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A General Stochastic Process for Day-to-Day Dynamic Traffic Assignment:  

Formulation, Asymptotic Behaviour, and Stability Analysis 

 

Giulio E. Cantarella, University of Salerno 

David P. Watling, University of Leeds 

 

 

Abstract Ȃ This paper presents a general modelling approach to day-to-day dynamic 

assignment to a congested network through discrete-time stochastic and deterministic 

process models including an explicit modelling of usersǯ habit as a part of route choice 

behaviour, through an exponential smoothing filter, and of their memory of network 

conditions on past days, through a moving average or an exponentially smoothing filter. 

An asymptotic analysis of the mean process is carried out to provide a better insight. 

Results of such analyses are also used for deriving conditions, about values of the system 

parameters, assuring that the mean process is dissipative and/or converges to some kind 

of attractor. Numerical small examples are also provided in order to illustrate the 

theoretical results obtained. 

 

Keywords: day-to-day dynamics, stochastic process models, mean process, deterministic 

process models, stability analysis 
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1.  Introduction  

The development, since the 1970s, of efficient computational methods for implementing 

network equilibrium models has arguably had one of the most significant impacts of 

academic research on transport planning practice. In many countries, such methods are an 

embedded element of procedures for cost-benefit analysis of proposed schemes, and are 

used widely for operational planning of traffic measures. With this class of approach now 

extended to consider multiple classes of users, within-day dynamic traffic interactions, 

unreliability and heterogeneity/mis-perception of users, their potential applicability is 

wider than it has ever been. Such facts are important to appreciate when proposing any 

approach that may be viewed as an alternative to the network equilibrium philosophy. 

Many large transport investments have been justified on the basis of equilibrium predictionsǡ and so there is a political Ǯpriceǯ in practitioners moving to any ǲnewǳ methodǤ 
Academic researchers can help considerably in this process by better understanding the 

linkages between what might appear to be apparently diverse methods, and in particular 

by understanding the connection of any alternative approaches to network equilibrium. 

The objective, for example, could be to better understand the cases in which network 

equilibrium may be justified as an approximation to some real-world situation, and those 

cases in which it may potentially give misleading results. The present paper is motivated 

by exactly this desire to better understand the connections between approaches, and to 

understand where network equilibrium is a useful notion in this context. This includes the 

possibility, in some cases, that we calculate equilibrium in exactly the same way as we do 

at present, but the meaning or conceptualisation of the computed state is different, and 

suggests additional or alternative ways to utilise the computed state. 

 

The focus of the present paper will be on what have become known as day-to-day dynamic 

models of route choice, focusing on among other elements how users adapt their route decisions over repeated tripsǤ The term Ǯday-to-dayǯ dynamic is useful to distinguish these approaches from Ǯwithin-day dynamicǯ modelsǡ these latter focusing on issues such as 

time-dependent OD demand rates, the spatial and temporal interactions of traffic flows, 

the influence on usersǯ time-dependent choice of route and possibly departure time, and 

the possibility for users to make en route diversions during a journey. In order to focus our 

discussion, we do not consider within-day dynamic issues in the present paper, though we 

note that there are several papers that consider the combination of day-to-day and within-

day dynamics Cascetta & Cantarella, 1991; Balijepalli & Watling, 2005; Liu et al, 2006; 

Friesz et al, 2011, and note that it is possible to transfer many of the arguments of the 

kind used here admittedly at the price of far greater complexity to the combined case. We note that the term Ǯday-to-day dynamicǯ is intended, therefore, to be indicative of the kind 

of process being considered, but it need not be that these models are representing a real, 

continuous sequence of complete days. In this respect it is good to have in mind the 

following suggestion of an Ǯepoch-to-epoch dynamicǯ modelǡ whereǣ 
 

ǮǤǤǤ epochs can have either a ǲchronologicalǳ interpretation as successive reference 
periods of similar characteristics e.g. the a.m. peak period of successive working days 
or they can be defined as ǲfictitiousǳ moments in which users acquire awareness of path 

attributes and make their choicesǯǤ  Cascetta, 1989 
  

There exist two clear classes of model of day-to-day dynamic route choice, namely 

Deterministic Processes DPs and Stochastic Processes SPs. DPs are more naturally 
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associated with traditional equilibrium models of transport systems, in the sense that 

point equilibria may emerge, under certain assumptions, as the convergent limits of such 

processes under some long-term steady conditions. DPs also allow transitions to be examinedǡ especially when some Ǯshockǯ or designed change occurs He & Liu, 2012. A 

recent review and synthesis of DP models in discrete and continuous time may be found in 

Cantarella & Watling 2015; in this paper no comparison is carried out with DPs in 

continuous time and/or based on Wardrop approach to route choice behaviour for a 

recent paper see Guo et al., 2015, since results obtained with these models can hardly 

transferred to the kind of models discussed in this paper.  

 

SPs are more naturally associated with modelling the variability that is seen to occur in 

real-life systems, even under relatively stable operating conditions; they are thus able to 

represent both dynamic transitions and steady-state fluctuations. A review of SP models is 

provided in Watling & Cantarella 2014. The two types of approach draw on quite 

different mathematical disciplines, DPs emerging from non-linear dynamical system 

theory typically interested in mappings over continuous state spaces, whereas SPs 

arising originally from the study of probability theory and Markov chains over discrete 

state space.  
 

Although some numerical evidence relating DPs and SPs exists e.g. Cantarella & Cascetta, 

1995; Watling, 1996, relatively little general, theoretical evidence exists concerning their 

relation for general traffic networks. The exceptions to this are the works of Davis & Nihan 

1993 and Hazelton & Watling 2004, both of whom developed asymptotic 

approximation results for SPs, as demands and capacities grow in tandem. In the present paper we develop a Ǯnaturalǯ relation between DPs and SPsǡ which emerges from viewing 
DPs as a joint process in the statistical moments of the corresponding SP. This work is 

inspired by the general asymptotic theory mentioned above, and the series of two-link 

examples recently studied in Watling & Cantarella 2013. We shall here extend the work 

presented in Watling & Cantarella 2013 in several ways, particularly focusing on the 

development of the mean of a SP as a DP, as well as other results in literature.  

 

The models presented and discussed in this paper extend our previous theoretical work on 

discrete-time stochastic and deterministic process models into a general modelling 

approach to day-to-day dynamic assignment so as to: a relate to general traffic networks 

(not just two-link networks); b include an inertia/habit effect modelled through an 

exponential smoothing filter; and c incorporate learning models with finite or infinite 

memory, bridging moving average and exponentially smoothed approaches.  

 

The theoretical approximation of an SP model is first derived as a DP in the vector of flow 

means. Analysing the resulting DP, conditions are established to ensure uniqueness of the 

equilibrium, and to ensure its local asymptotic stability, conditions for the system being 

dissipative are also stated. Numerical examples are provided in order to motivate the 

work, to illustrate the theoretical results obtained, and to explore the generality of the 

asymptotic large demand/large capacity approximation, even in cases where demand and capacity are not ǲlargeǳǤ 
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The paper is organised as follows. Section 2 presents basic notations and briefly reviews 

SUE models; then section 3 discusses some simple but effective approaches to modelling 

dynamic learning and choice behaviour and analyses resulting Deterministic Process 

models. Section 4 describes the proposed SP model and some solution approaches as well 

as an asymptotic approximation to the mean of this process.  Finally, in sections 5 and 6 we 

discuss the main findings and identify several potential future research directions. 

2. Basic notations, definitions and equations in SUE models 

In this section we will briefly review the basic notations and definitions adopted, as well as 

fixed-point models for stochastic user equilibrium assignment Cantarella, 1997. 
 

Our starting is that demand is segregated into multiple classes, each class containing users 

moving on the same origin-destination OD movement and in the same user category i.e. 

with the same behavioural parameters1. Let 

 

nCL be the number of user classes; 

ni be the number of acyclic or elementary routes available for users of class i; 

n = i ni be the total number of routes available across all user classes2; 

di  > 0 be the demand flow for user class i, assumed integer and greater than zero; 

d be the demand flow vector of dimension nCL; 

D[i] = di Ini
 be a diagonal matrix of dimensions ni  ni, with entries on the main diagonal 

equal t o di; 

p[i]  0  and  1T p[i] = 1 be the route fraction vector of dimension ni for user class i; 

x[i] =  di p[i]  0  and  1T x[i] = di be the route flow vector of dimension ni for user class i; 

D be a n   n block diagonal matrix, with each block given by D[i]; 

p be the route fraction block vector of dimension n, with each block given by p[i]; 

x = D p  0 be the route flow block vector of dimension n, with each block given by x[i]; 

w[i] be the route cost vector of dimension ni for user class i; 

w be the route cost block vector of dimension n, with each block given by w[i]; 

nLINK be the number of links; 

c be the link cost vector of dimension nLINK; 

f be the link flow vector of dimension nLINK; 

fb be the link base flow vector of dimension nLINK, link flows not depending from modelled 

user route choice behaviour; 

B be the nLINK  n link-route incidence matrix, with entries equal to 1 or 0 depending on 

whether a link is part of the given route. Each class is assumed connected by at least 

two routes, since the demand flow of any user class with only one available route 

induces further link flows that can be directly added to the base link flow vector fb,. 

