η0)XjX

⊤
j |X3 = x3} are nega-

tive definite for each x3 ∈ X3, E
[
ρ2 (η0)XjX

⊤
j

]
are negative definite, and for some γ > 0,

E[‖ Tq1 (η0, Y )
[
X⊤

1 , X⊤
2

]⊤
/π (X) ‖

2+γ
] < ∞ , E[‖ ρ2 (η0)XjX

⊤
j ‖

2+γ
] < ∞,

E[‖ ρ2 (η0)XjX
⊤
j ‖

2+γ
|X3 = x3] < ∞, E[supx3∈X3

,β∈B(β0) ‖ q3 (η)XjX
⊤
j Xjl ‖] < ∞, (j = 1, 2, l =

1, . . . , k = k1 + k2);

A5 The kernel K is a bounded symmetric density function with bounded support.

Assumptions A1-A5 are standard moment and smoothness conditions in the literature on nonparamet-

ric/semiparametric estimation with quasi-likelihood functions, see e.g. Severini & Staniswalis (1994), Carroll

et al. (1997) and Cai et al. (2000). Note that we do not require the quasi-likelihood to be globally concave

and thus we allow for possible misspecification of the variance. These conditions ensure the consistency and

asymptotic normality of a unique solution to the quasi-score equations (5).

The computation of π̂ (Xi) can be done using binary maximum likelihood under the following additional

standard regularity conditions. Let π (X, γ) denote a parametric model for π (X) where γ ∈ Γ ⊂ R
dγ , and

assume that

A6 (i) π (X, γ) > 0 for all X and all γ ∈ Γ, (ii) π (X, γ0) = π (X), (iii) γ̂ has the following stochastic expansion:

n1/2 (γ̂ − γ0) = I−1 (γ0)
1

n1/2

n∑

i=1

∂πi (γ0)

∂γ

(Ti − πi (γ0))

πi (γ0) (1− πi (γ0))
+ op (1) .

Let

Σ (α, β, x3) = E
{
ρ2(X

⊤
1 β +X⊤

2 α (X3))[X
⊤
1 , X⊤

2 ]⊤
[
X⊤

1 , X⊤
2

]
|X3 = x3

}
,

Γ (α, β, x3) = E
{
ρ2(X

⊤
1 β +X⊤

2 α (X3))[X1X
⊤
2 , X2X

⊤
2 ]⊤α′′ (X3) |X3 = x3

}
.

The following theorem establishes the asymptotic distribution of the local estimators used in the backfitting

procedure described in step B1.

Theorem 3.1 Under S1, S2 and A1-A6. Then

(nh1)
1/2

[(
β̂ − β0

α̂ (x3)− α0 (x3)

)
−

h2
1b1 (α0, β0, x3)

2

]
d
→ N

([
0

0

]
,
v0A (β0, α0, π, x3)

f (x3)

)
,

where

b1 (α, β, x3) = κ2Σ (α, β, x3)
−1

Γ (α, β, x3) ,

A (β, α, π, x3) = Σ (α, β, x3)
−1 Σπ (α, β, x3)Σ (α, β, x3)

−1 .

Theorem 3.1 is a direct generalization of results of Chen et al. (2006). It can be used to characterize the

distribution of estimators for semiparametric quasi-likelihood models, and semiparametric estimating equations

models with data missing at random.
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For j, k = 1, 2 let

Bjk (α, β, x3) = E
[
ρ2
(
X⊤

1 β +X⊤
2 α (X3)

)
XjX

⊤
k |X3 = x3

]
,

Bjk (α, β) = E
[
ρ2
(
X⊤

1 β +X⊤
2 α (X3)

)
XjX

⊤
k

]
,

D (α, β, x3) = B11π (α, β, x3)B11 (α, β, x3)
−1

B12 (α, β, x3)∆ (α, β, x3)B21 (α, β, x3)−

B12 (α, β, x3)∆ (α, β, x3) ,

∆ (α, β, x3) = B22 (α, β, x3)−B21 (α, β, x3)B11 (α, β, x3)
−1 B12 (α, β, x3) .

The following theorem establishes the n1/2-consistency of β̂ obtained in step B2.

Theorem 3.2 Under S1, S2 and A1-A6. If nh4
1 → 0, then

n1/2(β̂ − β0)
d
→ N

(
0, Bb (α0, β0, π)

)
,

where

Bb (α0, β0, π) = B11 (α0, β0)
−1 Ωb (α0, β0, π)B11 (α0, β0)

−1 ,

Ωb (α0, β0, π) = B11π (α0, β0) + E [D (α, β,X3)] + E [D (α, β,X3)]
⊤
+

E
[
B12 (α0, β0, X3)SαΣκ (α0, β0, X3)

−1 ×

Σπ (α0, β0, X3)Σκ (α0, β0, X3)
−1

S⊤
α B12 (α0, β0, X3)

⊤
]
,

where Sα = [0, I, 0] and Σκ (α0, β0, x3) =diag[Σ (α, β, x3) , κ2B22 (α, β, x3)].

Theorem 3.2 shows that to achieve n1/2-consistency using the backfitting method we need to undersmooth.

This is typical for a number of semiparametric models as noted for example by Van Keilegom & Carroll

(2007). Note that if one is interested in α0, then because of the undersmoothing it might be desirable to

consider a third estimation which uses β̂ found in step B2, and is defined by the local quasi-score equations

∂Qn(β̂, α, π̂, x3))/∂(a
⊤, b⊤)⊤ = 0. Note also that since β̂ is n1/2-consistent this estimation can be carried out as

if β was known. This result is summarized in the following theorem. Let

Φ (α, β, x3) = E
[
ρ2(X

⊤
1 β +X⊤

2 α (X3))[X2X
⊤
2 , 0⊤]⊤α′′ (X3) |X3 = x3

]
,

Ψκ (α, β, x3) = diag [B22 (α, β, x3) , κ2B22 (α, β, x3)] ,

Ψυ (α, β, x3) = diag [υ0B22 (α, β, x3) , υ2B22 (α, β, x3)] .

Theorem 3.3 Under S1-S2 and A1-A6. Then

(nh2)
1/2

[(
α̂ (x3)− α0 (x3)

h2 (α̂
′ (x3)− α′

0 (x3))

)
−

h2
2

2
b2 (α, β, x3)

]
d
→ N

([
0

0

]
,
C (α0, β0, x3)

f (x3)

)
,

where

b2 (α, β, x3) = κ2Ψκ (α, β, x3)
−1

Φ (α, β, x3) ,

C (α, β, x3) = Ψκ (α, β, x3)
−1 Ψπυ (α, β, x3)Ψκ (α, β, x3)

−1 .

We now establish the n1/2-consistency of the estimator β̂ based on P2 step of the profile algorithm. Note

that unlike the backfitting approach, there is no need to undersmooth here to achieve n1/2-consistency.
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Theorem 3.4 Under S1-S2 and A1-A6. Then

n1/2(β̂ − β0)
d
→ N (0, Bp (α0, β0, π))

where

Bp (α0, β0, π) = Ξ (α0, β0)
−1

Ωp (α0, β0, π) Ξ (α0, β0)
−1

,

Ξ (α0, β0) = B11 (α0, β0)− E
[
B12 (α0, β0, X3)B22 (α0, β0, X3)

−1
B12 (α0, β0, X3)

⊤
]
,

Ωp (α0, β0, π) = B11π (α0, β0)− E
[
B12π (α0, β0, X3)B22 (α0, β0, X3)

−1 B12 (α0, β0, X3)
⊤
]
−

E
[
B12 (α0, β0, X3)B22 (α0, β0, X3)

−1
B12π (α0, β0, X3)

⊤
]
+

E
[
B12 (α0, β0, X3)B22 (α0, β0, X3)

−1
B22π (α0, β0, X3)B22 (α0, β0, X3)

−1
B12 (α0, β0, X3)

⊤
]
.

4 Average Treatment Effect Estimation

As an application of the results of the previous section we consider the problem of estimating the average

treatment effect parameter, see e.g. Imbens (2004) for a recent review. We propose a novel semiparametric

estimator that is a middle ground between the parametric specifications recently used in some health economics

literature (see e.g. Basu et al. (2008)) and the fully nonparametric approach of Hahn (1998) and Hirano et al.

