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An online application for the classification and

evidence evaluation of forensic glass fragments

Gary Napierab Agostino Nobilec Tereza Neocleousb

June 19, 2015

Abstract

We present an easy-to-use and freely accessible online application
for the analysis of forensic glass fragments. The application is browser
based and takes as input .csv or .txt files containing measurements
from glass fragments obtained using a scanning electron microscope
with an energy-dispersive X-ray (SEM-EDX) spectrometer. The ap-
plication was developed to (i) classify glass fragments into use-type
categories (classification), and (ii) compute the evidential strength of
two sets of fragments under competing propositions (evidence evalua-
tion). Detailed examples of how to use the application for both tasks
are given, which highlight its user-friendly interface. The suitability of
the statistical methods used by the application was checked using sim-
ulation studies, and improvements upon previous methods were found
in both tasks.

Keywords: Bayes factor; chemical composition; SEM-EDX anal-
ysis

1 Introduction

Glass fragments are one of many sources of forensic evidence. Fragments
from a broken item can be recovered from a crime scene and sent to a
forensic laboratory, where various measurements are recorded for analysis.
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Glasgow, Glasgow, UK. E-mail: gary.napier@glasgow.ac.uk
bSchool of Mathematics and Statistics, University Gardens, University of Glasgow,

Glasgow, G12 8QW, UK
cDepartment of Mathematics, University of York, Heslington, York, YO10 5DD, UK
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Analysis of glass fragments is mainly focused on evidence evaluation, which
involves computing the evidential strength of two sets of fragments (from
the crime scene and from a suspect) under two competing propositions (the
prosecution and defence propositions). Measurements obtained from glass
fragments can also be used to help determine their use-type, thus provid-
ing additional information about the type of the glass item from which the
fragments obtained from a suspect may have originated. As most glass frag-
ments analysed are very small, their use-type cannot always be determined
by their thickness or colour [1], and so measurements of physicochemical
features are obtained. Here, focus is placed upon chemical composition
measurements acquired from using a scanning electron microscope with an
energy-dispersive X-ray (SEM-EDX) spectrometer [1]. The elemental com-
position data consist of the percentage weights (wt%) of the main elements
comprising a glass fragment.

In this paper, we present an easy-to-use online application for the pur-
poses of (i) classifying glass fragments into use-type categories (classifica-
tion), and (ii) computing the evidential strength of two sets of fragments
under complementary propositions (evidence evaluation). The application
is easily accessible and straightforward to use for both tasks. It is avail-
able at http://gnapier.shinyapps.io/GlassClassificationAndEvaluation/

and was developed using the shiny package, which is part of the statistical
programming language R [2].

The paper is organised as follows: Section 2 describes the database used
in the development of the application. Section 3 summarises the statistical
model, and the classification and evidence evaluation methods developed in
[3] and used by the application. Section 4 provides examples of how to use
the application in the classification and evidence evaluation tasks. Section
5 discusses how the evidence evaluation results are reported. Concluding
remarks are provided in Section 6.

2 Training data

The database used in the development of the application was provided by the
Institute of Forensic Research, Krakow, and it consists of measurements ob-
tained in an experimental setting using a scanning electron microscope with
an energy-dispersive X-ray (SEM-EDX) spectrometer [1]. SEM-EDX analy-
sis produces measurements, in the form of percentage weights (wt%), on the
main chemical elements that comprise the composition of a glass fragment.
These are oxygen (O), sodium (Na), magnesium (Mg), aluminium (Al), sili-
con (Si), potassium (K), calcium (Ca) and iron (Fe). The database consists
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of glass fragments from 320 glass items across five use-types (26 bulbs, 94
car windows, 16 headlamps, 79 containers and 105 building windows). The
chemical compositions of four glass fragments from each item were measured
three times. Thus, the database has a hierarchical structure: three replicate
measurements on four fragments from each of 320 glass items of five possible
use-types.