 

The link flows are given by: 

                                                        

 
1 For readers unfamiliar with such notation, it is suggested that on a first reading it makes sense to suppose 

there is a single user category and so classes refer only to origin-destination pairs, and then on a second 

reading to consider the generalisation to multiple user categories, since conceptually there is little difference. 
2 It is worth noting that according to the above notations the collection of acyclic routes available for travel, across all classesǡ are indexed ͳǡ ʹǡ ǥǡ n, in such a way that the ni routes corresponding to class i have indices ൛ͳ ൅ σ ௝݊௜ିଵ௝ୀଵ ǡ ʹ ൅ σ ௝݊௜ିଵ௝ୀଵ ǡ ǥ ǡ ݊௜ ൅ σ ௝݊௜ିଵ௝ୀଵ ൟ, for i α ͳǡ ʹǡ ǥǡ nCL. 
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 f = B x + fb  

We shall suppose the route travel costs w are sum of a term linear-additive in the generic 
link travel costs:  

 w = BT c + wo  

where possibly of another term including specific or non-additive route costs, wo.  

 

Congestion on the nLINK links of the network is modelled through travel cost functions: 

  c = cf 

In most cases the link travel cost actually depends on the flow capacity ratio, rather than 

on the flow value itself. 

 

Then the link travel cost-flow functions imply corresponding route travel cost-flow 

functions such that the route travel costs when the route flows are x are given by:  

 wx = BT cB x + fb + wo 

In our subsequent analysis this implied relationship above between route costs and route 

flows, will often be used rather than the underlying relationship between link costs and 

link flows.  

 

The route choice fractions p result from the user route choice behaviour and can be 

expressed as a function of the route disutilities by applying any model derived from the 

Random Utility Theory, such as Logit, C-Logitǡ Probitǡ Gammitǡ ǥ :  
 p[i] = p[i]z[i] i α ͳǡ ʹǡ ǥǡ nCL 

 p = pz 

where in this case: 

z[i] =  w[i]x is the route disutility vector of dimension ni for user class i; 

z = wx is the route disutility block vector of dimension n, with each block given by z[i]. 

 

The stochastic user equilibrium assignment searches for mutually consistent flows and 

costs, assuming that a RUM is used to described the route choice behaviour. It can be 

expressed by fixed-point models with respect to route or arc flows or costs, such as: 

 xSUE = D pwxSUE   2.1 

Existence of solution is guaranteed if both the cost function and the route choice model are 

continuous and the network is connected. Uniqueness is guaranteed under the 

commonly adopted conditions of positive definiteness of the Jacobian of cost function,  

Jw = x wx, and the negative semi-definiteness of the choice probability function Jacobian, 

Jp = z pz, the latter holding under mild assumptions Cantarella, 1997. Furthermore, as 

discussed in Bifulco et al 2013 and in therein quoted references, the invertibility of the 

matrix I Ȃ D Jp Jw is a weaker sufficient condition to guarantee uniqueness of the SUE 

solution. 

 

The models and results presented in the following of this paper are stated with respect to 

route costs, disutilities and flows, it seems worth noting that they hold as well with respect 

to link variables. Generally this is not the case for day-to-day dynamic models based on 

Wardrop route choice behaviour. 
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3. Modelling learning and choice behaviour in DP models 

The specification of a day-to-day dynamic process models for assignment requires the 

explicit modelling of 

 

 user habit: how users make a choice today, possibly repeating yesterday choice to 

avoid the effort needed to take a decision, or reconsidering it according to the 

forecasted level of service, 
 

 user learning and forecasting process: how users forecast the level of service that they 

will experience today, from experience and other sources of information. 
 
In this section we will describe some simple approaches to address the two above issues 

sub-sections 3.1 and 3.2, which will allow us to specify and analyse a Stochastic Process 

SP model in the following section 4. In this section a Deterministic Process DP model is 

also analysed sub-section 3.3 to support comparison between two approaches to user 

learning and forecasting process and to approximate the mean process of the SP model. 
 

We suppose a learning process for users whereby the disutility zj
tȂ1 of each route j 

forecasted at the end of travelling on day t Ȃ 1 is used when making decisions for the 

following day t. This forecasted disutility is assumed to be the accumulated knowledge up 

to the end of day t Ȃ 1, so generalising the notion of disutility introduced in the above 

section 2. Let 

 

x
t  be the route flow block vector on day t; 

z
t  be the forecasted route disutility block vector on day t. 

3.1 Modelling the dynamic choice process 

In the following, we specify how users make decisions based on learnt experiences 

modelled as in the following sub-section 3.2. Specifically, we assume: 

 

 A fixe proportion  0 <   1 of users reconsider their previous dayǯs choiceǡ and 
those that do decide to reconsider then make choices in proportions according to a 

random utility model possibly then repeating the previous dayǯs choice; and 

 The remaining users choose between the available routes in proportions equal to the 

fraction of users that actually chose those routes on the previous day.  

 

Under such a behavioural model, users of class i are now assumed to have two reasons for 

choosing any route j available for them: either they choose it out of habit, which a 

proportion xj
t-1

 /di of them do where xj
t-1 is the number of users that actually chose route 

j yesterday, and di is the class demand flow for class i, or their choice behaviour can be 

modelled through a RUM, such as Logit, C-Logitǡ Probitǡ ǥ Ǥ The proportion of users  

choosing for the first reason is 1Ȃ and for the second reason is . For those that do decide 

to reconsider their choice, then conditionally on the vector of disutilities ztȂ1 at the end of 

day t Ȃ 1, each user of class i chooses a route independently of one another, with choice 

proportions given by a random utility model, with the proportions of choosing a route j 

available for that class given by pjztȂ1. Collecting the relevant proportions together for 

class i, we then denote the vector function for each user class i as: p[i]z[i]
tȂ1 and the 
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collection of all such functions across the all the classes as: pzt Ȃ1 . Then we get an 

exponential smoothing filter ES: 

 x
t =    D pztȂ1 + 1 Ȃ  xtȂ1             t α ʹǡ ͵ǡ Ͷǡ ǥ 3.1 

or xt = D    pztȂ1 + 1 Ȃ  D-1 xtȂ1   t α ʹǡ ͵ǡ Ͷǡ ǥ ͵Ǥͳǯ 
Equation 3.1 tries to model in simple but effective way user inertia to change and how 

much users are prone to review their habit; this simple model also allows us to develop the 

consideration about convergence and stability in sub-section 3.3. In more general 

approaches the proportion may itself be a function of some disutility reliability 

variables. For instance in approaches regarding ATIS equipped users may depend on the 

ATIS aggregate reliability, and thus may change over time. This issue is addressed by 

Bifulco and Simonelli 2005, Bifulco et al. 2007, 2009, 2011 through a modelling 

approach consistent with this paper. However, embedding this approach in a complete 
multi-user framework allowing for the kind of stability analysis carried out in sub-section 

3.3 is still an open issue see also section 6. 
 

In disaggregate approaches, a proportion  is defined for each route separately depending 

on the difference between experienced and forecasted or ATIS provided costs. The use of 

probabilistic thresholds leads to route choice switching models. This approach is rather 

effective when only two routes are available between each O-D pair, since there is no need 

of any route choice model. Indeed, when more than two routes are available, a conditional 

route choice function should be applied to model route choice behaviour of users who 

decide to reconsider their yesterday choice. 

3.2 Modelling the learning behaviour process 

We have seen Cantarella, 2013, for further details, and Bifulco et al, 2014, for further 

models that in the case of DP models, an especially convenient form of specification of 

learning model is one in which the forecasted disutility at the end of a day say yesterday 
is a convex combination of the previous dayǯs forecasted disutility and the present dayǯs 
actual travel cost: 

 z
t-1 =  wxt-1 + 1 Ȃ  zt Ȃ1   t = 1, 2, 3ǡ ǥ 3.2 

where the memory weighting parameter satisfies 0 <   1, and where at t = 1, we suppose: 

 z
0 = wx0  for a given route flow vector x0.   

Under such a model, we may recursively apply the expressions above in order to relate the 

forecasted disutility on any day t to the complete history of travel costs and hence flows 
since the beginning of the process, leading to an exponential smoothing  filter ES: 

 z
t-1 =  wxt-1 +  k α ʹǡǥǡt-1 1 Ȃ k-1 wxt-k + 1 Ȃ t Ȃ 1 wx0     t α ͳǡ ʹǡ ͵ǡ ǥ . 

Clearly, then, such a process would not be Markovian if we defined state variables in terms 

of the flows, since users never entirely Ǯforgetǯ an initial experience except in the special 

case of  = 1. This can be resolved by instead considering the couple xt, z
t as state 

variables, depending with the assumptions we shall subsequently make only on the 

couple xtȂ1 , z
tȂ1. Such a model would be entirely amenable to analysis by standard 

numerical methods.  
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We note that from the viewpoint of representing real-world systems, the assumption of an Ǯinfinite learningǯ model adopted in several previous studies of the deterministic process 

model was made due to the considerable mathematical simplicity it affords, being an 

approximation of real-world user behaviour see below for some numerical examples, 
rather than a belief that users never forget an experience, however old. It is therefore quite 

easy to justify an assumption of finite memory, and we shall adopt this in our stochastic 

process analysis in section 4. We shall, however, specify this model in order to capture the 

possibility at one extreme of mimicking as closely as possibly the Ǯinfinite memoryǯ 
assumption commonly adopted in studies of deterministic process models. 

