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T-type Ca2þ channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-
type Ca2þ currents are often increased in various pathological pain conditions, such as inflammation or
nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca2þ

channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight
treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine
triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population
size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca2þ currents while
having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also
increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor
U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-
positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG
cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-
positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance
of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a ‘reserve
pool’ of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under
control conditions.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

T-type Ca2þ channels are increasingly recognized as an impor-
tant ion channel in peripheral pain pathways [1e4]. The family
consists of three subunits, CaV3.1eCaV3.3, encoded by CACNA1G,
CACNA1H and CACNA1I genes [5]. These channels have fast kinetics
and low (�70 to�60mV) threshold for activation, enabling them to
be partially active at voltages near the neuronal resting membrane
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currents are often called ‘low voltage-activated’ (LVA) currents. In
the peripheral somatosensory system, T-type Ca2þ channels are
expressed in small, TRPV1-positive nociceptive neurons [6e8] and
in two populations of low-threshold mechanoreceptors (LTMRs):
Ad- and C-LTMRs, which innervate skin hair follicles [8e10]. CaV3.2
is the predominant T-type channel isoform expressed in sensory
neurons [11]. CaV3.2 expression was reported in various compart-
ments of peripheral fibers including peripheral nociceptive nerve
endings and axons of skin afferents [7,9], nodes of Ranvier of Ad
fibers [9] and presynaptic terminals of nociceptive fibers in the
spinal cord ([12] but cf. [9]). Conditional knock-out of CaV3.2 [9] or
specific knock-down of this subunit in dorsal root ganglion (DRG),
using intrathecal injection of antisense oligonucleotides [13,14],
resulted in potent anti-nociceptive effects in models of neuropathic
and inflammatory pain. Pharmacological inhibitors of T-type Ca2þ

channels consistently display analgesic efficacy in rodent pain
models [15e17]. CaV3s are clinically validated drug targets for pain
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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[2] and several novel selective T-type channel blockers are
currently under clinical trials as analgesics [18e20].

A flip side of CaV3.2 expression in pain pathways is that an in-
crease in this channel activity and/or abundance can have a pro-
algesic effect. LVA Ca2þ currents are often increased in patholog-
ical pain conditions, such as diabetic neuropathy [14,21], peripheral
nerve injury or inflammation [22e24]. Mechanistically, an
enhancement of channel trafficking to the plasma membrane
(perhaps via the N-linked glycosylation) [25,26] and enhanced
retention at the plasma membrane due to the increased deubi-
quitination [23] were reported as potential contributors to the
increased abundance of LVA channels in these pain conditions. In
the present study we investigated the effect of inflammatory con-
ditions on functional expression of CaV3.2 in small-diameter DRG
neurons.
Fig. 1. Inflammatory treatment increases pool size of DRG neurons displaying low-voltage a
ATP, 500 nM NE, 500 nM PGE2) increased percentage of LVA-positive neurons. Shown are
diameter DRG neurons recorded with whole-cell patch clamp using voltage protocol depicte
right summarizes the LVA current amplitudes in LVA-positive neurons in both conditions.
without inflammatory treatment (see Methods for detail). Bar chart on the right summariz
either condition. For (A) and (B) number of neurons is indicated within the charts; data fro
2. Materials and methods

DRG culture. DRG neurons were cultured as described [27,28].
Adult Sprague Dawley rats (170 ge180 g) were humanely eutha-
nized by isoflurane overdose in accordance with the guidelines of
the Animal Care and Ethical Committee of Hebei Medical Univer-
sity, Shijiazhuang, China. DRGs from all spinal levels were extracted
and dissociated using collagenase/dispase method as described
[27,28]. Dissociated cells we cultured in DMEN supplemented with
GlutaMax I, 10% fetal calf serum, penicillin (50 U/ml) and strepto-
mycin (50 mg/ml) and plated on poly-D-lysine coasted glass cover-
slips for 2e5 days in a humidified incubator (37 �C, 5% CO2).