(2003). The estimator combines the regression adjustment approach with the GVCPL specification of the

conditional mean, and enjoy a somewhat stronger version of the same double robustness property noted by

Wooldridge (2007), because of the semiparametric specification of the conditional mean of the outcomes as

opposed to the fully parametric one proposed by Wooldridge (2007).

We follow the standard potential-outcome notation and use Y (1) and Y (0) to denote the potential outcome

for an experimental unit with and without the treatment, which is indicated by the dummy variable T ∈ {0, 1}.

We are interested in the average treatment effect parameter2

τ0 = E [Y (1)− Y (0)] , (6)

As in Section 2 let {W⊤
i , Ti}

n
i=1 be an i.i.d. sample and let

Yi = TiYi (1) + (1− Ti)Yi (0) ,

denote the realized outcome. Assume that

S2∗ (i) Y (1) , Y (0) ⊥ T |X , (ii) 0 < Pr (T = 1|X) < 1;

S3 E [Y (δ) |X ] = g−1
(
X⊤

1 βδ
0 +X⊤

2 αδ
0 (X3)

)
for δ = 0, 1.

Assumptions S2∗(i) and S3 imply that τ0 can be estimated by the sample analogue of the mean regressions

difference

τ0 = E
[
g−1

(
X⊤

1 β1
0 +X⊤

2 α1
0 (X3)

)
− g−1

(
X⊤

1 β0
0 +X⊤

2 α0
0 (X3)

)]
, (7)

that is

τ̂ =
1

n

n∑

i=1

[
g−1

(
X⊤

1iβ̂
1 +X⊤

2iα̂
1 (X3i)

)
− g−1

(
X⊤

1iβ̂
0 +X⊤

2iα̂
0 (X3i)

)]
, (8)

2Although similar results can also be obtained for the so-called average treatment effect on the treated parameter

τ0,t = E [Y (1)− Y (0) |T = 1] .
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where β̂δ and α̂δ (·) are the solutions to (5) with Ti/π̂i and (1− Ti) / (1− π̂i) respectively for δ = 1 and δ = 0

computed using both backfitting and profiling methods. Let Sα = [0, I, 0], πδ = δπ + (1− δ) (1− π) and

G1(α
δ, βδ) = E

[
∂g−1

(
X⊤

1 βδ +X⊤
2 α1 (X3)

)
X1

∂ (βδ⊤, αδ⊤)
⊤

]
,

G2(α
δ, βδ, X3) = E

[
∂g−1

(
X⊤

1 βδ +X⊤
2 α1 (X3)

)
X2

∂ (βδ⊤, αδ⊤)
⊤

|X3

]
,

F (αδ, βδ, X3) = SαΣ
−1
κ (αδ, βδ, X3)Σπδ

(αδ, βδ, X3)SαΣ
−1
κ (αδ, βδ, X3).

Theorem 4.1 (I) Under S1, S2∗, S3, A1-A6 and if nh4
1 → 0 then for the backfitting method

n1/2(τ̂b − τ0)
d
→ N

(
0, V b (α0, β0)

)
,

where

V b (α0, β0) = var
[
g−1

(
X⊤

1 β1
0 +X⊤

2 α1
0 (X3)

)
− g−1

(
X⊤

1 β0
0 +X⊤

2 α0
0 (X3)

)]
+

∑

δ=1,0

[
Λb
1δ(α

δ
0, β

δ
0) + Λb

2δ(α
δ
0, β

δ
0) + Λb

3δ(α
δ
0, β

δ
0) + Λb⊤

3δ (α
δ
0, β

δ
0) + Λb

4δ(α
δ
0, β

δ
0) + Λb⊤

4δ (α
δ
0, β

δ
0)
]
,

and

Λb
1δ(α

δ
0, β

δ
0) = G⊤

1 (α
δ
0, β

δ
0)B

b(αδ
0, β

δ
0 , πδ)G1(α

δ
0, β

δ
0),

Λb
2δ(α

δ
0, β

δ
0) = E

[
G⊤

2 (α
δ
0, β

δ
0 , X3)F (αδ

0, β
δ
0 , X3)G2(α

δ
0, β

δ
0 , X3)

]
,

Λb
3δ(α

δ
0, β

δ
0) = G1(α

δ
0, β

δ
0)B

−1
11 (α0, β0)E

[
−B11πδ

(α1
0, β

1
0 , X3)B

−1
11 (α1

0, β
1
0 , X3)B12(α

1
0, β

1
0 , X3)×

∆(α1
0, β

1
0 , X3)G2(α

1
0, β

1
0 , X3) +B12(α

1
0, β

1
0 , X3)∆(α1

0, β
1
0 , X3)G2(α

1
0, β

1
0 , X3)

]

Λb
4δ(α

δ
0, β

δ
0) = −G1(α

δ
0, β

δ
0)B

−1
11 (α0, β0)E

[
B12 (α0, β0, X3)F (αδ

0, β
δ
0 , X3)G2(α

δ
0, β

δ
0 , X3)

]
.

(II) Under S1, S2∗, S3 and A1-A6, then for the profiling method

n1/2 (τ̂p − τ0)
d
→ N (0, V p (α0, β0)) ,

where

V p (α0, β0) = var
[
g−1

(
X⊤

1 β1
0 +X⊤

2 α1
0 (X3)

)
− g−1

(
X⊤

1 β0
0 +X⊤

2 α0
0 (X3)

)]
+

∑

δ=1,0

[
Λp
1δ(α

δ
0, β

δ
0) + Λp

2δ(α
δ
0, β

δ
0) + Λp

3δ(α
δ
0, β

δ
0) + Λp⊤

3δ (α
δ
0, β

δ
0) + Λp

4δ(α
δ
0, β

δ
0) + Λp⊤

4δ (α
δ
0, β

δ
0)
]
,

and

Λp
1δ(α

δ
0, β

δ
0) = G⊤

1 (α
δ
0, β

δ
0)B

p(αδ
0, β

δ
0 , πδ)G1(α

δ
0, β

δ
0), Λp

2δ(α
δ
0, β

δ
0) = Λb

2δ(α
δ
0, β

δ
0),

Λp
3δ(α

δ
0, β

δ
0) = G⊤

1 (α
δ
0, β

δ
0)Ξ

−1(αδ
0, β

δ
0)E

[
B11πδ

(αδ
0, β

δ
0 , X3)−B12(α

δ
0, β

δ
0 , X3)B

−1
22 (αδ

0, β
δ
0 , X3)×

B21πδ
(αδ

0, β
δ
0 , X3)

]
B−1

11 (α1
0, β

1
0 , X3)∆(α1

0, β
1
0 , X3),

Λp
4δ(α

δ
0, β

δ
0) = G⊤

1 (α
δ
0, β

δ
0)Ξ

−1(αδ
0, β

δ
0)E

[
B12π(α

1
0, β

1
0 , X3)−B12(α

1
0, β

1
0 , X3)B

−1
22 (α1

0, β
1
0 , X3)×

B22π(α
1
0, β

1
0 , X3)

]
∆(α1

0, β
1
0 , X3).

5 Numerical Experiments

In this section we illustrate the results of the previous section with some examples and simulations. We consider

three models commonly used in quasi-likelihood estimation of (1), namely the Normal, the Poisson and the Logit,
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for which the link functions are given, respectively, by

Normal: g(u) = u,

Poisson: g(u) = ln(u),

Logit: g(u) = ln
(

u
1−u

)
.

We first consider two separate cases corresponding to δ = 0 and 1, and then use the same two cases to consider

average treatment effect estimation.

For the Normal design, we set X2 ∼ U [−2, 2], X3 ∼ U [−2, 2] and X1 = [X11, X12]
⊤ with X11 ∼ U [−1, 0] and

X12 ∼ U [0, 1], where we have used the notation V ∼ U [a, b] to denote that V follows an uniform distribution

between a and b. We set β1
0 = [β1

10, β
1
20]

⊤ = [1, 3]⊤, β0
0 = [β0

10, β
0
20]

⊤ = [1, 1]⊤, α1
0(u) = 3 cos (2u), and

α0
0(u) = 3 sin (2u). We also set T = I{X⊤θ0 − u > 0}, where I {·} is the standard indicator function that equals

one if its argument is true and zero otherwise, X = [X⊤
1 , X2, X3]

⊤, θ0 = [1/4, 1/4, 1/4, 1/4]⊤ and u follows a

standard normal distribution. For this specification the proportion of missing responses is 0.50.