 

Therefore, we shall use the relative weighting of actual travel costs as suggested by the -

model above, but will truncate the past memory by only considering some pre-specified 

fixed number of previous days m. This means that at day t, we only start the summation at 

day t Ȃ m + 1. In order that the truncated process retains the property of being a convex 

combination of the actual costs, we apply a scaling factor to ensure that the non-neglected 

weights sum to 1, leading to a convex moving average  filter with normalised decreasing 

weights defined by one-parameter MA, m and for  < 1 and m > 1 given by: 

       k =  1 Ȃ k Ȃ 1/1 Ȃ 1 Ȃ m  0   k α ͳǡ ʹǡ ǥǡ m with  k = 1 and   ]0,1] 

 or k = k-1 1 Ȃ                   k α ʹǡ ǥǡ m         with 1 =  / 1 Ȃ 1 Ȃ m 

It is worth noting that condition   = 1 and m > 1 yields to 1 = 1 and k+1 = 0 k α ʹǡ ǥǡ m, 
moreover for m = 1 it is assumed 1 = 1. Since all these conditions  lead to a ES1 filter, a 

proper MA filter is only obtained with  m > 1 and  < 1 that is 1 < 1. If the weights k are 

assumed strictly decreasing with respect to k,  then 1 > 1/m. 

 

In this case after the initialization step see below, the forecasted disutilities are given by: 

 z
t-1 =  / 1 Ȃ 1 Ȃ m wxt-1 + k α ʹǡǥǡm k wxt Ȃ k 

or z
t-1  = k α ͳǡǥǡm k wxt Ȃ k                                                     t = m +1, m Ϊ ʹǡ  ǥ 3.3 

or zt-1 = CM
t-1   

where CM
t-1 is the m  n memory matrix of costs with m columns given by the costs in the 

m previous days, wxt Ȃ k k α ͳǡ ʹǡ ǥǡ m. 

 

At the end of each day t-1 the current cost memory matrix CM
t-2 is updated by dropping 

last column, moving all others columns rightwards and putting wxt-1 as first column in 

CM
t-2. Initialization of CM

t, say specification of CM
0, may be carried out assuming that: 

 all the m columns of 0 are equal to wx0 for any given route flow vector x0; 

 the ES filter 3.2 is applied for m days to fill the m columns of matrix 0. 

 

It is worth noting that as m goes to infinite we get the exponential smoothing filter 

described above by equation 3.2 with either of the above initialization approaches.  

Moreover as m goes to infinite,  

 

 1 =  / 1 Ȃ 1 Ȃ m >   goes to  , 

 m =  1 Ȃ m Ȃ1/1 Ȃ 1 Ȃ m > 0 goes to  0. 

 

For example of convergence for    0.40 and m > 10 both differences are less than 0.01. 
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Moreover, looking at equation 3.3, we can see that the weights given to actual travel 

experiences in the past depend only on the relative distance in time they are away from 

the present, i.e. the model MA, m is time-homogeneous. 

3.3 Stability analysis through Deterministic process models 

This subsection analyses whether the system described by the deterministic process 

model DP 3.1, 3.3 based on MA filter is dissipative with respect to the memory depth m 

and the memory weighting parameter Ⱦ. A brief review of results concerning DP 3.1, 3.2 
based on ES is also reported below for comparisonǯs sakeǤ In all DP models discussed 
below fixed-points states given by xt = xt-1 = x* are equal to the SUE flow pattern xSUE.   

 

Three cases will be discussed below depending on values of memory depth m and of 

memory weighting parameter , whichever is the value of habit parameter   = 1 leading 

to particular cases. [Appendix 1 briefly review deterministic process models, say discrete-

time time-homogeneous Markovian non-linear systems.] 

 

 

 We will first assume that the memory is large enough that other past days are considered 

beside yesterday but not all past days, say 1 < m < , and   Ⱦ < 1, thus  1 >  and  m > 0. In 

this case it is necessary to re-formulate DP 13.1, 3.3 to obtain a Markovian DP. 

 

The system state at day t is described by a m-block vector, one block hx
t h = 1, ..., m Ȃ 1 for 

each of the m days to be kept in memory. Thus: the first block 1x
t contains todayǯs route 

flows, as in vector xt already introduced; the second block 2x
t contains yesterdayǯs route 

flows, say xt-1; and so on. Therefore, on each day t  todayǯs flowscontained in the first 

block 1x
t are updated according to equation 3.1, then each of all the other blocks are used to keep a memory  of the previous daysǯ flowsǡ whilst the m-th day in the past is no longer recordedǤ According to this state definition todayǯs state only depends on 

yesterdayǯsǡ leading to the following Markovian DPǣ 
 1x

t = 1Ȃ 1x tȂ1 +  D pk α ͳǡǥ,m k wkx
t Ȃ 1    3.4 

 h+1x
t = hx

t-1 h = 1, ..., m Ȃ 1 3.5 

From the analysis reported in Appendix 2 it turns out that the system may not be 

dissipative, especially for high values of  and low values of m. However, whichever is the 

value of , there always exists a large enough memory depth m* such that for any memory 

deeper than this value m* the system is dissipative from any starting state. 

 

Figure 1 shows the minimum memory depth value m* against Ⱦ needed to obtained a value 

of m less than: 0.1, 0.05, 0.01, 0.005, 0.001 from top to bottom. 
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Figure 1Ǥ Value mȗ  against Ⱦ need to obtain a value of m  

less than: 0.1, 0.05, 0.01, 0.005, 0.001 from top to bottom. 
 

This brief analysis shows that the DP systems based on MA filter for modelling learning 

process may not be dissipative, that is may not converge to any kind of attractor from 

some starting states at least as time goes to infinite. On the other hand, if the memory 

depth is large enough the system is always dissipative. A full stability and bifurcation 

analysis of this case is still an open issue, worth of further research effort.  

 

 

 On the other hand, if Ⱦ < 1 and the memory depth is so large that it may be considered 

infinite, no day is ever forgotten even though just a small weight is given to days far in the 

past, say m  , then  1  and m  0. In this case MA filter 3.3 tends to the ES 3.2 
filter whichever is the value of , and we get the general  Markovian DP model recently 

discussed in detail in Cantarella 2013. The determinant of the Jacobian of such a model is 

1Ȃn 1Ȃn always in the range ]Ȃ1, 1[, thus the system is always dissipative, that is it 

always converges to an attractor not necessarily a fixed-point from any starting state. In 

that paper an in-depth fixed-point stability and bifurcation analysis is carried out and 

further earlier references are also reported.  
 

 

 A special case is obtained if memory refers to yesterday only, m = 1, or Ⱦ = 1 then for MA 

filter 1 = m = 1, thus the MAȾ, m = 1, the MAȾ = 1, m and the ES = 1 filters give the 

same DP model: 

 x
t = 1Ȃ x tȂ1 +  D pwxt Ȃ 1 3.6 

DP 3.6 is Markovian with Jacobian matrix J given by: 

 J = 1Ȃ I +   G where G = D Jp Jw 

 

 
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Since the determinant of J may be out of the range ]Ȃ1, 1[, the system may be not 

dissipative, that is it may not converge to any kind of attractor. In this case even if there is a 

unique fixed-point x*, it may be an attractor from some starting states only but not from  

all, or it is not an attractor at all. An in-depth fixed-point stability and bifurcation analysis 

can easily be carried out noting that for each eigenvalue  of matrix G an eigenvalue  of 

matrix J is given by 1Ȃ  +  , being a special case of the case briefly discussed above. 

 

Figure 2 shows the evolution of a route flow from day 75 to day 90 basic data are in 

appendix 3 applying DP with MA with memory depth m α ʹǡ ǥǡ ͸ or with ES. DP with MA 

and m = 6 is almost undistinguishable of DP with ES both reach a fixed-point attractor 

equal to the unique SUE. It can easily be seen that a short memory leads the system 

towards other kind of attractors than the unique fixed-point, which is not locally stable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A route flow against day given by DP with MA m = 2, 3, 4, 5, 6, 
and with ES  see also the text above. 