Electrophysiology. All recordings were made at room temper-
ature using Multiclamp 700B amplifier in combination with
pCLAMP 10.4 software (Axon Instruments, USA). A whole-cell
configuration of the patch clamp technique was used throughout.
ctivated (LVA) Ca2þ currents. (A) Cocktail of inflammatory mediators (100 nM BK, 2 mM
exemplary current traces from control (top) and inflammatory cocktail-treated small-
d above. Pie-charts summarize the percentage of LVA-positive neurons. Bar chart on the
(B) Exemplary micrographs of live cell imaging at 0 h (left) and 24 h (right) with or
es the percentage of morphologically intact neurons at the end of 24 h incubation in
m at least three independent preparations.
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Patch pipettes were pulled from borosilicate glass using a hori-
zontal micropipette puller (P-97, Sutter Instruments, USA) and fire-
polished to a final resistance of 2e4 MU. The standard intracellular
solution contained (in mM): 135 CsCl; 3 MgCl2; 10 EGTA; 10 HEPES;
3 Mg-ATP; 0.6 GTP (pH 7.4 adjusted with CsOH). The standard bath
solution contained (in mM): 150 TEA-Cl; 2 CaCl2; 10 HEPES; 10
glucose (pH 7.4 adjusted with CsOH). LVA currents were measured
by 50 ms square voltage pulses to�40 mV from a holding potential
of �90 mV. Recordings were sampled at 4 kHz. A low-profile
perfusion chamber fed by a gravity perfusion system was used for
solution exchange.

Live cell imaging. DRG were dissociated as described above and
cultured on 15 mm glass-bottom dishes (NEST). Twenty four hours
after dissociation the dishes were put into a humidified (37 �C, 5%
CO2) live cell imaging station (GSI-D35, TOKAI HIT) and monitored
for the next 24 h under control conditions or in the presence of
inflammatory mediators. Images were taken every 1 min. At the
end of the 24 h incubation, the number of morphologically intact
neurons was evaluated and compared to that at the beginning of
incubation.

Immunohistochemistry. DRG were dissociated as described
previously and cultured on 10 mm cover-glasses in 24-well plates
in the presence and absence of the test compounds. Cover-glasses
Fig. 2. BK and ATP but not NE or PGE2 increase the proportion of LVA-positive DRG neurons
positive neurons (right) for DRG neurons individually treated with 100 nM BK, 2 mM ATP, 500
proportion of LVA-positive neurons for each condition tested in (A); *, *** significantly differ
current amplitudes in LVA-positive neurons for each condition tested in (A). For (AeC) nu
preparations.
with DRG cultures were washed with 0.1 M phosphate buffered
saline (PBS; Sigma) and blocked for 2 h with blocking buffer (10%
Goat serum in 0.1 M PBS; Sigma). Primary anti-CaV3.2 antibody
(Alomone, Rabbit, Cat#: ACC-025) was diluted (1:200) in 0.3%
Triton X-100/PBS buffer and incubated overnight at 4 �C. On a
following day sections were washed with 0.1 M PBS and incubated
with secondary antibody (Jackson, FITC-Goat Anti-Rabbit IgG) for
4 h at room temperature. Each cover-glass was washed with PBS
and incubated with DAPI for 10 min, followed by repeated PBS
washes and mounted on microscope slides using Vectashield.
Staining was visualized using a confocal fluorescent microscope
(Leica, SP-5).

RT-PCR. DRG were dissociated and cultured on 10 mm cover-
glasses in 24-well plates in the presence or absence of the test
compounds. Total RNA was extracted using a commercial RNA
isolation kit (RNAiso, Takara). Isolated RNA was dissolved in 20 ml
DEPC-treatedwater and reverse-transcribed using an RT reagent kit
(PrimeScript™ with gDNA Eraser, Takara) and a thermal cycler
(Mastercycler, Eppendorf). qPCR reactions were performed using a
kit (SYBR Premix Ex TaqII (Tli RNase H Plus), Takara) and the fluo-
rescent DNA detected and quantified with a FQD-48A(A4) system
(BIOER). The following primers were used: Cacna1h sense: 50-
TGCCCACGGAGTCTATGAGT-30; Cacna1h antisense: 50-
. (A) Exemplary current traces (left) and pie-charts summarizing the percentage of LVA-
nM NE, 500 nM PGE2 or vehicle control (as indicated). (B) Statistical comparison of the
ent from the control group with P < 0.05 or P < 0.001; c2 test. (C) Summary of the LVA
mber of neurons is indicated within the charts; data from at least three independent
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GTTGTAGGGGTTCCGGATGT-30 and Gapdh sense: 50-
GACATGCCGCCTGGAGAAAC-30; Gapdh antisense: 50-AGCCCAG-
GATGCCCTTTAGT-30.