In the Poisson and Logit designs, we set β1
10 = β0

10 = 0, β1
20 = β0

20 = −1, α1
0(u) = α0

0(u) = sin(πu). The

binary indicator is set as T = I{X⊤θ0 − u > 0}, where u is a standard normal as in the previous case but

with θ0 = [0, 1/3, 1/3, 1/3]⊤. For both designs we set X2 ∼ Beta[2, 4], X3 ∼ U [−1, 1] and X12 ∼ 2 ×Beta[4, 2],

where Beta[a, b] denotes a Beta distribution with shape parameters a and b. For this specification the proportion

of missing responses is approximately 0.30. Note also that the average treatment effect parameter τ0 is 0 by

construction.

In each of 500 replications we generated n pseudo-random numbers from these three designs for n ∈

{100, 200, 400}. For δ = 1 and δ = 0, we implement the estimators discussed in Section 2.1 and Section

2.2, using a second order Gaussian kernel with bandwidth chosen by Silverman’s rule-of-thumb and a correctly

specified Probit model for πi in each replication.

Tables 1, 3 and 5 report the median bias (Bias) and the interquartile range (IQR) for the backfitting and

profile estimators of βδ
20 - ‘Backfitting’ and ‘Profile’ respectively in the tables. The tables also report the root

average mean square error (RAMSE) of the backfitting and profile estimators of the nonparametric component

αδ
0. We first note that all finite sample biases and interquartile range decreases as the sample size increases

uniformly across all specifications and designs. More interestingly we observe that the profile estimator of βδ
20

outperforms that based on backfitting across all designs and δs both in terms of absolute median bias and spread

in all of the three specifications. The improvement is particularly evident in the case of the Poisson specification,

where the finite sample bias of the profile estimator is roughly half that of the backfitting one for δ = 0, and

up to 10 times less for δ = 1 and n = 200. The finite sample interquartile range is also considerably smaller

especially for n = 100, where it is roughly a quarter for δ = 0 and δ = 1. The profile estimator of αδ
0 also

outperforms its backfitting counterpart in terms of RAMSE across all designs and for both δs.

Tables 2, 4 and 6 present the results of the implied backfitting and profile estimators of τ0 discussed in

Section 4. For comparison purposes, the efficient inverse probability weighted (Eff. IPW) estimator of Hirano

et al. (2003) is also calculated. The tables clearly show that the implied profile estimator of τ0 does better than

its backfitting counterpart in terms of finite sample bias and spread across all designs and sample sizes, especially

in the case of the interquartile range for the Poisson specification. This is perhaps not surprising given the results

of Tables 1, 3 and 5. Comparing now both implied estimators with the efficient inverse probability weighted one

of Hirano et al. (2003) we note that in the case of the Gaussian specification both estimators are characterized

by smaller finite sample bias and interquartile range. In the Poisson case the profile estimator has smaller bias

and interquartile range whereas the Backfitting one is less precise and have bigger spread. Finally for the Logit

specification the efficient inverse probability weighted estimator has the smallest finite sample bias for n = 100

and n = 200 and is characterized by a smaller spread than the backfitting implied estimator, but it is dominated
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as in the previous other two cases by the profile estimator in terms of interquartile range. Taken together the

results of Tables 1-6 seem to suggest that the proposed estimators perform well in finite samples and can be

effectively used in situations where there are missing observations and selection on observables can be assumed.

6 Conclusions

This paper proposes a new estimator for the parameters of generalized varying coefficients partially linear models

when the responses are not perfectly observable but selection on the observables can be assumed. The estimator

is based on an inverse probability weighting quasi-likelihood method with probability weights calculated using a

parametric specification. The resulting estimator enjoys the double robustness property for three important link

functions and can be used with many covariates, which makes it very useful from an applied point of view. The

paper considers two general estimating techniques, namely backfitting and profiling, which yield estimators that

are not asymptotically equivalent. Simulations seems to suggest that the estimators are characterized by good

finite sample properties and that the one based on profiling dominates that based on backfitting both in terms

of bias and spread.
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Appendix A

Let cn = (nh1)
−1/2

and “CLT”, “CMT”, ”LLN” stand, respectively, for “central limit theorem”, “continuous

mapping theorem” and “law of large numbers”. Let

X∗
i =

[
X⊤

1i, X
⊤
2i, X

⊤
2i (X3i − x3) /h1

]⊤
,

ηhi = X⊤
1iβ +X⊤

2iα (x3) +X⊤
2iα

′ (x3) (X3i − x3) /h1,

and note that the (scaled) local quasi-score ∂Qn (β, α, π̂, x3) /∂
(
β⊤, a⊤, b⊤

)⊤
= 0 as given in (5) is

Sn (α, β, π̂, x3) =

(
h1

n

)1/2 n∑

i=1

Ti

π̂i
q1(η

h
i , Yi)X

∗
i Kh (X3i − x3) ,

where for notational simplicity π̂ (Xi) := π̂i; also let ∂Sn (β, α, π̂, x3) /∂
(
β⊤, a⊤, b⊤

)⊤
= Hn(α, β, π, x3) and

Hn (α, β, π, , x3) =
1

n

n∑

i=1

Ti

πi
q2(η

h
i , Yi)X

∗
i X

∗⊤
i Kh (X3i − x3) .

A1 Auxiliary lemmas

Lemma A.1 Let Zi =
(
Yi, X

⊤
i

)
be i.i.d. R

p and R
q-valued random vectors such that E ‖Y ‖

s
< ∞, E (‖Y ‖

s
|X) <

∞ for some s > 2 and E (Y |X = x) is continuously differentiable in Cx, a compact set such that f (x) > 0. Let

K be a bounded positive function with bounded support satisfying a Lipschitz condition, and let Kh (·) = K (·/h),

where h := h (n) is the bandwidth.Then for n1−(2/s)hq/ log (n) → ∞ and

sup
x∈Cx

∣∣∣∣∣
1

n

n∑

i=1

Kh

(
Xi − x

h

)
Yi − E

[
Kh

(
X − x

h

)
Y

]∣∣∣∣∣ = Op

((
log (n)

nhq

)1/2
)
, (A-9)

sup
x∈Cx

∣∣∣∣∣
1

n

n∑

i=1

Kh

(
Xi − x

h

)
Yi − E [Y |X = x] f (x)

∣∣∣∣∣ = Op

(
h2q +

(
log (n)

nhq

)1/2
)
. (A-10)

Proof. For (A-9) see Lemma B1 of Newey (1994) or Theorem 1 of Masry (1996). (A-10) follows by (A-9), the

standard bias calculation for kernels and the triangle inequality.

Lemma A.2 Let Cx be a compact set, B (θ0, δ) be a closed ball of radius δ centered at θ0, and let θ̂ (x) denote

the solution of fn(x, θ̂ (x)) = 0 for each x ∈ Cx. Assume that (i) f (x, θ) and ∂f (x, θ) /∂θ⊤ are continuous

functions in x and θ, (ii) f (x, θ0) = 0 for each x ∈ Cx, (iii) ∂f (x, θ0) /∂θ
⊤ is negative definite for each x ∈ Cx,

(iv) supθ∈B(θ0,δ),x∈Cx

∥∥∂fn (x, θ) /∂θ⊤ − ∂f (x, θ) /∂θ⊤
∥∥ = op (1). Then there exists a unique θ̂ (x) in B (θ0, δ)

such that

sup
x∈Cx

∥∥∥θ̂ (x) − θ0 (x)
∥∥∥ = op (1) .
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Proof. The proof relies on the inverse function theorem as in Foutz (1977). Firstly, let

λ (x) = 1/
(
4
∥∥∂f (x, θ0 (x)) /∂θ

⊤
∥∥) and choose δ small enough so that
∥∥∂f (x, θ (x)) /∂θ⊤ − ∂f (x, θ0 (x)) /∂θ

⊤
∥∥ < λ (x)

uniformly in x ∈ Cx, whenever θ ∈ B (θ0, δ). Let λn (x) = 1/
(
4
∥∥∂fn (x, θ (x)) /∂θ⊤

∥∥) and note that by (iv)

sup
x∈Cx

|λn (x) − λ (x)| = op (1) . (A-11)

Then by triangle inequality

‖∂fn (x, θ (x)) /∂θ
′ − ∂fn (x, θ0 (x)) /∂θ

′‖ ≤ λ (x) < 2λn (x)

uniformly in x ∈ Cx with probability tending to 1. By (i) and (iii) the inverse function theorem implies that

fn (x, θ (x)) is a one-to-one function from B (θ0, δ) to fn (x,B (θ0, δ)) for each x ∈ Cx with probability tending

to 1 and the image set contains an open ball of radius λn (x) δ around fn (x, θ0 (x)). By (A-11) fn (x,B (θ0, δ))

also contains a ball of radius λ (x) δ/2 around fn (x, θ0 (x)) for each x ∈ Cx with probability tending to 1.