 

It seems worth noting that all results presented above still hold if the DP model 3.1, 3.3 
or 3.1, 3.2 are formulated with respect to link variables; this is always the case when 

route choice user behaviour is modelled through random utility models. On the other 

hand, if this behaviour is modeled according to Wardrop I principle, link- and route- based 

models are generally different see for instance Guo et al., 2015.  
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4. A Stochastic Process model for day-to-day assignment 

In conventional SUE models we are familiar with the idea of modelling 

randomness/heterogeneity in usersǯ perceptions of travel costs, and we also include here 

such a feature. Additionally we shall here suppose that the actual travel costs experienced 

are also randomly distributed. In the present paper we suppose that the only source of 

randomness in the actual travel costs is the randomness in flows. This is an extreme and 

unnecessarily restrictive assumption, and in practice there are likely to be many other 

unobserved sources of variation in the actual travel costs, e.g. due to weather, incidents, 

vehicle-mix. The model defined could be extended to represent such variations, either 

through postulating a probability distribution of elements of the parameters of the cost 

functions e.g. the capacities, and/or by assuming additional additive variation on the 

distribution of travel costs generated by variable flows and/or variable parameters i.e. 

this would be in addition to the flow-based variation captured in the postulated model. 
These are important factors to consider, yet in line with the rest of the paper we neglect 

them here in order to focus on the main thrust of the paper. For a discussion of some 

additional sources of variation that might be modelled using such processes, the interested 

reader is referred to Watling & Cantarella 2013, 2014. 
 

Due to the several sources of uncertainty above mentioned we suppose that the number of 

user travelling on route j on day t as well as the corresponding route disutility are 

modelled as random variables, Xj
t and Zj

t respectively, whose realisations are denoted by 

xj
t and zj

t. Thus, let 

 

Z[i] be the route disutility vector of dimension ni for user class i; 

Z be the route disutility block vector of dimension n, with each block given by Z[i]; 

X[i] =  di p[i]  0  and  1T X[i] = di be the route flow vector of dimension ni for user class i; 

X be the route flow block vector of dimension n, with each block given by X[i]. 

4.1 The overall SP model 

The above assumptions combined with the dynamic choice process 3.1 and the MA filter 

3.3 or the ES filter 3.2, lead to an m-dependent Markov process in discrete state space, 

whereby the conditional probability distribution of the state on any day t, as represented 

through the vector random variable X
t, is fully determined by the previously-realised 

values of the states {X
tȂk : k αͳ ǡʹǡǥǡm}. The assumptions may be summarised as: 

ሾ௜ሿሺ௧ሻ܆ 
| {X

tȂk : k αͳ ǡʹǡǥǡm} ~ Multinomialdi , 1Ȃ ܆ሾ௜ሿሺ௧ିଵሻ
/di +   p[i]ZtȂ1  

independently for each i = 1, 2, ǥǡ nCL 

for some vector of cost functions w., choice model p., demand vector  d , memory length 

m  1, normalised learning weights {1, 2ǡ ǥǡ m}, reconsideration probability 0 <   1. 

Actually, it will be more convenient, below, to capture this model by writing it entirely 

equivalently as: 

     Z
t Ȃ1 = k α ͳǡǥ,m k wXt Ȃ k  4.1 

ሾ௜ሿሺ௧ሻ܇   = 1Ȃ ܆ሾ௜ሿሺ௧ିଵሻ
/di +   p[i]ZtȂ1 4.2 

 ሾ௜ሿሺ௧ሻ  4.3܇ , ሾ௜ሿሺ௧ሻ | ZtȂ1, XtȂ1  ~ Multinomialdi܆ 
    independently for each i = 1, 2, ǥǡ nCL . 
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where Yሾ୧ሿሺ୲ሻ
 is the vector of the composite route choice probabilities, including both habit and 

choice process, for user class i, with entries yi.  

 

Some remarks about model 4.1-4.3: 
 the composite route choice probability for route i, yi., is a random variable since it is a 

function of random variables; 

 the composite route choice probability for route i, yi., depends on route costs or 

disutilities, even though probability  does not in more advanced models probability  

may also depend on costs and disutilities, see section 6 for further comments; 
 according to equations 4.2 and 4.3 the choice behaviour of any two users of the 

same class or of different classes are assumed independent conditional on the 

remembered past states; still in the unconditional distribution all usersǯ route choices 
may affect all the others through congestion, say the cost function introduced in the 

sub-section 2.1; 

 equation 4.1 needs to be properly initialized as described in the sub-section 3.2  

 

As established first by Cascetta 1989, if the random utility model p. is such that a non-

zero probability is assigned to all feasible alternatives as satisfied by regular random 

utility models defined on an infinite support, then the process above has a unique 

stationary probability distribution to which it converges, regardless of the initial 

conditions, that is it is regular.  

 

Model 4.1-4.3 may be solved through Monte Carlo techniques. At this aim it is useful 

noting that a Multinomial random variable is obtained by independently repeating n times 

a Categorical also called "generalized Bernoulli" random variable in the very same way 

that a Binomial is obtained by independently repeating n times a Bernoulli r. v.. 
 

On each day t first disutilities Z are updated through equation 4.1, and choice 

probabilities Y through equation 4.2. Then for each user class i the inverse distribution 

function method is applied di times to the categorical distribution defined by the choice 

probabilities, using a sample of di pseudo-random numbers uniformly distributed over 

[0,1]. This way, an unbiased estimate of the mean of the route flows X is obtained; the 

same approach allows us to estimate any other moment, such as variance, and the unique 

stationary distribution. This solution approach may be applied to real cases, provided that 

routes are explicitly enumerated. Solution methods not requiring such enumeration are 

still an open issue. 

 

From standard properties of the Multinomial distribution the corresponding mean process 

is given by:  

 E[܆ሾ௜ሿሺ௧ሻ  | ZtȂ1, XtȂ1] = di 1Ȃ܆ሾ௜ሿሺ௧ିଵሻ
/di +  p[i]ZtȂ1 = 

  = E[܆ሾ௜ሿሺ௧ሻ  | ZtȂ1, XtȂ1] = 1Ȃ ܆ሾ௜ሿሺ௧ିଵሻ
 +  di p[i]ZtȂ1      i = 1, 2, ǥǡ nCL.  4.4 

It should be noted that E[܆ሾ௜ሿሺ௧ሻ  | Z
tȂ1, X

tȂ1]  in the above equation is a random variable 

since it is a function of random variables Z
tȂ1  and X

tȂ1. Collecting equations 4.4 
together across all classes, and using the notation for writing the demands introduced in 

section 2.1, it then follows that: 

 E[X
t| ZtȂ1, XtȂ1] = 1Ȃ XtȂ1  +  D pZtȂ1. 4.4ǯ 
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Applying a statistical identity to equation 4ǤͶǯ above then yields an expression for the 

unconditional mean process: 

 E[X
t] = E[E[X

t|ZtȂ1, XtȂ1]] = 

    = 1Ȃ E[X
tȂ1] +  D E[pZtȂ1]    4.5 

 

A stability analysis of the mean process 4.5 requires that it is put in a Markovian form to 

apply results from deterministic process theory see appendix 2 for details. The DP model 

described in section 3.3 is an approximation to the mean process 4.5. An analysis of the 

variance will be the topic of a future paper. 

 

If the above assumptions are combined with the dynamic choice process 3.1 and the ES 

filter 3.2 we get a 1-dependent Markov process but in continuous state space of flows 

and forecasted costs, as discussed in Cantarella and Cascetta 1995. 

4.2 Asymptotic analysis  

An asymptotic analysis of the mean process is carried-out in the next sub-sections, by 

further developing and extending the asymptotic analyses presented in Watling & 

Cantarella 2013, which drew on earlier work of Davis & Nihan 1993 and Hazelton & 

Watling 2004. It may be worth stressing that the purpose of this analysis is exploiting 

relationships with DP models not providing a solution method for real cases. 

 

In order to make some progress in analytically capturing the evolution of this process, the 

analysis is based on an asymptotic analysis whereby we examine the behaviour of the 

process as the demands are scaled by  > 0, and so the scaled demands are denoted by   d, 

and in particular the behaviour of the process as  becomes large, but in a special sense. 

 

Since simply scaling the demand alone would clearly change the nature of the 

demand/network being modelled, and so not give any meaningful results, what we analyse is what happens when the demand is Ǯscaledǯ for the purposes of modelling route choiceǡ 
but the scaling is reversed when it is substituted in the congestion relationships. We might 

think of this process, intuitively, as one in which demands and link capacities are scaled in 

tandem, if we are adopting travel cost functions whose actual argument is the ratio of flow 

to capacity. Thus if the vector x = x1, x2ǡ ǥǡxn denotes the flows under a demand scaling 

of  on the n routes of the network as above, then wjx denotes the travel cost on route j 

when the route flows are x for j αͳǡ ʹǡ ǥǡ n . Noting that reversing the scaling the route 

flow vector would be Ȃ1x   we are thus motivated to consider functions of the form: 

 wjx = wjȂ1x 

where wi. is a function independent of  that is the underlying true route cost functions, 

as defined in section 2.1. We use wx = w1x, w2xǡ ǥǡ wnxT and wȂ1x = w1Ȃ
1x, w2Ȃ1xǡ ǥǡ wnȂ1xT to denote the corresponding vector mappings.  

All the above presented equations 4.1-4.5 can easily be re-written taking into account the 

scaling factor as: 

      Z
t Ȃ1 = k α ͳǡǥǡm k wX

t Ȃ k  4.6 
ሾ௜ሿሺ௧ሻ܇   = 1Ȃ ܆ሾ௜ሿሺ௧ିଵሻ

/ di +   p[i]ZtȂ1 4.7 
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ሾ௜ሿሺ௧ሻ܆   | ZtȂ1, X
tȂ1  ~ Multinomial di , ܇ሾ௜ሿሺ௧ሻ  4.8 

    independently for each i α ͳǡ ʹǡ ǥǡ nCL  

where notation ܆ሾ௜ሿሺ௧ሻ
 highlights that the left hand side of equation 4.8 is slightly different 

from  ܆ሾ௜ሿሺ௧ሻ in equation 4.3 since it depends on scale parameter  .  