Chemicals. NE, Hoe-140, MG132 and A-317491 were purchase
from MCE; PGE2 was from TCI; all other chemicals were from
Sigma.

Statistics. All data are given as mean ± S.E.M. Differences be-
tween groups were assessed by Student's t-test (paired or unpaired,
as appropriate). c2 test was used to determine whether there were
differences in the proportion of cells responding to a treatment. The
differences were considered significant at P � 0.05. Statistical an-
alyses were performed using Origin 8.6 (OriginLab Corporation,
Northampton, CA, USA).

3. Results

Up-regulation of activity [29] or abundance [23,24] of T-type
Ca2þ channels was reported to contribute to pain and hyperalgesia
observed in several inflammatory models, including
Fig. 3. The increase in the proportion of LVA-positive DRG neurons is mediated by the Gq/11

the percentage of LVA-positive neurons (right) for DRG cultures treated with (i) the cocktail
same cocktail with the addition of either PLC inhibitor U73122 (1 mM), or (iii) B2 receptor an
shown is the exemplary trace from the saline-treated control neuron. (B) Statistical comp
significantly different from the control group; P < 0.05; c2 test. (C) Summary of the LVA c
number of neurons is indicated within the charts; data from at least three independent pr
experimentally-induced irritable bowel syndrome [24] and com-
plete Freund's adjuvant (CFA)-induced chronic inflammation
[23,29]. Thus, we tested if and how functional expression of LVA
channels is changed under the inflammatory conditions in vitro. We
cultured DRG neurons overnight (24 h) in the presence of a cocktail
of inflammatory mediators (100 nM BK; 2 mM ATP; 500 nM NE and
500 nM PGE2) to mimic inflammation, and performed patch-clamp
recording to evaluate LVA Ca2þ current amplitude and also the
population size of the DRG neurons expressing LVA currents (‘LVA-
positive neurons’). We recorded from small-diameter (~20 mm
diameter, ~25 pF capacitance) DRG neurons, which are predomi-
nantly TRPV1-positive under our experimental conditions [27].
Overnight treatment with the inflammatory cocktail significantly
increased the percentage of the LVA-positive neurons from 21/43
(48.8%) to 31/42 (73.8%; p < 0.05; Fig.1A) but did not affect the peak
LVA current amplitude (Fig. 1A). The mean LVA current amplitudes
were �113.6 ± 18.5 pA (n ¼ 21) and �105.3 ± 14.5 pA (n ¼ 31) in
control and inflammatory treated neurons, respectively. There was
no significant effect of the inflammatory cocktail on the LVA current
-PLC signaling cascade. (A) Exemplary current traces (left) and pie-charts summarizing
of inflammatory mediators (100 nM BK, 2 mM ATP, 500 nM NE, 500 nM PGE2), (ii) the
tagonist Hoe-140 (10 nM) or (iv) P2X2/3 antagonist A317941 (1 mM), as indicated. Also
arison of the proportion of LVA-positive neurons for each condition tested in (A); *
urrent amplitudes in LVA-positive neurons for each condition tested in (A). For (AeC)
eparations.
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voltage dependence or kinetics (not shown).
One possible explanation for the observed results could be that

the inflammatory treatment causes neuronal death, and that LVA-
negative neurons are more susceptible to this effect for some un-
known reason. However, during 24 h live cell imaging of DRG cul-
tures we did not observe any significant cell death induced by the
inflammatory cocktail, as compared with control (Fig. 1B). After
24 h incubation 82/114 (71.9%) neurons monitored in control cul-
ture and 63/85 (74.1%) neurons monitored in the inflammatory
cocktail-treated culture remained morphologically intact (Fig. 1B).
Thus, a feasible explanation for an increase in the proportion of
LVA-positive neurons after the inflammatory treatment is the in-
crease of functional T-type channel abundance in neurons that do
not normally display measurable LVA currents.