By (ii) 0 ∈ fn (x,B (θ0, δ)) with probability tending to 1. Let f−1
n : fn (x,B (θ0, δ)) → B (θ0, δ), which exists

with probability tending to 1 for each x ∈ Cx. Since 0 ∈ fn (x,B (θ0, δ)) and Cx is compact it follows that

θ̂ (x) = fn(x, 0) exists in B (θ0 (x) , δ) with probability tending to 1 uniformly in x ∈ Cx. Moreover since δ

is arbitrary small the conclusion follows. To show the uniqueness note that by the one-to-one property any

other sequence θ̃ (x) of fn(x, θ̃ (x)) necessarily lies outside B (θ0, δ) with probability tending to 1 and by the

compactness of Cx this result holds uniformly in Cx.

Lemma A.3 Let

Zn (π̂, x3) = Sn (α0, β0, π̂, x3)−
h2
1

2
Γ (x3) ,

and Σv,π (α0, β0, x3) =diag[Σπ (α0, β0, x3) , v2B22π (α0, β0, x3)]. Under A1-A6

Zn (π̂, x3)
d
→ N (0, f (x3) Σv,π (α0, β0, x3)) .

Proof. Let Sn (α0, β0, π̂, x3) := Sn (π̂, x3), and note that Sn (π̂, x3) = Sn (π, x3) + S1n (π̂, x3) where

S1n (π̂, x3) =

(
h1

n

)1/2 n∑

i=1

Ti (π̂i − πi)

π̂iπi
q1(η

h
i , Yi)X

∗
i Kh (X3i − x3) .

Let η0 := X⊤
1 β0 +X⊤

2 α0 (X3); by iterated expectation and Taylor expansion it can be shown that

E [Sn (π, x3)] =
cn
2
h2
1f (x3)E

{
ρ2 (η0)

[
X1X

⊤
2 , X2X

⊤
2 , 0⊤

]⊤
α′′ (X3) |X3 = x3

}
+ o (cnh) (A-12)

:=
cnh

2
1f (x3)

2
Γ (x3) + o (cnh) ,

and that

var [Sn (π, x3)] = h1E

[(
T

π

)2

q1 (η0, Y )
2
X∗X∗⊤Kh (X3 − x3)

2

]
+O

(
h4
1

)
=

f (x3)E




E



(
T

π

)2

q1 (η0, Y )
2




X1X
⊤
1 v0 X1X

⊤
2 v0 0

X2X
⊤
1 v0 X2X

⊤
2 v0 0

0 0 X2X
⊤
2 v2


 |X


 |X3 = x3





+ o (1)

= f (x3)E





ρ2 (α0, β0)

π




X1X
⊤
1 v0 X1X

⊤
2 v0 0

X2X
⊤
1 v0 X2X

⊤
2 v0 0

0 0 X2X
⊤
2 v2


 |X3 = x3





+ o (1)

= f (x3)Σv,π (α0, β0, x3) + o (1) .
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Furthermore noting that E[‖Tq1 (η0, Y )X∗Kh (X3 − x3) /π‖
2+γ

] = O
(
h−(1+γ)

)
it follows that

E
[(
d⊤Zi (π, x3)

)2
I
(∣∣d⊤Zi (π, x3)

∣∣ ≥ εd⊤f (x3)Σv,π (α0, β0, x3) dn
1/2
)]

≤

d⊤f (x3)Σv,π (α0, β0, x3) dO((nh)−1−γ/2) → 0,

for any unit vector d ∈ R
k hence Zn (π, x3)

d
→ N (0, f (x3) Σv,π (α0, β0, x3)) by Lindeberg-Feller CLT and the

Cramér-Wold device. By Assumption A6 and Taylor expansion

Ti (π̂i − πi)

π̂iπi
=

Ti

π2
i

∂πi

∂γ⊤
(γ̂ − γ0) + op (1) , (A-13)

hence by the same argument of (A-12)

‖S1n (π̂, x3)‖ = Op (nh1cn ‖γ̂ − γ0‖) = op (1) .

Lemma A.4 Let Σκ (α, β, x3) =diag[Σ (α, β, x3) , κ2B22 (α, β, x3)]; under A1-A6

‖Hn (π̂, x3)− f (x3)Σκ (α0, β0, x3)‖ = op (1) .

Proof. By the same decomposition used in Lemma A.3 Hn (π̂, x3) = Hn (π, x3) +H1n (π̂, x3) where

H1n (π̂, x3) =
1

n

n∑

i=1

Ti (π̂i − πi)

π̂iπi
q2 (ηi, Yi)X

∗
i X

∗⊤
i Kh (X3i − x3) .

By iterated expectations and Taylor expansion

E

{
E

[
T

π
q2 (η0, Y )X∗X∗⊤Kh (X3 − x3) |X

]}
= (A-14)

− E
{
E
[
ρ2
(
X⊤

1 β0 +X⊤
2 α (x3)

)
X∗X∗⊤Kh (X3 − x3)

]
|X3

}
+

O (‖a− α‖) +O
(
h2
1

)
+ o (1) =

−f (x3)E




ρ2
(
X⊤

1 β0 +X⊤
2 α (x3) +O (h1)

)



X1X
⊤
1 X1X

⊤
2 0

X2X
⊤
1 X2X

⊤
2 0

0 0 X2X
⊤
2 κ2


 |X3 = x3





=

f (x3)Σκ (α0, β0, x3) +O (h1) .

Similarly it is possible to show that var[Hn (π, x3)] = O((nh)
−1

+O (h)) → 0 hence by LLN

‖Hn (π, x3)− Σκ (x3)‖ = op (1). By (A-13) and the same arguments as those used in (A-14) it follows that

‖H1n (π̂, x3)‖ ≤ ‖γ̂ − γ0‖ ‖Σκ (∂π/∂γj, x3)‖+ op (1) = op (1) ,

where Σκ (∂π/∂γl, x3) = O (1) (l = 1, 2, ...p) are k× k matrices whose structure is as that of Σκ (α0, β0, x3) with

generic (j1, j2) term given by Xj1Xj2∂π/∂γl. The conclusion follows by the triangle inequality.

Lemma A.5 Let gij (Z,W ) := g1 (Zi) g2 (Wi)Kh (Zj − Zi) /f (Zi), hi (Z,W ) := h (Zi,Wi) such that E [hi (Z,W )] =

0, f (Zi) denote the marginal density of Z, and let G (Zj) = E[g1 (Zj) g2 (Wi) |Zj ]. Then

∥∥∥∥∥∥
1

n3/2

n∑

i6=,j

hj (Z,W ) gij (Z,W )−
1

n1/2

n∑

j=1

hj (Z,W )G (Zj)

∥∥∥∥∥∥
= op (1) .
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Proof. Without loss of generality we assume the scalar case. Note that

E [gij (Z,W ) |Zj ] = E [g1 (Zi) g2 (Wi)Kh (Zj − Zi) |Zi, Zj ] = (A-15)
∫ ∫

g1 (Zj + uh) g2 (Wi)K (u) f (Wi|Zj + uh) dwidu = E [g1 (Zj) g2 (Wi) |Zj ] + Op

(
h2
)

by a standard Taylor expansion. Next let hj (Z,W ) gij (Z,W ) = hjgij , G (Zj) = Gj and note that by indepen-

dence

E


 1

n3/2

n∑

i=1

n∑

j=1

hjgij −
1

n1/2

n∑

j=1

hjGj



2

=
1

n3

n∑

i,j,k,l=1
i6=j,k 6=l

E [(hjgij − hjGj) (hlglk − hlGl)] .

Clearly when all indices are different all the terms in the summation are 0 because E (hjGj) = 0 by iterated

expectations. It remains to consider the case when at most two indices are equal. In this case there are two

types of relevant combinations: (1) i = k and (2) i 6= k. For (1) a standard kernel calculation shows that

E [(hjgij − hjGj) (hlglk − hkGk) |Zj, Zl] = O (h); for (2) by iterated expectations it follows similarly to (A-15)

that each term in the summation is of order O
(
h2
)
. Thus in both cases the summation is at most of order

n2 (n− 1)O (h) /n3 hence the result.