The corresponding mean process is given by:  

 E[܆ሾ௜ሿሺ௧ሻ  | ZtȂ1, X
tȂ1] = 1Ȃ ܆ሾ௜ሿሺ௧ିଵሻ

 +     di p[i]ZtȂ1      i α ͳǡ ʹǡ ǥǡ nCL. 4.9 
 E[X t| ZtȂ1, X tȂ1] = 1Ȃ X tȂ1  +   D pZtȂ1.  ͶǤͻǯ 
 E[X t] = E[E[X t|ZtȂ1, X tȂ1]] =  

    = 1ȂE[X tȂ1] +   D E[pZtȂ1]. 4.10 

After Cascetta 1989 the SP model 4.6, 7, 8 is regular. Furthermore, Davis & Nihan 

1993 studied a wide class of stochastic process models, and showed that, as demand  

 D   in tandem with the network capacities, so the stationary distribution converges to 

a multivariate normal distribution with mean equal to the conventional Stochastic User 

Equilibrium SUE solution.  

 

The process we shall analyse is an extension of that considered by Hazelton & Watling 

2004; their process is exactly ours for the case  = 1. Like themǡ we use Davis Ƭ Nihanǯs 
result to develop an asymptotic approximation to moments of the stationary distribution 

of the process, based only on knowledge of the SUE solution and other input data to the 

traffic assignment process. Watling & Cantarella 2013 further extended this work for the 

case of uncongested two-route networks and for congested two-route networks with  = 1, 

deriving expressions to describe the dynamics of the process only in terms of its means, 

variances and covariances. The body of work above has been the motivation for our 

present analysis. In particular we shall aim to extend the analysis of Watling & Cantarella 

2013 to the case of general networks for a general value of  0 <   1. However, 

differently from the goals of these works, we shall focus on a process in which only the 

first moment, the mean, is used to approximate the evolution of the process, with a particular goal to explore the relationship to Ǯequivalentǯ deterministic process models 

which neglect variability.  

 

In order to do so we make the following distributional approximations, following Hazelton 

& Watling 2004, where assuming w. and p. to be continuously differentiable: 

 wX = wxSUE + Ȃ1 Jw X Ȃ xSUE + Op Ȃ0.5 

 pZ = pwxSUE + Jp Z Ȃ wxSUE + Op Ȃ0.5  

where  

xSUE is the assumed unique SUE solution satisfying: xSUE =   D pwxSUE, consistent with 

defintion in section 2;  

 Jw = x wx = xSUE and Jp = z pz = wxSUE are respectively the Jacobian matrix of w. 
evaluated at xSUE and the Jacobian matrix of p. evaluated at wxSUE.  

 

[Note that since these are statements about relationships between random variables, then 

so must the order notation logically be a statement about distributions. In particular we 

say a random variable A = Opn if there exists an a > 0 such that lim Pr|A/n| > a = 0.] 

In simple terms, this indicates that as    then we can regard the transformation wX 
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of the random variable X as a linear transformation, given by the first order Taylor series 

approximation about the SUE solution. 

 

From equation 4.10 we may obtain as proved in appendix 4 that: 

 Ȃ1  I ȂD Jp Jw * = Ȃ1  I Ȃ D Jp Jw xSUE  + O Ȃ0.5  . 

where in stationarity * = t = tȂ1 = tȂ2 α ǥ α tȂm   with t = E[X
t]. 

 

Now, as discussed in Bifulco et al 2013, the invertibility of the matrix I Ȃ D Jp Jw is a 

condition that may be adopted for assuming uniqueness of the SUE solution it is weaker 

than the commonly adopted conditions of positive definiteness of the Jacobian of cost 

function and the negative semi-definiteness of the choice probability function Jacobian. 
Thus, under the assumption that I Ȃ D Jp JwȂ1 exists, and since  > 0, we obtain:  

 Ȃ1 * = Ȃ1 xSUE  +  Ȃ1I Ȃ D Jp JwȂ1 O Ȃ0.5 .  

This generalises the model and the result in Hazelton & Watling 2004 to include habit 

modelling, say 0 <   1; indeed the model in Hazelton & Watling 2004 turns out to be a 

special case where no kind of habit occurs, say  = 1.  

It implies that for large   we have a justification to approximate Ȃ1 * by Ȃ1 xSUE, since * 

and xSUE both grow with  . The DP models 3.1, 3.3 and 3.1, 3.2 discussed in section 3.3 

are an approximation to the asymptotic mean process above described.  

4.3 Some numerical examples 

This section reports the results of some numerical examples of the asymptotic behaviour 

of the SP model 4.6, 7, 8 comparing it with the DP model 3.1, 3. At this aim, it is useful to 

restate the model 4.6, 7, 8 as the following equivalent model with a slightly different 

definition of X as highlighted by notation Xǯ:  
    Z

t Ȃ1 = k α ͳǡǥǡm k wXǯt Ȃ k  4.11 
ሾ௜ሿሺ௧ሻ܇   = 1Ȃ  ܆ǯሾ௜ሿሺ௧ିଵሻ

/di +   p[i]ZtȂ1 4.12 

 ሾ௜ሿሺ௧ሻ  4.13܇  ,ሾ௜ሿᇱሺ௧ሻ | ZtȂ1, XǯtȂ1  ~ 1/  Multinomial  di܆ 
    independently for each i α ͳǡ ʹǡ ǥǡ nCL  

where ri =   di is the numbers of users given scale factor  and demand flow di for each 

user class i.  It is worth noting that this way equations 4.11 and 4.12 are equal to 

equations 4.1 and 4.2 respectively.  

 

Figures 3 and 4 cfr Figure 2 show the evolution of a route flow from day 75 to day 90, for 

m = 3 and 5 respectively, as a results of SP model 4.11, 12, 13 with r = 10, 100, 1000, 

10000 users3 and of the corresponding DP model 3.1, 3. The SP model has been solved 

through the Monte Carlo techniques already described. As expected from the above 

asymptotic analysis, results with the SP model with 10000 users are very close to those 

with the DP model.  As the memory depth m increases from 3 to 5 the observed 

fluctuations become smaller for high numbers of users.  Figure 5 cfr Figure 2 shows the 

evolution of a route flow from day 75 to day 90, for m = , that is with ES, as a results of SP 

                                                        

 
3 The values of demand and route flows are irrelevant since the ratios flow/capacity remain unchanged.  
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model 4.11, 12, 13 with r = 10, 100, 1000, 10000 users and of the corresponding DP 

model 3.1, 3. The reported results are consistent with those in Figures 3 and 4. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A route flow 

against day with MA 

and m = 3 given by  

SP with10, 100, 1000, 10000 users thin to thick line,  
or DP dashed line as in Figure 2 . 
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Figure 4. A route flow against day with MA and m = 5 given by  

SP with10, 100, 1000, 10000 users thin to thick line , 
or DP dashed line as in Figure 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  A route flow against day with ES given by  

SP with10, 100, 1000, 10000 users thin to thick line  
or DP dotted line as in Figure 2 . 
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5. Discussion  

In the paper we have presented several technical results concerning stochastic process 

models, but in the midst of the technical details it can be easy to miss the key implications 

of the work. In this section we aim to draw out these implications. 

 

Result 1: Asymptotic Mean Process Dynamics  

 

(a) Asymptotically, as demands/capacities grow, in the stochastic process model the mean 

flows  t depend only on {tȂk : k ൌ ͳǡǥǡm}, and not on anything else in the previous 

history of the process such as variances, covariances, etc. in previous days.  
  

(b) Asymptotically, dependence of  t on {tȂk : k ൌ ͳǡǥǡm} is linear and can be expressed 

through knowledge of only: the SUE solution, the choice probability Jacobian evaluated at 

SUE, the cost function Jacobian evaluated at SUE, the value of , the values of m and {k: 

k ൌ ͳǡʹǡǥǡm} and the demand vector d. Significantly, these are all input parameters, 

orin the case of the SUE solutionsomething that can be readily derived from the input 

parameters without regard to the system dynamics. 

To our knowledge, these result are not explicitly stated, and not in this way, in any 

previous papers, and anyway no previous paper showed the technical results for a case 

including inertia effects through . It holds for a general network and for multiple 

classes.  

 

It is important to appreciate that Result 1 holds for any model of learning weights based 

on the previous m days, as long as the weights sum to one. It is not necessary that the 

learning weights decay with time, for example. We could have a learning process, for 

example, where users put a weight of zero on the previous 4 days and a weight of one on 

the experience 5 days ago as might occur, for example, in a model in which days are 

weekdays, and a user travelling on Fridays only learns from previous Fridays. It is also not 

necessary that the learning weights give rise to stable behaviour in the deterministic 

system above; still our dynamic equations hold for other types of system.  