As the measurements obtained from SEM-EDX are compositional, there
is, as frequently happens with compositional data, a large number of zero
measurements. Prior to model building, the percentage weights were trans-
formed, by taking square roots of the ratios between each element weight
and the weight of oxygen. The square root transformation was employed
because it turned out to be more effective at stabilizing the variability of
the ratios; see [3] for further details on the choice of this transformation.
The statistical model used by the application, and the methods used for
classification and evidence evaluation, will be described in Section 3.

3 Methods

This section only provides a summary of the model and methods developed
in [3], to which the reader is referred for full details.

3.1 Statistical model

A Bayesian mixed-effects model was used to account for the hierarchical
structure of the database. The model incorporates a fixed effect for the
mean of each use-type and three random effects: at item level, fragment
level, and replicate measurement level. Denote the square root ratios from
the k-th replicate measurement on the j-th fragment of the i-th glass item
of use-type t by the p-dimensional vector ztijk. It is then assumed that

ztijk = θt + bti + ctij + ǫtijk,

bti
iid
∼ Np(0,Ω

−1
t ), ctij

iid
∼ Np(0,Ψ

−1), ǫtijk
iid
∼ Np(0,Λ

−1).
(1)

The fixed effect for the mean of use-type t is denoted by θt; the item level
random effect by bti; the fragment within-item random effect by ctij ; and
the error at measurement level by ǫtijk. The random effects are assumed to
have multivariate normal distributions, with unknown precision (i.e. inverse
covariance) matrices Ωt, Ψ and Λ. Then, for a glass item z of use type Tz = t
with JK measurements, the distribution of z is

z|Tz = t, ξ ∼ NJKp(1JK ⊗ θt, Σt), (2)
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where ξ = {θ,Ω,Ψ,Λ} collectively denotes the model parameters and 1d is
a column vector of d 1’s. The covariance matrix Σt is given by

Σt = (1JK1′JK)⊗ Ω−1
t +

[

IJ ⊗ (1K1′K)
]

⊗Ψ−1 + IJK ⊗ Λ−1, (3)

where Id is the d× d identity matrix.

The prior distributions placed on the fixed effects θt are multivariate normal
truncated to the positive orthant to ensure that the square root transformed
means are non-negative:

θt
iid
∼ Np(0,Φ

−1), θt > 0, t = 1, . . . , T.

The covariance matrix Φ−1 is fixed. The precision matrices for the random
effects have conjugate Wishart priors placed upon them:

Ωt ∼ Wp(d1t, At), Ψ ∼ Wp(d2, B), Λ ∼ Wp(d3, C).

For more details on the prior and the Markov Chain Monte Carlo (MCMC)
methods used see [3]. It is worth highlighting that the application does
not need to run any MCMC as it uses the posterior draws obtained from
modelling the database, thus making the application quick to use. The
flip side of this point is that the application is not designed to re-estimate
the model using a different background database, possibly available to the
potential user.

As briefly mentioned in Section 2, the database contains a large proportion of
zeros. To handle these zeros the background database was partitioned into
subsets based on elemental configurations. The elemental configurations
denote whether an element is present (above detection limit) or absent (be-
low detection limit) from the composition of a glass item. The background
database consists of glass items with ten different elemental configurations,
as shown in Figure 1. However, as the elements iron and potassium are
responsible for the majority of the zeros, focus is placed on the presence
or absence of these two elements only, thus reducing the number of config-
urations from ten to four. A Bayesian hierarchical model like (1) is then
estimated for each subset of the background database for the four elemen-
tal configurations. For details on how the Bayesian hierarchical models for
the four elemental configurations are brought together to form a composite
model see [3].