We next tested the effects of individual inflammatory mediators
on both the LVA amplitude and the incidence of LVA-positive
neurons in the DRG culture. Overnight incubation with BK
(100 nM) or ATP (2 mM) significantly increased the percentage of
LVA-positive neurons from 25/54 (46.3%; control) to 43/54 (79.6%;
BK; p < 0.05) or 39/56 (69.6%; ATP; p < 0.05), respectively
(Fig. 2AeB). Again, therewas no effect on the peak LVA Ca2þ current
amplitude by either treatment (Fig. 2A, C). Neither NE (500 nM) nor
PGE2 (500 nM) had an effect on the percentage of LVA-positive
neurons: 21/46 (45.6%) in NE-treated group and 20/47 (42.6%) in
PGE2-treated group were LVA-positive (Fig. 2A, B; p > 0.05
compared to control). Both compounds had no effect on LVA Ca2þ

current amplitude (Fig. 2A, C).
We next tested the signaling cascade underlying the BK and ATP

effects on the pool size of LVA-positive DRG neurons. BK signals
Fig. 4. Expression of CaV3.2 T-type channel subunit in DRG neurons is not affected by the
cultures incubated for 24 h with (right) or without (left) 5 mM MG132. Control group repres
levels in DRG cultures incubated for 24 h with either a vehicle control or the cocktail of infla
mediators individually at the specified concentration. (C) Exemplary confocal images of DRG
CaV3.2 antibody. (D) Summary of CaV3.2 staining intensity for conditions shown in (C). For
dependent preparations.
through the constitutive B2 receptors and inducible B1 receptors,
both belong to the Gq/11-coupled G protein coupled receptors [30].
ATP activates ionotropic P2X receptors (DRG neurons express pre-
dominantly P2X2, P2X3 and their multimers [31,32]) and metabo-
tropic P2Y receptors (DRG express predominantly P2Y1 and P2Y2
[33]). Similarly to BK receptors [30], P2Y1 and P2Y2 are coupled to
the Gq/11 signaling cascade which involves activation of phospho-
lipase C (PLC), hydrolysis of membrane phosphoinositide phos-
phatidylinositol 4,5-bisphosphate (PIP2) into inositol trisphosphate
(IP3) and diacylglycerol (DAG) and triggering the appropriate
downstream signaling cascades [30,34]. PLC inhibitor U-73122
(1 mM) completely abolished the effect of the inflammatory cocktail
on the abundance of LVA-positive neurons in DRG culture. Thus, in
the cultures treated overnight with the inflammatory cocktail in
the presence of U-73122 only 19/45 (42.2%) of neurons displayed
LVA currents, a proportion similar to that observed in the control
conditions (22/50, 44.0%; p < 0.05; Fig. 3A, B). Therewas no effect of
U-73122 on the peak LVA Ca2þ current amplitude (Fig. 3C).

We next used a specific antagonist of B2 receptors, Hoe-140, to
confirm the contribution of the BK signaling cascade to the action of
the inflammatory cocktail. In cultures treated with the inflamma-
tory cocktail in the presence of Hoe-140 (10 nM) overnight only 23/
48 (48.0%) of neurons displayed LVA currents, a proportion similar
to that in the control conditions (Fig. 3A, B). Consistent with the
effect of the PLC inhibitor U-73122, P2X2/P2X3 receptor antagonist
A-317491 (1 mM) did not abolish the increase in the proportion of
LVA-positive neurons induced by the inflammatory treatment:
there were 29/43 (67.5%) LVA-positive neurons in cultures treated
with the inflammatory cocktail and A-317491, thus producing a
inflammatory treatment. (A) Pie-charts of the proportion of LVA-positive neurons in
ents pooled data from all the control cultures used in this study. (B) Summary of mRNA
mmatory mediators (100 nM BK, 2 mM ATP, 500 nM NE, 500 nM PGE2) or each of these
neurons treated in the same way as in (B) (scale bar is 50 mM) and stained with anti-
(AeD) number of neurons is indicated within the charts; data from at least three in-
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similar proportion to cultures treated with the inflammatory
cocktail only (31/42 or 73.8% neurons) (Fig. 3A, B). Neither Hoe-140
nor A-317491 produced an effect on the LVA current amplitude
(Fig. 3A, C).