 

It is also important that Result 1 holds under a range of assumptions for the cost functions, 

cost function parameters, choice probability functions, choice probability function 

parameters, and value of  . This will mean that it holds to describe processes that are very 

different in nature, with very different kinds of trajectory.  

 

Result 1b implies that even though there is a dependence of mean only on means, the 

nature of this dependence does depend on system parameters. Therefore if, for example, 

we have a problem with given cost functions and choice probability functions so a 

specific, single SUE solution, and fix the learning weights {k: k α ͳǡʹǡǥǡm}, then from some 

given initial conditions the mean process will yield a variety of different trajectories by 

varying . These different trajectories will take a different amount of time to reach the 

given SUE solution if the case from some given starting conditions, and so Result 1b 
may be used to numerically compute an estimate of the amount of time that the mean 

process will be transient, from some given initial conditions and depending on the system 

parameters. 

  



 20 

It should be remarked that Result 1 makes some Ǯdistributional assumptionsǯ concerning 
the form of the cost functions and the choice probability functions, and their relation to the 

demand multiplier. We also assume a unique SUE. It seems we are making some 

restrictions, therefore, and so it be interesting to make further exploration of Result 1a in 

terms of what happens beyond these restrictions, e.g. with asymmetric cost functions and 

multiple SUE building on Watling, 1996. 
 

Result 2: Asymptotic Result on Equilibrium of Mean Process and SUE 

 

Asymptotically, the equilibrium of the mean process in Result 1 is an SUE, under certain 

conditions on the Jacobian of cost functions evaluated at SUE, the choice probability Jacobian 

evaluated at SUE, and the demand vector, but not on the behavioural parameters   and {k: 

k α ͳǡʹǡǥǡm}. 

  

This establishes that asymptotically, the point equilibria of the mean process are invariant 

to the behavioural parameters  and {k: k α ͳǡʹǡǥǡm}. This corresponds to results known 

for deterministic process models Cantarella & Cascetta, 1995. 
 

Result 3: Asymptotic Result on Equilibrium of Mean Process 

 

The nature of the approximate mean process, namely whether it is dissipative and/or 

whether it converges to a stable fixed point, is determined by , {k: k α ͳǡʹǡǥǡm}, and the 

Jacobian of the mean process evaluated at SUE. 

 

In contrast to Result 2, this result establishes that the behavioural parameters affect the 

nature of the approximate mean process, but that we can anticipate this nature from 

knowing the behavioural parameters.  Again, this corresponds to what is already known 

for deterministic process models Cantarella & Cascetta, 1995. 
 

However, to balance these results we should also mention the following result: 

 

Result 4: Asymptotically the variance of the process depends on more than the mean 

 

It is not true that in general: Asymptotically as demands/capacities grow, in the stochastic 

process model the variance of the process at time t depends only on {tȂk : k α ͳǡǥǡm}, and 

not on anything else in the previous history of the process such as variances, covariances etc. 

in previous days.  
 

In order to prove this negative result we may use a counter-example, for which we can 

refer to the analysis of two-link networks in Watling and Cantarella 2013. This negative 

result is important for addressing a relatively common mis-perception that modelling stochastic processes is akin to adding Ǯnoiseǯ to a deterministic processǤ 
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6. Conclusions and Research Perspectives 

In this paper we have sought to integrate and extend various previous works concerning 

stability of deterministic processes and the analysis of stochastic processes. We have 

presented a generic stochastic process model for a general multi-class network, including 

notions of user habit, learning and choice, and have analysed this model theoretically by 

developing an asymptotic approximation for the mean process of such a model. We have 

shown how this approximating mean process relates to SUE. We have then used the tools 

of deterministic dynamical systems to analyse the mean process, and have shown how the 

nature of the learning process can be used to anticipate the nature of the mean process, 

including whether it is dissipative, converges to a stable fixed point, etc. 

 

Even if the presented models and results are stated with respect to route costs, disutilities 

and flows, it seems worth noting that they hold as well with respect to link variables. 

Generally this is not the case for day-to-day dynamic models based on Wardrop route 

choice behaviour. 

 

While the present paper has been wholly theoretical in nature, we believe that there is 

important future research in analysing such systems through Monte Carlo simulations of 

the process, as in the small numerical examples described at the end of sections 4 and 3. In 

doing so, insights may be obtained that would enrich and add to the theoretical insights 

provided here.  

 

In particular, apart from open issues already mentioned above, linking to the Results we 

highlighted in section 5, we would suggest that interesting investigations would be to: 

 

 explore the impact on the process trajectory of the cost function parameters, choice 

model parameters and , and relate the findings to Result 1a;  
 explore analytically or numerically the transient time for the mean process to reach 

SUE from given starting conditions, as a function of ; 

 explore the impact of changing parameters to increase the variance of the process and 

to see its consequential impact on the mean process, by changing the number of users 

e.g. not large, or in cases with multiple SUE, or if the system is near-periodic, or the 

effect of the learning weights; 

 explore the impact of parameters, such as  and , differentiated by user class; 

 re-examine Result 1a and extend results in sub-section 3.3 in the light of the various 

kinds of learning processes suggested by Horowitz 1984; 
 re-examine Result 1a and extend results in sub-section 3.3 in the light of of habit 

models where  changes over time depending on aggregate or disaggregate 
difference between forecasted and experienced disutilities as proposed in some 

papers on continuous-time DP models; 
 illustrate and further explore Result 2 using the tests above; 

 illustrate and explore both stable and unstable cases, and relate to Result 3; 

 explore the strength of the dependence of the process on previous variance/ 

autocorrelations, and the extent to which knowledge of the mean is almost sufficient 

related to Result 4. 
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Calibration of SP models is still open issue, see Parry & Hazelton 2013, and Shao et al. 

2014 for some approaches to this problem. 
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Appendix 1: brief review of deterministic processes 

A brief review of main definitions regarding deterministic processes is reported below. 

for more details see for instance Stokey and Lucas 1989 among many others. 
 

A deterministic process is a discrete-time time-homogeneous Markovian non-linear 

system, and may be specified as: 

 xt = xt1      tԳ; xt࣭  n  

where today state, xt, depends on yesterday state, xt1 only Markovian systems through 

the transition function  from the state space ࣭ to the state space ࣭.   

 

Any time-discrete system with finite memory today state, xt directly depends on a finite 

number of previous days states may still be formulated as a deterministic process, with a 

duly specification of the system state to include finite memory of the past states an 

example is given in sub-section 3.3. For more details see Cantarella and Watling, 2015. 
 

A deterministic process with a differentiable transition function is called differentiable. 

Let J = Jac[] be the Jacobianmartix of the transition function, and  j be one of the n 

eigenvalues of J, omitting the argument x, then detJ  = j j; moreover let 

 

J = | detJ | =  j | j | be the absolute value of the determinant of matrix J; 

 = maxj | j | be the spectral radius of the determinant of matrix J,   

 = ||| J ||| be any matrix  norm of matrix, where subscript  highlights that there exist 

several different norms.  

 

It results that: if  < 1 for some   then  < 1, and if   < 1 then   < 1.     

 

A self reproducing set srs of states is a subset S of the state space ࣭ having the following 

properties: 

 has a dimension strictly less than the dimension of the state space, n;   

 the system cannot evolve towards a state out of the srs starting from its interior; 

 the srs is minimal, that is it does not strictly include any other srs.  

An attractor is a srs that  

 has an attraction domain also called basin of attraction, which is a proper super-set of 

the srs such that from any initial state belonging to the domain the system converges 

towards the srs; the attraction domain may be a proper sub-set of the state space. 

 

An example of the above definitions is a fixed-point state, x* = x*, which is an attractor if 

it has a an attraction domain, otherwise it is a repulsor, if from any other initial state the 

system diverges from the fixed-point state, or a saddle, if from some initial states the 

system converges to the fixed-point state and from others diverges from it. 

 

More generally, there are four main types of attractors: 

 fixed-point attractors: the system always takes up the same point; 

 k-periodic attractors: the system periodically moves among k points; 

 quasi-periodic attractors: the system moves on a toroidal surface containing infinite 

many points;  

 a-periodic attractors: the system moves within a fractal set.  
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The basic analysis usually carried out about a deterministic process considers fixed-point 

states and sees if they are attractors. If they are not attractors it is necessary to verify 

whether the system converges and towards which attractors if it does see for instance 

Cantarella, 2013, for more details.   
 

A deterministic process is called dissipative if a small enough ball round the initial state 

will shrink as the system evolves; in this case the system will converge to an attractor but 

not necessarily a fixed-point, possibly depending on the starting state. A sufficient 

condition is: 

 Jx< 1   x 

with   0; otherwise,  = 0, the analysis should be moved to a space with reduced 

dimensions where   0, through proper linear transformations. A deterministic process 

may be dissipative from a sub-set of the state space only. 