Lemma A.6 (A) Let fn (x, θ) :=
∑n

i=1 g (Xi, θ)Kh (Xi, x) /n and θ0 is such that f (x, θ0) = 0 for each x ∈ Cx.

Correspondingly let θ̂ (x) denote the solution to 0 = fn(x, θ̂ (x)). Assume that (i) Cx and Cθ are a compact

sets, (ii) ∂kfn (x, θ) /∂θ
⊤∂θj (k = 0, 1, 2), (j = 1, ..., q) are continuous functions in x and θ, (iii) F (x) :=

∂f (x, θ0) /∂θ
⊤ is negative definite and invertible for each x ∈ Cx, (iv) for some s > 2 E

∥∥∂2g (X, θ0) /∂θ
⊤∂θj

∥∥s <
∞, E

(∥∥∂2g (x, θ0) /∂θ
⊤∂θj

∥∥s X = x
)
< ∞ (v) supθ∈Cθ0

,x∈Cx

∥∥∂fn (x, θ) /∂θ⊤∂θj − ∂f (x, θ) /∂θ⊤∂θj
∥∥ = op (1).

Then

sup
x∈Cx

∥∥∥θ̂ (x) − θ0 (x)− F−1 (x) fn (x, θ0 (x))
∥∥∥ = Op

(
h2q +

(
log (n)

nhq

)1/2
)
. (A-16)

(B) Consider a curve β → θβ (·) such that at β0 θβ0
(·) = θ0 (·) and β is finite dimensional. Let fn (x, θβ) :=∑n

i=1 g (Xi, θβ)Kh (Xi, x) /n and assume that (i)-(v) assumptions used in (A) with θ replaced by θβ hold, and

that (v) ∂kθβ (x) /∂βj1...∂βjk are continuous functions in x. Then

sup
x∈Cx

∥∥∥∥∥
∂kθ̂β (x)

∂βj1...∂βjk

−
∂kθβ0

(x)

∂βj1...∂βjk

∥∥∥∥∥ = Op

(
h2q +

(
log (n)

nhq

)1/2
)
. (A-17)

Proof. (A) Assumptions (i), (ii) and (v) imply that θ̂ (x) satisfies the conditions of Lemma A.2 hence θ̂ (x) is

unique and supx∈Cx
‖ θ̂ (x)− θ0 (x) ‖ = op (1). Taylor expanding 0 = fn(x, θ̂ (x)) we have

0 = fn (x, θ0 (x)) +
∂fn (x, θ0)

∂θ⊤

[
θ̂ (x)− θ0 (x)

]
+

q∑

j=1

∂2fn (x, θ
∗)

∂θ⊤∂θj

[
θ̂ (x)− θ0 (x)

]
× (A-18)

[
θ̂ (x)j − θ0 (x)j

]
,

where θ∗ is the mean value. Then, by Lemma A.1 and LLN we have that

0 = fn (x, θ0 (x)) +

(
∂fn (x, θ0)

∂θ⊤
− F (x)

)[
θ̂ (x)− θ0 (x)

]
+ F (x)

[
θ̂ (x) − θ0 (x)

]
+

op(‖ θ̂ (x)− θ0 (x) ‖),

= fn (x, θ0 (x)) + F (x)
[
θ̂ (x)− θ0 (x)

](
1 +Op

(
h2q +

(
log (n)

nhq

)1/2
))

+ op (1)
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uniformly in Cx hence the first conclusion. (B) For k = 0 the result follows by the arguments used in (A). For

k = 1 by differentiating (A-18) with respect to βl (l = 1, ..., k)

0 =
∂fn (x, θ0)

∂θ⊤β

∂θβ
∂βl

+

q∑

j=1

∂2fn (x, θ0)

∂θ⊤β ∂θβj

∂θβj
∂βl

(
θ̂β (x)j − θ0 (x)j

)
+

∂fn (x, θ0)

∂θ⊤

(
∂θ̂β (x)

∂βl
−

∂θβ0
(x)

∂βl

)
+ op (1) ,

=
∂fn (x, θ0)

∂θ⊤β

∂θβ
∂βl

+ op

(
h2q + (log (n) /nhq)

1/2
)
+

F (x)

(
∂θ̂β (x)

∂βl
−

∂θβ0
(x)

∂βl

)(
1 +Op

(
h2q +

(
log (n)

nhq

)1/2
))

+ op (1) ,

uniformly in Cx hence noting that by Lemma A.1
∥∥(∂fn(x, θ0)/∂θ⊤β ) (∂θβ/∂βl)

∥∥ = Op(h
2q + (log(n)/nhq)1/2)

the result follows. For k ≥ 2 the result follows by repeated differentiation with respect to β using recursively the

fact that ∥∥∥∥∥
∂k−1θ̂β (x)

∂βl1 ....∂βlk−1

−
∂k−1θβ0

(x)

∂βl1 ....∂βlk−1

∥∥∥∥∥ = Op

(
h2q +

(
log (n)

nhq

)1/2
)
.

A2 Proof of the Main Results

Proof of Theorem 3.1. Let θ (x3) =
[
(β − β0)

⊤
, (a (x3)− α0 (x3))

⊤
, h (b (x3)− α′

0 (x3))
⊤
]⊤

and ηh0i =

X⊤
1iβ0 + X⊤

2i [α0 (x3) + α′
0 (x3) (X3i − x3) /h]; by Assumptions A2 and A3 the solution θ̂ (x3) satisfies Lemma

A.2 hence θ̂ (x3) = op (1) uniformly in B (β0) and X3. Let θ̂n (x3) := θ̂ (x3) cn; by a Taylor expansion of the local

version of (5) about 0 we have

0 =
h
1/2
1

n1/2

n∑

i=1

Ti

π̂i
q1

(
ηh0i +X∗⊤

i θ̂n (x3) , Yi

)
X∗

1i = Sn (α0, β0, π̂, x3) +Hn (α0, β0, π̂, x3) θ̂ (x3)+

c2n
2

(
h1

n

)1/2 n∑

i=1

Ti

π̂i
q3
(
ηh0i +X∗⊤

i θ∗ (x3) , Yi

)
X∗

1i

(
X∗⊤

i θ̂n (x3)
)2

Kh (X3i − x3) ,

where θ∗ (x3) is the mean value. By Assumptions A2, A4 and the same arguments as those used in Lemma A.4

the last term in the above expansion is Op (cn) → 0, hence by Lemmas A.4 and A.6 we have that

sup
x3∈X3,β∈B(β0)

∥∥∥θ̂n (x3)− Σκ (α0, β0, x3)
−1

Sn (π̂, x3)
∥∥∥ = Op

(
h2 +

(
log (n)

nh

)1/2
)
. (A-19)

Thus the result follows by Lemma A.3, CMT and simple algebra.

Proof of Theorem 3.2. The consistency of the solution β̂ on B (β0) follows by Assumption (A3) which

combined with the uniform consistency of α̂ (·) as given in the proof of Theorem 3.1 implies a global version of

Lemma A.2. Let η̂i = X⊤
1iβ0+X⊤

2iα̂ (X3i), bn = n1/2 (β − β0); as in the proof of Theorem 3.1 a Taylor expansion

of β − β0 about 0 gives

0 =
1

n1/2

n∑

i=1

Ti

π̂i
q1

(
η̂i +X⊤

1ibn/n
1/2, Yi

)
X1i =

1

n1/2

n∑

i=1

Ti

π̂i
q1 (η̂i, Yi)X1i+

1

n

n∑

i=1

Ti

π̂i
q2 (η̂i, Yi)X1iX

⊤
1i b̂n +

1

2n3/2

n∑

i=1

Ti

π̂i
q3 (η̂i + ξi, Yi)X1i(X

⊤
1i b̂n)

2,
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where ξi is the mean value. By the consistency of β̂, α̂ (·) and π̂i, and A3-A4 it follows by dominated convergence

that ‖
∑n

i=1 Tiq3 (η̂i + ξi, Yi)X1iX1iX1ij/nπ̂i‖ = Op (1) uniformly in X3 and B (β0), hence the last term is op (1).