Earlier studies suggest that at least two mechanisms may
contribute to the increased abundance of T-type channels in noci-
ceptors under inflammatory conditions: (i) increased trafficking
[25,26] and (ii) enhanced membrane retention due to the increased
deubiquitination by the deubiquitinating enzyme USP5 [23]. In
addition, increased expression can also potentially contribute. To
investigate these mechanisms we first tested the effect of the
proteasome inhibitor, MG132, on the pool size of LVA-positive
neurons in DRG culture. MG132 reduces the degradation of
ubiquitin-conjugated proteins; it was successfully used to prevent
degradation of CaV3.2 channels in DRG neurons [23]. MG132 (5 mM)
treatment had no effect on the proportion of LVA-positive neurons.
After overnight treatment with MG132 there were 17/40 (42.5%) of
LVA-positive neurons (Fig. 4A). MG132 did not affect LVA current
amplitude (�124.3 ± 23.5 pA, n ¼ 17), which is consistent with the
previous finding [23]. We also tested the effect of inflammatory
conditions on the expression of CaV3.2 in DRG neurons using RT-
PCR and immunostaining. There was no significant increase of
CaV3.2 transcript in DRG cultures after overnight incubation in the
presence of the inflammatory cocktail (Fig. 4B). Confocal imaging of
cultured DRG neurons immunostained for CaV3.2 revealed there
were also no significant changes in the total CaV3.2 protein abun-
dance in DRG neurons after either of inflammatory treatments
(inflammatory cocktail or individual inflammatory mediators;
Fig. 4C, D).

4. Discussion

Here we demonstrate that inflammatory mediators, acting via
the Gq/11-PLC signaling cascade, strongly increase the pool size of
the LVA-positive DRG neurons. Among the mediators tested (BK,
ATP, NE and PGE2) only BK and ATP demonstrated such an activity
when used individually. BK perhaps plays a dominant role in the
effect since selective B2 receptor antagonist abolished the action of
the inflammatory cocktail (although some cross-reactivity of Hoe-
140 at P2Y receptors cannot be excluded). We could not detect an
increase in the expression of CaV3.2 after the inflammatory treat-
ment onmRNA or protein levels. Similarly, the inability of MG132 to
increase the proportion of LVA-positive neurons argues against
reduced ubiquitination as the underlying reason for the effect. It
seems logical to propose that stimulation of Gq/11-PLC signaling
pathway by B2 or P2Y receptors stimulates recruitment of the
‘reserve pool’ of CaV3.2 channels, particularly in neurons which do
not normally display robust LVA currents. Thus, some neurons that
do not normally express functional CaV3.2 at the plasmamembrane
may possess an intracellular store of channels, and BK treatment
may promote their membrane insertion, making these neurons de
novo LVA-positive. This hypothesis may explain a paradoxical lack
of effect of the inflammatory treatment on the mean LVA Ca2þ

current amplitude. There might be an effective control mechanism
responsible for the tonic levels of functional CaV3.2 channels at the
plasma membrane and while inflammatory treatment does not
change this level, it triggers the recruitment of a ‘CaV3.2 reserve’ in
some ‘nominally’ LVA-negative neurons, converting these into the
LVA-positive. A very similar phenomenonwas recently reported for
delta-opioid receptors (DOR); indeed BK treatment potently
increased the pool size of the DOR-competent DRG neurons
without enhancing overall DOR activity in the individual neurons
[35]. Taken together our data report novel mechanism that may
contribute to the inflammatory overexcitability of peripheral so-
matosensory fibers.
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