 

A fixed point is called locally stable if it is an attractor, say if from any initial state 

belonging to the attraction domain the system converges towards it.  A sufficient condition 

is: 

 Jx < 1   x 

A fixed point is called globally stable if it is an attractor and its attraction domain is the 

whole state space, say from any initial state belonging to the state space the system 

converges towards it.  A sufficient conditions is: 

  Jx < 1   for some  x 

This conditions actually means that  is strictly non-expansive an extension of 

uniformly non-expansive or contraction as in Banach theorem, which also guarantees 

uniqueness and the rate of convergence. This feature actually assures that a Lyapunov 

function exists, which is a more general global stability condition. 
 

It can easily noted that the sufficient condition for a fixed-point being globally stable 

implies the sufficient condition for it being locally stable, which in turn implies the 

condition for dissipativeness. 
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Appendix 2: dissipativeness of DP 3.4, 3.5   

Since DP 3.4, 3.5 is Markovian its dissipativeness may be analysed looking at its Jacobian 

matrix J; its structure is given below for m = 4, where Gk = D Jp Jckx
tȂ1 and its entries 

depend on system parameters, such as demand flows, link capacities. 
 

 block 1 block 2 block 3 block 4 
 day t1 day t2 day t3 day t4 

block 1 day t  1 G1 +  
1Ȃ I 

 2 G2  3 G3  4 G4 

block 2 day t1 I 0 0 0 
block 3 day t2 0 I 0 0 
block 4 day t3 0 0 I 0 

 

From matrix algebra the absolute value of the determinant of the above Jacobian matrix J  

| detJ | is equal to absolute value of the determinant of the following matrix Jǯ obtained 

through properly interchanging some columns 
 

 block 1 block 2 block 3 block 4 
 day t1 day t2 day t3 day t4 

block 1 day t  4 G4  1 G1 +  
1Ȃ  

 2 G2  3 G3 

block 2 day t1 0 I 0 0 
block 3 day t2 0 0 I 0 
block 4 day t3 0 0 0 I 

 

In addition, remembering from block-matrix analysis that 

 

if M  = 
M11 M12 

 
M21 M22 

 

and detM22  0 then detM = detM22 detM11  M12 M22
-1 M21, thus it yields that  

 | detJ |  =  m detGm Omitting arguments for simplicityǯsǡ Gm= D Jp BT JC BT is singular, detGm = 0, since Jp is 

singular, detJp = 0, due to the normalization of probabilities; thus the above result, 

however elegant, is rather useless as such.  

 

The DP 3.4, 3.5 can be reformulated avoiding redundant route variables. Indeed one 

route choice probability or flow is redundant because it may easily be obtained from the 

others for each class there are at least two routes. After Cantarella et al. 2010, for each 

user class i any of the first ̃i = ni   1 routes is called an independent route iro, and the 

equations below hold with respect to iro choice probability and flow vectors, pǁ [i] and xǁ [i]:  

 pǁ [i] = E[i] p[i] xǁ [i] = E[i] x[i] i 

 p[i] = L[i] pǁ [i] + e[i] x[i] = L[i] xǁ [i] + xb[i] i 

where, given Ii the  ni  ni identity matrix, and ̃i = ni   1; 

E[i] is the ̃i  ni matrix obtained by dropping the last row from the identity matrix Ii;  

e[i]
T α ȏͲǡ Ͳǡ ǥǡ ͳȐ is a ni  1 vector, given by the last row of the identity matrix Ii; 

1[i] α ȏͳǡ ͳǡ ǥǡ ͳȐT  is an ni  1 vector with all entries equal to one; 

L[i] = I[i] Ȃ e[i] 1[i]
T E[i]

T is a ni  ̃i matrix obtained from the ̃i  ̃i identity matrix by 

adding at the bottom one more row 1  ̃i with all entries equal to 1; 

xb[i] = di e[i] is a ni  1 vector. 
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Collecting the above vectors and matrices into block vectors or matrices we get: 

 pǁ  = E p xǁ  = E x 

 p = L pǁ  + e x = L xǁ  + xb 

where 

pǁ  is the iro choice probability block vector with a ̃i  1 block for each user class pǁ [i]; 

xǁ  is the iro flow block vector with a ̃i  1 block for each user class xǁ [i]; 

E is a row-block matrix with a ̃i  ni block for each user class E[i];  

e is a block vector with a ni  1 block for each user class e[i]; 

L is a n  ̃ diagonal-block matrix with a ni  ̃i block for each user class, L[i]; 

xb is a block vector with a ni  1 block for each user class xb[i]. 

 

Thus an equivalent formulation of the DP 3.4, 3.5 with respect to iro flows is given by: 

 1xǁ  t = 1Ȃ 1xǁ tȂ1 +  E D pk α ͳǡǥǡm k wL kxǁ t Ȃ 1 + xb    A.1 
 h+1xǁ  t = hxǁ  t-1 h = 1, ..., m Ȃ 1 A.2 In most casesǡ such as for invariant RUMǯsǡ for a user class i the route choice probabilities 

p[i] do not actually depend on forecasted disutilities z[i] but only on their differences. Let  

 

zǁ [i] = L[i]
T  z[i] be the vector of iro disutility differences, with an entry for each iro given by 

the iro disutility minus the disutility of the last route, with 

 zǁ [i] = L[i]
T  z[i] =  L[i]

T w[i]x  A.3 

Thus the iro choice probabilities pǁ [i] may be specified as a function of the iro disutilites 

differences, zǁ [i], as pǁ [i] = pǁ [i]zǁ [i], thus: 

 p[i] = L[i] pǁ [i]zǁ[i] + e[i]   A.4 

Thus combining equations A.1, A.2, A.3, and A.4 an equivalent formulation of the DP 

3.4, 3.5 with respect to iro flows and disutilites is given by: 

 1xǁ  t = 1Ȃ 1xǁ tȂ1 +  Dǂ  pǁ k α ͳǡǥǡm k LT wL kxǁ  t Ȃ 1 + xb    A.5 
 h+1xǁ  t = hxǁ  t-1 h = 1, ..., m Ȃ 1 A.6 

Dǂ  = E D L, being a block diagonal matrix of dimensions  n  nCL  n  nCL , with each 

block given by Dǂ [i] being a diagonal matrix of dimensions ̃i  ̃i, with entries on the 

main diagonal equal to di > 0. 
 

DP A.4, A.5 looks like DP 3.4, 3.5 and shares with it the Jacobian matrix structure with 

reference to matrices Gǂ k = Dǂ  Jǂp LT JwL kxǁ  t Ȃ 1 + xb L where Jǂp = z pǁ zǁ is the Jacobian 

matrix of choice function pǁ . evaluated at zǁ  = k α ͳǡǥǡm k LT wL kxǁ  t Ȃ 1 + xb, and  

Jw = x wx is the Jacobian matrix of the route cost flow function, thus: 

 detGǂ k = detDǂ  detJǂp detLT Jw L A.7 

It is worth noting that in general detDǂ  > 0, and detJǂp  0 under mild assumptions, say 

pǁ [i]zǁ [i] is a strictly positive invariant RUM for each user class i,  as proved in the below.  

 

Indeed, remembering from matrix algebra that if a real symmetric matrix has 

strictly positive diagonal entries and is strictly column diagonally dominant it is 
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positive semi-definite and non-singular thus positive definite, it suffices to 

observe after Cantarella, 1997 that given vǁ j =  zǁ j]: 
pǁ ivǁ  / vǁ j = pǁ jvǁ  / vǁ i  for an invariant RUM, 

pǁ iv / vǁ i > 0 with pǁ jv / vǁ i < 0 i  j for a strictly positive RUM,   

pǁ ivǁ  / vǁ i > ji ȁ pǁ jvǁ  / vǁ i | 
since j pǁ jvǁ  / vǁ i > 0  pǁ ivǁ  / vǁ i > ji pǁ jvǁ  / vǁ i  
because j pjv / vi = 0, and pniv / vi < 0,   

where pǁ jvǁ  / vǁ i < 0 i  j.   

 

Matrix LT Jw L, say detLT Jw L, is further analysed below. Let 

 

B be the row-block link-route incidence matrix with a block B[i] for each class i; 

Bǂ  = B L be the nLINK  mǁ   the row-block link Ȃ independent route incidence matrix with a 

block Bǂ [i] for each class i; 

 

the Jacobian matrix of the iro cost flow function L[i]
T w[i]x is given by: 

 Jǂw = LT Jw L = Bǂ T Jc Bǂ     A.8 

since Jw = BT Jc B, with Jc = f cf being the Jacobian matrix of the link cost flow function. 

 

According to equation A.8, equation A.7 becomes: 

 detGǂ k = detDǂ  detJǂp detBǂ T Jc Bǂ  A.9 

Assuming that Jc is a not necessarily symmetric positive definite matrix with respect to 

real vectors, thus it is non singular, detJc  0, two cases may occur, as discussed below. 

 

 The rank of the link-iro incidence matrix is equal to the number of iroǯsǡ rankBǂ  = r = mǁ , 
thus r = mǁ   nLINK, and Bǂ  is full rank. In this case, matrix Bǂ T Jc Bǂ  is a not necessarily 

symmetric positive definite matrix with respect to real vectors, thus it is non singular. 