Similarly ∥∥∥∥∥
1

n

n∑

i=1

Ti

πi
q2 (η̂i, Yi)X1iX

⊤
1i −B11 (α0, β0)

∥∥∥∥∥ = op (1) .

By Taylor expansion and A6

1

n1/2

n∑

i=1

Ti

π̂i
q1 (η̂i, Yi)X1i =

1

n1/2

n∑

i=1

Ti

πi
q1 (η0i, Yi)X1i+

1

n1/2

n∑

i=1

Ti

πi
q2 (η0i, Yi)X1i (η̂i − η0i) +Op

(
n1/2 ‖η̂ − η0‖

2
)
+

1

n

n∑

i=1

Ti

π2
i

q1 (η0i, Yi)X1i
∂πi

∂γ⊤
n1/2 (γ̂ − γ0)+

1

n

n∑

i=1

Ti

π2
i

q2 (η0i, Yi)X1i (η̂i − η0i)
∂πi

∂γ⊤
n1/2 (γ̂ − γ0) + op (1) =

4∑

j=1

I1jn + op (1) ,

uniformly in X3 and Γ. Lemma A.6 and the fact that ‖η̂i − ηi‖ = O (‖Xj −Xi‖) = Op

(
h2
)
imply

I12n =
1

n3/2

n∑

i=1

Ti

πif (X3i)
q2 (η0i, Yi)X1iX

⊤
2i

n∑

j=1

Tj

πj
q1 (η0j , Yj)SαΣ

−1
κ (α0, β0, x3)X

∗
j×

Kh1
(X3j −X3i) +Op

(
n1/2h2

1

)
+Op

(
h2 +

(
log (n)

nh

)1/2
)
,

where Sα = [0, I, 0]. Conditional on X3j , the law of iterated expectations and Taylor expansion yields

E

[
Ti

πif (X3i)
q2 (η0i, Yi)X1iX

⊤
2iKh1

(X3j −X3i) |X3j

]
=

−E

[
1

f (X3i)
ρ2 (η0i)X1iX

⊤
2iKh1

(X3j −X3i) |X3j

]
= −B12 (α0, β0, X3j) ,

hence by Lemma A.5

I12n = −
1

n1/2

n∑

i=1

Ti

πi
B12 (α0, β0, X3i) q1 (η0i, Yi)SαΣκ (x3)

−1 [
X⊤

1i, X
⊤
2i, 0

⊤
]⊤

+Op

(
n1/2h2

1

)
.

By iterated expectations E
[
Tiq1 (η0i, Yi)X1i

(
∂πi/∂γ

⊤
)
/π2

i

]
= 0 hence ‖I13n‖ = op (1) by LLN. The same

arguments as those used for I12n can be used to show that ‖I14n‖ = op (1). Thus we have that

0 =
1

n1/2

n∑

i=1

Ti

πi
q1 (η0i, Yi)X1i−

1

n1/2

n∑

i=1

Ti

πi

{
B12 (α0, β0, X3i) q1 (η0i, Yi)SαΣκ (α0, β0, x3)

−1 [
X⊤

1i, X
⊤
2i, 0

⊤
]}⊤

−

B11 (α0, β0) b̂n + op (1) ,

so that

b̂n = B11 (α0, β0)
−1 1

n1/2

n∑

i=1

Ti

πi
[q1 (η0i, Yi)X1i− (A-20)

B12 (α0, β0, X3i) q1 (η0i, Yi)SαΣκ (α0, β0, x3)
−1 [

X⊤
1i, X

⊤
2i, 0

⊤
]⊤]

+ op (1) .

18



The conclusion follows by CLT noting that by conditional expectations and some algebra

E

{
T 2
i

π2
i

q1 (η0, Y )
2
X1

[
X⊤

1 , X⊤
2 , 0⊤

]
Σκ (α0, β0, x3)

−1
S⊤
α B12 (α0, β0, X3i)

⊤

}
=

E

{
E

[
T 2
i

π2
i

q1 (η0, Y )2 X1i

[
X⊤

1i, X
⊤
2i, 0

⊤
]
|X3i

]
Σκ (α0, β0, x3)

−1 S⊤
α B12 (α0, β0, X3i)

⊤

}
=

E

{
E

(
ρ2 (α0, β0)

[
X1X

⊤
1 , X1X

⊤
2 , 0⊤

]

π
|X3

)
×

[
−B11 (α0, β0, X3i)

−1
B12 (α0, β0, X3)∆ (α0, β0, X3)

−1
,∆(α0, β0, X3)

−1
, 0
]⊤

×

B12 (α0, β0, X3i)
⊤
}
,

where

∆ (α0, β0, X3) = B22 (α0, β0, X3)−B21 (α0, β0, X3)B11 (α0, β0, X3)
−1

B12 (α0, β0, X3) .

Proof of Theorem 3.3. Let η̂i = X⊤
1iβ̂ + X⊤

2i [a (x3) + b (x3) (X3i − x3)], θ2n (x3) = c−1
n [(a (x3) − α0 (x3))

⊤,

h2 (b (x3)− α′
0 (x3))

⊤]⊤, X∗
2i =

[
X⊤

2i, X
⊤
2i (X3i − x3) /h2

]⊤
and let θ̂2 (x3) denotes the solution to the local first

order conditions ∂Qn(β̂, α, π̂, x3)/∂(β
⊤, a⊤, b⊤)⊤ = 0. Consistency of θ̂2 (x3) follows by the same arguments as

those used in the proof of Theorem 3.1. Then by Taylor expansion we have

0 = S2n (α0, β0, π, x3) +H2n (α0, β0, π, x3) θ2n (x3)+

Op(nh2cn[‖ β̂ − β0 ‖+ ‖ γ̂ − γ0 ‖]) +Op (cn) ,

where

S2n (α0, β0, π, x3) =

(
h2

n

)1/2 n∑

i=1

Ti

πi
q1 (ηi0, Yi)X

∗
2iKh2

(X3i − x3)

and

H2n (α0, β0, π, x3) =
1

n

n∑

i=1

Ti

πi
q2 (ηi0, Y )X∗

2X
∗⊤
2 Kh2

(X3 − x3) .

The conclusion follows as in the proof of Theorem 3.1 using Lemmas A.3, A.4 and some algebra.

Proof of Theorem 3.4. Let ηβ = X⊤
1 β + αβ (X3)

⊤
X2; by definition the least favourable curve αβ (·) satisfies

∂

∂ζ
E
{
Q
[
g−1

(
X⊤

1 β +X⊤
2 ζ
)
, Y
]
|X3 = x3

}
= 0 (A-21)

Differentiating (A-21) with respect to β and evaluating at β0

0 = E
{[
Y − g−1 (ηβ)

]
ρ′1 (ηβ)×

[
X⊤

1 +X⊤
2 ∂αβ (X3) /∂β

⊤
]
−

ρ2 (ηβ)X
⊤
2

[
X⊤

1 +X⊤
2 ∂αβ (X3) /∂β

⊤
]
|X3 = x3

}
|β=β0

,

which implies that the so-called least favourable direction is

∂αβ (x3)

∂β⊤
= −

{
E
[
ρ2 (ηβ0

)X2X
⊤
2 |X3 = x3

]}−1
× (A-22)

E
[
ρ2 (ηβ0

)X2X
⊤
1 |X3 = x3

]
= − [B22 (α0, β0, x3)]

−1
B21 (α0, β0, x3) ,

where ηβ0
= X⊤

1 β0 + α⊤
β0
X2 and by definition αβ0

(x3) = α0 (x3). As in the proof of Theorem 3.2, Assumption

A3-A4 and Lemma A.2 imply the consistency and uniqueness of the solution β̂ to 0 = ∂Qn (αβ , β, π̂) /∂β. By
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Taylor expansion of 0 = ∂Q̂n(αβ̂ , β̂, π̂)/∂β we have

0 = Sn (π, β0, αβ0
) + Sn (π̂, β0, αβ0

)+ (A-23)
[
Ĥn (α0, β0, π) + Ĥn (α0, β0, π̂)

]
n1/2

(
β̂ − β0

)
+

Op

(
n1/2

∥∥∥β̂ − β0

∥∥∥
2
)
,

where

Sn (π, β0, αβ0
) =

1

n1/2

n∑

i=1

Ti

πi
q1
[
g−1 (ηiβ0

) , Yi

]
[
X1i +

(
X⊤

2i∂αβ0
(X3i)