3.2 Classification

Being able to predict the use-type of a glass fragment can help at the inves-
tigation stage of a legal case. To classify fragments, the application uses the
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Figure 1: Plot displaying the ten elemental configurations at item level observed
in the glass database. The percentage of compositional zeros by element
is also shown in the barplot at the top; the percentage of data associated
with each configuration is shown in the barplot on the right. The con-
figurations used in modelling are coarser and only consider presence and
absence of Fe and K. The map between these and the ones in the plot
is as follows: (Fe,K) = {C}, (Fe,K) = {A,F,G, J}, (Fe,K) = {D,E},
(Fe,K) = {B,H, I}, where absence is denoted with a bar over the chem-
ical element.

posterior predictive distribution of the use type Ty of a newly observed glass
item’s measurement vector y to be classified, conditional on the background
database D described in Section 2, and the new item y. Let y be a vector
consisting of K̃ replicate measurements on each of J̃ fragments from the
same glass item. The use-type probability of y is given by

p(Ty = t|y, D) ∝ p(Ty = t)
αtm +Ntm

∑M
r=1(αtr +Ntr)

Eξm|Dm
[p(y|Ty = t, Cy = m, ξm)].

(4)
The first two expressions on the right-hand side of (4) derive from modelling
the counts Ntm of items in D that are of use-type t and configuration m.
The expressions give the use-type probabilities for a newly observed glass
item of use-type Ty given it has elemental configuration Cy = m, without
conditioning on the actual measurements y. These use-type probabilities
are reported in Table 1 for the case where one assumes that p(Ty = t) = 1/5
and αtm = 0.1 for all t and m, see [3] for further details on how they were
obtained.
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Table 1: Use-type probabilities for a new item with measurements y of use-type
Ty given it has elemental configuration Cy = m. The presence of iron
and potassium is denoted by Fe and K, while their absence is denoted
by Fe and K.

Glass type Cy = m

1: Fe, K 2: Fe, K 3: Fe, K 4: Fe, K

bulb 0.008 0.283 0.014 0.047
car window 0.516 0.126 0.432 0.239
headlamp 0.013 0.256 0.022 0.144
container 0.321 0.180 0.005 0.270
building window 0.142 0.155 0.527 0.300

The third term on the right-hand side of (4) is the predictive density of
y, according to the Bayesian hierarchical model (1) for the subset Dm of
the background database with elemental configuration m. This predictive
density is given as the expectation of the density p(y|Ty = t, Cy = m, ξm)
with respect to the posterior distribution of the model parameters ξm given
the data Dm. In practice, the expectation is estimated by averaging the
densities p(y|Ty = t, Cy = m, ξm) over a posterior sample of ξm’s, obtained
by means of MCMC methods.

The application classifies glass fragments into one of the five use-types con-
tained in the database: bulb, car window, headlamp, container and building
window. The classification results consist of the five posterior probabilities
of the use-types computed according to (4), with the glass fragments clas-
sified to the use-type with the largest posterior probability. Results of the
performance of the model in the classification task can be found in [3].

3.3 Evidence evaluation

Measurements from glass fragments obtained from a suspect can be used
as evidence in support (or against) the proposition that the suspect was
involved in the case under investigation. The statistical approach used to
evaluate the strength V of such evidence stems from Lindley [4]. A recent
overview is provided in [5, Chapter 10], whose terminology we adopt. The
strength of the evidence is given by the Bayes factor

V =
p(E|Hp, I)

p(E|Hd, I)
, (5)

where E = (x,y) is the evidence, Hp and Hd the prosecution and defence
propositions, and I additional background information related to the case.
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From the evidence E, x denotes the measurements obtained from a sample of
glass fragments found at the crime scene, and y denotes the measurements
from glass fragments found on the suspect. The prosecution proposition,
Hp, would be that the measurements y are from the same item as the mea-
surements x. The defence proposition, Hd, would be that y is not from the
same item as x. Using the Bayesian hierarchical model (1), with the details
found in [3], V can be rewritten as

V =
Eξm|Dm

[

p(x,y|T(x,y) = t, C = m, ξm)
]

T
∑

s=1

p(Ty = s|C = m,D)Eξm|Dm
[p(x|Tx = t, C = m, ξm) p(y|Ty = s, C = m, ξm)]

.