 

Indeed if Q is a n  n not necessarily symmetric positive definite matrix with 

respect to real vectors but necessarily with respect to complex vectors too:  

 xT Q x > 0  x  0, x  n 

and if M is a n  m full rank matrix with m  n, then the m  m matrix  MT Q 

M is positive definite matrix with respect to real vectors: 

 yT MT Q M y > 0  y  0, y  m 

since M y > 0  y  0, y  m.   

 

Thus, in this case detGǂ k  0. 

 

 The rank of the link-iro incidence matrix is less than the number of iroǯsǡ rankBǂ  = r < mǁ . 
In this case, matrix Bǂ  may be expressed as the product of two full rank matrices both with 

rank r through a rank factorization: Bǂ  = Bǂ 1  R. 

 

Indeed, a n  m matrix Q with rank r  minn, m contains r linearly 

independent columns making up the n  r full rank sub-matrix Q1 so that  
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Q = [Q1 | Q2], where the n  m  r matrix Q2 contains the linearly dependent 

columns, with Q2 = Q1  A for a suitable r  m  r full rank matrix A. Hence  

Q = [Q1 | Q2] = Q1  [Ir | A], where the r  n matrix R = [Ir | A] is full rank.   

 

In this case DP A.5, A.6 can be reformulated in the space of the iroǯs corresponding to the 
r linearly independent columns of Bǂ  through a linear transformation defined by matrix R. 

In this space the reformulated DP A.5, A.6 leads to detGǂ k  0, properly redefining matrix 

Gǂ k details are not explicitly reported for brevityǯs sake. 
 

Some assumptions about the link-route incidence matrix are useful to reduce the number 

of linearly dependent columns or rows: 
 

1. each link belongs to at least a route, thus no row is null, 

2. each route contains at least one arc, thus no column is null, 

3. no pair of routes are equal, thus no pair of columns are equal, 

4. no route is properly contained in another route a; 
 

All the above assumptions are quite mild and/or reasonable and can easily be accepted. On 

the other hand two links may well have equal rows if the share all routes, as it occurs for 

instance for two link in series or in parallel. 

 

From the above considerations, with reference to the Jacobian matrix J° of the DP 

A.5, A.6, possibly re-adapted to the appropriate space, we get: 

 | detJ° |  =  m | detGǂ m |  0  

If the partial derivatives in matrix Gǂ m are well-defined, say finite and continuous, the 

absolute value of the determinant of matrix Gǂ m, say | detGǂ m |, is a continuous function 

defined over a compact set, thus | detGǂ m | has an upper bound, gMAX, and a lower bound, 

as well, and  m | detGǂ m |   m gMAX, and  m gMAX < 1 implies | detJ° | < 1. Value of 

gMAX cannot easily computed, an approximation may be obtained through matrix norms; 

this issue will be discussed in a future paper. 

 

It can easily demonstrated that m is decreasing with m, and lim݉՜λ 0 = ݉ߟ [authors wish 

to thanks an anonymous reviewer who raised this point providing the mathematical 

details], thus whichever the value of  is, there always exists a large enough memory depth 

m* such that for any memory deeper than this value m* the system is dissipative from any 

starting state. The minimum memory depth value m* is defined by: 

  m* = min {m:  m < 1 /  gMAX }   

It is worth noting that the entries of matrix Gǂ m as well as gMAX have no dimension, thus the 

above condition is not affected by the units used to measure flows or costs.  

 

A similar analysis can be carried out with respect to link variables. 
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Appendix 3: features of the toy network. 

This appendix describes basic data of the toy network used to develop the examples in the 

main text. The network a simple representation of North-South motorway connections 

from Napoli to Salerno in Italy is described by the graph in Figure. A.1, with four nodes, 

{A, B, C, D}, and five arcs, {1 = A,C, 2 = B,C, 3 = B,D, 4 = A,B, 5 = C,D}.  

 

Figure A.1. Network used in the examples. 

 

Davidson hyperbolic travel time function describes cost flow relationship for each arc a: 

 ca = co,a1 + a  fa / capa Ȃ fa  for fa  ]0, capa[ 

where co,a is the null flow cost, capa is the capacity of the arc, and a a shape parameter. 

Since this function shows a vertical asymptote at capacity, a first order approximation is 

commonly considered when the flow to capacity ratio is greater that a pre-fixed threshold 

in the range [0,1[; this parameter models how congestion affects costs a null value 

meaning no effect at all; a value 0.80 is used. According to these assumptions the arc cost 

function is continuously differentiable thus continuous and strictly increasing. 

 

Only one O-D pair A-D is considered connected by three paths, {A-C-D, A-B-C-D, A-B-D}, 

with flow equal to 0.75 of the maximum flow that can traverse the network at saturation. 

Path choice behaviour is modelled by an invariant Logit choice model with dispersion 

parameter  = 6 /   = 0.780 , where  is the standard deviation of path perceived 

utility; it is assumed that  = 0.30  35, where 35 is the cost of the shortest path, thus   8. 

Under these assumptions the path choice function is continuous, strictly positive, and 

increasing with symmetric positive semi-definite Jacobian. 

 

The dynamic choice process is modelled through the ES 3.1 with  = 0.60. The 

learning behaviour process is modelled through the ES 3.2 or the MA, m 3.3 filter 

with  = 0.40 in both cases, different values of m are considered. The MA is initialized by 

applying the ES filter 3.2 for m days to fill the m columns of cost memory matrix. 

 

Sufficient conditions for existence and uniqueness of one fixed-point state are satisfied by 

above assumptions.  The DP model based on ES evolves towards the unique fixed-point 

attractor equal to the SUE; this may not be case for DP with MA. When convergence occurs, 

it requires less than 75 days; thus, in all examples in the main text the evolution over time 

on path 1 / arc 1 is shown from day 75 to day 90. Results shown are not affected by the 

initial states, as shown by some examples not reported for brevityǯs sakeǤ 
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Appendix 4: proof of results in sub-section 4.2 

Recalling equation 4.10 in the main text: 

 

 E[X t] = E[E[X t|ZtȂ1, X tȂ1]] =  

    = 1Ȃ E[X tȂ1] +   D E[pZtȂ1] 4.10 

and dividing it through by  yields: 

 Ȃ1 E[X
t] = Ȃ1 1Ȃ E[X

tȂ1] +  D E[pZtȂ1] . 

Using the distributional approximation for pZ in the neighbourhood of stationarity: 

 Ȃ1 E[X
t] = Ȃ1 1Ȃ E[X

tȂ1] +  D pcxSUE + Jp E[Z
tȂ1] Ȃ cxSUE + O Ȃ0.5 

where we say f is On if lim   f/ 

n = u <  for some finite constant u.  

 

Recalling that the condition for SUE is xSUE =  D pcxSUE, the above may be simplified to: 

      Ȃ1 E[X
t] = Ȃ11Ȃ E[X

tȂ1] +  Ȃ1 xSUE +  D Jp E[Z
tȂ1] Ȃ cxSUE + O Ȃ0.5 . 

Now, also we have that: 

 E[Z
t Ȃ1] = k = 1ǡǥ,m k E[cXt Ȃ k] 

        = k α ͳǡǥǡm k cxSUE + Ȃ1 Jc E[X
t Ȃ k] Ȃ xSUE + O Ȃ0.5 

        = cxSUE + Ȃ1 k α ͳǡǥǡm k Jc E[X
t Ȃ k] Ȃ xSUE + O Ȃ0.5  

and so 

 E[Z
t Ȃ1] Ȃ cxSUE = Ȃ1 k α ͳǡǥǡm k Jc E[X

t Ȃ k] Ȃ xSUE + O Ȃ0.5 . 

Substituting into the expression above for Ȃ1 E[X
t], and denoting t = E[X

t], yields:  

     Ȃ1  t Ȃ xSUE = Ȃ11Ȃ tȂ1 + Ȃ1 k α ͳǡǥǡm k D Jp Jc tȂk ȂxSUE + O Ȃ0.5  
which after some slight rearrangement can be written as: 

    Ȃ1 t Ȃ xSUE = Ȃ11ȂtȂ1 Ȃ xSUE + Ȃ1 k α ͳǡǥǡm k D Jp Jc tȂk Ȃ xSUE + O Ȃ0.5.   

Thus, asymptotically with small error relative to  , we can relate the mean t of the 

process to the means {tȂk : k α ͳǡʹǡǥǡm} on the preceding m days, at least approximately in a neighbourhood of stationarity where Davis Ƭ Nihanǯs result may be assumed to 
approximately hold. 

Note that in stationarity, t = tȂ1 = tȂ2 α ǥ α tȂm = * say, and the dynamic 

equations above give:  

 Ȃ1 *Ȃ xSUE = Ȃ11Ȃ *Ȃ xSUE + Ȃ1 k α ͳǡǥǡm k D Jp Jc * Ȃ xSUE  + O Ȃ0.5   

  = Ȃ1 1Ȃ I +  D Jp J c * Ȃ xSUE k α ͳǡǥǡm k  + O Ȃ0.5    

          = Ȃ1 1Ȃ I +  D Jp Jc * Ȃ xSUE + O Ȃ0.5   

implying that:  

 Ȃ1  I ȂD Jp Jc * = Ȃ1  I Ȃ D Jp Jc xSUE  + O Ȃ0.5  . 

 