∂β⊤

)⊤
]
+

1

n1/2

n∑

i=1

Ti

πi
q2
[
g−1 (ηiβ0

) , Yi

]
[
X1i +

(
X⊤

2i∂αβ0
(X3i)

∂β⊤

)⊤
]
X⊤

2i (α̂β0
(X3i)− αβ0

(X3i))+

1

n1/2

n∑

i=1

Ti

πi
q1
[
g−1 (ηiβ0

) , Yi

] [
X⊤

2i

(
∂α̂β0

(X3i)

∂β⊤
−

∂αβ0
(X3i)

∂β⊤

)]⊤
:=

3∑

j=1

I2jn,

Sn (π̂, β0, αβ0
) =

3∑

j=1

Î2jn + op (1) ,

and each of the Î2jn is as that of I2jn with Ti/πi replaced by (A-13). By (A-22) and CLT we have that

I21n
d
→ N (0,Ωp (α0, β0, π)). By the least favourable property

E

{
q2
[
g−1 (ηβ) , Y

]
[
X1 +

(
X⊤

2 ∂αβ (X3)

∂β⊤

)⊤
]
X⊤

2 |X3 = x3

}
= 0

and hence

‖I22n‖ ≤ Op (1) ‖(α̂β (X3)− α0 (X3))‖ = Op

(
h2 +

(
log (n)

nh

)1/2
)
,

uniformly in X3 by Lemma A.6(B) and similarly for I23n. By the same arguments as those used in Theorem 3.2

we have
∥∥∥Î2jn

∥∥∥ = op (1) for j = 1 and 3. For Î22n note that by Lemma A.6

∥∥∥Î22n
∥∥∥ ≤ n1/2 ‖γ̂ − γ0‖

∥∥∥∥∥∥
1

n2

n∑

i=1

n∑

j=1

Ti

π2
i

q2
[
g−1 (ηiβ0

) , Yi

]
×

[
X1i +

(
X⊤

2i∂αβ0
(X3i)

∂β⊤

)⊤
]
X⊤

2i

Tj

πj
q1 (ηj , Yj)SαΣκ (x3)

−1
X∗

jKh1
(X3j −X3i)

∥∥∥∥∥+

Op

(
h2 +

(
log (n)

nh

)1/2
)

=

n1/2 ‖γ̂ − γ0‖ ‖I24n‖+Op

(
h2 +

(
log (n)

nh

)1/2
)
.

By Lemma A.5 it follows ‖I24n − I25n‖ = op (1) where

I25n = −
1

n

n∑

i=1

Ti

π2
i

B3π (α0, β0, X3i) q1 (η0i, Yi)SαΣκ (X3i)
−1 [

X⊤
1i, X

⊤
2i, 0

⊤
]⊤

,

and

B3π (α0, β0, X3) = E

[
1

π
ρ2 (α0, β0)

[
X1 +

(
X⊤

2 ∂αβ0
(X3)

∂β⊤

)⊤
]
X⊤

2 |X3

]
.
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Note that ‖I25n‖ = op (1) by LLN, hence
∥∥∥Î22n

∥∥∥ ≤ n1/2 ‖γ̂ − γ0‖ ‖I14n‖ = op (1). We now consider the third

term in (A-23). By Taylor expansion, LLN, Lemma A.6 and triangle inequality

∥∥∥Ĥn (α0, β0, π)−Hn (α0, β0, π)
∥∥∥ ≤

∥∥∥∥∥∥

k2∑

j=1

n∑

i=1

1

n
q3
([
g−1 (ηiβ0

) , Yi

])
×

[
X1i +

(
X⊤

2i∂αβ0
(X3i)

∂β⊤

)⊤
][

X1i +

(
X⊤

2i∂αβ0
(X3i)

∂β⊤

)⊤
]⊤

X2ij

∥∥∥∥∥∥
×

‖α̂β (X3i)− α0 (X3i)‖+ 2

∥∥∥∥∥∥

k2∑

j=1

Hn (α0, β0, π)X2ij

∥∥∥∥∥∥
∥∥∥∥
∂α̂β (X3i)

∂β
−

∂αβ0
(X3i)

∂β

∥∥∥∥+
∥∥∥∥∥

n∑

i=1

1

n
q1
([
g−1 (ηiβ0

) , Yi

])
X1i

∥∥∥∥∥×
∥∥∥∥∥∥

k1∑

j=1

∂2α̂β (X3i)

∂β∂βj
−

∂αβ0
(X3i)

∂β∂βj

∥∥∥∥∥∥
+

∥∥∥∥∥∥

k1∑

j=1

n∑

i=1

1

n
q1
([
g−1 (ηiβ0

) , Yi

])
X1i

∂αβ0
(X3)

∂β∂βj

∥∥∥∥∥∥
‖α̂β (X3i)− αβ (X3i)‖ =

Op (1)Op

(
h2 +

(
log (n)

nh

)1/2
)

= op (1)

uniformly in X3. Since

Hn (α0, β0, π) =
1

n

∑ Ti

πi
q2
([
g−1 (ηiβ0

) , Yi

])
[
X1i +

(
X⊤

2i∂αβ0
(X3i)

∂β⊤

)⊤
]
×

[
X1i +

(
X⊤

2i∂αβ0
(X3i)

∂β⊤

)⊤
]⊤

+ op (1) ,

it follows by LLN that

‖Hn (α0, β0, π)− Ξ (α0, β0)‖ = op (1) . (A-24)

Next by (A-13) and (A-24) it follows that

‖Hn (α0, β0, π̂)‖ ≤ ‖γ̂ − γ‖Op (1) = op (1)

hence the result follows by CMT.

Proof of Theorem 4.1. Let τ̂m denote the estimator based on either backfitting (m = b) or profiling (m = p);
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by Taylor expansion

n1/2 (τ̂m − τ) =
1

n1/2

n∑

i=1

[
g−1(X⊤

1iβ̂
1 +X⊤

2iâ
1 (X3i))− g−1(X⊤

1iβ̂
0 +X⊤

1iâ
0 (X3i))− τ

]
=

1

n1/2

n∑

i=1

[
g−1

(
X⊤

1iβ
1 +X⊤

2iα
1 (X3i)

)
− g−1

(
X⊤

1iβ
0 +X⊤

2iα
0 (X3i)

)
− τ
]
+

1

n1/2

n∑

i=1

∂g−1
(
X⊤

1iβ
1 +X⊤

2iα
1 (X3i)

)

∂ (β1⊤, α1⊤)
⊤

[
X⊤

1i(β̂
1 − β1

0), X
⊤
2i(α̂

1 (X3i)− α1 (X3i))
]
−

1

n1/2

n∑

i=1

∂g−1
(
X⊤

1iβ
0 +X⊤

2iα
0 (X3i)

)

∂ (β0⊤, α0⊤)
⊤

[
X⊤

1i(β̂
1 − β1

0), X
⊤
2i(α̂

1 (X3i)− α1 (X3i))
]
+ op (1)

:=
3∑

j=1

Im3j1.

For the backfitting estimator τ̂b using (A-20), (A-19), Lemma A.5 and LLN we have

Ib32n = G1

(
α1
0, β

1
0

)⊤
B11 (α0, β0)

−1 1

n1/2

n∑

i=1

Ti

πi
q1 (η0i, Yi) [X1i −B12 (α0, β0, X3i)×

SαΣκ (α0, β0, X3)
−1 [

X⊤
1i, X

⊤
2i, 0

⊤
]⊤]

+

1

n1/2

n∑

i=1

Ti

πi
G2

(
α1
0, β

1
0 , X3i

)⊤
q1 (η0i, Yi)SαΣκ (α0, β0, X3)

−1
×

[
X⊤

1i, X
⊤
2i, 0

⊤
]⊤

+ op (1) ,

and likewise for Ib33n with α1
0, β

1
0 and π replaced by α0

0, β
0
0 and 1− π. Note that

var
(
Ib31n

)
= var

[
g−1

(
X⊤

1iβ
1
0 +X⊤

2iα
1
0 (X3i)

)
− g−1

(
X⊤

1iβ
0
0 +X⊤

1iα
0
0 (X3i)