(6)
Under Hp both x and y are assumed to come from the same glass item,
thus their use-type is known. The application provides a drop-down menu
for the user to choose the use-type of the control fragments collected from
the crime scene. Under Hd the two sets of fragments are assumed to come
from different sources, and are therefore independent. This means that there
is uncertainty surrounding the origin, and thus use-type, of the recovered
fragments from the suspect. This is why the denominator of V in (6) is a
weighted average across the different use-types. As a reference, the applica-
tion returns the evidential value V on two different scales. The scales used
are the verbal scale of Evett [6], and the scale used by the Swedish National
Laboratory of Forensic Science (SKL) [7]. Performance of the model in the
evidence evaluation task can be found in [3]. The next section contains ex-
amples of how to use the application for both the classification and evidence
evaluation tasks.

4 Examples

This section is a walk-through of some examples of how to use the applica-
tion, starting first with examples of classifying glass fragments into use-type
categories.

4.1 Classification examples

To use the application to classify glass fragments, the user selects the classi-
fication tab and then loads a .csv or .txt data file containing measurements
from glass fragments obtained using SEM-EDX analysis. Figure 2 displays
the classification application screen and shows where the file with the data
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is to be loaded. Figure 2 displays an example data file and a description of
what the data files uploaded to the application are expected to contain.

Figure 3 displays an example from classifying measurements known to come
from a glass item of the use-type bulb. Once data has been uploaded to the
application the example data file is replaced by the uploaded data, for the
user to check that the data has been loaded correctly. This is also shown
in Figure 3 with the bulb measurements consisting of three replicate mea-
surements from two fragments. In this example the measurements where
correctly classified, with probability one, as being from a glass item of use-
type bulb. As shown from the simulation study in [3], the application is very
reliable at classifying measurement from bulbs, however, due to their similar
chemical make up, there is more uncertainty surrounding the classification
of car and building windows. This is shown in Figure 4 with measurements
from a car window being incorrectly classified as being from a building win-
dow; whenever a window type is misclassified it is most often misclassified
as the other window type.

Figure 2: Screenshot of the classification application screen. Here the application
informs the user on the types of data file to be used, that is .csv/.txt files
containing nine columns, with importance placed on the ordering of the
columns. To assist the user, an example data file of measurements from
two fragments, each with two replicate measurements, is also displayed.
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Figure 3: Classification example 1: classifying measurements from a bulb. The
results consist of the five use-type posterior probabilities and the use-
type to which the fragments have been classified to. Here the mea-
surements from the bulb have been correctly classified with posterior
probability 1.

Figure 4: Classification example 2: classifying measurements from a car win-
dow. The results consist of the five use-type posterior probabilities and
the use-type to which the fragments have been classified to. Here the
measurements from the car window have been classified with posterior
probability 0.635 as coming from a building window, and with posterior
probability 0.364 as coming from a car window.

4.2 Evidence evaluation examples

To use the application to evaluate the evidential strength of two sets of
fragments, the user first selects the evidence evaluation tab before uploading
two separate .csv/.txt files. The first set of measurements to be uploaded
to the application should be from fragments obtained from the crime scene,
as seen in Figure 5. As the use-type of fragments obtained from the crime
scene is known, this must be selected using the displayed drop-down menu.
There is no drop-down menu to select the use-type of the fragments obtained
from a suspect, as there is uncertainty surrounding their origin.
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Figure 5: Screenshot of the evidence evaluation tab showing where the two files
containing the two sets of measurements should be uploaded. As the
glass item from which the fragments obtained from the crime scene is
known, its use-type is also known, and so a drop-down menu for the user
to select the use-type of these fragments is included. There is no option
to select the use-type of the fragments obtained from the suspect, as
their is uncertainty surrounding their origin.

Figure 6 shows the results from a same-source comparison. This example
contains measurements known to be from the same glass item for the control
(from crime scene) and recovered (from suspect) samples. The two separate
files containing the measurements from the crime scene and suspect are also
displayed in Figure 6, for the user to ensure that the files were uploaded
correctly. For a same-source comparison we would expect V to have a large
value. Here the result concludes moderate support in favour of Hp (same-
source proposition).
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Figure 6: Evidence evaluation example 1: The strength of the evidence V ob-
tained from two sets of measurements that are known to come from the
same glass item (same-source comparison). For a same-source compar-
ison like this we would expect a large value for V . Here the evidence
results in moderate support in favour of Hp (same-source proposition).

Figure 7 shows the results from a different-source comparison. This example
consists of measurements from fragments from the crime scene and subject
that are known to come from different glass items. For a different-source
comparison we would expect to obtain support for the defence proposition
Hd (no support for Hp), that is V < 1. As can be seen from Figure 7 the
strength of this evidence was found to provide moderately strong evidence
to support Hd (different-source proposition).
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Figure 7: Evidence evaluation example 2: The strength of the evidence V ob-
tained from two sets of measurements that are known to come from dif-
ferent glass items (different-source comparison). For a different-source
comparison like this we would expect to obtain V < 1. Here the evidence
results in moderately strong support in favour of Hd (different-source
proposition).

Whenever the measurements from two sets of fragments have different el-
emental configurations, they are reported as coming from different glass
items, resulting in the strength of the evidence reported being V = 1/1000.
This is shown in Figure 8 where the measurements from the fragments found
at the crime scene have elemental configuration 1, while the measurements
from the fragments found on the suspect have elemental configuration 2.
This can easily be seen from looking at the columns for Fe and K from the
two files uploaded in Figure 8. The value V = 1/1000 comes from restricting
the strength of this type of evidence to ensure that it does not provide too
strong support in favour of a wrong proposition. Details on why this value
was chosen, and why this restriction was applied are discussed in Section 5.
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Figure 8: Evidence evaluation example 3: Results from comparing two sets of
measurements with different elemental configurations. As can be seen
from the loaded example files, the file containing the measurements
from the fragments obtained from the crime scene contain Fe, while the
measurements from the fragments found on the suspect do not. This
means that the elemental configurations of the two sets of fragments
differ and are therefore assumed to come from different glass items. This
results in V = 1/1000, that is, moderately strong support in favour of
Hd (different-source proposition).

5 Reported evidential value of glass fragments

Details of the simulation study carried out to assess the performance of the
model in the evidence evaluation task can be found in [3]. The model was
assessed in terms of the percentage of false positive (FP) and false negative
(FN) answers. A FP occurs when two sets of glass fragments are from
different sources, but V > v, for some critical value v, so that they are
evaluated as coming from the same source. A FN occurs when two sets of
fragments are from the same source, but V ≤ v, so they are evaluated as
coming from different sources. This provides the percentage of different-
source and same-source errors, respectively. For the critical value v = 1 the
different-source and same-source error rates obtained from the simulation
study were 1.4% and 4.4%, respectively, which are improvements on previous
publications using similar glass databases; see [8].

In a forensic context it is especially important to guard against the possibility
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of strongly misleading evidence [9, 10], that is, extremely low/high values of
V that are in strong support of the wrong proposition.

Strongly misleading evidence may occur for several reasons including: (a)
the models used in the computation of V are at best approximations, (b) the
relatively small size of the data used to estimate them, and (c) the possible
influence of prior specification on the numerator and denominator of (5). A
further reason, specific to our application, has already been mentioned at the
end of Section 4.2: whenever two sets of fragments have different elemental
configurations, they are assumed to have originated from different sources,
yielding V = 0 and hence extreme support for the defence proposition.
This assumption, although reasonable, may not always hold in practice: in
the glass dataset some objects have fragments with different configurations,
although this happens in less than 1% of the cases.