)]
,

var
(
Ib32n

)
= G⊤

1

(
α1
0, β

1
0

)
Bb (α0, β0, π)G1

(
α1
0, β

1
0

)
+ E

[
G⊤

2

(
α1
0, β

1
0 , X3

)
SαΣ

−1
κ

(
α1
0, β

1
0 , X3

)
×

Σπ

(
α1
0, β

1
0 , X3

)
Σ−1

κ

(
α1
0, β

1
0 , X3

)
SαG2

(
α1
0, β

1
0 , X3

)]
+ 2G⊤

(
α1
0, β

1
0

)
B−1

11 (α0, β0)×

E
[
−B11π

(
α1
0, β

1
0 , X3

)
B−1

11

(
α1
0, β

1
0 , X3

)
B12

(
α1
0, β

1
0 , X3

)
∆
(
α1
0, β

1
0 , X3

)
G2

(
α1
0, β

1
0 , X3

)
+

B12

(
α1
0, β

1
0 , X3

)
∆
(
α1
0, β

1
0 , X3

)
G⊤

2

(
α1
0, β

1
0 , X3

)]
− 2G1

(
α1
0, β

1
0

)
B11 (α0, β0)

−1
×

E
[
B12

(
α1
0, β

1
0 , X3

)
SαΣ

−1
κ

(
α1
0, β

1
0 , x3

)
Σπ

(
α1
0, β

1
0 , X3

)
Σ−1

κ

(
α1
0, β

1
0 , X3

)
SαG2

(
α1
0, β

1
0 , X3

)⊤]
,

var
(
Ib33n

)
is as var

(
Ib32n

)
with α1

0, β
1
0 and π replaced by α0

0, β
0
0 and 1−π and cov(Ib3jn, I

b
3kn) = 0 for j 6= k = 1, 2, 3

and the conclusion follows by CLT and CMT. Similarly for the profile estimator τ̂p using (A-20), (A-19), Lemma

A.5 and LLN we have

Ip32n = G1

(
α1
0, β

1
0

)⊤
Ξ (α0, β0)

−1 1

n1/2

n∑

i=1

Ti

πi
q1
[
g−1

(
X⊤

1iβ0 +X⊤
2iαβ0

(X3i)
)
, Yi

]
×

[
X1i +

(
X⊤

2i∂αβ0
(X3i)

∂β⊤

)⊤
]
+

1

n1/2

n∑

i=1

Ti

πi
G2

(
α1
0, β

1
0 , X3i

)⊤
q1
(
X⊤

1iβ0 +X⊤
2iαβ0

(X3i) , Yi

)
×

S−1
α Σκ (α0, β0, X3)

−1 [
X⊤

1i, X
⊤
2i, 0

⊤
]⊤

+ op (1) ,
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hence

var (Ip32n) = G1

(
α1
0, β

1
0

)⊤
Bp (α0, β0, π)G1

(
α1
0, β

1
0

)
+ E

[
G2

(
α1
0, β

1
0 , X3

)⊤
SαΣκ

(
α1
0, β

1
0 , X3

)−1

Σπ

(
α1
0, β

1
0 , X3

)
Σκ

(
α1
0, β

1
0 , X3

)−1
SαG2

(
α1
0, β

1
0 , X3

)]
+

2D1

(
α1
0, β

1
0

)⊤
Ξ (α0, β0)

−1
E
[
∆11

(
α1
0, β

1
0 , X3

)
+

∆12

(
α1
0, β

1
0 , X3

)
G2

(
α1
0, β

1
0 , X3

)]
,

where

∆11

(
α1
0, β

1
0 , X3

)
=
[
B11π

(
α1
0, β

1
0 , X3

)
−B12

(
α1
0, β

1
0 , X3

)
B22

(
α1
0, β

1
0 , X3

)−1
B21π

(
α1
0, β

1
0 , X3

)]
×

B11

(
α1
0, β

1
0 , X3

)−1
∆
(
α1
0, β

1
0 , X3

)
,

∆12

(
α1
0, β

1
0 , X3

)
=
[
B12π

(
α1
0, β

1
0 , X3

)
−B12

(
α1
0, β

1
0 , X3

)
B22

(
α1
0, β

1
0 , X3

)−1
B22π

(
α1
0, β

1
0 , X3

)]

∆
(
α1
0, β

1
0 , X3

)
,

and var(Ip33n) is as var(Ip32n) with α1
0, β1

0 and π replaced by α0
0, β0

0 and 1 − π and var(Ip3jn, I
p
3kn) = 0 for

j 6= k = 1, 2, 3. Thus the conclusion follows by CLT and CMT.

Table 1: Monte Carlo - Gaussian Design

βδ
2 αδ

δ = 0 n Bias IQR RAMSE

Backfitting 100 -0.028 0.785 0.654

200 -0.005 0.513 0.497

400 0.003 0.353 0.390

Profile 100 -0.003 0.668 0.623

200 0.009 0.457 0.487

400 0.007 0.324 0.383

δ = 1

Backfitting 100 0.019 0.693 0.588

200 0.027 0.457 0.473

400 -0.007 0.281 0.400

Profile 100 -0.023 0.582 0.564

200 0.030 0.424 0.467

400 -0.006 0.284 0.394

Note: Gaussian design with β0
20 = 1 and β1

20 = 3. Similarly, α0
0(u) = 3 sin(2u) and α1

0(u) = 3 cos(2u). IQR

stands for Inter Quartile range and RAMSE stands for Root Average Mean Square Error.
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Table 2: Average Treatment Effect - Gaussian Design

Backfitting Profile Eff. IPW

n Bias IQR Bias IQR Bias IQR

100 0.0169 0.5580 -0.0167 0.5179 -0.0737 0.7503

200 -0.0158 0.3978 -0.0153 0.3720 -0.0466 0.5488

400 -0.0146 0.2870 -0.0143 0.2554 -0.0238 0.3939

Note: Gaussian design with τ0 = 0. Eff. IPW stands for the efficient semiparametric estimator of Hirano et al.

(2003).

Table 3: Monte Carlo - Poisson Design

βδ
2 αδ

δ = 0 n Bias IQR RAMSE

Backfitting 100 -0.916 4.409 3.025

200 -0.235 0.939 1.742

400 -0.080 0.458 1.189

Profile 100 -0.428 1.110 2.071

200 -0.135 0.736 1.209

400 -0.044 0.324 0.772

δ = 1

Backfitting 100 -0.400 1.959 1.462

200 -0.138 0.757 1.050

400 -0.071 0.396 0.783

Profile 100 -0.096 0.536 1.010

200 -0.012 0.318 0.676

400 -0.007 0.207 0.494

Note: Poisson design with β0
20 = β1

20 = −1 and α0
0(u) = α1

0(u) = sin(πu). IQR stands for Inter Quartile range

and RAMSE stands for Root Average Mean Square Error.

Table 4: Average Treatment Effect - Poisson Design

Backfitting Profile Eff. IPW

n Bias IQR Bias IQR Bias IQR

100 -0.0182 0.5838 -0.0106 0.2493 0.0121 0.1765

200 -0.0085 0.3177 0.0038 0.1384 0.0102 0.1244

400 0.0041 0.1806 0.0011 0.0820 0.0033 0.0848

Note: Poisson design with τ0 = 0. Eff. IPW stands for the efficient semiparametric estimator of Hirano et al.

(2003).
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Table 5: Monte Carlo - Logit Design

βδ
2 αδ

δ = 0 n Bias IQR RAMSE

Backfitting 100 0.121 1.470 5.369

200 -0.056 0.911 2.787

400 -0.073 0.565 1.763

Profile 100 0.110 1.416 2.810

200 -0.134 0.831 1.703

400 -0.080 0.536 1.072

δ = 1

Backfitting 100 -0.099 0.763 2.213

200 -0.068 0.464 1.393

400 -0.038 0.307 0.990

Profile 100 -0.132 0.753 1.536

200 -0.070 0.438 0.957

400 -0.044 0.285 0.651

Note: Logit design with β0
20 = β1

20 = −1 and α0
0(u) = α1

0(u) = sin(πu). IQR stands for Inter Quartile range and

RAMSE stands for Root Average Mean Square Error.

Table 6: Average Treatment Effect - Logit Design

Backfitting Profile Eff. IPW

n Bias IQR Bias IQR Bias IQR

100 -0.0132 0.1997 0.0072 0.1399 -0.0035 0.1466

200 -0.0044 0.0994 0.0039 0.0940 0.0033 0.0981

400 0.0019 0.0668 0.0012 0.0636 0.0013 0.0642

Note: Logit design with τ0 = 0. Eff. IPW stands for the efficient semiparametric estimator of Hirano et al.

(2003).
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