A simple procedure to avoid overwhelming support in favour of the wrong
proposition consists in restricting the values of V to the range (1/vT , vT ),
for some threshold vT . The verbal scale of [6] regards values of V between
1000 and 10000 as “Strong evidence to support” Hp, and values in excess of
10000 as “Very strong evidence to support” Hp. This suggests using either
vT = 10000 or vT = 1000 as threshold, depending on whether or not we
wish to allow glass evidence to count as “Strong evidence”.

It may also be of interest to consider the effect of the chosen vT on the
empirical cross-entropy (ECE) measure of [9]. The ECE is a measure of the
accuracy of the values of V , computed for a wide range of prior odds on Hp.
Figure 9 displays ECE plots (using the R package [11]) from our simula-
tion study, for different threshold values vT . The solid curves represent the
accuracy and the dashed curves perfect calibration, while the poorest per-
formance is represented by the dotted neutral reference curves. The closer
the solid and dashed curves are to one another the better the calibration
of the V values; see [9]. From Figure 9 it can be seen that the calibra-
tion is very good for small (less than 1) prior odds on Hp but deteriorates
for larger prior odds. Calibration improves for reduced thresholds vT , with
performance much better for the threshold vT = 1000.

Taking this into consideration, we decided to use vT = 1000 and restrict the
strength of the evidence V to the range (1/vT , vT ). The scales of [6] and
[7] used by the application have been truncated to reflect this range for the
evidence.
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of the prior odds in favour of Hp, that is O(Hp|I) =

Pr(Hp|I)/Pr(Hd|I).

6 Conclusion

We have presented a quick and easy-to-use online application for forensic
scientists who analyse SEM-EDX measurements from glass fragments as
forensic evidence in real-life casework. The application is a simple tool that
can be loaded from a web browser and allows for quick and easy classification
of glass fragments into use-type categories, and also for the evaluation of two
sets of glass fragments as forensic evidence. The application can be accessed
at http://gnapier.shinyapps.io/GlassClassificationAndEvaluation/. The
application only requires users to upload data files, as either .csv or .txt,
and outputs the required results immediately. The statistical methods used
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by the application were validated using simulation studies, and are improve-
ments upon previous methods in both the classification and evidence evalu-
ation tasks.

Independent testing

This is a nice app for classifying and calculating evidential value of SEM-
EDX measurements on sets of glass particles. The GUI is well-organized and
uploading measurements can be done by simply dragging and dropping the
txt/csv files. Making use of an online application also has the immediate
advantage that one does not need to go through the process of installing
software before use, however a forensic expert may hesitate to send his data
through the internet.

There are a number of other pros for this app. First, it uses state-of-the-art
Bayesian statistical techniques in its calculations, relying on a statistical de-
scription of three levels of uncertainty commonly encountered in the analyses
of glass particles, and it uses built-in probability density functions obtained
by MCMC techniques. Therefore, it is also relatively fast since no additional
MCMC draws are required in the calculations. For small datasets (a total
of ten measurements each) they proceed in a matter of seconds.

The downsides of this app are that it gives no flexibility to include your own
background data, since model training is not possible in the app. Further-
more, when a comparison is performed, it truncates LRs to be no smaller or
larger than a certain value. Even though the authors motivate this choice
in the article, SEM-EDX profiles may suggest more extreme values (either
smaller or larger), for example when for the questioned set of particles no
Fe and no K are observed and for the reference set Fe and K are observed.

Independently tested by:

Dr. P. Vergeer

Netherlands Forensic Institute

Department of Forensic science, Interdisciplinary investigations, Statistics
and Knowledge management

Postbus 24044 / P.O. Box 24044 | 2490 AA | The Hague | The Netherlands

p.vergeer@nfi.minvenj.nl
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